Optimized Inlining of Runtime Monitors

Frédeérick Lemay, Raphaél Khoury?, and Nadia TawBi

! Laval University, Department of Computer Science and SafévEngineering,
Pavillon Adrien-Pouliot, 1065, avenue de la Medecine QueQe, Canada G1V 0A6, Canada
2 Defence Research and Development Canada, Canadian DepadiiNational Defence
2459 Pie-XI Blvd North Quebec, QC, Canada G3J 1X5
frederick.l emay. 1, raphael . khoury. 1@l aval . ca, nadi a. t awbi @ft.
ul aval . ca

Abstract. A previous study showed how a monitor can be inlined into a po-
tentially untrusted program, producing an instrumentediea of this program
which provably respects the desired security policy. Thad\s extended previ-
ous approaches to the same problem in that it allowed n@tyspfoperties to
be monitored, and did not incur any runtime overhead. Howeke algorithm
itself runs in timeO(2™™), wheren is the size of the original program amd
that of the property being monitored, and the resultingrimsented program is
increased in the order @(m - n). These algorithmic factors limit the useful-
ness of the approach in practice. In this paper, we suggestadeptimizations
which reduce the algorithm’s run time and the size of theltiegpinstrumented
code. Using these optimizations, the monitor inlining cam in timeO(v + ¢)
wherev ande are respectively the size and number of transitions présehe
synchronous product of the original program and the prgpErrthermore, we
show how the size of the instrumented program can be mininize

Key words: security policies, security properties, omega-autonratdgjme mon-
itors

1 Introduction

An increasingly popular solution to the problem of secuningbile code is monitor
inlining, a process by which a monitor, representing a sgcproperty, is injected into
an untrusted program. This results in a new instrumentesiorenf the program which
provably respects the desired property.

Much research has gone into determining precisely whiclpgntees are enforce-
able using this approach, and which are not. Initial redeahowed that this method
was limited to the enforcement of safety properties, andiémpntations of formal
monitors naturally focused on this class of security proesr Yet, further studies on
security policy enforcement mechanisms showed that aroa griowledge of the tar-
get program’s behavior increases the power of these mesrhari21, 6].

Nonetheless, most practical implementations of monitoraat take advantage of
this possibility and are thus restricted to enforcing safebperties. Furthermore the
needed abstraction is often already available, and is wseihimize the runtime over-
head incurred by the property monitoring process.

In [11, 10] Chabot et al. present a monitor inlining algamitin which the monitor
relies on a model of the program’s possible behavior to eefoon-safety properties.
While their method is strictly more expressive than presisimilar monitor inlining
algorithms and the instrumentation induces no added rentinerhead, the very high
computational complexity of the algorithm limits the aalbility of the method.

In this paper, we propose several optimizations to the maignonitor inlining al-
gorithm from [11]. These allow the algorithmic complexitypass fromO (2™ ™) for a
program of sizex and a property of size: to a much more tractabl®(v + ¢), where
v ande are respectively the number of states and transitions prasthe synchronous
product of the original program and the desired property.ai§e show how to mini-
mize the size of the resulting instrumented code, whichdstd®(n - m) in the original
approach.

These optimizations derive from two insights: first, usimgadternative formalism
to express the desired security policy can speedup certaipgtations, specifically
cycle detection, which is the most time consuming aspechefalgorithm. Second,
the target program, when abstracted into a graph, exhipésific properties that can
be used to our advantage throughout the transformatiorepsoEmpirical results show
that we can successfully reduce the time needed to perfaprdgram transformation.

The remainder of this paper is organized as follows: SeQ@igmesents a review
of related work, Section 3 introduces some preliminaryoriand Section 4 presents
the monitor inlining algorithm from [11]. Section 5 give<etiproposed optimizations.
Empirical results are given in Section 6. Concluding reraanle given in Section 7.

