Generalizing the Edge-Finder Rule for the Cumulative Constraint

Vincent Gingras, Claude-Guy Quimper

Abstract

We present two novel filtering algorithms for the **Cumulative constraint** based on a new energetic **relaxation**. We introduce a **generalization** of the **Overload Check** and **Edge-Finder** rules based on a function computing the earliest completion time for a set of tasks. Depending on the **relaxation** used to compute this function, one obtains different levels of filtering. We present two algorithms that enforce these rules. The algorithms utilize a **novel data structure** that we call **Profile** and that encodes the resource utilization over time. Experiments show that these algorithms are **competitive** with the state-of-the-art algorithms, by doing **a greater filtering** and **having a faster runtime**.

Cumulative Scheduling Problem

• resource consumption value : $h_i \in \mathbb{Z}^+$

• earliest completion time : $ect_i = est_i + p_i$

• **Definition :** A set of tasks need to be executed, without interruption, on a

Horizontally-Elastic Relaxation

- We introduce a stronger relaxation that restricts the elasticity of a task
- At any time t a task can consume between 0 and h_i units of resource
- Horizontally-Elastic computation of ect_{Ω} is given by

$$\begin{aligned} h_{\max}(t) &= \min\left(\sum_{i \in \Omega \mid \text{est}_i \leq t < \text{lct}_i} h_i, C\right) \\ h_{\text{req}}(t) &= \sum_{i \in \Omega \mid \text{est}_i \leq t < \text{ect}_i} h_i \\ h_{\text{cons}}(t) &= \min(h_{\text{req}}(t) + ov(t-1), h_{\max}(t)) \\ ov(t) &= ov(t-1) + h_{\text{req}}(t) - h_{\text{cons}}(t), \text{ ov}(\min_{i \in \Omega} \text{est}_i) = 0 \\ \text{ect}^{\text{H}} &= \max\{t \mid h_{\text{cons}}(t) > 0\} + 1 \end{aligned}$$

- cumulative resource of capacity $C \in \mathbb{Z}^+$
- Properties of a non-preemptive task $i \in \mathcal{I} = \{1, \dots, n\}$
 - earliest starting time : $est_i \in \mathbb{Z}$ latest completion time : $lct_i \in \mathbb{Z}$
 - processing time : $p_i \in \mathbb{Z}^+$
 - energy : $e_i = p_i h_i$
 - latest starting time : $lst_i = lct_i p_i$
- Generalized properties to a set of tasks Ω :

$$\operatorname{est}_{\Omega} = \min_{i \in \Omega} \operatorname{est}_{i} \qquad \operatorname{lct}_{\Omega} = \max_{i \in \Omega} \operatorname{lct}_{i} \qquad e_{\Omega} = \sum_{i \in \Omega} e_{i}$$

• Cumulative constraint :

 $\forall i \in \mathcal{I} \operatorname{dom}(S_i) = [\operatorname{est}_i, \operatorname{lst}_i]$

 $\mathsf{CUMULATIVE}([S_1, \dots, S_n], C) \iff \forall t : \sum_{i \in \mathcal{I}, S_i \leq t < S_i + p_i} h_i \leq C$

Overload Check

• If the energy consumption required by a set of tasks Ω exceeds the capacity over $[est_{\Omega}, lct_{\Omega})$, then the test fails.

 $\exists \Omega \subseteq \mathcal{I} : C(\operatorname{lct}_{\Omega} - \operatorname{est}_{\Omega}) < e_{\Omega} \Rightarrow \text{fail}$

