Choco Graph Documentation
Choco Solver module for graph variables (version 4.2.2)

Jean-Guillaume Fages', Charles Prud’homme?, and Xavier Lorca?

lCOSLING S.A.S., https://www.cosling.com/
2TASC research team, IMT Atlantique, https://www.imt-atlantique.fr/

January 17, 2019

Abstract

This document describes the API of Choco-Graph, a module of the Choco
Solver [1] which enables to search for a graph subject to constraints. It explains
how to create graph variables and uses available graph constraints and search pro-
cedures. It also describes how to build your own ones. Finally, a few examples are
provided.

This solver is an output of the PhD Thesis of [2, 3]. Other references to graph
variables may be found in the litterature [4, 5, 6, 7, 8] but they are based on a
different implementation.

This document assumes the reader is already familiar with the concepts of
Constraint-Programming [9] and the Choco Solver.

https://www.cosling.com/
http://web.emn.fr/x-info/ppc/index_en.html

Contents

1

Introduction
LI OVEIVIEW . . . o v o o et e e e e e e e e e e e
1.2 Howtocite Choco Graph? e
1.3 Which version of Choco Solver?
1.4 Need support? e e
Defining a graph variable
2.1 Graphs e e
2.2 Backtrackable graphs L oL
23 GraphModel oL
24 Graphvariable L
Constraining a graph variable
3.1 Usual graphconstraints
3.1.1 Nodeandedgecounts.
312 LoOpS .« .. e
3,13 Degrees e e e e
3.1.4 Graphinclusion
315 Symmetry .. o.oL oL e e e e
3.1.6 Transitivity Lo e
317 Cycles . . L e
3.1.8 Connectivity e e e
319 Tree e e
3110 CHques . . . o o o e e e e e
311 Diameter e e e
3.2 Some optimization constraints L. oL Lo e e
32.1 TheTSPconstraint i e e e e
3.3 Channeling constraints
33.1 Setchanneling
332 Booleanchanneling L L
333 Integerchanneling
3.4 Implementing your own CONStraint oL u e e e e e e e e
3.4.1 Asimple and non-incremental propagators
3.4.2 Incremental propagators Lo e
Search
4.1 Variableselection L
4.2 Branchingonagraph variable
4.3 Built-insearch heuristics L oL
Visualization
Appendix : Practical examples
6.1 Large scale Hamiltonian cycle : The Knight’s Tour Problem
6.2 Solving the Traveling Salesman Problem
6.3 Finding a Directed Acyclic (sub)Grapho

1 Introduction

1.1 Overview

This Choco Solver module allows you to search for a graph!, which may be subject to
constraints. The domain of a graph variable G is a graph interval [, G]. G is the graph
representing vertices and edges which must belong to any single solution whereas G is
the graph representing vertices and edges which may belong to one solution. There-
fore, any value G* must satisfy the graph inclusion G C G* C G. One may see a strong
connection with set variables. A graph variable can be subject to graph constraints to
ensure global graph properties (e.g. connectedness, acyclicity) and channeling con-
straints to link the graph variable with some other binary, integer or set variables. The
solving process consists of removing nodes and edges from G and adding some others
to G until having G = G, i.e. until G gets instantiated. These operations stem from both
constraint propagation and search. You may wonder why using a graph variable. Here
are the most important motivations to do so:

* Modeling convenience :

— When solving a graph problem, the model is close to the original problem.

— A graph variable is a consistent graph representation (e.g. a node which
does not exist has no incident arcs), which simplifies the model.

— Stating constraints as graph properties in a declarative way is nice.
* Implementation convenience :

— Manipulating a domain which consists of two graphs (representing respec-
tively mandatory and potential elements) makes easy the implementation
of graph-based filtering algorithms. As the implementation becomes more
natural, the risk of mistakes decreases.

* Performance gains :

— You can use optimized data structure for domains (e.g. bit sets, bipar-
tite sets, linked lists...) which allow to reduce runtime of most algorithms
and/or memory consumption. This brings significant improvement on large
scale problems.

— Having such a global variable instead of many smaller ones makes the
solver lighter, which brings performance improvement.

This module can be seen as a CP framework for graph theory. In that sense, it
is closer to Operations Research than Artificial Intelligence. With a minimum back-
ground in graph algorithms, this manual will help you to build your own models, con-
straints and search procedures so that you effectively solve your problems.

IEither directed or undirected, with at most one arc/edge between any two vertices.

http://www.choco-solver.org/

1.2 How to cite Choco Graph?

A reference to this manual, or more generally to Choco Graph, is made like this:

@manual{chocograph,
author = {Jean—Guillaume Fages and Charles Prud’homme and Xavier Lorca},
title = { Choco Graph Documentation},
year = {2018},
organization = { COSLING S.A.S., IMT Atlantique},
timestamp = {Mon, 5 Mar 2018},
url = {https://github.com/chocoteam/choco—graph/},

1.3 Which version of Choco Solver?

This extension should be used with Choco Solver 4.0.6

1.4 Need support?

The company COSLING can provide you with professional support and specific soft-
ware development related to Choco Graph and Choco Solver. Feel free to contact our
consultants at contact@cosling.com to discuss your upcoming projects.

If you encounter any bug, please feel free to open an issue on GitHub.

https://www.cosling.com/
https://github.com/chocoteam/choco-graph/

2 Defining a graph variable

Prior to introduce how to build graph variables, it is necessary to describe graph struc-
tures of the core Choco solver. These graphs are often used as internal data structures
for propagators. In our case, it will serve to define the domain of graph variables.

2.1 Graphs

There are basically two kind of graphs in Choco : directed (DirectedGraph. java)
and undirected (UndirectedGraph. java) graphs. Directed and undirected graphs
have similar methods. The constructor of an undirected graph is the following:

public UndirectedGraph(int n, SetType type, boolean allNodes)

* The integer n denotes the maximum number of nodes. This is necessary for
memory allocation. The set of nodes is then a subset of {0,1,...,n — 1}. Once
the graph has been created, it is not possible to modify that value.