2 Related Works

In [38], Schneider delineates the set of properties enfdriegby monitors. He focuses
on a class of monitors that enforce the property by abortiegeikecution when faced
with a violation of the security policy, and operate withaay prior knowledge of their
target's possible behavior. In these conditions, he detexththat the set of security
properties enforceable by this mechanism is the set ofyspfeiperties [25], a class
of properties which proscribe that a certain unwanted bienhavill not occur during
a given execution of the target program. However, he alsgestg that non-safety
properties can be monitored in several situations, for gtaifithe monitor had access
to a model of its target possible behavior, which can be cootd from data collected
by static analysis. In this case, the monitor can tolerataterially invalid behavior on
the part of the target program, with the confidence that it @ientually be corrected.
Subsequent research by Ligatti et al. [6] confirmed the Iéigiof extending the set
of monitorable properties using such an enforcement pgmnadi

Several subsequent studies show how monitors can be intiteetheir target, thus
producing a new version of an untrusted program that prgvaddpects the desired
security policy. For instance, in [16], Schneider et al.qm®ed a method to inline a se-
curity property in object code, while Colcombet et al. [18ppose a similar approach
which seeks to secure source code. In both cases, the msthmitéd to the enforce-
ment of safety properties. The inlining process involvessyonizing the program with
the security property by way of runtime checks that simutlaéebehavior of the secu-

rity automaton into the target program. These checks datgctiolation of the security
property at runtime, and abort the execution. Both Schmedtlal. and Colcombet et
al. propose a number of optimizations which minimize the hanof runtime checks
needed to enforce the property.

In [10, 11], Chabot et al. extend these approaches by alpwyie monitoring of
non-safety properties. Drawing upon the insight of [38] fg]dthey propose a monitor
which relies upon a statically constructed model of thedatg enforce non-safety
properties in some cases. While their approach is strictlgenexpressive than previous
the ones, its algorithmic complexity, which stands in traesiofO (2™) for a program
of sizen and a property of sizen, is a major hindrance to its wider usage.

Numerous other implementations of inlined monitors efst.instance, in [34, 33]
and [35], Ould-Slimane et al. give an automata based irdiprocedure which relies
on a new operator that embeds a property automata into & taggram. The monitor-
ing of security protocols is discussed in [4] and [5]. Thatrdbrmation flow policies
is discussed in numerous papers including [12] and [17]38] Ben at al. propose a
decentralized monitor which monitors safety propertieslistributed programs. The
optimization of monitors is further discussed in [44]. Thériing of monitors in con-
current programs is discussed in [27]. An algebraic metbddline a safety property
into a program is given in [26] and [28]. In this approach,tbtite property and the
program are stated using process algebra. The instrumprdgdam is shown to be
equivalent to the original one using a notion of equivaldmased on bisimulation. The
monitoring of networks is discussed in [31].

The monitoring of nonsafety properties is also discussd¢d9h which shows that
such properties can be monitored by an enforcement mechaaigable of transform-
ing the execution sequence.

3 Preliminaries

We begin by introducing in more detail the notation and théwes types ofu-automata
which we will manipulate in this paper, and explain how sucatoenata accept or reject
their input.

An alphabet is a finite non-empty set of symbols. A word ovehabetX' is a
sequence of symbols froth. In what follows >* denotes the set of all finite words
from X while X* denotes that of all infinite words. A languageis a subset o2«
and/orX*. Security properties are also modeled as subsets“ond automata are a
convenient formalism to represent them [2].

An w-automatond, over alphabel’ is a tuple(Q, Z, §, C') such that

— Y is afinite or countably infinite set of symbols;

— Q is afinite or countably infinite set of states;

— 7 C Q is the set of initial states;

-0 CQ x XY x Qis a (possibly partial) transition function;

— C'is an acceptance condition which specifies whether or nonfamite sequence
p is accepted by the automaton as depending on the states wadtah or do not
occur infinitely often inp. This condition is stated differently in the various types
of w-automata which we will study, sometimes leading to vawiadiin expressive

power. Accepted sequences are said to be valid, while egjestquences are said
to be invalid.

The set of all accepted sequencesiak the language recognized by, noted. 4.

