
The SoftCumulative Constraint with Quadratic Penalty
Yanick Ouellet Claude-Guy Quimper

Department of Computer Science and Software Engineering
Université Laval, Québec (QC), Canada

Abstract

The cumulative constraint greatly contributes to the success of con-
straint programming at solving scheduling problems. SoftCumulative,
a version of the cumulative constraintwhere overloading the resource
incurs a penalty is, however, less studied. We introduce a checker
and a filtering algorithm for SoftCumulative, which are inspired by the
energetic reasoning rule for the cumulative. Both algorithms can be
used with a classic linear penalty function, but also with a quadratic
penalty function, where the penalty of overloading the resource in-
creases quadratically with the amount of the overload. We show that
these algorithms are more general than existing algorithms and out-
perform a decomposition of SoftCumulative in practice.

Motivation

6 7 8 9 10 11 12 13 14 15 16 17 18 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 1. Motivation

Tasks
5 surgeries of 4 hours each to complete in the day

Possible to call additional surgeons if required

Wewant to call as few additional surgeons as possible

Task definition

est1 lct1

p1 = 4

e1 = 8

0 1 2 3 4 5 6 7 8 9 10

h1 = 2

Notation
est: Earliest Starting Time

lct: Lastest Completion Time

p: Processing time

h: Height

e = p · h: Energy

Cumulative constraint

p1 = 3

p2 = 3

p3 = 1

0 1 2 3 4 5 6 7 8 9 10

C=2

Definition
cumulative([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], C)

Si ∈ {esti, . . . , lcti−pi}

The sum of the height of the tasks in execution at a given time
point t is at mostC

SoftCumulative constraint
Definition

SoftCumulative(S, p, h, C, f (x), Z) def⇐⇒
Z ≥

∑
t∈T

f (max(0,
∑
i∈I:

Si≤t<Si+pi

hi − C)

Additional parameters

f (x): Cost function

Z : Overcost variable

State of the art
Linear cost function f (x) = x

Time-Tabling and Edge-Finding [De Clerc et al. 2010]

Exemple

C = 2

Linear cost: Z ≥ 2 + 1 + 1 = 4

f(2) = 2
f(1) = 1

0 1 2 3 4 5 6 7 8 9 10

C = 2

Quadratic cost: Z ≥ 4 + 1 + 1 = 6

f(2) = 4
f(1) = 1

0 1 2 3 4 5 6 7 8 9 10

Objective function

Minimize the overcostZ

Minimum intersection
Minimum intersection

l u

0 1 2 3 4 5 6 7 8 9 10

min(3, 2) = 2

LS(1, 8) = 3

RS(1, 8) = 2

MI(1, 8) = min(LS(1, 8), RS(1, 8)) = 2

Energetic reasoning
Energetic reasoning

Slack(l, u) =C · (u− l)−
∑
i∈I

MI(i, l, u)

If negative Slack, no solution for the cumulative

Sufficient to checkO(n2) intervals

p = 3

p = 4

p = 1

0 1 2 3 4 5 6 7 8 9 10

C=2

0 1 2 3 4 5 6 7 8 9 10

C=2

Our contribution
Contributions
1. Use of a generic cost function (quadratic is of particular interest)
2. Adaptation of the energetic reasoning from the cumulative
1. Checker algorithm
2. Filtering algorithm

3. How to generate explanations to use with lazy clause generation

4. Empirical comparison against the decomposition

Adapting the energetic reasoning
Cumulative case
Toomuch energy in a single interval means a failure

SoftCumulative case
Possible to exceed the capacity

But not by toomuch, nor in toomany intervals

We need a way to reason over multiple intervals

Reasoning over multiple intervals
Intuition
Graph with time points as nodes

Each edge represents an interval

We find the longest path

0 1 2 3

cost(0, 2)

Overcost
Z ≥ cost(0, 2) + cost(2, 3)

Experiments
Benchmark
Based on classical RCPSP instances

Reduced resource capacities to force overload

Comparison against a decomposition of the SoftCumulative

Decomposition

SoftCumulative(S, p, h, C, f (x), Z) def⇐⇒
Z ≥

∑
t∈T

f (max(0,
∑
i∈I:

Si≤t<Si+pi

hi − C)

Experiments with linear cost function

Experiments with quadratic cost function