* SetType type indicates which kind of data structure to use. If the graph
is very sparse, a linked list (Set Type . LINKED_LIST) implementation would
reduce the memory consumption. Otherwise, Set Type . BIPARTITESET pro-
vides an optimal time complexity for every request, but has some hidden con-
stants and a higher memory consumption. Set Type .BITSET is a good default
choice.

* The boolean allNodes indicates whether or not the node set is fixed. This
parameter is very important. Whenever set to true, it means that the vertex set is
[0,n — 1] and will not change during search. It is not necessary to add vertices
explicitly (all of them are present). If set to false, it means that the vertex set
must be a subset of [0,n — 1], and is initially EMPTY. Therefore, the user may
have to add them explicitly by using the addNode (int i) method.

Graph manipulations (iterations over nodes, edges, neighbors of a particular ver-
tex...) rely on the choco ISet interface.

for(int i:graph.getNodes()){

}

Note that for efficiency reason iteration of one ISet is not context safe, i.e. you cannot
encapsulate two iteration loops of the same set because only one iterator is created by
default (copy the set in an int[] for doing that, or create a new iterator explicitly).

2.2 Backtrackable graphs

As we wish to use graphs to represent the domain of a variable, such graphs must be
backtrackable, i.e. the graph must restore its previous value upon backtracking. To
do so, one simply use a different constructor, having the model in argument (to catch
backtrack events):

Therefore, you should use the following signatures when creating domain bounds:

new UndirectedGraph(Model model, int n, SetType type, boolean allNodes)
new DirectedGraph(Model model, int n, SetType type, boolean allNodes)

2.3 Graph Model

Since version 4, Choco Solver uses a Mode 1 object to create variables and constraints
of the model, whereas the Solver object contains everything related to the solving
process. In Choco Graph, the Solver object remains the same, but the model must
be a GraphModel object, which inherits from Mode1:

GraphModel model = new GraphModel();

‘ Almost everything will be accessible from model . + ctrl space (autocompletion) ‘

2.4 Graph variable

Graph variables can be created through the GraphModel. The domain of such a
variable is defined by two graphs : the lower bound graph gives nodes and arcs that
belong to every solution, whereas the upper bound graph gives nodes and arcs that may
belong to a solution. GraphModel methods to create a graph variable:

Create an undirected graph variable named name

« and whose domain is the graph interval [Ib,ub]

#* BEWARE: 1b and ub graphs must be backtrackable
use the solver as an argument in their constructor)!

% @param name name of the variable

% @param b Undirected graph representing mandatory nodes and edges

@param ub Undirected graph representing possible nodes and edges

@return An undirected graph variable

:F/

default UndirectedGraphVar graphVar(String name,
UndirectedGraph 1b,
UndirectedGraph ub) {

return new UndirectedGraphVar(name, _me(), 1b, ub);

Create a directed graph variable named name

* and whose domain is the graph interval [Ib,ub]
BEWARE: Ib and ub graphs must be backtrackable
(use the solver as an argument in their constructor)!

@param name name of the variable

« @param Ib Directed graph representing mandatory nodes and edges
@param ub Directed graph representing possible nodes and edges
@return An undirected graph variable

default DirectedGraphVar digraphVar(String name,
DirectedGraph Ib,
DirectedGraph ub) {

return new DirectedGraphVar(name, _me(), 1b, ub);

Note the the bound graphs must be backtrackable. The input maximum number of
nodes should be the same for both the lower and the upper bound graphs. Here is an
example involving an undirected graph variable:

/I graph model
GraphModel model = new GraphModel();
// graph variable domain
UndirectedGraph GLB = new UndirectedGraph(
model, // Restore value on backtrack
n, // Maximal number of nodes
SetType.BITSET, // data structure type
false // fixed node set?
)
UndirectedGraph GUB = new UndirectedGraph(
model, //Restore value on backtrack
n, // Maximal number of nodes
SetType.BITSET, // data structure type
false // fixed node set?
)
for (inti=0;i<n;i++) {
GUB.addNode(i); // potential node
for (int j =1i;j <n; j++) {
if (link[i][j]) { // some input data providing potential edges
GUB.addEdge(i, j); // potential edge
}
}
}
GLB.addNode(1); // 1 and 2 must belong to the solution
GLB.addNode(2);
GLB.addEdge(1,2); // 1 and 2 must belong to the same clique
// graph variable
graphvar = model.graphVar("G", GLB, GUB);

In this example, we see that vertices 1 and 2 must belong to every solution, as well
as the edge (1, 2). Other potential vertices and edges are given by GUB.

For simplicity reasons, one may prefer to use the following method, which creates
an empty lower bound graph and a complete upper bound graph with 42 vertices:

model.graphVar("G",42);

3 Constraining a graph variable

A collection of constraints over a graph variable can be found in GraphMode1, which
implements IGraphConstraintFactory.