A path p, is a finite (respectively infinite) sequence of states ¢o, ..., ¢,) (re-
spectively(q1, g2, ...)) such that there exists a finite (respectively infinite) ssme of
symbolsay, as, ..., a, (respectivelys, aq, ...) called the label op such that(g;, a;) =
gi+1 foralli € {0,...,n — 1} (respectivelyi > 0). In fact, a path is a sequence of states
that form a possible run of the automaton, and the label sfghth is the input sequence
that generates this run. The empty path is neted

Let p be a path in some automaton, we writgf (p) for the set of states that are
visited infinitely often inp. The study ofwv-automata was pioneered by Buchi in [7],
where he introduced the Bichi automaton. The acceptanuditam of such an au-
tomaton is given as a set of states, at least one of which neugshed infinitely often
by a sequence for it to be accepted by the automaton. Formally

Definition 1. A Buchi automatori3 is anw-automaton @, Z, §, F') whose acceptance
condition is a sef” C Q. A pathp is valid iff inf (p) N F # 0.

A cycle of states from an automatohis said to be aalid cycleiff the states com-
posing it would respect the acceptance condition were theyhe only states visited
infinitely often in a path over this automaton. A cycle is saidbe invalid otherwise.

Observe that in a non-deterministic Biichi automafronly a single run of the
automaton needs to be valid for its label to be a word accéptéii. The class of lan-
guages recognizable by Buchi automata is teramye@dgular languages [36]. A language
L C X¥is said to bev-regular iff it is of the formUV* whereU, V C X* are regular
languages. The use of nondeterministic automata sometidgssa layer of complex-
ity to proofs and automata manipulations. A determinigtimenaton is thus sometimes
preferable. Unfortunately, deterministic Buchi autoanate strictly less expressive than
their nondeterministic counterparts [36].

Yet, with altered acceptance conditions, an automatos clas be defined which is
deterministic but still recognizes all-regular languages. Several such automata exist.
In this paper, we focus on the Rabin automaton [37].

Definition 2. A Rabin automatof® is anw-automaton @, Z, J, C') whose acceptance
condition C' is given as a set of pairs of sets of statés;, R;) with G;, R; C Q.
A run p is accepted iff there exists a pai:;, R;) € C for which inf(p) N G; #

0 A inf(p) N R; = 0.

4 Monitor Inlining Algorithm

In [11], Chabot et al. show how a safety or non-safety prgpeain be inlined into
an untrusted or possibly malicious program to produce anumented version of this
program that provably respects the security policy, whilntaining the original pro-
gram'’s transparency, (i.e. leaving valid executions preisethe original program unal-
tered [38]).

The method consists of 7 steps.

Property Encoding
The desired security policy is abstracted by a Rabin automdthis allows much
wider expressivity than previous approaches which relipdnuthe security au-
tomaton [2], a subclass of the Biichi automaton limited faregs safety properties,
while retaining determinism. Any-regular property can be stated in this formal-
ism [36].

Program Abstraction
The program is abstracted into a Labeled Transition Systdi8)(a widely used
formalism for representing programs. Transformationsatem ensure that this rep-
resentation is deterministic, without loss of expresgivit

Automata Product
The next step is to construct the automata product of thegptppnd the program.
This results in a new Rabin automatgR), with its own acceptance condition.
Since this new automaton accepts the intersection of thgpukege accepted by the
original product and that accepted by the property automattavould form a nat-
ural basis from which to build the instrumented program. ldesv, because the
acceptance condition of the Rabin automaton is stated finstef which states an
execution can or cannot visit infinitely often, it is impdssifor the monitor to de-
tect at runtime if the current execution is valid or not. Temainder of the method
consists of transformations aimed at removing invalid baira from the product
automaton, while preserving valid ones.

Marking the Halt States
Since the property is enforced by halting the executiors itécessary to identify
all program points where the execution can safely be abavridut violating the
security policy. These are indicated by adding a transiiioa halt state from any
state where the monitor can abort the execution.

Detecting Valid and Invalid Behaviors
The next phase consists in extracting, if possible, a labesnsition system from
the product automaton, by pruning it of states and tramsticontaining invalid
cycles w.r.t. its acceptance condition. This process fimgtlives parsing the prod-
uct automaton into its strongly connected componestg @nd listing the cycles
present in each of them. It's at the step of cycle detectiat the algorithm’s
complexity grows to0(2"), for an automaton containing states. Each cycle is
then checked against the acceptance condition, andseadt labeled according
to whether it contains either only valid cycles, only indatiycles, both types of
cycles, or no cycles (the triviaicg.

