

Abstract

The Word-RAM is a model of computation that takes into account the capacity of a computer to manipulate a word of bits w with a single instruction. Many modern constraint solvers use a bitset data structure to encode the values contained in the variable domains. Using the algorithmic techniques developed for the Word-RAM, we propose new filtering algorithms that can prune O(w) values from a domain in a single instruction. Experiments show that on a 64-bit processor, the new filtering algorithms that enforce domain consistency on the constraints A+B=C, |A-B|=C, and All-Different can offer a speed up of a factor 10.

Computational Models

The running time efficiency of an algorithm is analyzed on a theoretical machine.

RAM (Random Access Machine): Manipulating one bit of memory requires one unit of time.

Example: Adding two w-bit integers require O(w) time.

Word-RAM: Manipulating a word of w bits requires one unit of time.

- If each bit represents a piece of data, then a Word-RAM can manipulate *w* pieces of data in constant time.
- One can hope to solve problems w times faster with a Word-RAM than with RAM.

Word-RAM Operators									
	7	6	5	4	3	2	1	0	
Χ	0	1	0	0	1	1	0	1	
У	1	0	0	1	1	0	1	1	
х&у	0	0	0	0	1	0	0	1	
x y	1	1	0	1	1	1	1	1	
$x \oplus y$	1	1	0	1	0	1	1	0	
x « 2	0	0	1	1	0	1	0	0	
x » 2	0	0	0	1	0	0	1	1	
$\sim \mathrm{X}$	1	0	1	1	0	0	1	0	
LSB	0								
MSB	6								

Filtering Algorithms Based on the Word-RAM Model Philippe Van Kessel and Claude-Guy Quimper

Université Laval, Québec, Canada

phil.vank@gmail.com, claude-guy.quimper@ift.ulaval.ca

Word-RAM in Constraint Solvers

A bitset can represent a set of integers and therefore a domain.

dom(x) =	$\{0, 2, 3, 6\}$	
	('', _', '', '')	

0

This representation is more compact and allows to manipulate multiple values in a domain with a single operation.

Set Operators

Operator	Equivalence
A&B	$A \cap B$
A B	$A \cup B$
$A \ll k$	$\left \{a+k \mid a \in A, a+k < w\} \right $
$A \gg k$	$\left\{a - k \mid a \in A, a \ge k\right\}$
LSB(A)	$\min(A)$
MSB(A)	$\max(A)$
$\sim A$	\overline{A}

Constraint A + B = C

Enforcing domain consistency on A + B = C removes the value 3 from the domains of B and C.

> $dom(A) = \{1, 5\}$ dom(B) = $\{1, 3, 5\}$ $dom(C) = \{2, 3, 6\}$

Best algorithm on a RAM: $O(n^2)$.

The operations to filter the domain of C can be encoded as follows.

$\operatorname{dom}(C)$	\leftarrow	$\operatorname{dom}(C) \cap \{a+b \mid a \in \operatorname{dom}(A), b \in \operatorname{dom}(B)\}$
$\operatorname{dom}(C)$	\leftarrow	$\operatorname{dom}(C) \cap \bigcup \{a+b \mid b \in \operatorname{dom}(B)\}$
		$a \in \operatorname{dom}(A)$
$\operatorname{dom}(C)$	\leftarrow	$\operatorname{dom}(C) \cap \bigcup \operatorname{dom}(B) \ll a$
		$a \in \operatorname{dom}(A)$
$\operatorname{dom}(C)$	\leftarrow	$\operatorname{dom}(C)$ &

 $\left(\operatorname{dom}(B) \ll a_1 \mid \ldots \mid \operatorname{dom}(B) \ll a_{|\operatorname{dom}(A)|}\right)$

time $O(n^2/w)$.

Constraint |A - B| = C

This constraint can be rewritten as $A = B \pm C$ and be updated by the following rule.

 $\operatorname{dom}(A) \leftarrow \operatorname{dom}(A) \cap \left(\int \{b \pm v \mid b \in \operatorname{dom}(B)\}\right)$ $v \in \operatorname{dom}(C)$

 $\operatorname{dom}(B) \ll v \mid \operatorname{dom}(B) \gg v$ $\operatorname{dom}(A) \leftarrow$ $v \in \operatorname{dom}(C)$

Time complexity: $O(n^2/w)$.