3.1 Usual graph constraints
3.1.1 Node and edge counts

The factory contains several basic constraints, such as nbNodes, which enables to
constrain the number of nodes to be equal to a given integer variable. To make things
simpler, you can call the model.nbNodes (g) function which will create and return
an integer variable that is equal to the number of nodes (i.e. it posts the nbNodes
constraint). In the same way, one can count the number of edge (resp. arc) of an
undirected (resp. directed) graph variable as follows:

// Creates an IntVar equal to the number of arcs in g

IntVar nbArcs = model.nbArcs(g);

or

// posts a constraint saying that the IntVar x is equal to the number of arcs in g
model.nbArcs(g,x).post();

3.1.2 Loops

Graph variables may contain loops, i.e. arcs of the from (4,4). If you want the graph
to contain no loops, then you should simply make sure the graph upper bound has
initially no loop. Instead, if you wish some vertices to have a loop, then you can use
the LloopSet (g, 1) constraint which ensures that the set variable [represents the
nodes of g that have a loop. You can also directly create that set variable using:

‘ SetVar loops = model.loopSet(graphvar);

|

Finally, you can control the number of loops the graph variable has with an integer
variable with the following :

‘ IntVar nbLoops = model.nbLoops(g);

3.1.3 Degrees

It is possible to constrain the minimum and the maximum degree each node of an
undirected graph variable, by using respectively minDegrees and maxDegrees
constraints. Such constraints only hold on vertices that belong to the solution. For in-
stance, if vertex a is constrained to have a degree greater than 5 but has only 4 potential
neighbors, then vertex a should be removed from the potential vertex set. Unless a
was a mandatory vertex, this does not trigger any failure. Here is an example imposing
every vertex to have at most 5 neighbors:

model.maxDegrees(graph,5).post();

It is also possible to constrain the exact degree of every node with an integer vari-
able, thanks to the degrees constraint. Instead of the above, this constraint holds
on every vertex. Therefore, a vertex which does not belong to the potential vertex set
should have its degree variable equal to 0. You can create these degree variables simply
as follows:

IntVar[] degrees = model.degrees(g); ‘

In the same way, one can restrict the in-degree (number of predecessors) and out-
degree (number of successors) of each node of a directed graph variable.

3.1.4 Graph inclusion

The subgraph (gl, g2) constraint enables to state that g1 is a subgraph of g2, i.e.
every vertex and edge in g1 is also in g2. It follows that g1 cannot be larger than g2.

3.1.5 Symmetry

You can force a directed graph variable to be either symmetric or antisymmetric, by re-
spectively using themodel . symmetric (g) orthemodel.antisymmetric (g)
constraints. For instance, by posting the following constraint you make sure that for
any arc (i,7) € g, then (j,17) ¢ g.

‘ model.antisymmetric(g).post();

3.1.6 Transitivity

Transitivity is a useful property which enables to compute transitive closures and cliques.

model.transitivity(g).post();

3.1.7 Cycles

To constrain an undirected graph variable to form a (Hamiltonian) cycle, then you can
simply use the cycle (hamiltonianCycle) constraint:

‘ model.cycle(g).post(); ‘

In the same way, a directed graph variable can be forced to form a circuit.

‘ model.hamiltonianCircuit(g).post(); ‘

You can prevent a directed (resp. undirected) graph from containing any circuit
(resp. cycle) by posting the noCircuit (resp. noCycle) constraint, as follows:

‘ model.noCircuit(g).post(); ‘

3.1.8 Connectivity

It is possible to force an undirected (resp. directed) graph variable to be connected
(resp. strongly connected) [10] or even to control its number of connected (resp.
strongly connected) components with an integer variable. The filtering of such con-
straint is quite weak but fast.

Here is an example :

IntVar nbSCC = model.intVar(2);
model.nbStronglyConnectedComponents(g,nbSCC));

Since version 4.2.3., connected constraint has been fixed and now provides GAC
NB : Connected allows graphs with 0 or 1 node for a better composition of con-
straints (use nbNodes to restrict to force a minimum number of node if required).

3.1.9 Tree

You can force an undirected graph variable to form a tree (i.e. a connected acyclic
graph) or a forest (i.e. an acyclic but potentially disconnected graph) by posting the
respective constraints:

model.tree(graphvar).post();
model.forest(graphvar).post();

In the case of directed graph variable, you can also have directed trees or directed
forests (also called arborescences).

IntVar root = model.intVar("rootOfTree",0,n—1);
model.directedTree(graphvar,root).post();
model.directedForest(graphvar).post();

Note that the directed_tree constraint [11] requires an integer variable denot-
ing the root of the tree, i.e. the vertex which has no predecessor and from which all
nodes can be reached.

3.1.10 Cliques

It is possible to partition a graph into cliques by using the transitivity and connectiv-
ity constraints. Nevertheless, if the maximum number of cliques is small, a stronger
filtering is provided by the nbCliques (g, nb) constraint.

3.1.11 Diameter

You can impose the diameter of a graph variable to be equal to a given integer variable
with the diameter constraint. This constraint also forces the graph variable to be
connected (or strongly connected in case of a directed graph variable). As a recall, the
diameter is the length (in number of arcs) of the largest shortest path between any pair
of nodes.

10

3.2 Some optimization constraints

Solving hard optimization problems to optimality often requires to embed cost-based
reasonings into global constraints. We have included two minimum spanning tree re-
laxations : the one-tree Lagrangian relaxation to solve the Traveling Salesman Prob-
lem and a minimum spanning tree subject to (dualized) degree constraints, to solve the
more general Degree Constrained Minimum Spanning Tree Problem. Such constraints
introduce a significant overhead but they provide a very powerful filtering as well. Pre-
sumably, they should only be used once a good upper bound has been found (in case
of a minimization problem), because the filtering depends on that value.

3.2.1 The TSP constraint

The TSP constraint enables to find a Hamiltonian cycle of minimum cost [12]. It is
built as follows:

/I constraints (TSP basic model + Lagrangian relaxation)
model.tsp(graph, totalCost, costMatrix, 1));

The arguments of this methods are respectively : the undirected graph variable
representing the cycle, the integer variable representing the cost of the cycle, the integer
(symmetric) cost matrix and the Lagrangian mode. Three values are possible for that
parameter : 0 means the Lagrangian relaxation is not used; 1 means that the Lagrangian
relaxation is turned on after a first solution has been found; 2 means the Lagrangian
relaxation is used since root node.