Program transformations
The next step is to construct the quotient graph of the priomlutomaton, in which
each node representssac The nodes of this graph are then visited in reverse
topological ordering in order to determine, for each onegtivlr it should be kept
intact, altered or removed. Evesgccontaining invalid cycles must be deleted, to
ensure correction w.r.t. the desired security policy, mergscccontaining valid
cycles must be preserved, to ensure transparency. Thisagpthus fails in 3
cases: first, if the product automaton containseewhich exhibits both valid and
invalid cycles, second, if aacccontaining valid cycles is reachable from stc
containing invalid cycles, and third, if ascc containing invalid cycles does not

possess any valid prefixes where the execution could beegbwithout ruling out
some valid executions.

Concretization
Whenever the previous step is successful, the resultingraatbn is a Rabin au-
tomaton exhibiting only valid executions, and can thus kated as an LTS and
concretized into an executable program. The resulting naragstill exhibits all
valid behaviors present in the original program, but it peses no invalid behav-
iors. Since this program is built from the product automatba program of sizex
and a property of sizen it's size is in the order oD (m - n).

While the method sometimes fail to produce a suitable ins¢mted code, this never
occurs if the desired property is a safety property whichlmmenforced using existing
approaches. This approach is thus strictly more expressidethe main limitations to
its wider use is the algorithmic complexity discussed abaivehe following section,
we propose three strategies that make the problem moralttactind reduces the size
of the final instrumented program.

5 Proposed Optimizations

In this section, we propose three possible optimizationthéoalgorithm introduced
above.

5.1 Optimization 1: Avoiding cycle enumeration using BichAutomata

Since the most time-consuming part of the algorithm is thexeration and evaluation
of each cycle, a natural way to reduce the algorithmic corifyl®f the method is to

avoid this task. One option is to state the property in thenfof a Biichi automaton,
rather than Rabin automaton, as the acceptance conditidredbrmer is stated only
in terms of reaching certain states infinitely often. For &goathm based on Bichi
automaton to be equally expressive as one based on the Rabmaton, we are forced
to consider non-deterministic Biichi automata.

The phases of program abstraction, automata product arldmganf the halt states
proceed in the exact same manner as was the case using timalarigthod.

The detection of the valid and invalid behaviors presenh@agroduct automaton
proceeds as follows. First, we must once again detect tbagir connected compo-
nents in the product automat@yY . This can be performed in linear time using Tarjan’s
algorithm [40]. We then check eadtcfor the presence of valid and invalid cycles
separately.

Since a run of the Biichi automaton is accepting iff it vigitsaccepting state in-
finitely often, the presence of a valid cycle in scccan be determined in linear time,
namely inO(n + ¢) for an automaton with states and edges, simply by checking for
the presence of an accepting state ingbe

To detect whether or not astccontains any invalid cycles, we have to verify that
this sccwould still contain a cycle after deletion of all its valicaggs with their inci-
dent edges. This task is accomplished using a modified veo$iGarjan’ssccdetection

algorithm [40], altered to ignore any edge incident to adsatiate. An invalid cycle is
present if a run of this algorithm detects a non-triget It is not necessary to enumer-
ate all cycles, which is what lead to exponential algorithogmplexity of the algorithm
based on the Rabin automaton. Instead, the simple detaxftibe presence of a cycle
can be performed in linear time, since Tarjan’s algorithrm &d@omplexity in the order
of O(n + e) for an automaton with states and edges.

The remainder of the algorithm, namely deleting $hes containing invalid cycles,
if doing so is allowed, and concretization, are performethisnsame manner whether
a Rabin or Biichi automaton is used. The complexity of theral/enonitor inlining
algorithm thus passes frofd(2™) to a much more tractabl@(n +), wheren is the
size of the product automaton aads the number of transitions it contains. This opti-
mization does however come at a cost. Since the Biichi awtonnon-deterministic,
and a sequence is accepteaify of its possible runs over the automaton visits an ac-
cepting state infinitely often, any run containing invalictles may reflect a label that
also generates valid runs over the same automaton. Whethevproduct automaton
contains some behavior that prevent the algorithm fromipguit of all invalid behav-
iors, such as, for instance, anccontaining both valid and invalid sequences, it may
be possible that any run of the automaton reaching thesdgmnalticsccs corresponds
to a sequence which also reaches both valid and ingalisi for which the property is
monitorable. The algorithm thus unnecessarily fails tgpatian instrumented program.

