
Learning Sensitivity of RCPSP by Analyzing the Search Process

Marc-André Ménard , Claude-Guy Quimper and Jonathan Gaudreault
Université Laval, Québec, Canada

marc-andre.menard.2@ulaval.ca, {claude-guy.quimper, jonathan.gaudreault}@ift.ulaval.ca

Abstract
Solving the problem is an important part of opti-
mization. An equally important part is the analysis
of the solution where several questions can arise.
For a scheduling problem, is it possible to obtain a
better solution by increasing the capacity of a re-
source? What happens to the objective value if we
start a specific task earlier? Answering such ques-
tions is important to provide explanations and in-
crease the acceptability of a solution. A lot of re-
search has been done on sensitivity analysis, but
few techniques can be applied to constraint pro-
gramming. We present a new method for sensi-
tivity analysis applied to constraint programming.
It collects information, during the search, about the
propagation of the CUMULATIVE constraint, the fil-
tering of the variables, and the solution returned by
the solver. Using machine learning algorithms, we
predict if increasing/decreasing the capacity of the
cumulative resource allows a better solution. We
also predict the impact on the objective value of
forcing a task to finish earlier. We experimentally
validate our method with the RCPSP problem.

1 Introduction
Scheduling problems are important for companies to execute
their tasks on time and maximize their productivity. Once a
schedule is computed, it is interesting to ask questions and
to test different scenarios around this solution. For instance,
how much time a company would save by increasing the ca-
pacity of a resource? Is it possible to complete a new order
in time? What is the company’s bottleneck? Which resource
causes a slowdown in the production because? Answering
these questions is important for continual improvement pro-
cess. This corresponds to the sensitivity analysis of the so-
lution. “The term sensitivity analysis refers to an analysis of
the effect on the optimal solution to a linear programming
problem of changes in the input-output coefficients, cost co-
efficients, and constant terms.” [Dantzig, 1963]

The sensitivity analysis can be done by altering the model
to encode a “what-if” scenario and solving the new problem.
This process requires to solve a variant of the problem that
was already solved which can be time consuming, especially

if a distinct scenario is required for hundreds of resources
or tasks. If the problem is a linear program, it is possible
to use the dual solution to find a range of changes for the
coefficients of the objective function or the constants on the
right-hand side of the inequalities while keeping the optimal-
ity of the solution. In constraint programming, one can use
the dual inference of an optimal solution to find the range of
possible change of a parameter while keeping the optimality
of the solution [Hooker, 1999]. The dual inference can be
used to do the sensitivity analysis for any constraint satisfac-
tion problem (CSP), integer programming, and mixed integer
programming (MIP) [Hooker, 2006].

This article presents a method to predict the impact on the
objective value of making changes to the solution or on con-
straints parameters. We test our method to predict whether
increasing the capacity of a cumulative resource improves
the solution and to predict the impact on the objective value
of finishing a task earlier for a resource-constrained project
scheduling problem (RCPSP). We do not just want to predict
whether a change keeps the solution optimal, but how much it
improves/deteriorates the solution. Particular care is given for
making these predictions instantaneous, which prevent using
a solver for conducting new optimization.

The method uses the information about the constraint CU-
MULATIVE [Aggoun and Beldiceanu, 1993] collected during
the search and information about the resource usage in the so-
lution found. It also uses information collected offline while
solving similar instances obtained from historical data. Once
a machine learning classifier is trained, it can quickly pre-
dict, for new instances of the problem, whether it is possible
to obtain a better solution by increasing the capacity of the
resource. This predictor does not need to run the solver a sec-
ond time to evaluate “what if” scenarios. In fact, executing a
trained classifier is instantaneous.

The rest of the paper is divided as follows. First, we
present the background of this research. Second, we explain
the methodology. Third, we present empirical results using
a scheduling benchmark. Fourth, we conclude and present
ideas for future work.

2 Background
We present background information about sensitivity analysis
(what we want to do), lazy clause generation (with what we

work), and the resource-constrained project scheduling prob-
lem (our application).

