
Time-Table-Extended-Edge-
Finding for the Cumulative

Constraint
Pierre Ouellet and Claude-Guy Quimper

Université Laval
Québec, Canada

http://www.ift.ulaval.ca/~quimper/
http://www.ift.ulaval.ca/~quimper/

Claude-Guy Quimper

Introduction

• We present new filtering algorithms for the Cumulative
constraint.

• An Extended-Edge-Finder.

• A Time-Table algorithm.

• A Time-Table-Extended-Edge-Finder.

2

Claude-Guy Quimper

The Task

3

estA lctA

A

Claude-Guy Quimper

The Task

3

estA

earliest starting time

lctA

A

Claude-Guy Quimper

The Task

3

estA

earliest starting time

lctA

latest completion time

A

Claude-Guy Quimper

The Task

3

estA

earliest starting time

lctA

latest completion time

A

}p
processing time

Claude-Guy Quimper

The Task

3

estA

earliest starting time

lctA

latest completion time

A

}p
processing time

}h

height

Claude-Guy Quimper

The Task

3

estA

earliest starting time

lctA

latest completion time

A

}p
processing time

}h

height

e = ph
energy

ectA

earliest completion
time

Claude-Guy Quimper

The Task

3

estA lctA

A
}p

}h

Claude-Guy Quimper

The Resource

4

} C

Capacity

A

B

C

Claude-Guy Quimper

Energetic Relaxation

5

} C

Capacity

A

B

C

Claude-Guy Quimper

Edge Finder

6

e }CeΩ

estΩ lctΩ

Claude-Guy Quimper

Edge Finder

6

e }CeΩ

estΩ lctΩ

i

esti lcti

Claude-Guy Quimper

Edge Finder

6

e }CeΩ ei

estΩ lctΩ

i

esti lcti

Claude-Guy Quimper

Edge Finder

6

e }CeΩ ei

estΩ lctΩ

i

esti lcti

Ω precedes i

Claude-Guy Quimper

Extended-Edge Finder

7

e }CeΩ

estΩ lctΩ

i

esti lcti

Claude-Guy Quimper

Extended-Edge Finder

7

e }CeΩ

estΩ lctΩ

i

esti lcti

ei

Claude-Guy Quimper

Extended-Edge Finder

7

e }CeΩ ei

estΩ lctΩ

i

esti lcti

ei

Claude-Guy Quimper

Extended-Edge Finder

7

e }CeΩ ei

estΩ lctΩ

i

esti lcti

ei

Ω precedes i

Claude-Guy Quimper

Envelop
[Vilím CP 2009]

8

Env(i) = Cesti + ei

Claude-Guy Quimper

Envelop
[Vilím CP 2009]

8

Env(i) = Cesti + ei

ei
Cesti

0 esti

}C

Claude-Guy Quimper

Envelop
[Vilím CP 2009]

8

Env(i) = Cesti + ei

ei
Cesti

0 esti

}C

Env(⌦) = max

⇥✓⌦
Cest⇥ + e⇥

Claude-Guy Quimper

Envelop
[Vilím CP 2009]

8

Env(i) = Cesti + ei

ei
Cesti

0 esti

}C

ect(⌦) =

⇠
Env(⌦)

C

⇡
0 estΘ

ei
Cesti

ej }C

Env(⌦) = max

⇥✓⌦
Cest⇥ + e⇥

Claude-Guy Quimper

Cumulative Tree
[Vilím CP 2009]

9

Claude-Guy Quimper

Cumulative Tree
[Vilím CP 2009]

9

One leaf
per task

Claude-Guy Quimper

Cumulative Tree
[Vilím CP 2009]

9

One leaf
per task

e(leaf)= ei = pihi

Env(leaf)=Env(i)= Cesti + ei

Claude-Guy Quimper

Cumulative Tree
[Vilím CP 2009]

9

One leaf
per task

e(leaf)= ei = pihi

Env(leaf)=Env(i)= Cesti + ei

e(node) = e
left

+ e
right

Env(node) = max

�
Env(left) + e

right

, Env(right)
�

Claude-Guy Quimper

Cumulative Tree
[Vilím CP 2009]

9

One leaf
per task

e(leaf)= ei = pihi

Env(leaf)=Env(i)= Cesti + ei

e(node) = e
left

+ e
right

Env(node) = max

�
Env(left) + e

right

, Env(right)
�

Env(root) = Env(⌦)

• Ω is the set of tasks whose lct is before t.

• Λ is the set of tasks whose lct is after t.

• This envelope computes the earliest completion time of all tasks
in Ω with one task in Λ.

• The cumulative tree can also compute that envelope.

Claude-Guy Quimper

Lambda Envelope
[Vilím CP 2009]

10

Env⇤(⌦) = max

⇥✓⌦
max

i2⇤
est⇥esti

Cest⇥ + e⇥ + ei

0 estΘ

ei
Cesti

ej }Cek

ect(⌦ [{i}) =
⇠
Env⇤(⌦)

C

⇡

Claude-Guy Quimper

(half) Extended-Edge-Finder
• Ω is the set of tasks whose lct is before t.