It follows that stating the desired property using a Bladmioanaton results in a
somewhat more conservative approximation than was thenittsa Rabin automaton.
However, in practice, we found it very difficult to constrestamples of real properties
and real programs that were monitorable using the origitgalrithm based upon the
Rabin automaton, but not using the optimization descritbee. Furthermore, a rela-
tively simple reachability analysis of the automaton, mégvaus to enforce the same
set of properties (for any given program) in both cases.

It is also important to note that the main contribution of][lto extend previous
work by proposing a method capable of enforcing some nosbgatoperties, some-
thing that was not possible with previous techniques. Altftothe approach proposed
in [11] is strictly more expressive than the optimizatioegented in this section, when-
ever the security policy is a safety property it can be statea deterministic automaton
[23], and can thus be enforced using either methods. Botm#tbod from [11] and the
one presented in this section are therefore strictly mopeessive than those proposed
in previous works.

5.2 Optimization 2: Optimizing cycle detection using redudility

If we wish to keep the Rabin automaton as the basis for staiaglesired security
policy, but still wish to avoid the exponential overheadumed when enumerating the
set of cycles, another interesting option is to draw uponpkticular shape of the
automaton being transformed to optimize the cycle deteqimse.

Automata representing programs or properties often haegtecplar shape, termed
reducibility. Reducible graphs were first described in [18]uitively, a graph is re-
ducible iff the graph can be reduced to a singleton by iteeftiapplying two graph

transformations, T1 and T2. T1 removes self loops while Tilapses a node with a
single predecessor into that predecessor.

Such graphs exhibit several properties that make thenchteao static analysis.
Amongst them is the fact that they contain no loop with midtigntry points, and no
adjacent loops. Each strongly connected component hagke ®ntry point. Several
static analyzes and optimizations can be performed moggeeffly when manipulating
reducible graphs. Amongst them is cycle detection, whiah lma performed in time
linear to the number of backedges present in the graph.

Reducible graphs arise naturally in graphs that model thérabflow of programs
written in many commonly used programming languages. Natess, several widely
used programming languages, such as C, C++ Lisp or Pascalrodace irreducible
control flow. When this occurs, several algorithms existremsform an irreducible
graph to an equivalent (in the sense that it accepts the ssgmesces) reducible graph.
The most common algorithms are based on node splitting. fEolsnique consist in
duplicating certain states, and modifying the control frawtil the graph becomes re-
ducible. Various heuristics have been proposed to minithieeamount of duplication.
While in the worst case, an exponential blowup in the sizehefrhodel is unavoid-
able, in general the size of the equivalent reducible grapiuite reasonable (in the
order of a 2.9% increase for some heuristics [20]). Furtloeemin [3], an algorithm
is given which can produce an equivalent reducible graph thi¢ minimal amount of
duplication.

In our case, even though both the program abstraction anditseproperty are
stated by reducible automaton, the product automatoffi ite®} not be reducible since
the automaton product transformation does not preservecitgtity. However, our
experience shows that in most cases, the product automatobe seen as “quasi-
reducible” in the sense that it can be made reducible withimahoverhead. This is
because the property is generally much smaller than thettarggram, and involves
only a small subset of security relevant instructions. Weelfaund that transforming
the product automaton to reducible form before proceediitiy tive cycle detection is
an efficient way to reduce the runtime of transformation pdure. In our tests, we have
used Janssen et al.’s [20] algorithm to transform the automt® reducible form and
Hetch'’s algorithm described in [1] to compute the set of egcl

5.3 Other Optimizations

The size of the final instrumented code is in the ordep @i-m) for an original program
of sizen and a property of sizex. This increase in the size of the final program resulted
from our objective that the runtime tests themselves incuoverhead. Still, reducing
the size of the state space of the product automaton woutdgiuspeedup the program
transformation, and optimize the final code.