2.1 Sensitivity Analysis
The sensitivity analysis is the study of the impact on the so-
lution of changing the value of a parameter. This problem is
widely studied in the literature [Geoffrion and Nauss, 1977;
Greenberg, 1998].

Hall et al. [Hall and Posner, 2004] identify 4 questions that
sensitivity analysis attempts to answer. What is the range of
possible changes to each parameter to keep the solution opti-
mal, i.e. what is the shadow price? What is the new objective
value for a specific change of a parameter? What is the new
optimal solution following a change to a parameter? What
are the answers to the three previous questions if we simulta-
neously apply several changes to the parameter values? This
paper focuses on the second question. Hall et al. present al-
gorithms for the sensitivity analysis for some type of single-
machine or identical parallel machines scheduling problems.
They point out that it is more difficult to answer questions
when the problem is NP-hard.

Hooker [Hooker, 1999] proposes an approach to do sensi-
tivity analysis on linear or discrete problems. This method
involves using the dual inference to obtain a proof of the op-
timality of the solution. Any optimization problem has a dual
inference. Solving the dual inference of a problem consists
in inferring the best possible bound on the optimal objec-
tive value from the constraints. With the proof found with
the inference dual, it is possible to change the data of the
problem as long as the proof remains valid. Hooker [Hooker,
1999] shows an example on a 0-1 linear programming prob-
lem. Dawande et al. [Dawande and Hooker, 2000] extend this
idea to Mixed Integer linear programming problems. Dual
inference has two limitations: it requires finding the optimal
solution and exploring the entire search tree that proves that a
better solution does not exist and it does not tell by how much
the objective value changes if it does.

Hadzic et al. [Hadzic and Hooker, 2006] use binary deci-
sion diagrams (BDD) to enumerate solutions of a MIP. This
can take time for big problems, but it allows to answer ques-
tions very quickly afterwards. It allows the user to answer
questions about the right-hand side of an inequation but also
about the variable domains. For instance, what is the best
solution to the problem if a variable is set to a given value?

2.2 Lazy Clause Generation
Constraint solvers such as Chuffed [Chu, 2011] use the lazy
clause generation [Stuckey, 2010] to take advantage of the
high level modeling and understanding of the structure of the
problem as well as the inference graph of SAT solvers. We re-
call how no-goods are generated since we collect information
about these nogoods in order to perform sensitivity analysis.

In a solver using no-goods, propagators generate an expla-
nation for each filtering. This explanation is represented as a
clause which is a disjunction of literals. A literal is a Boolean
variable which can be represented in the form [[X ≤ v]] or
[[X = v]] or its negation where X is a variable and v is a
value. The literal [[X ≤ v]] indicates that X is smaller than
or equal to v. Consider the constraint X + Y ≤ 10 with

dom(X) = [2, 10] and dom(Y) = [2, 8]. The filtering al-
gorithm prunes the domain of X to [2, 8] and generates the
explanation ¬[[Y ≤ 1]] =⇒ [[X ≤ 8]] (equivalent to a clause
[[Y ≤ 1]] ∨ [[X ≤ 8]]). When branching on variables and per-
forming constraint propagation, the solver accumulates ex-
planations in an implication graph. Upon failure, a cut in this
graph generates a new clause, called no-good, that is added
to the model. This new clause prevents the solver from per-
forming a second time the branchings that led to the failure.
In summary, a no-good is a clause computed from many fil-
tering explanations generated by multiple constraints.

2.3 Resource-Constrained Project Scheduling
Problem

The RCPSP has a set of non-preemptive tasks I and a set of
cumulative resources R. A resource r ∈ R has a capacity cr
and a task i ∈ I consumes hr,i units of resource r. A task i
executes for pi units of time. One needs to find at what time
si a task i can start without overloading the resources, i.e.∑
i|si≤t<si+pi hr,i ≤ cr for all time t and resource r. Tasks

might be subject to precedence constraints: si + pi ≤ sj . We
minimize the makespan. The model uses one CUMULATIVE
constraint per resource [Baptiste and Pape, 2000].

