
Optimized Inlining of Runtime Monitors

Frédérick Lemay1, Raphaël Khoury1,2, and Nadia Tawbi1

1 Laval University, Department of Computer Science and Software Engineering,
Pavillon Adrien-Pouliot, 1065, avenue de la Medecine Quebec, Qc, Canada G1V 0A6, Canada

2 Defence Research and Development Canada, Canadian Department of National Defence
2459 Pie-XI Blvd North Quebec, QC, Canada G3J 1X5

frederick.lemay.1,raphael.khoury.1@ulaval.ca,nadia.tawbi@ift.
ulaval.ca

Abstract. A previous study showed how a monitor can be inlined into a po-
tentially untrusted program, producing an instrumented version of this program
which provably respects the desired security policy. That study extended previ-
ous approaches to the same problem in that it allowed non-safety properties to
be monitored, and did not incur any runtime overhead. However, the algorithm
itself runs in timeO(2m·n), wheren is the size of the original program andm
that of the property being monitored, and the resulting instrumented program is
increased in the order ofO(m · n). These algorithmic factors limit the useful-
ness of the approach in practice. In this paper, we suggest several optimizations
which reduce the algorithm’s run time and the size of the resulting instrumented
code. Using these optimizations, the monitor inlining can run in timeO(v + e)
wherev ande are respectively the size and number of transitions presentin the
synchronous product of the original program and the property. Furthermore, we
show how the size of the instrumented program can be minimized.

Key words: security policies, security properties, omega-automata,runtime mon-
itors

1 Introduction

An increasingly popular solution to the problem of securingmobile code is monitor
inlining, a process by which a monitor, representing a security property, is injected into
an untrusted program. This results in a new instrumented version of the program which
provably respects the desired property.

Much research has gone into determining precisely which properties are enforce-
able using this approach, and which are not. Initial research showed that this method
was limited to the enforcement of safety properties, and implementations of formal
monitors naturally focused on this class of security properties. Yet, further studies on
security policy enforcement mechanisms showed that an a priori knowledge of the tar-
get program’s behavior increases the power of these mechanisms [21, 6].

Nonetheless, most practical implementations of monitors do not take advantage of
this possibility and are thus restricted to enforcing safety properties. Furthermore the
needed abstraction is often already available, and is used to minimize the runtime over-
head incurred by the property monitoring process.



In [11, 10] Chabot et al. present a monitor inlining algorithm in which the monitor
relies on a model of the program’s possible behavior to enforce non-safety properties.
While their method is strictly more expressive than previous similar monitor inlining
algorithms and the instrumentation induces no added runtime overhead, the very high
computational complexity of the algorithm limits the applicability of the method.

In this paper, we propose several optimizations to the original monitor inlining al-
gorithm from [11]. These allow the algorithmic complexity to pass fromO(2n·m) for a
program of sizen and a property of sizem to a much more tractableO(v + e), where
v ande are respectively the number of states and transitions present in the synchronous
product of the original program and the desired property. Wealso show how to mini-
mize the size of the resulting instrumented code, which stood atO(n ·m) in the original
approach.

These optimizations derive from two insights: first, using an alternative formalism
to express the desired security policy can speedup certain computations, specifically
cycle detection, which is the most time consuming aspect of the algorithm. Second,
the target program, when abstracted into a graph, exhibits specific properties that can
be used to our advantage throughout the transformation process. Empirical results show
that we can successfully reduce the time needed to perform the program transformation.

The remainder of this paper is organized as follows: Section2 presents a review
of related work, Section 3 introduces some preliminary notions and Section 4 presents
the monitor inlining algorithm from [11]. Section 5 gives the proposed optimizations.
Empirical results are given in Section 6. Concluding remarks are given in Section 7.