Unfortunately, producing a minimal-automaton is a complex problem [14]. In the
case of the Buchi automata, for instance, it is PSPACE-HBnt makes it difficult
to reduce the product automaton after it is created, andfibéman the smaller space
state during the cycle detection and program transformaittases. However, if the
program transformation is successful, the final automaties a particular form, called
a weak automaton, which allows efficient minimization to kefprmed. In [30] Loding

shows that the acceptance condition for this clags-afitomata can be restated into an
equivalent normal form, a procedure that can be done in @e) for an automaton
with n states, and that once in normal form the state space mirtimizalgorithms
devised for deterministic finite automata can be appliedi® automaton to produce
an equivalent minimal automaton. The problem of minimizen@eterministic Finite
Automata is well studied and the most efficient algorithmsirutime O(n - log n), to
minimize an automaton with states [19, 42, 43].

A final optimization we can consider is to minimize the numbgpairs present
in the acceptance condition of the Rabin automaton. Any avgment in this respect
greatly speeds up the runtime of the algorithm since everigayust be checked against
each pair.

The minimal number of pairs needed in any deterministic Rahitomaton that
accepts a given language is called the Rabin Index of thgukzge [41, 22], and various
algorithms exist that can perform this minimization. Whitere can be a substantial
blowup in the size of the state-space when these transfumnsadre performed (given
asO(nP -421’2) in [9], O(n-2P 19 P) in [15] andO(n-p*) in [24], for an automaton with
n statesp pairs and a Rabin Index @) the fact that a Rabin automaton representing
a real property typically has only a few states at most mayenthis transformations
worthwhile.

6 Empirical Results

Our preliminary empirical results are very encouragingpiiReentative results are shown
in Figures 2 and 3. To generate these results, we ran twodessteaach of which con-
sisted of applying both algorithms using two versions (Rabid a Bichi) of the same
property on the same program. This property accepts allutioes containing only a
finite non-empty number af actions and such that finite executions end withaation.
The program was then extended by arbitrarily selecting aeyad it's nodes, transitions
or subgraphs, and replicating it using a multiplicative stant ranging from 1 to 200.
We are then able to compare the performance of both algasithhen applying the
same property to LTSs that grow in size, but still maintaimesimilarity.

Figure 2 highlights the potential gains of the Biichi auttonabased algorithm, as
it shows the results of the enforcement of the same propsnyea used in the running
example in [11] on an LTS built from a clique, with multiplidze constants 1-9. The
Rabin automaton capturing this property is reproducedguifé 1

We obtained similar results when enforcing a real securityperty on a real pro-
gram. We tested the approach using an interesting reghiifperty with both a safety
and a liveness component. The safety component is a muttiakéon property stating
that two processes are never enabled simultaneously. Sb@mbined with a liveness
requirement that both processes always be eventuallyeshalihis property was stated
as a Miller automaton [32] and was subsequently transiatecboth a Rabin and a

8 Strictly speaking, this refer to the transformation of a Rafutomaton into a special form
called the Chain automaton, which is the critical step iruoéuly the Rabin automaton’s ac-
ceptance condition. Once a Rabin automaton is stated ifiatmg the algorithm to reduce its
acceptance condition is given in [9, 8].

C={({3},{4}), @, {5})}

Fig. 1. The property from [11]

10000000

1000000

100000

10000 g

1000 £ —Biichi

===Rabin

Computation time in ms

100

10

1

Number of states

Fig. 2. Results of algorithms using the property from [11], with Redénd Bchi.

Buchi automaton. We used a program whose control flow alwesggect the property.
The program consists in multiple “transactions”, each ofclwhrepresents a process
that requests a resource, uses it, and then releases itragn@am is extended by nest-
ing multiple such transactions. The results, with multiative constants 1-200, can be
seen in Figure 3.

1200000

1000000 =

200000 s

600000

400000 Rabin

Computation time in ms

200000

0

Maximum number of nested transactions

Fig. 3. Results of algorithms using the mutual exclusion propevith Rabin and Biichi.

Empirical results obtained while running the reducibiitgsed optimization pro-
posed in section 5.2 are less striking, but still indicat the optimization is worth-
while. However, because of the costs associated with the-splitting transformation,
this optimization is advantageous only if the synchronawslpct of the LTS and the
property is both quasi-reducible and has a substantial size

7 Conclusion and Future Work

In this paper, we propose several optimizations to an infieaitoring algorithm pre-
viously presented in the literature. These optimizatidiwrathe inlining process to
decrease the complexity from exponential to linear timéagize of the space-state of
the product of the property being monitored and of the tapgegram. We also show
how the size of the resulting instrumented code can be miaichiThese optimizations
highlight a tradeoff between efficiency and the range of mxgable properties.