3.3 Channeling constraints

A wide range of channeling constraints are provided to allow links between boolean,
integer or set variables and a graph variables. This enables to post some usual con-
straints over some vertex (sub)sets of some edge (sub)sets.
Note that you do not have to create such channeling variables yourself : GraphModel . java
does it for you! See for instance the static method nodesSet which creates a set
variables associates to the nodes of the graph variable given in parameter. Here is an
example showing how to constrain the number of vertices of a graph variable g:

SetVar vertices = model.nodeSet(g);
model.cardinality(vertices, model.intVar(3)).post();

In the same way, one can want to constraint outgoing (resp. ingoing) arcs of a
vertex, by extracting such arcs in a set variable.

3.3.1 Set channeling

A set variable can be associated with:

* Nodes of a graph variable

11

* Neighbors of one node of an undirected graph variable

* Successors of one node of a directed graph variable

* Predecessors of one node of a directed graph variable
An array of set variables can be associated with:

* Neighbors of every node of an undirected graph variable
* Successors of every node of a directed graph variable

* Predecessors of every node of a directed graph variable

3.3.2 Boolean channeling

A boolean variable can be associated with:

* anode of a graph variable

* An edge of an undirected graph variable

* An arc of one node of a directed graph variable

An array of boolean variables can be associated with:
* Nodes of a graph variable

* Neighbors of a node of an undirected graph variable
* Successors of a node of a directed graph variable

* Predecessors of a node of a directed graph variable
A matrix of boolean variables can be associated with:

* The adjacency matrix of a graph variables

3.3.3 Integer channeling

An array of integer variables can be associated with:

* Successors of a directed graph variable for which each node belongs to the solu-
tion and has exactly one successor

12

3.4 Implementing your own constraint

In Choco-3, a constraint is nothing else but a String name and a set of propagators
(filtering algorithm objects). Therefore, to implement your own constraint, you need
to create your own propagators. Let see an example with a simple constraint enforcing
that a given directed graph should be antisymmetric, i.e. if an arc (¢,%) belong to
the solution, then the arc (j,4) is forbiden. This constraint can be created with the
following line of code, where PropAntiSymmetric is a propagator:

return new Constraint("antisymmetric", new PropAntiSymmetric(g));

Let us now investigate how to implement such a propagator. There are basically
two ways : either use a non-incremental or an incremental propagator.

3.4.1 A simple and non-incremental propagators

The simplest is the non-incremental approach, but it is also the slower. As we can see,
every time the constraint is propagated, we perform an iteration over every mandatory
arc (to remove its opposite if it has not been already done).

public class PropAntiSymmetric_coarse extends Propagator<DirectedGraphVar> {

/1 : :
/l VARIABLES
J/EE

IDirectedGraphVar g;
int n;

/I CONSTRUCTORS
/1

public PropAntiSymmetric_coarse(DirectedGraphVar graph) {
super(graph);
g = graph;
n = g.getNbMaxNodes();

}

1/
/I METHODS
/1

@Override
public void propagate(int evtmask) throws ContradictionException {
// iterates over mandatory nodes
for (int i : g.getMandatoryNodes()) {
// iterates over mandatory arcs
for (int j :g.getMandSuccOf(i)) {
g.removeArc(j, i, this); / removes symmetric arcs

}
}

@Override // checker of partial instantiations, useful for reification
public ESat isEntailed() {
for (int i : g.getMandatoryNodes()) {
for (int j : g.getMandSuccOf(i)) {
if (g.getMandSuccOf(j).contain(i)) {
return ESat.FALSE; // the constraint is violated

}

13

}
if (g.isInstantiated()) {
return ESat. TRUE; // the constraint is satisfied for sure

}
return ESat. UNDEFINED; // satisfiability is undefined

In order to improve performances, you can inform the propagation engine that the
propagator should be called only after one or many arc enforcing. It is useless to prop-
agate it after a set of arc removals or node modifications. To do so, you can override
the getPropagationConditions method as follows:

@Override

public int getPropagationConditions(int vIdx) {
/I propagation condition (facultative) : only propagate arc enforcing events
return GraphEventType.ADD_ARC.getMask();

3.4.2 Incremental propagators

In an incremental approach, then we can run in constant time per newly enforce arc,
with the following implementation:

public class PropAntiSymmetric extends Propagator<DirectedGraphVar> {

1/
/I VARIABLES
11

DirectedGraphVar g;
int n;
// object enabling to iterate over enforced/removed nodes/arcs
GraphDeltaMonitor gdm;
/I procedure to apply to every enforced arc (a, b) in order to remove (b, a)
PairProcedure enf = (from, to) —> {

if (from !=to) {

g.removeArc(to, from, this);

)
|5
// CONSTRUCTORS
1/

public PropAntiSymmetric(DirectedGraphVar graph) {
super(new DirectedGraphVar[]{graph}, PropagatorPriority. UNARY, true);
g = graph;
gdm = g.monitorDelta(this);
n = g.getNbMaxNodes();

/ METHODS
/1

@Override
public void propagate(int evtmask) throws ContradictionException {
/I First propagation (not incremental)
for (int i : g.getMandatoryNodes()) {
for (int j :g.getMandSuccOf(i)) {
g.removeArc(j, i, this);

}

14

gdm.unfreeze(); / necessary call to setup incremental data—structures

}

@Override

public void propagate(int idx VarInProp, int mask) throws ContradictionException {
// incremental propagation over every enforced arc since the last call
gdm.freeze();
gdm.forEachArc(enf, GraphEventType. ADD_ARC);
gdm.unfreeze();

}

@Override

public int getPropagationConditions(int vIdx) {
return GraphEventType. ADD_ARC.getMask();

}

@Override
public ESat isEntailed() {
for (int i : g.getMandatoryNodes()) {
for (int j : g.getMandSuccOf(i)) {
if (g.getMandSuccOf(j).contain(i)) {
return ESat. FALSE;
}
}
}
if (g.isInstantiated()) {
return ESat. TRUE;

}
return ESat. UNDEFINED;

Note that the super constructor is no longer the same :

super (new DirectedGraphVar[]graph, PropagatorPriority.UNARY,
true) ;. The first argument is the array of variables this propagator involves. The sec-
ond one is an indicator of the runtime of the algorithm (here constant time). Finally,
the last boolean argument states whether of not this propagator should be incremental

or not. Therefore, it should be set to t rue.

