The Balance Constraint Family

Christian Bessiere, Emmanuel Hebrard, George Katsirelos, Zeynep Kiziltan, Emilie Picard-Cantin, Claude-Guy Quimper, Toby Walsh

Abstract

The **Balance** constraint introduced by Beldiceanu ensures solutions are balanced. This is useful when, for example, there is a requirement for solutions to be fair. **Balance** bounds the difference **B** between the minimum and maximum number of occurrences of the values assigned to the variables. We show that achieving domain consistency on **Balance** is NP-hard. We therefore introduce a variant, *AllBalance* with a similar semantics that is only polynomial to propagate. We consider various forms of **AllBalance** and focus on **AtMostAllBalance** which achieves what is usually the main goal, namely constraining the upper bound on **B**. We provide a specialized propagation algorithm, and a powerful decomposition both of which run in low polynomial time. Experimental results demonstrate the promise of these new filtering methods.

Filtering algorithm for *AtMostAllBalance*

- 1. Find a potential solution that satisfies AtMostAllBalance and such that the balance variable **B** is minimal.
- 2. Let $q = \min_{v \in \mathcal{V}} \operatorname{occ}(v)$.
- 3. Run filter algorithm for $GCC([D(X_1), \ldots, D(X_n)], [O_1, \ldots, O_m])$ where $O_i \in [q, q + max(B)]$ $\forall i$ and mark values that have a support.
- 4. If no values were filtered, mark all values since they all contribute to a potential solution for AtMostAllBalance.
- 5. If a value was filtered, as in step 3, mark values with ► $O_i \in [q+1, q + \max(B) + 1]$ $\forall i \text{ if } \exists a \text{ Hall set}$ ► $O_i \in [q - 1, q + max(B) - 1]$ $\forall i$ if \exists an unstable set

Basic notions

• Number of occurrences (occ(v)): Number of times that a value is allocated.

Example :

Domain :

task done by the worker **w** on day **d** Variable $X_{w,d}$:

Possible values :

A, **A**, **A**

worker qualifications

Satisfaction of constraint C : An assignment satisfies C if the set of values allocated obey the relation defined by **C**.

Domain consistency : When all the values in the domains contribute to a potential solution (solution that satisfies the constraints).

Constraint decomposition : Breakdown of a constraint into multiple simpler constraints.

The Balance Family

 $Balance([X_1,\ldots,X_n],B)$ $\iff \mathbf{B} = \max_{\mathbf{v} \in \{\mathbf{X}_1, \dots, \mathbf{X}_n\}} \operatorname{occ}(\mathbf{v}) - \min_{\mathbf{v} \in \{\mathbf{X}_1, \dots, \mathbf{X}_n\}} \operatorname{occ}(\mathbf{v})$ 6. Remove all values that are not marked.

Decompositions of the *AllBalance* family

Decomp.

$$GCC([X_1, ..., X_n], [O_1, ..., O_m])$$

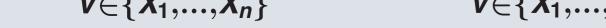
$$P = \max(\{O_1, ..., O_m\})$$

$$Q = \min(\{O_1, ..., O_m\})$$

$$B = P - Q$$

Implied Decomp. + $\begin{cases} mP - (m-1)B \leq n \\ mQ + (m-1)B > n \end{cases}$ Implied+ $\sum_{j=1}^{m} \max(P - B, O_j) \leq n \leq \sum_{j=1}^{m} \min(P, O_j)$ Implied $\sum_{i=1}^{m} \min(\mathbf{Q} + \mathbf{B}, \mathbf{O}_j) \geq n \geq \sum_{i=1}^{m} \max(\mathbf{Q}, \mathbf{O}_j)$

j=1



AllBalance($\mathcal{V}, [X_1, \ldots, X_n], B$) $\iff B = \max_{v \in \mathcal{V}} \operatorname{occ}(v) - \min_{v \in \mathcal{V}} \operatorname{occ}(v)$

AtMostBalance([**X**₁,..., **X**_n], **B**) $\iff B \geq \max_{v \in \{X_1, \dots, X_n\}} \operatorname{occ}(v) - \min_{v \in \{X_1, \dots, X_n\}} \operatorname{occ}(v)$