3 Problem
We consider the problem of predicting the impact of changing
a parameter of the problem on the objective value. Specifi-
cally, we answer these questions for a solution of the RCPSP:

1. By how much does the makespan change if one in-
creases/decreases the capacity cr of a resource r?

2. By how much does the makespan change if one forces a
task i to complete before a deadline d?

As such questions can be raised for multiple resources and
multiple tasks, we consider it impractical to run a solver of
on a “what if” scenario for each of these tasks/resources. We
allow running the solver once to obtain the initial solution of
an instance. We also allow to do off-line computations on
historical data. But once the solution is obtained from the
solver, we should be able to ask the questions above and in-
stantaneously obtain answers. Since these questions are NP-
Hard to answer, one cannot expect to obtain exact answers in
a short computation time, but rather approximations.

Answering these questions explains to the decider why the
solver returned such a solution. E.g.: Why is completing a
task so late necessary? It also helps determine what should be
changed in the parameters of the problem in order to obtain
better solutions. E.g.: Should the company sell unnecessary
machines/resources in order to purchase missing ones?

4 Methodology
We train a machine learning classifier/predictor to predict the
fluctuation of the makespan. We collect information on a
collection of historical instances H similar to the ones on
which predictions are made (e.g. same resources but differ-
ent tasks). For each historical instance, we solve “what if”
scenarios by changing the capacity of a resource. For an in-
stance H ∈ H, a resource r ∈ R, and a variation δ ∈ D for

D = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 2}, we
create a “what if” scenario SδH,r equivalent to the instance
H but for the capacity of the resource r set to δ · cr.

We solve each scenario and record three types of features.
The search features are collected during the search for a so-
lution. The solution features are computed from the solution.
The instance features are related to the instance such as the
number of tasks and the capacity of the resources. All these
features are presented in detail in the next sections.

We generate |H||R|
(|D|

2

)
training examples for a classi-

fier/predictor that predicts the variation of the makespan given
the increase/decrease of a resource capacity. For each pair of
scenarios Sδ1H,r and Sδ2H,r we use the search, solution, and in-
stance features of scenario Sδ1H,r. As an extra instance feature,
we add the variation δ1 − δ2. The target value that needs to
be predicted is given by the difference in the objective values
(makespan) obtained for Sδ2H,r and Sδ1H,r. If one rather wants
to train a classifier that predicts whether the objective value
changes or not, we use the label 0 when the objective values
for Sδ1r and Sδ2r are equal and 1 otherwise.

To train a model that predicts the impact of imposing a
deadline to a task, we construct the scenarios as follows. For
each historical instance H ∈ H, we create the original sce-
nario Z∞H,i. We solve this instance. For each task i that has no
successor (the last task of a job), we randomly and uniformly
select a deadline d between the earliest starting time of task i
(taking into account the predecessors graph) and the starting
time si in the solution ofH . We add the constraint si+pi ≤ d
to the instance H and call this scenario ZdH,i.

For each pair of scenariosZ∞H,i andZdH,i, we find a solution
for both scenarios. We create a training example by using the
search, solution, and instance features from scenario Z∞H,i.
We use, as an extra instance feature, the difference between
the ending time of task i in the solution of S∞i and the dead-
line d that is imposed to the task in scenario Sdi . The target
value is the difference in the makespan if we train a predictor
and a Boolean value if we only want to classify whether the
makespan changes or not.

Creating the training data might take time as it requires to
solve multiple instances, but once the classifier is trained, it
can quickly predict whether increasing the capacity of a re-
source or imposing a deadline has an effect on the makespan.

4.1 Search Features
As the solver solves an instance, whether it is a scenario cre-
ated from historical data or the actual instance on which one
wants to perform sensitivity analysis, it needs to collect infor-
mation about the search process. Since the RCPSP can easily
be modeled using one CUMULATIVE constraint per resource,
it is natural to collect statistics about the activity of this con-
straint. The intuition is that a CUMULATIVE constraint asso-
ciated to a scarce resource is more often violated and causes
more filtering during the search than an abundant resource.