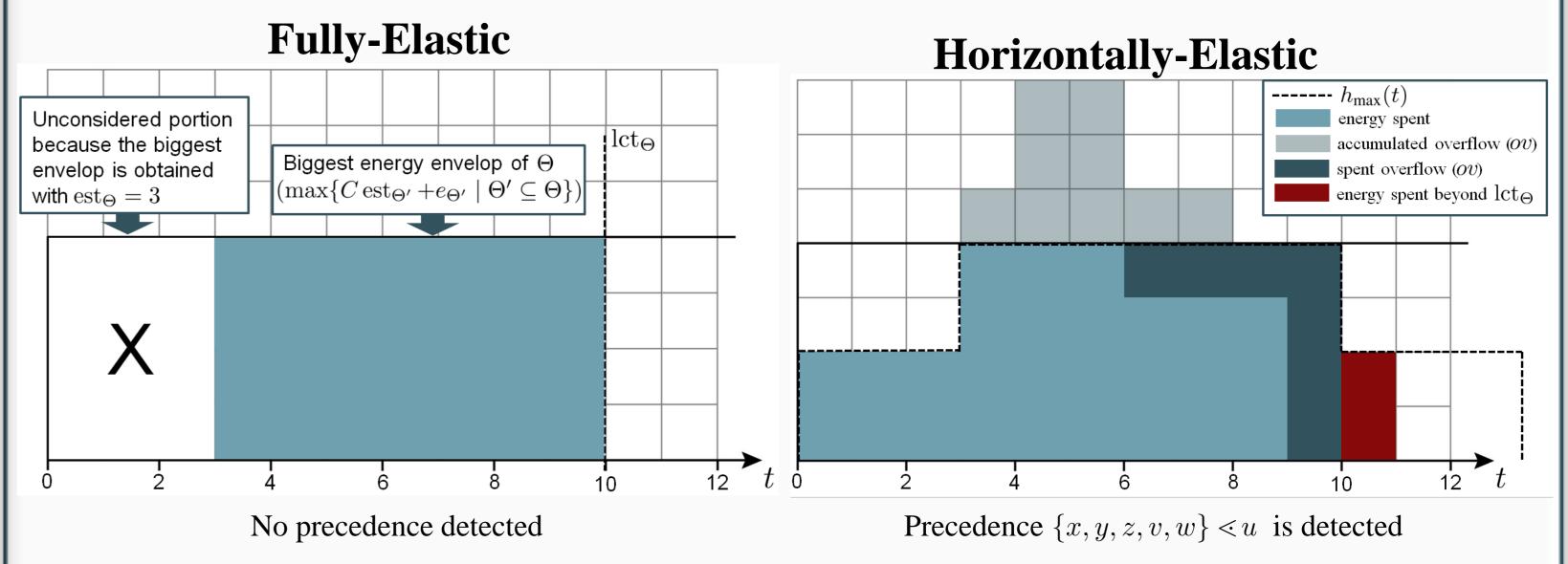
• [Fahimi et al., 2014] run the Overload Check in $\mathcal{O}(n)$ time

Edge-Finder

Examples

Edge-Finder Detection

 $\{\langle \text{est}_i, \text{lct}_i, p_i, h_i \rangle\} = \{x : \langle 0, 8, 4, 1 \rangle, y : \langle 0, 8, 4, 1 \rangle, z : \langle 3, 9, 6, 3 \rangle \\ w : \langle 4, 8, 2, 1 \rangle, v : \langle 4, 8, 2, 1 \rangle, u \langle 4, 20, 3, 2 \rangle\}$



Edge-Finder Adjustment

 $\{ \langle \text{est}_i, \text{lct}_i, p_i, h_i \rangle \} = \{ x : \langle 0, 4, 2, 1 \rangle, y : \langle 1, 4, 1, 3 \rangle, z : \langle 2, 4, 1, 1 \rangle \\ w : \langle 2, 4, 1, 3 \rangle, v : \langle 1, 10, 3, 1 \rangle \}$

Fully-Elastic

Horizontally-Elastic

Detection Phase

- Detects "ends before end" (\lt) temporal relation
- [Vilím, 2009] runs the Detection Phase in $\mathcal{O}(n \log n)$ time
- If a task $i \notin \Omega$ cannot be executed along the tasks in Ω without having any of them missing their deadline, then $\Omega \lt i$

 $e_{\Omega \cup \{i\}} > C(\operatorname{lct}_{\Omega} - \operatorname{est}_{\Omega \cup \{i\}}) \Rightarrow \Omega \lessdot i$