• Λ is the set of tasks whose lct is after t and ect is before t.

• If ect(Ω ∪ {i}) > t then Ω precedes i.

• This new envelope can be computed with a cumulative tree.

11

Envx

⇤
(⌦) = max

⇥✓⌦
max

i2⇤
esti<est⇥

(C � hi) est⇥ +e⇥ + hi ecti

ect(⌦ [{i}) =
⇠
Envx

⇤(⌦)

C

⇡
0 estΘ

(C-hi)esti }C - hi

hi ecti

ei
ej

Claude-Guy Quimper

(other half) Extended-Edge-Finder
• Ω is the set of tasks whose lct is before t.

• Ψ is the set of tasks whose lct is after t and ect is after t.

• If EnvxΨ > Ct + h(Hor - t) then Ω precedes i.

• This new envelope can be computed with a cumulative tree.

12

Envx (⌦) = max

⇥✓⌦
max

i2
esti<est⇥

(C � hi) est⇥+e⇥ + hiHor

0 estΘ

(C-hi)esti }C - hi

hi Hor

Hor

Claude-Guy Quimper

Extended-Edge-Finder
• For every distinct task height h

• Initialize the cumulative tree with all tasks in Ω
and empty sets Λ and Ψ.

• For latest completion times t in decreasing order

• Move from Ω to Λ the tasks with height h
whose latest completion time is later then t.

• Move from Λ to Ψ the tasks whose earliest
completion time is later than t.

• Update the cumulative tree.

• If an envelope detects a precedence, proceed
to the adjustment and remove from Λ or Ψ
the filtered task.

13

Claude-Guy Quimper

Extended-Edge-Finder
• For every distinct task height h

• Initialize the cumulative tree with all tasks in Ω
and empty sets Λ and Ψ.

• For latest completion times t in decreasing order

• Move from Ω to Λ the tasks with height h
whose latest completion time is later then t.

• Move from Λ to Ψ the tasks whose earliest
completion time is later than t.

• Update the cumulative tree.

• If an envelope detects a precedence, proceed
to the adjustment and remove from Λ or Ψ
the filtered task.

13

} We suppose k
distinct heights.

Claude-Guy Quimper

Extended-Edge-Finder
• For every distinct task height h

• Initialize the cumulative tree with all tasks in Ω
and empty sets Λ and Ψ.

• For latest completion times t in decreasing order

• Move from Ω to Λ the tasks with height h
whose latest completion time is later then t.

• Move from Λ to Ψ the tasks whose earliest
completion time is later than t.

• Update the cumulative tree.

• If an envelope detects a precedence, proceed
to the adjustment and remove from Λ or Ψ
the filtered task.

13

} Each of these 2n
moves require a
O(log n) update
of the tree.

} We suppose k
distinct heights.

Claude-Guy Quimper

Extended-Edge-Finder
• For every distinct task height h

• Initialize the cumulative tree with all tasks in Ω
and empty sets Λ and Ψ.

• For latest completion times t in decreasing order

• Move from Ω to Λ the tasks with height h
whose latest completion time is later then t.

• Move from Λ to Ψ the tasks whose earliest
completion time is later than t.

• Update the cumulative tree.

• If an envelope detects a precedence, proceed
to the adjustment and remove from Λ or Ψ
the filtered task.

13

} O(k n log n)

Claude-Guy Quimper

Time-Table

• We present an algorithm that runs in O(n log n).

• It decomposes the tasks into fixed and depleted parts.

• It aggregates the fixed parts into at most n fixed tasks whose
domains are disjoint.

14

est

lct

ect

lst

p

p

fp

fp + f1 f2 f3 f4 f5 f6 f7

_

+

e
p

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

Claude-Guy Quimper

Time-Table

• The algorithm also prunes the earliest starting times in
O(n log n).

15

f1 f2 f3 f4 f5 f6 f7

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

esti

Claude-Guy Quimper

Time-Table

• The algorithm also prunes the earliest starting times in
O(n log n).

15

f1 f2 f3 f4 f5 f6 f7

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

esti

Claude-Guy Quimper

Time-Table Extended-Edge-Finding

16

}C

estΩ lctΩ

i

esti lcti

f1 f2 f3 f4 f5 f6 f7

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

eΩ

ei

Claude-Guy Quimper

Time-Table Extended-Edge-Finding

16

}C

estΩ lctΩ

i

esti lcti

f1 f2 f3 f4 f5 f6 f7

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

eΩ

ei

Claude-Guy Quimper

Time-Table Extended-Edge-Finding

16

}C

estΩ lctΩ

i

esti lcti

f1 f2 f3 f4 f5 f6 f7

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

eΩ

Claude-Guy Quimper

Algorithm

• Decompose the problem into fixed and depleted tasks.

• Run the Extended-Edge Finder on the decomposition.

• Analyze the filtering and apply the filtering to the original tasks.