We use two filtering algorithms for the CUMULATIVE con-
straint: the time-tabling [Beldiceanu and Carlsson, 2002] and
the time-tabling-edge-finder [Vilı́m, 2011]. Other algorithms
could also be used, but these two algorithms were already im-

plemented in the solver Chuffed. For each resource r and for
each filtering algorithm associated to its CUMULATIVE con-
straint, we define three search features:

1. the number of filtered values;

2. the number of times a variable domain gets filtered;

3. the average number of filtered values, i.e. the ratio of the
two previous features.

It is important to link a no-good to the constraints that gen-
erated it. Without this link, information about the constraints
is lost since no-goods can end up performing the majority of
the filtering. We link a no-good to all the constraints that pro-
vided an explanation that contributed to its generation. To
achieve this, we modified the solver to create a map between
an explanation and the constraint that generated it. We link
the no-good to the constraints by checking the explanations
used to generate the no-good and the constraints that gener-
ated these explanations. If a no-good b is generated from an
explanation of a no-good a, we bind the no-good b to the con-
straints that generated the no-good a. In the end, if a no-good
induces a filtering or a backtrack, it is possible to give credits
to the constraints that inferred that no-good. The activity of a
no-good is the number of times that its explanations are used
to produce another no-good, hence this search feature.

4. The sum of the activity of all no-goods linked to the CU-
MULATIVE constraint of resource r.

We collect information specific to the filtering of the objec-
tive value. For each resource r, we create an initialy empty
list Lr. If the lower bound of the objective variable gets fil-
tered to v, we analyze the implication graph that contains the
explanations for this filtering. If one of these explanations is
mapped to the CUMULATIVE constraint of the resource r or
a no-good linked to this CUMULATIVE constraint, we insert
the value v to the list Lr. Let M be the makespan of the solu-
tion returned by the solver at the end of the search. For each
resource r, we have the three following search features.

5. The smallest value min(Lr)−M ;

6. The largest value max(Lr)−M ;

7. The average value avg(Lr)−M ;

When training a model to predict how much the makespan
changes when increasing/decreasing the capacity of a re-
source r, we only use the features related to the resource r.

When training a model to predict how much the makespan
changes after imposing a deadline to a task i, we use the
search features related to all resources. Moreover, we collect
information about the filtering of the starting time variable si.
These features are similar to features 1, 2, and 3 but specific
to the variable si that is the focus of the prediction.

8. The number of times a value from dom(si) is filtered;

9. The number of times dom(si) is filtered;

10. The average number of filtered values from dom(si).

The next three features are inspired from the last three fea-
tures. Rather than reporting the number of times a filtering
occurs, we report how the variable ranks compared to other
starting time variables. For instance, if si is the starting time

variable that gets filtered the least often, the rank is 1. If it is
the second least filtered variable, the rank is 2 and so on.

11. The rank with respect to how often si is filtered;

12. The rank with respect to how many values are filtered;

13. The rank with respect to the average number of filtered
values when the variable gets filtered.

4.2 Solution Features
We design 5 features computed from the solution returned by
the solver. The utilization rate Urater of the resource r is the
amount of energy pi · hr,i consumed by the tasks over the
availability of the resource cr ·M , where M is the makespan.

Urater =
∑

i∈I pi·hr,i

cr·M (1)

The saturation duration Umaxr for a resource r is the time
for which it is used at full capacity. Let Ur,t be the usage of r
at time t, we have:

Ur,t =
∑

i∈I:si≤t<si+pi

hr,i, Umaxr = |{t | Ur,t = cr}| (2)

The maximum usage ratio Umax ratior of a resource r is the
ratio between Umaxr and the makespan M .

Umax ratior =
Umax

r

M (3)

The number of waiting tasks Wr counts the tasks waiting
after resource r to start, i.e. the tasks that could have started
earlier if r was available. To get this information, we must
make sure that the task is not waiting for a predecessor to
complete. Let predi be the set of predecessors of task i and
ρi the time at which the last predecessor of i finishes.