In future work, we hope to extend the algorithm so that it Imees possible to
enforce the property in all cases. This may involve relyingrnitors capable of more
varied responses to potential violation of the securitygyathan simply aborting the
execution.

References

1. A.V.Aho, R. Sethi, and J. D. Ullma&ompilers: principles, techniques, and toofsldison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Alpern and F.B. Schneider. Recognizing safety anchégs. Distributed Computing
2:17-126, 1987.

. Z. Ammarguellat. A control-flow normalization algorithamd its complexity.|EEE Trans.

Softw. Eng.18:237-251, March 1992.

. A. Bauer and J. Jurjens. Security protocols, properdied their monitoring. IfProceedings

of the Fourth International Workshop on Software Enginegifior Secure Systems (SESS)

. A. Bauer and J. Jurjens. Runtime verification of crypapdyic protocols. Computers &

Security 29(3):315-330, 2010.

. L. Bauer, J. Ligatti, and D. Walker. More enforceable sigyolicies. InFoundations of

Computer SecurityCopenhagen, Denmark, July 2002.

. J. Buchi. On a decision method in restricted second @udrmetic. Inin Proceedings of the

International Congress on Logic, Method, and Philosoph$adgncepages 1-12. Stanford
University Press, Stanford, CA, 1962.

. O. Carton. Mots infinis,w-semigroupes et topologiePhD thesis, Universite de Paris 07,

1993.

. O. Carton. Chain automata. IRIP World Computer Congress '94ages 451-458, Ham-

burg, 1994. Elsevier (North-Holland).

H. Chabot, R. Khoury, and N. Tawbi. Generating in-linenitars for Rabin automata. In
Proceedings of the 14th Nordic Conference on Secure IT @gstiordSec 200%olume
5838 of LNCS pages 287-301. Springer, October 2009.

H. Chabot, R. Khoury, and N. Tawbi. Extending the enforert power of truncation moni-
tors using static analysi€omputers & Security=orthcoming.

A. Chudnov and D. A. Naumann. Information flow monitorinig. In Proceedings of
the 23rd IEEE Computer Security Foundations Symposium, ZI8B, Edinburgh, United
Kingdom, July 17-19, 201®ages 200-214.

T. Colcombet and P. Fradet. Enforcing trace properygerdgram transformation. 168on-
ference record of the 27th ACM SIGPLAN-SIGACT Symposiunriogifles of Program-
ming LanguagesJanuary 2000.

R. Ehlers. Minimising deterministic Buchi automatagsely using sat solving. heory
and Applications of Satisfiability Testing - SAT 2010, 13ttednational Conference, SAT
2010, Edinburgh, UK, July 11-14, 2010. Proceedingsges 326—332, 2010.

E. A. Emerson and C. S. Jutla. Tree automata, mu-cal@ardsdeterminacy. II8FCS
'91: Proceedings of the 32nd annual symposium on Foundatdcomputer sciengcpages
368-377, Washington, DC, USA, 1991. IEEE Computer Society.

U. Erlingsson and F.B. Schneider. Sasi enforcementafrigg policies: A retrospective. In
WNSP: New Security Paradigms Worksh8@M Press, 2000.

G. Le Guernic. Automaton-based Confidentiality Monitgrof Concurrent Programs. In
Proceedings of the 20th IEEE Computer Security Foundat®ymposium (CSFS2@ages
218-232. IEEE Computer Society, July 6-8 2007.

M. S. Hecht and J. D. Ullman. Characterizations of rdalediow graphs.J. ACM 21:367—-
375, July 1974.

John E. Hopcroft. An n log n algorithm for minimizing €ain a finite automaton. Technical
report, Stanford, CA, USA, 1971.

Johan Janssen and Henk Corporaal. Making graphs résludth controlled node splitting.
ACM Trans. Programming Languages and Systeirfis] 031-1052, 1997.

G. Morrisett K. W. Hamlen and F.B. Schneider. Computsbilasses for enforcement
mechanisms. Technical Report TR2003-1908, Cornell Usityer2003.

