Generalizing the Edge-Finder Rule for the Cumulative Constraint

Vincent Gingras, Claude-Guy Quimper

Abstract

We present two novel filtering algorithms for the Cumulative constraint based
on a new energetic relaxation. We introduce a generalization of the Overload
Check and Edge-Finder rules based on a function computing the earliest
completion time for a set of tasks. Depending on the relaxation used to compute
this function, one obtains different levels of filtering. We present two algorithms
that enforce these rules. The algorithms utilize a novel data structure that we
call Profile and that encodes the resource utilization over time. Experiments show
that these algorithms are competitive with the state-of-the-art algorithms, by
doing a greater filtering and having a faster runtime.

Cumulative Scheduling Problem

Definition : A set of tasks need to be executed, without interruption, on a
cumulative resource of capacity C' € Z™*

Properties of a non-preemptive task i € 7 = {1, ..., n}

- earliest starting time : est; € Z - latest completion time : Ict; € Z

- processing time : p; € ZT - resource consumption value : h; € Z*

© energy : e; = p;h; » earliest completion time : ect; = est; +p;

- latest starting time : Ist; = lct; —p;

Generalized properties to a set of tasks (2
esto = IZIéISIZl est;

Cumulative constraint :
Vi € Zdom(S;) = |est;, Ist;]

CUMULATIVE([S1,...,5,),C) <= Vt:) icr 5. <ieg,4p, Ni <C

€O — E €;

1€(2

lcto = maxlct;
1€Q)

Overload Check

- |If the energy consumption required by a set of tasks () exceeds the capacity
over |estq, Ictq), then the test fails.

1Q C 7 : C(lctg —estq) < eq = fail
» [Fahimi et al., 2014] run the Overload Check in O(n) time

Edge-Finder

1) Detection Phase
* Detects “ends before end” (<) temporal relation
«[Vilim, 2009] runs the Detection Phase in O(nlogn) time
- Ifatask ¢ ¢ 2 cannot be executed along the tasks in € without
having any of them missing their deadline, then) <

equyiy > Cllctg —estquin) = Q <

2) Adjustment phase
- Glven a precedence 2 < 4, adjusts the lower bound of S;
« [Vilim, 2009] runs the Adjustment Phase in O(knlogn)time, where
IS the number of distinct heights

e — (C — h;)(lctgr — estor)
hi

() <7 = est; > max { estos +
Q' CO

Fully-Elastic Relaxation

 Revolves around the elasticity of a task [Baptiste, Le Pape, Nuijten, 2001]
- The resource consumption of a fully elastic task can fluctuate over time
» Fully-Elastic computation of ectg [Vilim, 2009]

maX{C estor +eqr ‘ Q) C Q}
C

ectg =

Generalization of known filtering rules

Overload Check
() C 7 : ectqg > lctg =— fail
Edge-Finder Detection
VA CZ,Vi € L\ :ectqupy > letg = Q <
The function ectq 1S NP-Hard to compute, so a relaxation Is necessary

The known Overload Check and Edge-Finder rules are based on the Fully-
Elastic relaxation

» Edge-Finder Detection

Horizontally-Elastic Relaxation

» We Introduce a stronger relaxation that restricts the elasticity of a task
- At any time ¢ a task can consume between 0 and A; units of resource
» Horizontally-Elastic computation of ectq IS given by

Zi€Q|esti§t<ect,,; h
min (hreq (t) + 0v(t — 1), hmax (t))

ect” = max{t | heons(t) > 0} + 1

Examples

{(est,,;,lcti,pi,h,,)} — {CL’ - <O,8,4, 1> » Y <O,8,4, 1> s & - <3,9,6,3>
w:(4,8,2,1),v:(4,8,2,1),u(4,20,3,2)}

Fully-Elastic Horizontally-Elastic

Unconsidered portion
because the biggest
envelop is obtained
with estg = 3

: ICt@) accumulated overflow (OV)
1

B <pent overflow (0V)
B cncroy spent beyond Ictg

Biggest energy envelop of © i
(max{C este +eg | © C O}) |

-

2 4 6 8 10 12 1 0 2 4 6 8 10 12_>t
No precedence detected Precedence {z,y, z,v,w} <u 1S detected
- Edge-Finder Adjustment
{<€St7;, ICti,pi, hz>} — {CL’ : <O, 4, 2, 1> Y <1, 4, 1, 3> s 2 - <2, 4, 1, 1>
(2.4, 1 (1.1 1
{ZC,y,Z,w}<fU w < ? 9 73>7U < ? 0737 >}
Fully-Elastic Horizontally-Elastic
1) 2)
«—— est, =2 <—est, =3
)
0 2 4);5 0 2 4 t o 2 4 L

A scheduling on the resource of capacity C' — h,, reveals that 2 units of energy must be spent

The maximum update is est;, = 2 _ :
on the upper part of the resource. A second scheduling then compute the new value of est, .

Experimental Results

Static DomOverWDeg ImpactBasedSearch

v—2x A
7/

[a—
o
(aw]
O
|
(S
(o]
(]
(=]
|
—
(an]
o
O
1

FE runtime (s)
FE runtime (s)
FE runtime (s)

N
)
(=)

V4
/
7/
500 1000 1500 500 1000 1500 500 1000 1500
HE runtime (s) HE runtime (s) HE runtime (s)

I

o

o

=
T

/
[/

-9
o
-
o

T

; P
<
.

200e

;’ ™
| | | O | | | |
1000 2000 3000 0 200 400 600 800
HE backtracks (1k) HE backtracks (1k) HE backtracks (1k)

FE backtracks (1k)
FE backtracks (1k)
FE backtracks (1k)

p—

(ew]

(wn]

(=]
I

o

Conclusion

. We generalized the Overload Check and Edge-Finder rules (Cumulative)

. We introduced a strong relaxation to compute ectq

- We presented a data structure to efficiently compute ectg

. We presented algorithms enforcing the Overload Check and Edge-Finder rules
using our relaxation in O(n?)time and O(kn* 4+ n*) time respectively

. Experimental results demonstrated the effectiveness of the method

Vincent Gingras, M.Sc. Student
vincent.gingras.5@ulaval.ca