ρi = max
j∈predi

(sj + pj)

Wr = |{i ∈ I | si 6= ρi ∧ Ur,si−1 + hr,i > cr}| (4)

The waiting time W duration
r of resource r is the amount

of time the tasks wait after resource r to start. Equation (5)
checks if the task could be scheduled earlier, i.e. after its last
predecessor but before the current starting time. If it is the
case, we conclude the task does not wait after the resource r
(it probably waits after another resource) and the waiting time
of task i for resource r is set to W duration

r,i = 0. Otherwise,
we impute a waiting time of si − ρi to the resource r, i.e.
the time between the last predecessor finishes and the starting
time of task i. Finally, equation (6) computes the total waiting
time and it is that quantity that is used as the solution feature.

W duration
r,i =

0 if ∃t ∈ [ρi, si)∀k ∈ [0, pi)

Ur,t+k + hi ≤ cr ∨ t+ k ≥ si
si − ρi otherwise

(5)

W duration
r =

∑
i∈IW

duration
r,i (6)

Like for the search features, we only use solution features
related to the resource r when we train a model to predict how

much the makespan changes when increasing/decreasing the
capacity of a resource r.

When training a model to predict how much the makespan
changes after imposing a deadline to a task i, we use the solu-
tion features related to all resources in the problem. Moreover
we add a solution feature indicating how many tasks finish
before the task i. And a feature that is simply the makespan.

4.3 Instance Features
We use as instance features:

1. The number of tasks n;

2. The original capacity cr of each resource r;

When training the model to predict how much the
makespan changes when increasing/decreasing the capacity
of a resource, we use these features.

3. The new capacity of the resources;

4. The ratio of increase/decrease of the resource capacity.

When training the model to predict how much the
makespan changes when imposing a deadline to a task, we
add as an instance feature:

5. The difference between the ending time in the original
scenario and the deadline in the second scenario.

5 Experiments
We use the RCPSP benchmarks PSPLib [Kolisch and
Sprecher, 1997] and Pack [Carlier and Néron, 2003]. PSPLib
has instances of 30, 60, 90, and 120 tasks and 4 resources.
The Pack benchmark has instances between 17 and 32 tasks
and between 2 and 5 resources. There are more precedence
constraints in PSPLib than Pack. We use the model provided
by Minizinc [Stuckey et al., 2014]. We use the time-tabling
and time-tabling-edge-finder as filtering rules for the CUMU-
LATIVE constraint. We use a timeout of 10 minutes per in-
stance for PSBLib and 3 hours for Pack since Pack has harder
instances. Reaching the timeout can add noise to the dataset
since the results become solver dependant, but this situation
is likely to occur in a real context.

We randomly separate the instances of a benchmark into
a training and a testing set with ratio 80/20. Since we pro-
duce many scenarios from one instance, we end up produc-
ing many training examples from training instances and many
testing examples from testing instances. In no case is the test-
ing data contaminated with the training data or vice versa.
Solving theses instances require 80 cpu-days for PSPLib and
48 cpu-days for Pack. As the results show later, not that many
instances are necessary to obtain good results. We apply a
min-max normalization on all features to scale them between
0 and 1 using the relation x′i =

xi−min(~x)
max(~x)−min(~x) .

We use the random forest classifier and the random forest
regressor from Scikit-Learn [Pedregosa et al., 2011]. We use
the default parameters except for the number of trees (nEsti-
mators) for which we set the value to 100.

We evaluate the quality of our predictions given which fea-
tures are used and how many training examples are used. As
it can take a lot of time to solve the “what if” scenarios, we

want to know the number of examples necessary in the train-
ing set to obtain sufficiently good predictions. We compare
the accuracy and the f1-score for the classification problem
and the mean squared error for the regression problem.

We start by training on 100 randomly chosen examples in
the training set and make the predictions on the test set. Then
we add 100 more randomly selected examples from the train-
ing set and make the predictions on the test set. We do so until
we consider all examples in the training set or up to 10,000
examples. We repeat this process 100 times with different
training sets and test sets and take the average of the results.
We also calculate a 95% confidence interval to ensure that our
results do not depend on the training sets or test sets chosen.