15

4 Search

4.1 Variable selection

Search procedures are necessary to explore a search space when (and it is usual case)
propagation is not sufficient to find a solution. Therefore, at each node of a search tree,
whenever propagation has terminated, a search procedure must compute a new deci-
sion (refutable hypothesis), which creates a new search node, in order to continue the
solving process. A decision consists of selecting a variable and restricting its domain
(e.g. X =3o0r X < 3).

In case the model includes one or many graph variables, then a search process must
select one variable and change its domain. For that, the user need to create a search
procedure for each variable type and then create a composite search procedure which
will decide, at each node, which one to apply (i.e. decide which variable type the
solver should branch on). Note that in case your model has many graph variables, you
should create one search strategy per such variable (or make your own search strategy),
because built-in strategies only consider one graph variable. Here is a simple example
which consists in applying successively int Search, then setSearch and finally
graphSearch:

Solver solver = model.getSolver();

AbstractStrategy<IntVar> intSearch = Search.intVarSearch(card);

AbstractStrategy<SetVar> setSearch = Search.setVarSearch(vertices);
AbstractStrategy<UndirectedGraphVar> graphSearch = GraphStrategyFactory.lexico(graphvar);
// this implicitly use a sequencer composite strategy
solver.setSearch(intSearch,setSearch,graphSearch);

If you want to decide yourself which strategy to apply, you can build your own
composite strategy as in the following example which performs a random selection:

AbstractStrategy<Variable> randomSelector = new AbstractStrategy(new Variable[]{ vertices,card,graphvar}) {
Random rd;
AbstractStrategy[] strats;
ArrayList<Decision> choices;
@Override
public void init() throws ContradictionException {
rd = new Random();
strats = new AbstractStrategy[]{intSearch,setSearch,graphSearch};
choices = new ArrayList<>();
for(AbstractStrategy s:strats){
s.init();
}
}
@Override
public Decision getDecision() {
choices.clear();
for(AbstractStrategy s:strats){
Decision d = s.getDecision();
if (d!=null){
choices.add(d);
}

}
if(choices.isEmpty()){

return null; // all variables are instantiated
}else{

return choices.get(rd.nextInt(choices.size()));

}

16

‘ solver.setSearch(randomSelector);

4.2 Branching on a graph variable

Has for other variable types, the search heuristic over a graph variable has a strong im-

pact on results [13]. Let us now investigate how to modify the domain of a graph vari-

able in a search decision. The getDecision () method of AbstractStrategy<IGraphVar>
should return a GraphDecision object. Let call dec this decision object. There are

basically four options:

¢ Make a potential (but not mandatory) vertex node become mandatory
(e.g. dec.setNode (g, node, GraphAssignment.graph_enforcer);)

¢ Remove a potential (but not mandatory) vertex node
(e.g. dec.setNode (g, node, GraphAssignment.graph_remover) ;)

» Make a potential (but not mandatory) edge/arc (from, to) become mandatory
(e.g. dec.setArc (g, from, to, GraphAssignment.graph_enforcer);)

* Remove a potential (but not mandatory) edge/arc (from,to)
(e.g. dec.setArc (g, from, to, GraphAssignment.graph_remover);)

You can implement your own AbstractStrategy<IGraphVar> or create a
new GraphStrategy with appropriate parameters.

* new GraphStrategy (IGraphVar g) Selects nodes then edges of graph
g according to their lexicographic ordering.

* new GraphStrategy (IGraphVar g, long s) Selects nodes randomly
and then edges randomly for graph g, using random seed s.

* new GraphStrategy (IGraphVar g, NodeStrategy ns, ArcStrategy
as, NodeArcPriority priority) generic strategy for graph g. You
can then implement your own NodeStrategy, which should select the next
node to branch on, as the following which returns the first unfixed vertex or -1 if
none exists:

public class LexNode extends NodeStrategy<IGraphVar> {

public LexNode(IGraphVar g) {

super(g);
}

@Override
public int nextNode() {
for (int i : envNodes) {
if (kerNodes.contains(i)) {
return i;
}
}
return —1;

}

17

You can also implement your own ArcSt rategy, which should select the next
arc to branch on, as the following which selects the first unfixed arc and returns
true or false depending of whether such an arc exists or not. Note that this time
the arc is defined through instance variables called from and to.

public class LexArc extends ArcStrategy<IGraphVar> {

public LexArc(IGraphVar g) {
super(g);

@Override
public boolean computeNextArc() {
ISet envSuc, kerSuc;
for (int i : envNodes) {
envSuc = g.getPotSuccOrNeighOf(i);
kerSuc = g.getMandSuccOrNeighOf(i);
if (envSuc.size() != kerSuc.size()) {
for (int j : envSuc) {
if ('kerSuc.contain(j)) {
this.from =1;
this.to = j;
return true;

}
}
this.from = this.to = —1;
return false;

There are two options for NodeArcPriority:

* NodeArcPriority.NODES_THEN_ARCS: First fixes every node and then
fixes every arc

* NodeArcPriority.ARCS: Fixes every arc (forcing an arc automatically forces
its incident nodes). Note that potential nodes with no incident arcs may remain
unfixed.