AtMostAllBalance($\mathcal{V}, [X_1, \ldots, X_n], B$) $\iff B \geq \max_{v \in \mathcal{V}} \operatorname{occ}(v) - \min_{v \in \mathcal{V}} \operatorname{occ}(v)$

AtLeastBalance and AtLeastAllBalance

Examples

Robert	L	M	MR		V	S	D	\Rightarrow	{ 00 } 00	cc(cc(2) 2)	= 0, = 2	000	() =	5
Balance AllBalance				$B = \max - \min = 5 - 2 \Rightarrow B = 3$ $B = \max - \min = 5 - 0 \Rightarrow B = 5$												
	AtMostBalance					$B \ge \max - \min = 0$ $0 \Rightarrow B \ge 0$ $B \ge \max - \min = 5 - 2 \Rightarrow B \ge 3$										
AtMos	$B \ge \max - \min = 5 - 0 \Rightarrow B \ge 5$															
AtLeastBalance				$B < \max - \min = 5 - 2 \Rightarrow B < 3$												

Results for a scheduling problem

m tasks by day, *m* workers, and *n* days;

j=1

- AllDifferent for each day (all tasks are performed by distinct workers);
- AtMostAllBalance for each worker (the workload of each worker is balanced over all tasks);
- Random unavailability to make the instances more real (25 instances for each couple (*n*, *m*);

Minimization of the largest balance over workers.

	Decomp.			Implied				Implied ⁺				Balance*					
m	n	#	B	Time	Bkt	#	B	Time	Bkt	#	B	Time	Bkt	#	B	Time	Bkt
6	16	8	1.92	6634	87398	25	1.88	37	472	25	1.88	35	423	25	1.88	33	260
6	17	11	2.16	60637	1073765	25	2.16	78	1123	25	2.16	63	877	25	2.16	36	249
6	18	16	3.2	8869	166146	25	1.84	127	1903	25	1.84	114	1617	25	1.84	36	279
6	19	8	3.24	106003	1352600	25	2.64	607	6983	25	2.64	504	6923	25	2.64	61	408
6	20	7	3.04	2302	27839	25	2.80	910	10027	25	2.80	734	8221	25	2.80	169	1085
7	16	6	1.44	32540	476847	25	1.44	2361	29767	25	1.44	2112	28382	25	1.44	1828	12383
7	17	9	2.04	159790	1542016	25	1.96	8416	90680	25	1.96	6697	72236	25	1.96	1576	9378
7	18	3	2.36	135580	1439674	22	1.76	19432	236671	22	1.76	14300	183069	24	1.68	13920	90665
7	19	4	2.04	80636	804503	22	1.88	21981	230327	22	1.88	13840	151262	23	1.76	6378	36822
7	20	2	2.72	25779	290430	23	1.56	46267	600434	24	1.52	55260	715789	23	1.68	18772	116406
8	16	8	2.12	128618	2109236	22	0.92	17420	231594	23	0.72	34216	462257	25	0.44	3797	14999
8	17	3	1.84	154183	1271700	21	1.68	55193	716866	21	1.68	49859	689151	25	1.28	12900	68059
8	18	1	1.76	4033	35971	15	1.56	56785	542326	16	1.52	84438	745177	16	1.56	5264	15636
8	19	2	2.12	176092	1675776	24	1.40	64074	665200	24	1.40	51899	544990	24	1.40	31092	201842
8	20	2	5.84	242901	2082063	11	2.76	51041	468643	11	2.68	35712	316148	15	2.32	12654	52741

AtLeastAllBalance
$$B \le \max - \min = 5 - 0 \Rightarrow B \le 5$$

Results

	Original	"AI"
Balance	NP-hard	Polynomial
AtMostBalance	NP-hard	Polynomial
AtLeastBalance	Polynomial	Polynomial

Conclusion

- 1. We proved that achieving DC on Balance and AtMostBalance is NP-hard.
- 2. We introduced decompositions that perform well in practice.
- 3. We proposed a filtering algorithm for AtMostAllBalance that a) achieves domain consistency; b) runs in polynomial time;
 - c) performs better than the decompositions.

Emilie Picard-Cantin, PhD student

emilie.picard-cantin.1@ulaval.ca