5.1 Predicting the Makespan When Changing a
Resource Capacity

Figure 1 shows the accuracy for the classification problem
(i.e. predicting whether the makespan changes or not) accord-
ing to the number of examples in the training set and the fea-
tures used for the PSPLib benchmark. For the PSPLib bench-
mark, 54% of the examples have no change to the makespan
(label 0). We compare four groups of features: instance fea-
tures with solution features (green), instance features with
search features (red), all features (blue), and the top 5 fea-
tures (yellow). The classifier gets better accuracy when us-
ing all features, reaching 91.14% with 10,000 examples ob-
tained from solving 892 scenarios. The accuracy of the clas-
sifier is similar if it uses the solution features with instance
features (88.18%) as it does when using the search features
with instance features (88.36%). When using all the features,
we obtain an accuracy of 87.32% with 1,000 examples and
90% with 3000 examples. We obtain an f1-score of 90.18%
with all features, 86.89% with solution+ instance features and
87.2% with search+instance features.

These results show that the classifier can properly predict
whether changing the capacity of the resource affects the
makespan. All types of features contribute to the quality of
the prediction. We did a feature ranking with recursive fea-
ture elimination (RFE) to find the 5 most important features
for the random forest classifier. The five most important fea-
tures are the increase/decrease in the capacity of the resource,
the smallest value min(Lr) −M , the utilization rate Urater ,
the sum of the activity of all no-goods linked to the CUMU-
LATIVE constraint, and the new capacity of the resource.

Figure 2 shows the accuracy and f1-score for the classifi-
cation problem for the Pack benchmark. These instances are
harder to solve and have 63% of examples with no change
to the makespan (label 0). The classifier gets an accuracy
of 90.69% with all features and 10,000 training examples
which is slightly better than using only the solution+instance
features (89.86%) or the search+instance features (85.41%).
We obtain a f1-score of 87.41% when using all features,
86.37% with the solution+instance features, and 80.43% with
the search+instance features. For Pack, the solution features
seem to provide more information than the search features.

Figure 3 shows the mean squared error for the regression
problem. For the PSPLib benchmark, with 10,000 examples
in the training set, the regressor obtains a mean square er-
ror of 38.24 with all features, 41.9 with the solution+instance

0 2000 4000 6000 8000 10000
Number of training examples

0.80
0.82
0.84
0.86
0.88
0.90

%
 A

cc
ur

ac
y

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

0 2000 4000 6000 8000 10000
Number of training examples

0.800

0.825

0.850

0.875

0.900

f1
-s

co
re

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

Figure 1: Does changing the resource capacity modify the
makespan? Accuracy and f1-score for the classifier trained on the
PSPLib benchmark.

features and 87.67 with search+instance features. For the
Pack benchmark, with 10,000 examples, the regressor obtains
a mean square error of 74.58 with all features, 75.41 with
solution+instance features and 126.13 with search+instance
features. For both benchmarks, the solution features provide
more useful information than the search features. Although
search features do help obtaining better results. Interestingly,
the regressor made no error in its prediction for 48.98 % of
the testing examples for PSPLib and 64.47 % for Pack.

5.2 Predicting the Makespan When Imposing a
Deadline

For the experiments of predicting the impact on makespan of
imposing a new deadline to a task, we have fewer training
examples than for predicting the makespan when modifying
the capacity of a resource. Also, for the Pack benchmark, for
a large majority of tasks, the makespan remains unchanged
when we constrain the task to finish earlier. For that reason,
the Pack benchmark is less interesting and we omit results for
this benchmark. This is not the case for the PSPLib bench-
mark. 67.17% of examples are labeled with 0. Tasks often
cannot finish earlier due to the precedence constraints. There
is therefore often no impact on the makespan to finish a task
earlier. To rebalance the training set, we duplicate the exam-
ples with a label of 1. The average change in makespan after
imposing a deadline on a task is 0.69 and the maximum is 17.
Even though there are many examples with a label of 0, this
benchmark is more interesting for evaluating our method.