• Complexity: O(k n log n)

17

est

lct

ect

lst

p

p

fp

fp + f1 f2 f3 f4 f5 f6 f7

_

+

e
p

Fig. 4. A task with a fixed part, the same task after depletion of its fixed energy, and an energy
aggregate turned into a set of fixed tasks F .

Algorithm 2: TimeTableTaskDecomposition(I)
Create the sorted vector r = {esti, ecti, lsti, lcti} for all i 2 I without duplicates;
Create the null vector c of dimension |r|;
T ;,F ;;
for i 2 I do

if ecti > lsti then
a IndexOf(lsti, r);
b IndexOf(ecti, r);
c[a] c[a] + hi;
c[b] c[b]� hi;
T T [{Task(est = esti, lct = lcti, h = hi, p = pi � ecti + lsti)};

else
T T [{Task(est = esti, lct = lcti, h = hi, p = pi};

for l = 1..|r|� 1 do
c[l] c[l] + c[l � 1];
if c[l � 1] > C then Failure;
if c[l � 1] > 0 then

F F [{Task(est = r[l� 1], lct = r[l], h = c[l� 1], p = r[l]� r[l� 1])};

return (T ,F)

5.2 Time-Tabling Algorithm

Algorithm 3 sorts the tasks T in non-decreasing heights and the fixed tasks F in non-
increasing heights. It maintains, using an AVL tree, a set S of time intervals in which
the unprocessed tasks in T cannot execute concurrently with the fixed tasks. The set
S grows as the algorithm iterates through T . While processing the task i0 2 T , if
there exists an interval [a, b) ✓ S such that esti0 < b and esti0 +pi0 > a then the
algorithm retrieves the original task i 2 I associated to i0 and performs the prun-
ing esti min(lsti, b). When lsti < b, the earliest starting time is set to lsti to
force the task to start at the beginning of its fixed part. The AVL tree finds the inter-
val [a, b) in O(log |F|). Sorting the tasks require O(|T | log |T |) and O(|F| log |F|).
Since |T |, |F| 2 O(n), the overall complexity is O(n log n).

5.3 Time-Table Extended-Edge-Finding

We use the decomposition to perform Time-Table Extended-Edge-Finding. After reach-
ing a fixed point with Algorithm 2 and 3, we pass the tasks T [F as input to Algo-

13

Claude-Guy Quimper

Experiments
• We used Choco 2.1.5 on the PspLib benchmark.

• Using Extended-Edge-Finding and Time-Tabling produce the same
number of backtracks for the 3 x 480 instances.

• Computation times are cut in 6.

• TTEEF did not perform significantly better than EEF+TT.

18

The model is based on two constraints. We use a precedence constraint to ensure
the order of the successors is respected and we use a cumulative constraint for each
resource that ensures the execution of the tasks does not overload the resources. We
set the makespan to the best known value reported for the benchmark. We use a binary
variable to enforce a precedence between each relevant pair of tasks. We branch on the
precedence constraints that involve the tasks with the most similar resource consump-
tions and the largest processing times.

We used the CP solver Choco version 2.1.5 on a computer with a AMD Athlon(tm)
II P340 Dual-Core running at 2.20GHz. We ran simultaneously 2 experiments, one
per core. We used the cumulative constraint available in Choco that performs Time-
Tabling [5] and Extended-Edge-Finding [8] that we denote Choco. We denote the Al-
gorithm 1 combined with the Algorithm 3 EEF+TT and the Time-Table Extended-
Edge-Finding TTEEF. Table 1 reports the results.

Benchmark Choco EEF+TT TTEEF
n #instances time out solved bt time solved bt time solved bt time

30 480 10 364 8757 223 377 8757 50 377 8379 54
60 480 20 332 3074 1527 340 3074 269 341 2861 291
90 480 50 321 5024 5522 327 5024 857 329 4635 913

Table 1. Experimental results. Section Benchmark reports the number of tasks n, the number of
instances, and the time out (in seconds) used for the experiment. For each filtering algorithm, we
report the number of instances solved (solved). We report the cumulative number of backtracks
(bt) and the cumulative time (time) required to solve all instances that are commonly solved by
the three algorithms.

Choco and EEF+TT produce the same number of backtracks since they offer the
same filtering. However, EEF+TT is significantly faster than Choco and solves more
instances. TTEEF is slightly slower in time than EEF+TT but solves few more instances
in fewer backtracks.

7 Conclusion

We presented three new algorithms that filter the CUMULATIVE constraint. The first
algorithm is an Extended-Edge-Finder with a time complexity of O(kn log n). The sec-
ond filtering algorithm performs Time-Tabling in time O(n log n). The third algorithm
performs Time-Table Extended-Edge-Finding in time O(kn log n). These new algo-
rithms proved to be very efficient in practice offering a fast and strong filtering.

15

Claude-Guy Quimper

Conclusion

• We proposed:

• an Extended-Edge-Finder that runs in O(k n log n).

• a Time-Tabling algorithm that runs in O(n log n).

• A Time-Table-Extended-Edge-Finding that runs in O(k n log n).

19