4.3 Built-in search heuristics

You can retrieve many built-in heuristics in GraphSearch:

solver.setSearch(new GraphSearch(graph).configure(GraphSearch.MIN_P_DEGREE).useLastConflict());

This example allows to branch on the graph by selecting arcs for which the sum of
the potential degree of its two ending nodes is minimal. It also plugs a graph adaptation
of the last conflict of Lecoutre et. al.

5 Visualization

Graph variables can be exported into the GraphViz format in order to view their do-
main, through method graphVar.graphVizExport (). Mandatory (LB) nodes

18

http://www.webgraphviz.com/

and arcs will be displayed in red whereas potential (UB) nodes and arcs will appear in
black:

19

6 Appendix : Practical examples

Examples may be found in the source code in package org.chocosolver.samples

6.1 Large scale Hamiltonian cycle : The Knight’s Tour Problem

The Knight’s Tour Problem (KTP) is defined over a chessboard and consists of making
a chess knight visit every cell exactly once and reach back its original position, where
possible moves are given by classical chess rules for the knight. This problem can be
seen as a graph problem. Let us introduce an undirected graph for which every vertex is
associated with a cell of the chessboard and there is an edge between two vertices if and
only if the chess rules allow to travel between the two cells associated with the edge
endpoints. The problem then consists of finding a Hamiltonian cycle in this graph.
This can be addressed using Choco-Graph. Here is the graph-based CP model of
this KTP (with a board length of 200, which involves a 40, 000-vertex graph) :

import org.chocosolver.graphsolver.GraphModel;

import org.chocosolver.graphsolver.search.strategy. ArcStrategy;
import org.chocosolver.graphsolver.search.strategy. GraphStrategy;
import org.chocosolver.graphsolver.variables.UndirectedGraphVar;
import org.chocosolver.solver.Solver;

import org.chocosolver.util.objects.graphs.UndirectedGraph;
import org.chocosolver.util.objects.setDataStructures.ISet;

import org.chocosolver.util.objects.setDataStructures.SetType;

[
Solves the Knight’s Tour Problem

<p/>

Uses graph variables (light data structure)

better with —Xms1048m —Xmx2048m for memory allocation
when solving large instances

@author Jean—Guillaume Fages
since Oct. 2012

public class KnightTourProblem {

public static void main(String|[] args) {
boolean|[][] matrix;
boolean closedTour = true; //Open tour (path instead of cycle)
int boardLength = 100;
/I 'This generates the boolean incidence matrix of the chessboard graph
/' 1t is responsible of the high memory consumption of this example
// and could be replaced by lighter data structure
if (closedTour) {
matrix = HCP_Utils.generateKing TourInstance(boardLength);
} else {
matrix = HCP_Utils.generateOpenKingTourInstance(boardLength);
}
GraphModel model = new GraphModel("solving the knight’s tour problem with a graph variable");
// variables
int n = matrix.length;
// graph representing mandatory nodes and edges
// (linked list data structure as the expected solution is expected to be sparse,
// every vertex in [0,n—1] is mandatory)
UndirectedGraph GLB = new UndirectedGraph(model,n,SetType. LINKED_LIST,true);
/I graph representing potential nodes and edges
// (linked list data structure as its initial value is sparse,
UndirectedGraph GUB = new UndirectedGraph(model,n,SetType. LINKED_LIST,true);

20

for (inti=0;i<n;i++) {
for (intj=1i+ 1;j<n; j++) {
if (matrix[i][j]) { // adds possible edge
GUB.addEdge(i, j);
}
}
}
// creates the graph variable
IUndirectedGraphVar graph = model.graphVar("G", GLB, GUB);

//'hamiltonian cycle constraint
model.hamiltonianCycle(graph).post();

// basically branch on sparse areas of the graph
Solver solver = model.getSolver();
solver.setSearch(new GraphStrategy(
graph, null, new MinNeigh(graph), GraphStrategy.NodeArcPriority. ARCS

solver.limitTime("20s");

solver.solve();
solver.printStatistics();

11
/I HEURISTICS
/1

private static class MinNeigh extends ArcStrategy<UndirectedGraphVar> {
int n;

public MinNeigh(UndirectedGraphVar graphVar) {
super(graphVar);
n = graphVar.getNbMaxNodes();

}

@Override
public boolean computeNextArc() {
ISet suc;
intsize=n+1;
int sizi;
from= —1;
for (inti=0;i<n;i++) {
sizi = g.getPotNeighOf(i).size() — g.getMandNeighOf(i).size();
if (sizi < size && sizi > 0) {
from =1;
size = sizi;

}

}
if (from == —1) {
return false;
}
suc = g.getPotNeighOf(from);
for (int j : suc) {
if (!g.getMandNeighOf(from).contain(j)) {
to=j;
return true;
}
}

throw new UnsupportedOperationException();

The Hamiltonian cycle constraint involves basic filtering but which run incremen-
tally in constant time for each edge removal/enforcing. Note that having a undirected
model is a key (a directed representation would bring symmetries and increase the

21

search space). This model provides the following output (obtained on a usual laptop):

s Choco 3.2.1 —SNAPSHOT (2014 —05) : Constraint Programming Solver, Copyleft (c) 2010—2014
Solve : solving the knight’s tour problem with a graph variable
— Search statistics
Solutions: 1
Building time : 2,796s // time to build the graph variable domain and propagators
Initialisation : 0,007s
Initial propagation : 0,039s // initial propagation runtime
Resolution : 7,918s // total solving time
Nodes: 39 507 // number of branching node is almost the number of nodes in the graph (40,000)
Backtracks: 1 // good filtering and good search! This model is good on the Hamiltonian cycle problem.
Fails: 1
Restarts: 0
Max depth: 39 506
Propagations: 103 963 + 0 // number of incremental propagations + number of non—incremental propagations
Memory: —20mb // memory usage of the model (while the input matrix takes >1gb)
Variables: 3 // graph + default solver constants (ZERO and ONE)
Constraints: 1 // Hamiltonian cycle constraint (which has 3 incremental propagators)