Figure 4 shows the mean squared error for the regression
problem for the PSPLib benchmark. We replicated these ex-
periments 250 times to better see the difference between the
different types of features. With 3,250 examples in the train-
ing set, the regressor obtains a mean square error of 3.51
when using all features, 3.57 with solution+instance features,
and 3.55 with search+instance features. There is not much
difference between using a group of features than another.
But using all feature provides the best predictions.

0 2000 4000 6000 8000 10000
Number of training examples

0.75

0.80

0.85

0.90
%

 A
cc

ur
ac

y

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

0 2000 4000 6000 8000 10000
Number of training examples

0.70

0.75

0.80

0.85

f1
-s

co
re

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

Figure 2: Does changing the resource capacity modify the
makespan? Accuracy and f1-score for the classifier trained on the
Pack benchmark

0 2000 4000 6000 8000 10000
Number of training examples

100

200

300

M
ea

n
sq

ua
re

d
er

ro
r

PSPLib benchmark
Solution features + Instance features
Search features + Instance features
Top 5 features
All features

0 2000 4000 6000 8000 10000
Number of training examples

100

200

300

400

M
ea

n
sq

ua
re

d
er

ro
r

Pack benchmark
Solution features + Instance features
Search features + Instance features
Top 5 features
All features

Figure 3: By how much does the makespan change if one changes
the capacity of a resource? Mean squared error of the regressors.

Figure 5 shows the distribution of the error when the re-
gressor trains on 3,250 examples. The regressor makes no
error or only small errors for a majority of its predictions.

Figure 6 shows the accuracy and the f1-score for the clas-
sification problem for the PSPLib benchmark. Predicting
a change on the makespan when imposing a deadline on a
task seems more difficult than when changing the capacity of
the resource. Indeed, the CUMULATIVE constraint provides
much information about the impact of the capacity of the re-
source. No constraint in the original model provides infor-
mation about the deadline, since there is initially no deadline.
Moreover, the smaller dataset and especially the lack of ex-
amples with change to the makespan (label 1) makes it harder
to train. We notice the search features provide more informa-
tion than the feature solutions. However, it is by training on
all the features that we obtain the best classifying results.

0 500 1000 1500 2000 2500 3000
Number of training examples

3.6

3.8

4.0

4.2

4.4

M
ea

n
sq

ua
re

d
er

ro
r

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

Figure 4: By how much does the makespan change after imposing a
deadline? Mean squared error of the regressor trained on PSPLib

-16 -14 -12 -10 -8 -6 -4 -2 0 2 4
Error

0

100

200

300

400

Nu
m

be
r o

f t
ra

in
in

g
ex

am
pl

es All features
Solution features + Instance features
Search features + Instance features
Top 5 features

Figure 5: By how much does the makespan change after imposing a
deadline? Error distribution of the regressor trained on PSPLib

6 Conclusion
We presented a method to predict how the makespan of a
schedule is affected when the capacity of a resource is modi-
fied or a deadline is imposed on a task. Such predictions can
help a decider to sell unnecessary resources to buy scarcer
resources. It also tells whether a task could complete earlier.
Our method takes advantage of the structure of a solution, but
also some events that occur during the search for this solution.

0 500 1000 1500 2000 2500 3000
Number of training examples

0.68

0.69

0.70

0.71

0.72

%
 A

cc
ur

ac
y

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

0 500 1000 1500 2000 2500 3000
Number of training examples

0.52

0.54

0.56

0.58

f1
-s

co
re

Solution features + Instance features
Search features + Instance features
Top 5 features
All features

Figure 6: Does imposing a deadline to a task change the makespan?
Accuracy and f1-score of the classifier trained on PSPLib

References
[Aggoun and Beldiceanu, 1993] Abderrahmane Aggoun and

Nicolas Beldiceanu. Extending chip in order to solve com-
plex scheduling and placement problems. Mathematical
and Computer Modelling, 17(7):57 – 73, 1993.