2 Related Works

In [38], Schneider delineates the set of properties enforceable by monitors. He focuses
on a class of monitors that enforce the property by aborting the execution when faced
with a violation of the security policy, and operate withoutany prior knowledge of their
target’s possible behavior. In these conditions, he determined that the set of security
properties enforceable by this mechanism is the set of safety properties [25], a class
of properties which proscribe that a certain unwanted behavior will not occur during
a given execution of the target program. However, he also suggests that non-safety
properties can be monitored in several situations, for example if the monitor had access
to a model of its target possible behavior, which can be constructed from data collected
by static analysis. In this case, the monitor can tolerate a potentially invalid behavior on
the part of the target program, with the confidence that it will eventually be corrected.
Subsequent research by Ligatti et al. [6] confirmed the feasibility of extending the set
of monitorable properties using such an enforcement paradigm.

Several subsequent studies show how monitors can be inlinedinto their target, thus
producing a new version of an untrusted program that provably respects the desired
security policy. For instance, in [16], Schneider et al. proposed a method to inline a se-
curity property in object code, while Colcombet et al. [13] propose a similar approach
which seeks to secure source code. In both cases, the method is limited to the enforce-
ment of safety properties. The inlining process involves synchronizing the program with
the security property by way of runtime checks that simulatethe behavior of the secu-



rity automaton into the target program. These checks detectany violation of the security
property at runtime, and abort the execution. Both Schneider et al. and Colcombet et
al. propose a number of optimizations which minimize the number of runtime checks
needed to enforce the property.

In [10, 11], Chabot et al. extend these approaches by allowing the monitoring of
non-safety properties. Drawing upon the insight of [38] and[6], they propose a monitor
which relies upon a statically constructed model of the target to enforce non-safety
properties in some cases. While their approach is strictly more expressive than previous
the ones, its algorithmic complexity, which stands in the order ofO(2n·m) for a program
of sizen and a property of sizem, is a major hindrance to its wider usage.

Numerous other implementations of inlined monitors exist.For instance, in [34, 33]
and [35], Ould-Slimane et al. give an automata based inlining procedure which relies
on a new operator that embeds a property automata into a target program. The monitor-
ing of security protocols is discussed in [4] and [5]. That ofinformation flow policies
is discussed in numerous papers including [12] and [17]. In [39] Sen at al. propose a
decentralized monitor which monitors safety properties indistributed programs. The
optimization of monitors is further discussed in [44]. The inlining of monitors in con-
current programs is discussed in [27]. An algebraic method to inline a safety property
into a program is given in [26] and [28]. In this approach, both the property and the
program are stated using process algebra. The instrumentedprogram is shown to be
equivalent to the original one using a notion of equivalencebased on bisimulation. The
monitoring of networks is discussed in [31].

The monitoring of nonsafety properties is also discussed in[29], which shows that
such properties can be monitored by an enforcement mechanism capable of transform-
ing the execution sequence.

3 Preliminaries

We begin by introducing in more detail the notation and the various types ofω-automata
which we will manipulate in this paper, and explain how such automata accept or reject
their input.

An alphabet is a finite non-empty set of symbols. A word over alphabetΣ is a
sequence of symbols fromΣ. In what followsΣ∗ denotes the set of all finite words
from Σ while Σω denotes that of all infinite words. A languageL is a subset ofΣω

and/orΣ∗. Security properties are also modeled as subsets ofΣω and automata are a
convenient formalism to represent them [2].

An ω-automatonA, over alphabetΣ is a tuple(Q, I, δ, C) such that

– Σ is a finite or countably infinite set of symbols;
– Q is a finite or countably infinite set of states;
– I ⊆ Q is the set of initial states;
– δ ⊆ Q×Σ ×Q is a (possibly partial) transition function;
– C is an acceptance condition which specifies whether or not an infinite sequence
ρ is accepted by the automaton as depending on the states whichoccur or do not
occur infinitely often inρ. This condition is stated differently in the various types
of ω-automata which we will study, sometimes leading to variations in expressive



power. Accepted sequences are said to be valid, while rejected sequences are said
to be invalid.

The set of all accepted sequences ofA is the language recognized byA, notedLA.
A path ρ, is a finite (respectively infinite) sequence of states〈q1, q2, ..., qn〉 (re-

spectively〈q1, q2, ...〉) such that there exists a finite (respectively infinite) sequence of
symbolsa1, a2, ..., an (respectivelya1, a2, ...) called the label ofρ such thatδ(qi, ai) =
qi+1 for all i ∈ {0, ..., n− 1} (respectivelyi ≥ 0). In fact, a path is a sequence of states
that form a possible run of the automaton, and the label of this path is the input sequence
that generates this run. The empty path is notedǫ.