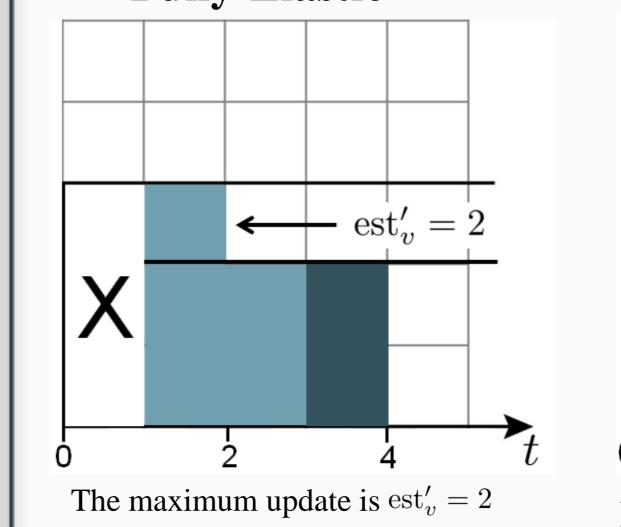
2) Adjustment phase

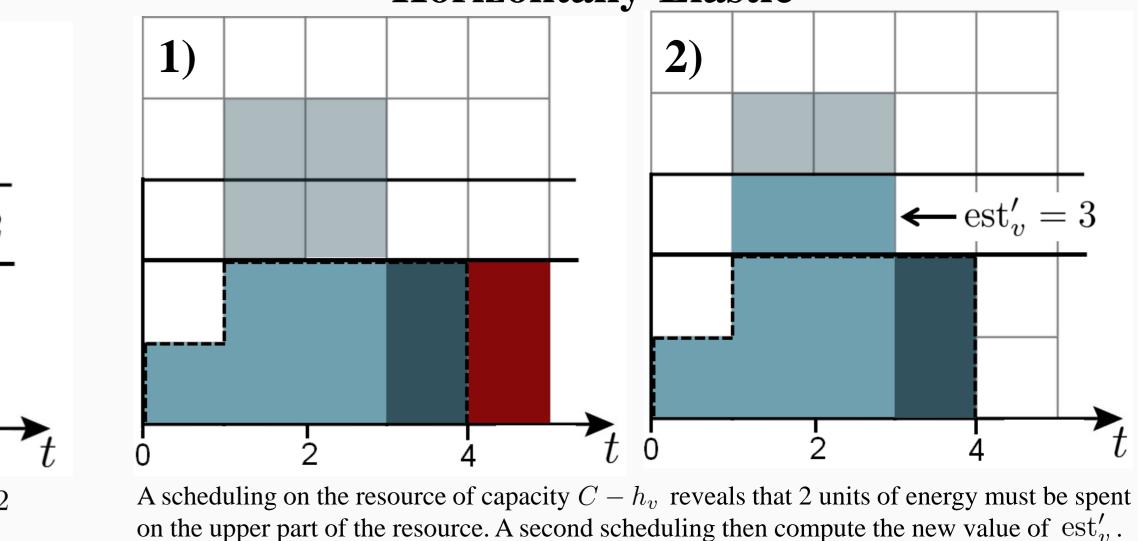
- Given a precedence $\Omega \leq i$, adjusts the lower bound of S_i
- [Vilím, 2009] runs the Adjustment Phase in $O(kn \log n)$ time, where k is the number of distinct heights