[Baptiste and Pape, 2000] Philippe Baptiste and Claude Le
Pape. Constraint propagation and decomposition tech-
niques for highly disjunctive and highly cumulative project
scheduling problems. Constraints, 5(1):119–139, Jan
2000.

[Beldiceanu and Carlsson, 2002] Nicolas Beldiceanu and
Mats Carlsson. A new multi-resource cumulatives con-
straint with negative heights. In Pascal Van Hentenryck,
editor, Principles and Practice of Constraint Program-
ming - CP 2002, pages 63–79, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[Carlier and Néron, 2003] Jacques Carlier and Emmanuel
Néron. On linear lower bounds for the resource con-
strained project scheduling problem. European Journal
of Operational Research, 149(2):314–324, 2003.

[Chu, 2011] Geoffrey Chu. Improving combinatorial opti-
mization. PhD thesis, Department of Computing and In-
formation Systems, University of Melbourne, 2011.

[Dantzig, 1963] George B. Dantzig. Linear programming
and extensions. Princeton University Press, 1963.

[Dawande and Hooker, 2000] Milind Dawande and John N.
Hooker. Inference-based sensitivity analysis for mixed
integer/linear programming. Operations Research,
48(4):623–634, 2000.

[Geoffrion and Nauss, 1977] Arthur M. Geoffrion and
Robert Nauss. Exceptional paper—parametric and
postoptimality analysis in integer linear programming.
Management Science, 23(5):453–466, 1977.

[Greenberg, 1998] Harvey J. Greenberg. An Annotated Bib-
liography for Post-Solution Analysis in Mixed Integer Pro-
gramming and Combinatorial Optimization, pages 97–
147. Springer US, Boston, MA, 1998.

[Hadzic and Hooker, 2006] Tarik Hadzic and John N.
Hooker. Postoptimality analysis for integer programming
using binary decision diagrams. In GICOLAG Workshop
(Global Optimization: Integrating Convexity, Optimiza-
tion, Logic Programming, and Computational Algebraic
Geometry), Vienna. Technical report, Carnegie Mellon
University, 2006.

[Hall and Posner, 2004] Nicholas G. Hall and Marc E. Pos-
ner. Sensitivity analysis for scheduling problems. Journal
of Scheduling, 7(1):49–83, Jan 2004.

[Hooker, 1999] John N. Hooker. Inference duality as a basis
for sensitivity analysis. Constraints, 4(2):101–112, May
1999.

[Hooker, 2006] John N. Hooker. Duality in optimization
and constraint satisfaction. In J. Christopher Beck and
Barbara M. Smith, editors, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial

Optimization Problems, pages 3–15, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[Kolisch and Sprecher, 1997] Rainer Kolisch and Arno
Sprecher. Psplib - a project scheduling problem library:
Or software - orsep operations research software exchange
program. European Journal of Operational Research,
96(1):205 – 216, 1997.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux,
Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[Stuckey et al., 2014] Peter J. Stuckey, Thibaut Feydy, An-
dreas Schutt, Guido Tack, and Julien Fischer. The miniz-
inc challenge 2008–2013. AI Magazine, 35(2):55–60, Jun.
2014.

[Stuckey, 2010] Peter J. Stuckey. Lazy clause generation:
Combining the power of sat and cp (and mip?) solving. In
Andrea Lodi, Michela Milano, and Paolo Toth, editors, In-
tegration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems, pages 5–
9, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[Vilı́m, 2011] Petr Vilı́m. Timetable edge finding filtering
algorithm for discrete cumulative resources. In Tobias
Achterberg and J. Christopher Beck, editors, Integration
of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pages 230–245,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

	Introduction
	Background
	Sensitivity Analysis
	Lazy Clause Generation
	Resource-Constrained Project Scheduling Problem

	Problem
	Methodology
	Search Features
	Solution Features
	Instance Features

	Experiments
	Predicting the Makespan When Changing a Resource Capacity
	Predicting the Makespan When Imposing a Deadline

	Conclusion