Let ρ be a path in some automaton, we writeinf (ρ) for the set of states that are
visited infinitely often inρ. The study ofω-automata was pioneered by Büchi in [7],
where he introduced the Büchi automaton. The acceptance condition of such an au-
tomaton is given as a set of states, at least one of which must be visited infinitely often
by a sequence for it to be accepted by the automaton. Formally:

Definition 1. A Büchi automatonB is anω-automaton(Q, I, δ, F ) whose acceptance
condition is a setF ⊆ Q. A pathρ is valid iff inf (ρ) ∩ F 6= ∅.

A cycle of states from an automatonA is said to be avalid cycleiff the states com-
posing it would respect the acceptance condition were they are the only states visited
infinitely often in a path over this automaton. A cycle is saidto be invalid otherwise.

Observe that in a non-deterministic Büchi automatonB, only a single run of the
automaton needs to be valid for its label to be a word acceptedbyLB. The class of lan-
guages recognizable by Büchi automata is termedω-regular languages [36]. A language
L ⊆ Σω is said to beω-regular iff it is of the formUV ω whereU, V ⊆ Σ∗ are regular
languages. The use of nondeterministic automata sometimesadds a layer of complex-
ity to proofs and automata manipulations. A deterministic automaton is thus sometimes
preferable. Unfortunately, deterministic Büchi automata are strictly less expressive than
their nondeterministic counterparts [36].

Yet, with altered acceptance conditions, an automaton class can be defined which is
deterministic but still recognizes allω-regular languages. Several such automata exist.
In this paper, we focus on the Rabin automaton [37].

Definition 2. A Rabin automatonR is anω-automaton(Q, I, δ, C) whose acceptance
conditionC is given as a set of pairs of sets of states(Gi, Ri) with Gi, Ri ⊆ Q.
A run ρ is accepted iff there exists a pair(Gi, Ri) ∈ C for which inf (ρ) ∩ Gi 6=
∅ ∧ inf (ρ) ∩Ri = ∅.

4 Monitor Inlining Algorithm

In [11], Chabot et al. show how a safety or non-safety property can be inlined into
an untrusted or possibly malicious program to produce an instrumented version of this
program that provably respects the security policy, while maintaining the original pro-
gram’s transparency, (i.e. leaving valid executions present in the original program unal-
tered [38]).

The method consists of 7 steps.



Property Encoding
The desired security policy is abstracted by a Rabin automaton. This allows much
wider expressivity than previous approaches which relied upon the security au-
tomaton [2], a subclass of the Büchi automaton limited to express safety properties,
while retaining determinism. Anyω-regular property can be stated in this formal-
ism [36].

Program Abstraction
The program is abstracted into a Labeled Transition System (LTS), a widely used
formalism for representing programs. Transformations canalso ensure that this rep-
resentation is deterministic, without loss of expressivity.

Automata Product
The next step is to construct the automata product of the property and the program.
This results in a new Rabin automaton (RT ), with its own acceptance condition.
Since this new automaton accepts the intersection of the language accepted by the
original product and that accepted by the property automaton, it would form a nat-
ural basis from which to build the instrumented program. However, because the
acceptance condition of the Rabin automaton is stated in terms of which states an
execution can or cannot visit infinitely often, it is impossible for the monitor to de-
tect at runtime if the current execution is valid or not. The remainder of the method
consists of transformations aimed at removing invalid behaviors from the product
automaton, while preserving valid ones.

Marking the Halt States
Since the property is enforced by halting the execution, it is necessary to identify
all program points where the execution can safely be abortedwithout violating the
security policy. These are indicated by adding a transitionto a halt state from any
state where the monitor can abort the execution.