If we take a small instance, with a board length of 8, whence 64 vertices. Here is
the print of the graph variable initial domain :

graph_var G
upper bound: // (potential nodes and edges)
nodes :

[0,63]

neighbors :

0—>{1710}

1—>{181611}

2—>{1917128}

3—>{2018139}

4—>{21191410}

5—>{22201511}

6 —>{232112}

7—>{2213}

8§ —>{25182}

9 —>{2624193}

10 —>{2725201640}

11 —>{2826211751}

12 —>{2927221862}

13 —>{3028231973}

14 —> (3129204}

15 —>{30215}

16 —>{3326101 }

17 —>{3432271120}

18 —>{3533282412831}

19 —>{3634292513942}

20 —>{37353026141053}

21 —>{38363127151164}

22 —>{3937281275}

23 —>{3829136}

24 —>{4134189}

25 —>{42403519108 }

26 —>{434136322016119}

27 —>{4442373321171210}

28 —> {45433834221813 11}

29 —>{46443935231914 12}

30 —>{474536201513 }

31 —>{463721 14}

32 —>{49422617}

33 —> (504843271816}
{514944402824 19 17
{5250454129252018
{53514642302621 19
(54524743 31272220

34 —>
35 —>
36 —>
37 —>

22

38 —> (555344282321}

39 —> (54452922}
57503425}
585651352624}
5957524836322725}
60 58 5349 37 33 28 26 }
615954 5038342927}
62 60 555139353028 }
46 —> {63 61 5236 31 29 }
62533730}

42 —>

45>

{

{

{

{

{

{

{

{

{

{

{

{59433432}
50 — >{6056444()3533}
51 —>{615745413634}
52 —> {625846423735}
53 —>{635947433836}
54 —> {6044 39 37 }
55 —>{614538}
56 —> {5041 }
57 —>{514240)
58 —> {5248 43 41
59 —> {
60 —> {
61 —>{

{
{

}
53494442)
54504543)
55514644)

lower bound: // (mandatory nodes and edges)
nodes :

[0,63] //all vertices are mandatory
neighbors : // no edge is mandatory

0—>{}

1 —>{

23

After solving the KTP, printing the (value of) the graph variable gives:

graph_var G
value: // the variable is instantiated
nodes :
[0,63] // All vertices belong to the solution graph
neighbors :
0 —> {17 10 } // The neighbors of node 0 are nodes 17 and 10
1 —>{1816 }//... edges (1,18) and (1,16) belong to the solution graph
2—>{1917}// ..
}
}

5->{2211}
6—>{2321}
7->{2213}
8 —>{2518}
9 —>{2624}
10 —> {270}

24

6.2 Solving the Traveling Salesman Problem

The sample TSP_CP_Solver applies 30 seconds of LNS and 30 seconds of classical
DEFS of the CP model for solving the TSP. The CP model for the TSP is the following:

// variables
totalCost = VariableFactory.bounded("obj", 0, 99999999, solver);
// creates a graph containing n nodes
UndirectedGraph GLB = new UndirectedGraph(solver, n, SetType. LINKED_LIST, true);
UndirectedGraph GUB = new UndirectedGraph(solver, n, SetType.SWAP_ARRAY, true);
// adds potential edges
for (inti=0;i<n;i++) {

for (intj=1i+1;j<n; j++) {

GUB.addEdge(i, j);
}

}
graph = model.undirected_graph_var("G", GLB, GUB, solver);

// constraints : TSP basic model + lagrangian relaxation (after a first solution has been found)
model.tsp(graph, totalCost, costMatrix, 2));

Note that in the exact (DFS) model, the Lagrangian relaxation is triggered since
root node (mode = 1). The search procedure varies from one model to the other (see
the sample files). The output on the bier127 instance, involving a complete graph of
127 vertices, is the following:

#% Choco 3.2.1 =SNAPSHOT (2014 —05) : Constraint Programming Solver, Copyleft (c) 2010—2014
Solve : TSP_Ins

solution found : obj = 141339

solution found : obj = 138636

solution found : obj = 137046

25

solution found : obj = 136912
solution found : obj = 136263

solution found : obj = 118528
solution found : obj = 118502
solution found : obj = 118442
solution found : obj = 118386
solution found : obj = 118374
solution found : obj = 118326
solution found : obj = 118282
— Search statistics
Solutions: 165
Minimize obj = 118282,
Building time : 0,123s
Initialisation : 0,007s
Initial propagation : 0,333s
Resolution : 30,014s
Nodes: 2 348
Backtracks: 2 960
Fails: 1 498
Restarts: 137
Max depth: 126
Propagations: 19 981 + 0
Memory: —6mb
Variables: 4
Constraints: 1
Best solution found : 118282 (but no optimality proof)
#% Choco 3.2.1 =SNAPSHOT (2014 —05) : Constraint Programming Solver, Copyleft (c) 2010—2014
% Solve : TSP_exact
solution found : obj = 118282
— Search statistics
Solutions: 1
Minimize obj = 118282,
Building time : 0,003s
Initialisation : 0,000s
Initial propagation : 0,039s
Resolution : 1,077s
Nodes: 129
Backtracks: 257
Fails: 128
Restarts: 0
Max depth: 23
Propagations: 1 535 + 0
Memory: —1mb
Variables: 4
Constraints: 1
Optimality proved with exact CP approach

As you can see, the LNS is a powerful tool to find very good (sometimes optimal)
solutions, and we can then use a classical DFS approach to perform the optimality
proof.