Increasing and Bijective Functions

We consider the constraint B = f(A) where f is an increasing function. For instance: B = 2A.

	7	6	5	4	3	2	1	0
$\operatorname{dom}(A)$	0	0	0	0	1	1	1	1
$\operatorname{dom}(B)$	0	1	0	1	0	1	0	1

Each bit in dom(A) is paired to a bit in dom(B) to form a solution. These bits preserve their relative positions.

An operation of *compression* moves to the right the bits in a bitset B that are flagged in a mask m.

	7	6	5	4	3	2	1	0
B	b 7	b ₆	b 5	b 4	b ₃	b ₂	b ₁	b ₀
m	1	0	1	1	0	1	1	0
Compression(B, m)	0	0	0	b ₇	b 5	b 4	b ₂	b ₁

The compression of one word is computed in $O(\log w)$ Word-RAM operators. The domain of A is the compression of the domain of B. For domains of size n, one can filter the constraint in O($(n \log n) / w$). A similar result applies for any bijective function f.

All-Different

Régin's filtering algorithm for the All-Different constraint proceeds in two steps:

- It computes a matching in a bipartite graph;
- It computes the strongly connected components in the residual graph.

(Cheriyan & Mehlhorn 1996) show how to compute a matching and how to find strongly connected components in time Using the Word-RAM operators, the constraint is filtered in $O(n^{2.5}/w)$ and $O(n^{2.5}/w)$. These algorithms rely on a Depth-First-Search in a graph.

Depth-First-Search

DFS designed for a RAM.

Visit(Graph, s)

Mark the node s as visited

For all v in Neighbors(s) do

If v has not been visited then Visit(Graph, v)

DFS designed for a Word-RAM

VisitWordRAM(Graph, s) $V = V | (1 \ll s)$ While Neighbors(s) & $\sim V != 0$ do Visit(Graph, LSB(Neighbors(s) & ~V))

Experiments

<i>n</i> -queen									
		All-Dif	FERENT	ALL-DIFFERENT _{WordRam}					
n	bt	SUM_{Table}	$\mathrm{SUM}_{WordRam}$	SUM_{Table}	$\mathrm{SUM}_{WordRam}$				
9	208	14	11	11	8				
10	686	48	38	37	26				
11	2940	210	163	157	112				
12	13450	972	759	737	526				
13	65677	4827	3782	3657	2610				
14	344179	25842	20199	19464	13798				
15	1948481	149567	116567	111822	80002				
			Magic Square	•					
		All-Dif	FERENT	ALL-DIFFERE	ENT _{WordRam}				
n	bt	$SUM_{BruteForce}$	$\mathrm{SUM}_{WordRam}$	$SUM_{BruteForce}$	$\mathrm{SUM}_{WordRam}$				
5	782	613	89	603	61				
6	1535	2953	330	2931	238				
7	2584	10654	1003	10551	748				
8	4336	36301	3501	36220	2844				
9	8211	119710	11228	117856	8849				
10	23902	596705	46818	587675	37781				
11	41857	_	109521	_	90062				
Golomb Ruler									
		All-Dif	FERENT	ALL-DIFFERE	ENT _{WordRam}				
n	bt	$SUM_{BruteForce}$	$\mathrm{SUM}_{WordRam}$	$SUM_{BruteForce}$	$\mathrm{SUM}_{WordRam}$				
6	39	8	4	8	2				
7	207	44	22	37	16				
8	1284	275	175	228	127				
9	5980	1823	1286	1538	990				
10	33318	12976	10380	11037	8484				
11	553793	309715	275332	276345	241827				
		·	All-Interval	•					
		All-Dif	FERENT	ALL-DIFFERE	ENT _{WordRam}				
n	bt	ABS_{Table}	$ABS_{WordRam}$	ABS _{Table}	$ABS_{WordRam}$				
9	855	24	14	18	10				
10	2903	93	56	69	37				
11	10335	366	216	268	140				
12	39270	1555	891	1131	578				
13	155792	6823	3838	4857	2480				
14	656435	31116	17351	22443	10967				
15	2886750	146681	80817	105740	50960				
16	13447418	_	402566	522795	251246				
		1							

Conclusion

The bitset encoding of the variable domains offers an opportunity to design new filtering algorithms adapted to a Word-RAM leading to substantial gains in performance.