Detecting Valid and Invalid Behaviors
The next phase consists in extracting, if possible, a labeled transition system from
the product automaton, by pruning it of states and transitions containing invalid
cycles w.r.t. its acceptance condition. This process first involves parsing the prod-
uct automaton into its strongly connected components (scc) and listing the cycles
present in each of them. It’s at the step of cycle detection that the algorithm’s
complexity grows toO(2n), for an automaton containingn states. Each cycle is
then checked against the acceptance condition, and eachscc is labeled according
to whether it contains either only valid cycles, only invalid cycles, both types of
cycles, or no cycles (the trivialscc).

Program transformations
The next step is to construct the quotient graph of the product automaton, in which
each node represents ascc. The nodes of this graph are then visited in reverse
topological ordering in order to determine, for each one, whether it should be kept
intact, altered or removed. Everyscccontaining invalid cycles must be deleted, to
ensure correction w.r.t. the desired security policy, but every scccontaining valid
cycles must be preserved, to ensure transparency. This approach thus fails in 3
cases: first, if the product automaton contains ansccwhich exhibits both valid and
invalid cycles, second, if anscccontaining valid cycles is reachable from anscc
containing invalid cycles, and third, if anscc containing invalid cycles does not



possess any valid prefixes where the execution could be aborted without ruling out
some valid executions.

Concretization
Whenever the previous step is successful, the resulting automaton is a Rabin au-
tomaton exhibiting only valid executions, and can thus be treated as an LTS and
concretized into an executable program. The resulting program still exhibits all
valid behaviors present in the original program, but it possesses no invalid behav-
iors. Since this program is built from the product automatonof a program of sizen
and a property of sizem it’s size is in the order ofO(m · n).

While the method sometimes fail to produce a suitable instrumented code, this never
occurs if the desired property is a safety property which canbe enforced using existing
approaches. This approach is thus strictly more expressive, and the main limitations to
its wider use is the algorithmic complexity discussed above. In the following section,
we propose three strategies that make the problem more tractable, and reduces the size
of the final instrumented program.

5 Proposed Optimizations

In this section, we propose three possible optimizations tothe algorithm introduced
above.

5.1 Optimization 1: Avoiding cycle enumeration using Büchi Automata

Since the most time-consuming part of the algorithm is the enumeration and evaluation
of each cycle, a natural way to reduce the algorithmic complexity of the method is to
avoid this task. One option is to state the property in the form of a Büchi automaton,
rather than Rabin automaton, as the acceptance condition ofthe former is stated only
in terms of reaching certain states infinitely often. For an algorithm based on Büchi
automaton to be equally expressive as one based on the Rabin automaton, we are forced
to consider non-deterministic Büchi automata.

The phases of program abstraction, automata product and marking of the halt states
proceed in the exact same manner as was the case using the original method.

The detection of the valid and invalid behaviors present in the product automaton
proceeds as follows. First, we must once again detect the strongly connected compo-
nents in the product automatonRT . This can be performed in linear time using Tarjan’s
algorithm [40]. We then check eachscc for the presence of valid and invalid cycles
separately.

Since a run of the Büchi automaton is accepting iff it visitsan accepting state in-
finitely often, the presence of a valid cycle in anscccan be determined in linear time,
namely inO(n+e) for an automaton withn states ande edges, simply by checking for
the presence of an accepting state in thescc.

To detect whether or not anscccontains any invalid cycles, we have to verify that
this sccwould still contain a cycle after deletion of all its valid states with their inci-
dent edges. This task is accomplished using a modified version of Tarjan’ssccdetection



algorithm [40], altered to ignore any edge incident to a valid state. An invalid cycle is
present if a run of this algorithm detects a non-trivialscc. It is not necessary to enumer-
ate all cycles, which is what lead to exponential algorithmic complexity of the algorithm
based on the Rabin automaton. Instead, the simple detectionof the presence of a cycle
can be performed in linear time, since Tarjan’s algorithm has a complexity in the order
of O(n+ e) for an automaton withn states ande edges.