6.3 Finding a Directed Acyclic (sub)Graph

We now consider the problem of finding a DAG comprised between two input graphs
(initial domain) and such that the number of arcs is maximal. This problem can be
stated through the following program:

import org.chocosolver.graphsolver.GraphModel;

import org.chocosolver.graphsolver.variables.DirectedGraphVar;
import org.chocosolver.solver.Model;

import org.chocosolver.solver.variables.IntVar;

import org.chocosolver.util.objects.graphs.DirectedGraph;
import org.chocosolver.util.objects.setDataStructures.SetType;

26

public class DAGProblem {

public static void main(String[] args){

/ input graph
intn=35;
/I VARTABLE COUNTING THE NUMBER OF ARCS
GraphModel model = new GraphModel();
IntVar nbArcs = model.intVar("arcCount", 0, n * n, true);
/I GRAPH VARIABLE : initial domain (every node belongs to the solution)
DirectedGraph GLB = new DirectedGraph(model, n, SetType.BITSET, true);
DirectedGraph GUB = new DirectedGraph(model, n, SetType.BITSET, true);
GLB.addArc(0,1); / some arbitrary mandatory arcs
GLB.addArc(1,2);
GLB.addArc(3,1);
for (inti=0;1i<n;i++) {

for (intj=0;j<n;j++) {

GUB.addArc(i, j); // potential edge
}

}
DirectedGraphVar dag = model.digraphVar("dag", GLB, GUB);

// CONSTRAINTS
model.noCircuit(dag).post();
model.nbArcs(dag, nbArcs).post();

model.setObjective(Model. MAXIMIZE,nbArcs);

while (model.getSolver().solve()){
System.out.println("new solution found : "+nbArcs);
System.out.println(dag);

This provides the following output:

graph_var dag

value:

nodes :

[0,4]
SUCCESSOIS
0—>{1234}
1—>{24}
2—>{4}
3—>{124}
4—> ()

s Choco 4.0.0 (2016—06) : Constraint Programming Solver, Copyleft (c) 2010—2016
— Model[Graph Model] features:
Variables : 2
Constraints : 2
Default search strategy : yes
Completed search strategy : no
— Complete search — 1 solution found.
Model[Graph Model]
Solutions: 1
Maximize arcCount = 10,
Building time : 0,000s
Resolution time : 0,066s
Nodes: 23 (349,7 n/s)
Backtracks: 45
Fails: 22
Restarts: 0

Process finished with exit code 0

27

References

[1] C. Prud’homme, J.-G. Fages, X. Lorca, Choco Documentation, TASC - LS2N
CNRS UMR 6241, COSLING S.A.S. (2017).
URL http://www.choco-solver.org

[2] J. Fages, On the use of graphs within constraint-programming, Constraints 20 (4)
(2015) 498-499.

[3] J. Fages, Exploitation de structures de graphe en programmation par contraintes.
(on the use of graphs within constraint-programming), Ph.D. thesis, Ecole des
mines de Nantes, France (2014).

URL https://tel.archives-ouvertes.fr/tel-01085253

[4] N. Beldiceanu, Global constraints as graph properties on a structured network of
elementary constraints of the same type, in: Principles and Practice of Constraint
Programming — CP 2000, Vol. 1894 of LNCS, Springer Berlin Heidelberg, 2000,
pp. 52-66. doi:10.1007/3-540-45349-0_6.

[5] X. Lorca, Tree-based Graph Partitioning Constraint, ISTE/Wiley, 2011.
[6] J.-C. Régin, Modeling problems in constraint programming, tutorial (2004).

[7]1 L. Quesada, Solving constrained graph problems using reachability constraints
based on transitive closure and dominators, Ph.D. thesis, Faculté des Sciences
Appliquées, Université Catholique de Louvain (2006).

[8] G. Dooms, The cp(graph) computation domain in constraint programming,
Ph.D. thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain
(2006).

[9] F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming,
Vol. 2 of Foundations of Artificial Intelligence, Elsevier, 2006.

[10] R. E. Tarjan, Depth-first search and linear graph algorithms, STAM Journal on
Computing 1 (2) (1972) 146-160.

[11] J.-G. Fages, X. Lorca, Revisiting the tree constraint, in: Principles and Practice
of Constraint Programming — CP 2011, Vol. 6876 of LNCS, Springer Berlin Hei-
delberg, 2011, pp. 271-285.

[12] P. Benchimol, W.-J. Van Hoeve, J.-C. Régin, L.-M. Rousseau, M. Rueher, Im-
proved filtering for weighted circuit constraints, Constraints 17 (3) (2012) 205—
233.

[13] J. Fages, X. Lorca, L. Rousseau, The salesman and the tree: the importance of
search in CP, Constraints 21 (2) (2016) 145-162.

28

http://www.choco-solver.org
http://www.choco-solver.org
https://tel.archives-ouvertes.fr/tel-01085253
https://tel.archives-ouvertes.fr/tel-01085253
https://tel.archives-ouvertes.fr/tel-01085253
http://dx.doi.org/10.1007/3-540-45349-0_6

	Introduction
	Overview
	How to cite Choco Graph?
	Which version of Choco Solver?
	Need support?

	Defining a graph variable
	Graphs
	Backtrackable graphs
	Graph Model
	Graph variable

	Constraining a graph variable
	Usual graph constraints
	Node and edge counts
	Loops
	Degrees
	Graph inclusion
	Symmetry
	Transitivity
	Cycles
	Connectivity
	Tree
	Cliques
	Diameter

	Some optimization constraints
	The TSP constraint

	Channeling constraints
	Set channeling
	Boolean channeling
	Integer channeling

	Implementing your own constraint
	A simple and non-incremental propagators
	Incremental propagators

	Search
	Variable selection
	Branching on a graph variable
	Built-in search heuristics

	Visualization
	Appendix : Practical examples
	Large scale Hamiltonian cycle : The Knight's Tour Problem
	Solving the Traveling Salesman Problem
	Finding a Directed Acyclic (sub)Graph