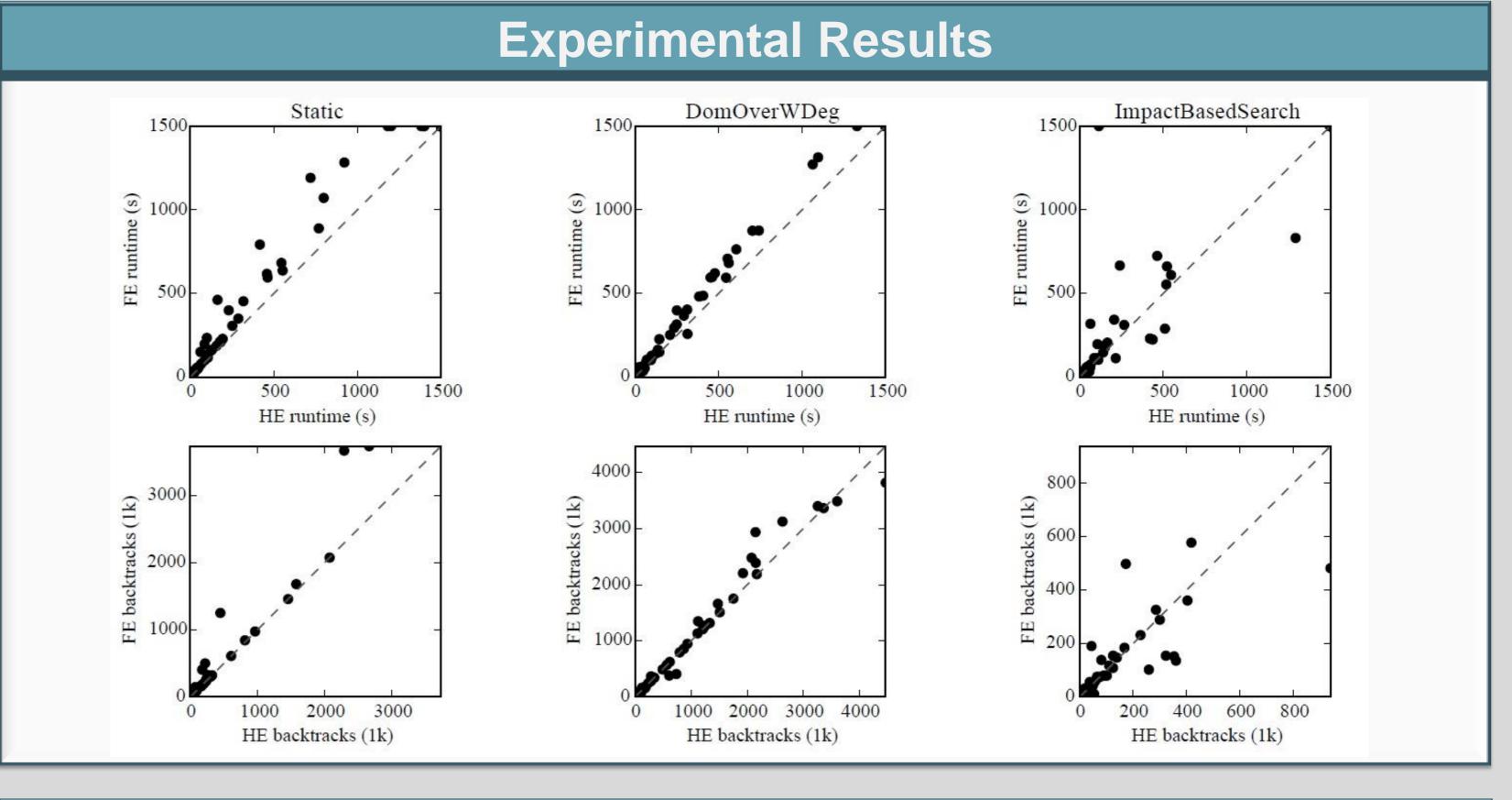
$$\Omega \lessdot i \Rightarrow \operatorname{est}_i \ge \max_{\Omega' \subseteq \Omega} \left\{ \operatorname{est}_{\Omega'} + \left\lceil \frac{e_{\Omega'} - (C - h_i)(\operatorname{lct}_{\Omega'} - \operatorname{est}_{\Omega'})}{h_i} \right\rceil \right.$$

Fully-Elastic Relaxation

- Revolves around the elasticity of a task [Baptiste, Le Pape, Nuijten, 2001]
- The resource consumption of a fully elastic task can fluctuate over time
- Fully-Elastic computation of ect_{Ω} [Vilím, 2009]
 - $\begin{bmatrix} \alpha & \alpha & \beta & \alpha \\ \alpha & \alpha & \alpha & \beta \\ \alpha & \alpha & \alpha$







$$\operatorname{ect}_{\Omega}^{\mathrm{F}} = \left| \frac{\max\{C \operatorname{est}_{\Omega'} + e_{\Omega'} \mid \Omega' \subseteq \Omega\}}{C} \right|$$

Generalization of known filtering rules

- Overload Check
 - $\exists \Omega \subseteq \mathcal{I} : ect_{\Omega} > lct_{\Omega} \implies fail$
- Edge-Finder Detection
 - $\forall \Omega \subset \mathcal{I}, \forall i \in \mathcal{I} \setminus \Omega : \operatorname{ect}_{\Omega \cup \{i\}} > \operatorname{lct}_{\Omega} \Rightarrow \Omega \lessdot i$
- The function ect_Ω is NP-Hard to compute, so a relaxation is necessary
 The known Overload Check and Edge-Finder rules are based on the Fully-Elastic relaxation

Conclusion

We generalized the Overload Check and Edge-Finder rules (Cumulative)
 We introduced a strong relaxation to compute ect_Ω
 We presented a data structure to efficiently compute ect_Ω^H
 We presented algorithms enforcing the Overload Check and Edge-Finder rules using our relaxation in O(n²) time and O(kn² + n²) time respectively
 Experimental results demonstrated the effectiveness of the method