The remainder of the algorithm, namely deleting thesccs containing invalid cycles,
if doing so is allowed, and concretization, are performed inthe same manner whether
a Rabin or Büchi automaton is used. The complexity of the overall monitor inlining
algorithm thus passes fromO(2n) to a much more tractableO(n + e), wheren is the
size of the product automaton ande is the number of transitions it contains. This opti-
mization does however come at a cost. Since the Büchi automaton is non-deterministic,
and a sequence is accepted ifanyof its possible runs over the automaton visits an ac-
cepting state infinitely often, any run containing invalid cycles may reflect a label that
also generates valid runs over the same automaton. Wheneverthe product automaton
contains some behavior that prevent the algorithm from pruning it of all invalid behav-
iors, such as, for instance, anscccontaining both valid and invalid sequences, it may
be possible that any run of the automaton reaching these problematicsccs corresponds
to a sequence which also reaches both valid and invalidsccs for which the property is
monitorable. The algorithm thus unnecessarily fails to output an instrumented program.

It follows that stating the desired property using a Büchi automaton results in a
somewhat more conservative approximation than was the casewith a Rabin automaton.
However, in practice, we found it very difficult to constructexamples of real properties
and real programs that were monitorable using the original algorithm based upon the
Rabin automaton, but not using the optimization described above. Furthermore, a rela-
tively simple reachability analysis of the automaton, may allow us to enforce the same
set of properties (for any given program) in both cases.

It is also important to note that the main contribution of [11] is to extend previous
work by proposing a method capable of enforcing some non-safety properties, some-
thing that was not possible with previous techniques. Although the approach proposed
in [11] is strictly more expressive than the optimization presented in this section, when-
ever the security policy is a safety property it can be statedas a deterministic automaton
[23], and can thus be enforced using either methods. Both themethod from [11] and the
one presented in this section are therefore strictly more expressive than those proposed
in previous works.

5.2 Optimization 2: Optimizing cycle detection using reducibility

If we wish to keep the Rabin automaton as the basis for statingthe desired security
policy, but still wish to avoid the exponential overhead incurred when enumerating the
set of cycles, another interesting option is to draw upon theparticular shape of the
automaton being transformed to optimize the cycle detection phase.

Automata representing programs or properties often have a particular shape, termed
reducibility. Reducible graphs were first described in [18]. Intuitively, a graph is re-
ducible iff the graph can be reduced to a singleton by iteratively applying two graph



transformations, T1 and T2. T1 removes self loops while T2 collapses a node with a
single predecessor into that predecessor.

Such graphs exhibit several properties that make them attractive to static analysis.
Amongst them is the fact that they contain no loop with multiple entry points, and no
adjacent loops. Each strongly connected component has a single entry point. Several
static analyzes and optimizations can be performed more efficiently when manipulating
reducible graphs. Amongst them is cycle detection, which can be performed in time
linear to the number of backedges present in the graph.

Reducible graphs arise naturally in graphs that model the control flow of programs
written in many commonly used programming languages. Nonetheless, several widely
used programming languages, such as C, C++ Lisp or Pascal canproduce irreducible
control flow. When this occurs, several algorithms exist to transform an irreducible
graph to an equivalent (in the sense that it accepts the same sequences) reducible graph.
The most common algorithms are based on node splitting. Thistechnique consist in
duplicating certain states, and modifying the control frow, until the graph becomes re-
ducible. Various heuristics have been proposed to minimizethe amount of duplication.
While in the worst case, an exponential blowup in the size of the model is unavoid-
able, in general the size of the equivalent reducible graph is quite reasonable (in the
order of a 2.9% increase for some heuristics [20]). Furthermore, in [3], an algorithm
is given which can produce an equivalent reducible graph with the minimal amount of
duplication.

In our case, even though both the program abstraction and security property are
stated by reducible automaton, the product automaton itself may not be reducible since
the automaton product transformation does not preserve reducibility. However, our
experience shows that in most cases, the product automaton can be seen as “quasi-
reducible” in the sense that it can be made reducible with minimal overhead. This is
because the property is generally much smaller than the target program, and involves
only a small subset of security relevant instructions. We have found that transforming
the product automaton to reducible form before proceeding with the cycle detection is
an efficient way to reduce the runtime of transformation procedure. In our tests, we have
used Janssen et al.’s [20] algorithm to transform the automaton to reducible form and
Hetch’s algorithm described in [1] to compute the set of cycles.