Michael Kaminski. A classification of omega-regulardaages. Theoretical Computer
Science36:217-229, 1985.

J. Klein.Linear Time Logic and Deterministic omega-AutomaD thesis, The University
of Bonn, Bonn, Germany, January 2005.

24

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

S. C. Krishnan, A. Puri, R. K. Brayton, and P. P. Varaiyde Rabin index and chain au-
tomata, with applications to automata and gamedn i[@omputer Aided Verification, Proc.
7th Int. Conference, LNCS 93pages 253-266, 1995.

L. Lamport. Proving the correctness of multiprocesgmms.|[EEE Transactions on Soft-
ware Engineering3(2):125-143, 1977.

M. Langar and M. Mejri. Formal and efficient enforcemehsecurity policies. InPro-
ceedings of The 2005 International Conference on Foundatad Computer Science, (FCS
2005) pages 143-149, 2005.

M. Langar, M. Mejri, and K. Adi. Formal monitor for coneant programs. liwWorkshop on
Practice and Theory of IT Securjt2006.

M. Langar, M. Mejri, and K. Adi. A formal approach for seity policy enforcement in
concurrent programs. IRroceedings of the 2007 International Conference on SBcéri
Managementpages 165-171, 2007.

J. Ligatti, L. Bauer, and D. Walker. Run-time enforcetmehnonsafety policies. ACM
Transactions on Information and System Secpfi(3):1-41, 2009.

C. Loding. Efficient minimization of deterministic weamega-automatdnformation Pro-
cessing Letters79:105-109(5), 31 July 2001.

T. Mechri, M. Langar, M. Mejri, H. Fujita, and Y. Funyu. famatic enforcement of security
in computer networks. IiNew Trends in Software Methodologies, Tools and Technigues
Proceedings of the Sixth SoMeT 20p@ges 200-222, 2007.

D. E. Muller. Infinite sequences and finite machingitching Circuit Theory and Logical
Design 0:3-16, 1963.

H. Ould-Slimane and M. Mejri. Enforcing security poéisiby rewriting programs using
automata. IrProceedings of the Workshop on Practice and Theory of IT8gd@TITS)
pages 195-207, 2006.

H. Ould-Slimane, M. Mejri, and K. Adi. Enforcing secyripolicies on programs. INew
Trends in Software Methodologies, Tools and Techniquescdedings of the Fifth SoMeT
2006, October 25-27, 2006, Quebec, Canguges 195-207, 2006.

H. Ould-Slimane, M. Mejri, and K. Adi. Using edit autoradbr rewriting-based security
enforcement. IData and Applications Security XXIIl, 23rd Annual IFIP WG.3Working
Conference, Montreal, Canada, July 12-15, 2009. Procegsijpages 175-190, 2009.

D. Perrin and J. E. Pininfinite Words Pure and Applied Mathematics Vol 141. Elsevier,
2004.

Michael O. Rabin. Decidability of second-order thesréad automata on infinite trees.
Transactions of the American Mathematical Sociég/1:1-37, 1969.

F.B. Schneider. Enforceable security policie$ormation and System SecuriB(1):30-50,
2000.

K. Sen, , A. Vardhan, G. Agha, and G. Rosu. Efficient deeéined monitoring of safety in
distributed systems. IFCSE '04: Proceedings of the 26th International ConfereaneSoft-
ware Engineeringpages 418-427, Washington, DC, USA, 2004. IEEE Computeie8§o
Robert Endre Tarjan. Depth-first search and linear gedgbrithms. SIAM J. Comput.
1(2):146-160, 1972.

Klaus Wagner. On omega-regular sétgormation and Contrql43(2):123-177, 1979.
Bruce W. Watson. A taxonomy of finite automata constancéind minimization algorithms.
Technical report, Computing Science, 1993.

Bruce W. Watson and Jan Daciuk. An efficient incremerfeahdnimization algorithmNat.
Lang. Eng, 9(1):49-64, 2003.

F. Yan and P. W. L. Fong. Efficientirm enforcement of higtibased access control policies.
In Proceedings of the 2009 ACM Symposium on Information, Ctanpimd Communica-
tions Security, ASIACCS 2009, Sydney, Austrpiéges 35-46, 2009.