5.3 Other Optimizations

The size of the final instrumented code is in the order ofO(n·m) for an original program
of sizen and a property of sizem. This increase in the size of the final program resulted
from our objective that the runtime tests themselves incur no overhead. Still, reducing
the size of the state space of the product automaton would further speedup the program
transformation, and optimize the final code.

Unfortunately, producing a minimalω-automaton is a complex problem [14]. In the
case of the Büchi automata, for instance, it is PSPACE-hard. This makes it difficult
to reduce the product automaton after it is created, and benefit from the smaller space
state during the cycle detection and program transformation phases. However, if the
program transformation is successful, the final automaton takes a particular form, called
a weak automaton, which allows efficient minimization to be performed. In [30] Löding



shows that the acceptance condition for this class ofω-automata can be restated into an
equivalent normal form, a procedure that can be done in timeO(n) for an automaton
with n states, and that once in normal form the state space minimization algorithms
devised for deterministic finite automata can be applied to this automaton to produce
an equivalent minimal automaton. The problem of minimizinga Deterministic Finite
Automata is well studied and the most efficient algorithms run in timeO(n · log n), to
minimize an automaton withn states [19, 42, 43].

A final optimization we can consider is to minimize the numberof pairs present
in the acceptance condition of the Rabin automaton. Any improvement in this respect
greatly speeds up the runtime of the algorithm since every cycle must be checked against
each pair.

The minimal number of pairs needed in any deterministic Rabin automaton that
accepts a given language is called the Rabin Index of that language [41, 22], and various
algorithms exist that can perform this minimization. Whilethere can be a substantial
blowup in the size of the state-space when these transformations are performed (given
asO(np ·42p

2

) in [9], O(n ·2p log p) in [15] andO(n ·pk) in [24], for an automaton with
n states,p pairs and a Rabin Index ofk)3 the fact that a Rabin automaton representing
a real property typically has only a few states at most may make this transformations
worthwhile.

6 Empirical Results

Our preliminary empirical results are very encouraging. Representative results are shown
in Figures 2 and 3. To generate these results, we ran two test sets, each of which con-
sisted of applying both algorithms using two versions (Rabin and a Büchi) of the same
property on the same program. This property accepts all executions containing only a
finite non-empty number ofa actions and such that finite executions end with ab action.
The program was then extended by arbitrarily selecting any one of it’s nodes, transitions
or subgraphs, and replicating it using a multiplicative constant ranging from 1 to 200.
We are then able to compare the performance of both algorithms when applying the
same property to LTSs that grow in size, but still maintain some similarity.

Figure 2 highlights the potential gains of the Büchi automaton-based algorithm, as
it shows the results of the enforcement of the same property as was used in the running
example in [11] on an LTS built from a clique, with multiplicative constants 1-9. The
Rabin automaton capturing this property is reproduced in Figure 1

We obtained similar results when enforcing a real security property on a real pro-
gram. We tested the approach using an interesting real-lifeproperty with both a safety
and a liveness component. The safety component is a mutual exclusion property stating
that two processes are never enabled simultaneously. This is combined with a liveness
requirement that both processes always be eventually enabled. This property was stated
as a Müller automaton [32] and was subsequently translatedinto both a Rabin and a

3 Strictly speaking, this refer to the transformation of a Rabin automaton into a special form
called the Chain automaton, which is the critical step in reducing the Rabin automaton’s ac-
ceptance condition. Once a Rabin automaton is stated in thisform, the algorithm to reduce its
acceptance condition is given in [9, 8].



1

2

3 4 5

b

b aend

b
a

a
aend

b

a

C = {({3}, {4}), (∅, {5})}

Fig. 1. The property from [11]

Fig. 2. Results of algorithms using the property from [11], with Rabin and Büchi.



Büchi automaton. We used a program whose control flow alwaysrespect the property.
The program consists in multiple “transactions”, each of which represents a process
that requests a resource, uses it, and then releases it. The program is extended by nest-
ing multiple such transactions. The results, with multiplicative constants 1-200, can be
seen in Figure 3.

Fig. 3. Results of algorithms using the mutual exclusion property,with Rabin and Büchi.

Empirical results obtained while running the reducibility-based optimization pro-
posed in section 5.2 are less striking, but still indicate that the optimization is worth-
while. However, because of the costs associated with the node-splitting transformation,
this optimization is advantageous only if the synchronous product of the LTS and the
property is both quasi-reducible and has a substantial size.

7 Conclusion and Future Work

In this paper, we propose several optimizations to an inlinemonitoring algorithm pre-
viously presented in the literature. These optimizations allow the inlining process to
decrease the complexity from exponential to linear time in the size of the space-state of
the product of the property being monitored and of the targetprogram. We also show
how the size of the resulting instrumented code can be minimized. These optimizations
highlight a tradeoff between efficiency and the range of enforceable properties.

In future work, we hope to extend the algorithm so that it becomes possible to
enforce the property in all cases. This may involve relying on monitors capable of more
varied responses to potential violation of the security policy than simply aborting the
execution.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.



2. B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed Computing,
2:17–126, 1987.

3. Z. Ammarguellat. A control-flow normalization algorithmand its complexity.IEEE Trans.
Softw. Eng., 18:237–251, March 1992.

4. A. Bauer and J. Jürjens. Security protocols, properties, and their monitoring. InProceedings
of the Fourth International Workshop on Software Engineering for Secure Systems (SESS).

5. A. Bauer and J. Jürjens. Runtime verification of cryptographic protocols. Computers &
Security, 29(3):315–330, 2010.

6. L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. InFoundations of
Computer Security, Copenhagen, Denmark, July 2002.

7. J. Büchi. On a decision method in restricted second orderarithmetic. InIn Proceedings of the
International Congress on Logic, Method, and Philosophy ofScience, pages 1–12. Stanford
University Press, Stanford, CA, 1962.

8. O. Carton. Mots infinis,ω-semigroupes et topologie. PhD thesis, Universite de Paris 07,
1993.

9. O. Carton. Chain automata. InIFIP World Computer Congress ’94, pages 451–458, Ham-
burg, 1994. Elsevier (North-Holland).

10. H. Chabot, R. Khoury, and N. Tawbi. Generating in-line monitors for Rabin automata. In
Proceedings of the 14th Nordic Conference on Secure IT Systems, NordSec 2009, volume
5838 ofLNCS, pages 287–301. Springer, October 2009.

11. H. Chabot, R. Khoury, and N. Tawbi. Extending the enforcement power of truncation moni-
tors using static analysis.Computers & Security, Forthcoming.

12. A. Chudnov and D. A. Naumann. Information flow monitor inlining. In Proceedings of
the 23rd IEEE Computer Security Foundations Symposium, CSF2010, Edinburgh, United
Kingdom, July 17-19, 2010, pages 200–214.

13. T. Colcombet and P. Fradet. Enforcing trace properties by program transformation. InCon-
ference record of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, January 2000.

14. R. Ehlers. Minimising deterministic Büchi automata precisely using sat solving. InTheory
and Applications of Satisfiability Testing - SAT 2010, 13th International Conference, SAT
2010, Edinburgh, UK, July 11-14, 2010. Proceedings, pages 326–332, 2010.

15. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculusand determinacy. InSFCS
’91: Proceedings of the 32nd annual symposium on Foundations of computer science, pages
368–377, Washington, DC, USA, 1991. IEEE Computer Society.

16. U. Erlingsson and F.B. Schneider. Sasi enforcement of security policies: A retrospective. In
WNSP: New Security Paradigms Workshop. ACM Press, 2000.

17. G. Le Guernic. Automaton-based Confidentiality Monitoring of Concurrent Programs. In
Proceedings of the 20th IEEE Computer Security FoundationsSymposium (CSFS20), pages
218–232. IEEE Computer Society, July 6–8 2007.

18. M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs.J. ACM, 21:367–
375, July 1974.

19. John E. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. Technical
report, Stanford, CA, USA, 1971.

20. Johan Janssen and Henk Corporaal. Making graphs reducible with controlled node splitting.
ACM Trans. Programming Languages and Systems, 19:1031–1052, 1997.

21. G. Morrisett K. W. Hamlen and F.B. Schneider. Computability classes for enforcement
mechanisms. Technical Report TR2003-1908, Cornell University, 2003.

22. Michael Kaminski. A classification of omega-regular languages. Theoretical Computer
Science, 36:217–229, 1985.

23. J. Klein.Linear Time Logic and Deterministic omega-Automata. PhD thesis, The University
of Bonn, Bonn, Germany, January 2005.



24. S. C. Krishnan, A. Puri, R. K. Brayton, and P. P. Varaiya. The Rabin index and chain au-
tomata, with applications to automata and games. InIn Computer Aided Verification, Proc.
7th Int. Conference, LNCS 939, pages 253–266, 1995.

25. L. Lamport. Proving the correctness of multiprocess programs.IEEE Transactions on Soft-
ware Engineering, 3(2):125–143, 1977.

26. M. Langar and M. Mejri. Formal and efficient enforcement of security policies. InPro-
ceedings of The 2005 International Conference on Foundations of Computer Science, (FCS
2005), pages 143–149, 2005.

27. M. Langar, M. Mejri, and K. Adi. Formal monitor for concurrent programs. InWorkshop on
Practice and Theory of IT Security, 2006.

28. M. Langar, M. Mejri, and K. Adi. A formal approach for security policy enforcement in
concurrent programs. InProceedings of the 2007 International Conference on Security &
Management, pages 165–171, 2007.

29. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.ACM
Transactions on Information and System Security, 12(3):1–41, 2009.

30. C. Löding. Efficient minimization of deterministic weak omega-automata.Information Pro-
cessing Letters, 79:105–109(5), 31 July 2001.

31. T. Mechri, M. Langar, M. Mejri, H. Fujita, and Y. Funyu. Automatic enforcement of security
in computer networks. InNew Trends in Software Methodologies, Tools and Techniques-
Proceedings of the Sixth SoMeT 2007, pages 200–222, 2007.

32. D. E. Muller. Infinite sequences and finite machines.Switching Circuit Theory and Logical
Design, 0:3–16, 1963.

33. H. Ould-Slimane and M. Mejri. Enforcing security policies by rewriting programs using
automata. InProceedings of the Workshop on Practice and Theory of IT Security (PTITS),
pages 195–207, 2006.

34. H. Ould-Slimane, M. Mejri, and K. Adi. Enforcing security policies on programs. InNew
Trends in Software Methodologies, Tools and Techniques - Proceedings of the Fifth SoMeT
2006, October 25-27, 2006, Quebec, Canada, pages 195–207, 2006.

35. H. Ould-Slimane, M. Mejri, and K. Adi. Using edit automata for rewriting-based security
enforcement. InData and Applications Security XXIII, 23rd Annual IFIP WG 11.3 Working
Conference, Montreal, Canada, July 12-15, 2009. Proceedings, pages 175–190, 2009.

36. D. Perrin and J. E. Pin.Infinite Words. Pure and Applied Mathematics Vol 141. Elsevier,
2004.

37. Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–37, 1969.

38. F.B. Schneider. Enforceable security policies.Information and System Security, 3(1):30–50,
2000.

39. K. Sen, , A. Vardhan, G. Agha, and G. Roşu. Efficient decentralized monitoring of safety in
distributed systems. InICSE ’04: Proceedings of the 26th International Conferenceon Soft-
ware Engineering, pages 418–427, Washington, DC, USA, 2004. IEEE Computer Society.

40. Robert Endre Tarjan. Depth-first search and linear graphalgorithms. SIAM J. Comput.,
1(2):146–160, 1972.

41. Klaus Wagner. On omega-regular sets.Information and Control, 43(2):123–177, 1979.
42. Bruce W. Watson. A taxonomy of finite automata construction and minimization algorithms.

Technical report, Computing Science, 1993.
43. Bruce W. Watson and Jan Daciuk. An efficient incremental dfa minimization algorithm.Nat.

Lang. Eng., 9(1):49–64, 2003.
44. F. Yan and P. W. L. Fong. Efficient irm enforcement of history-based access control policies.

In Proceedings of the 2009 ACM Symposium on Information, Computer and Communica-
tions Security, ASIACCS 2009, Sydney, Australia, pages 35–46, 2009.


