
Bounding an Optimal Search Path with a Game
of Cop and Robber on Graphs

Frédéric Simard, Michael Morin,
Claude-Guy Quimper, François Laviolette, and Josée Desharnais

Department of Computer Science and Software Engineering
Université Laval, Québec, Qc, Canada,

{Frederic.Simard.10,Michael.Morin.3}@ulaval.ca,
{Claude-Guy.Quimper,Francois.Laviolette,Josee.Desharnais}@ift.ulaval.ca

Abstract. In search theory, the goal of the Optimal Search Path (OSP)
problem is to find a finite length path maximizing the probability that
a searcher detects a lost wanderer on a graph. We propose to bound
the probability of finding the wanderer in the remaining search time
by relaxing the problem into a stochastic game of cop and robber from
graph theory. We discuss the validity of this bound and demonstrate its
effectiveness on a constraint programming model of the problem. Ex-
perimental results show how our novel bound compares favorably to the
DMEAN bound from the literature, a state-of-the-art bound based on a
relaxation of the OSP into a longest path problem.

Keywords: Optimal Search Path·Cop and Robber·constraint relaxation·pursuit
games

1 Introduction

The Optimal Search Path (OSP) problem [1, 2] is a classical problem from search
theory [3] of which the SAROPS [4] and the SARPlan [5] are two examples of
successful systems. The goal of an OSP is to find the best finite length path
a searcher has to take in order to maximize the probability of finding a lost
wanderer moving randomly on a graph. It is a common assumption, in search
theory, to consider unconstrained searcher’s motion. The assumption holds, for
instance, in contexts where the searcher is fast in comparison to the target of
interest. There are, however, many cases, such as in land search and rescue [3],
where the searcher is as slow as the moving wanderer. Washburn [6] also notes
how bounded speeds (for searcher and wanderer) is used in modeling searches
for hostile submarines or friendly vessels.

Most of the early work on the OSP problem consisted in computing bounds
for a depth-first branch-and-bound algorithm initially developed by Stewart [2].1
At the opposite of stochastic constraint programming, the OSP requires to com-
pute a single scenario given by the decision variables and the probability that
1 A review of the bounds developed prior to 1993 is found in the work of Washburn [6].



this scenario works is automatically computed through constraint propagation.
Recent works on the OSP problem include generalization of the problem to con-
sider, for instance, non-uniform travel time [7], searching from a distance [8],
and path dependent detections [9]. Along with a novel OSP generalization, Lau
et al. [7] propose the DMEAN bound. The bound is proved to effectively prune
the branch-and-bound search tree.

In this paper, we present bounding techniques for a constraint programming
(CP) model of the OSP problem introduced in [10]. We discuss, in Section 2, the
DMEAN bound which has never been implemented in CP. Then, as our main
contribution, we develop a bound on the OSP objective function (see Section 3).
This bound, we call the Copwin bound, is obtained by relaxing the OSP into
a game of cop and robber [11–14] which pertains to a well-studied game from
graph theory (see Section 3). In Section 4, we show the benefits of using our
novel Copwin bound by providing experimental results obtained on an existing
CP model of the problem [10]. We conclude in Section 5.

2 The Optimal Search Path Problem

The OSP models a search operation where one searcher searches for a lost, and
possibly moving, search object. The problem is known to be NP-hard [1]. It
is used, in search theory, as a model for path-constrained search operations [3]
and can be formulated as follows. A searcher and a wanderer are moving on
the vertices of a graph G = (V (G), E(G)). Their respective initial positions
correspond to some vertex of V (G) or of some subset of it. Each of their moves,
that we can assume simultaneous, is performed along one of the edges e ∈ E(G)
of the graph and consumes one unit of time. There is a maximal number T of
steps taken for the search operation. The wandererW is invisible to the searcher
S, but each time they share a vertex v ∈ V (G), the latter has a given probability
of detecting and removing him2 from the graph:

pod(v) := probability of detecting W when both W and S are on vertex v.

Let πt = v1, v2, . . . , vt be a path of length t ≤ T representing the t first moves
of the searcher (vi ∈ V (G), i = 1, . . . , t). We define πt[..k] := v1, v2, . . . , vk for
k ≤ t. We define the following probabilities for a searcher S and a wanderer W:

pocπt
(v) := probability3 of W being on vertex v at time t and not having

previously been detected, given that S’s first t steps were along πt ;
cosπt := Cumulative probability Of Success of detecting W up to time t

when S follows πt, i.e., it is given as
∑t
i=1 pocπt[..t−1]

(vi)pod(vi) ,
where pocπt[..0]

is the initial distribution of the wanderer;
cos∗πt

:= maximal cumulative probability of success up to T if S’s t first
steps are along πt, that is, max{cosπT

| πT has prefix πt} .
2 Following the convention of cop and robber games on graphs, we suppose that the
searcher (or cop) is a woman and that the wanderer (or robber) is a man.



The goal of the searcher is to find the path πT with maximal cumulative proba-
bility of success cosπT

. This probability is actually cos∗π0
, where π0 is the empty

path.
The wanderer is passive in that he does not react to the searcher’s moves. It

is the usual assumption to model the wanderer’s motion by using a Markovian
transition matrix M with source vertices on rows and destination vertices on
columns. Thus, M(r, r′) is the probability of a wanderer’s move from vertex r to
vertex r′ within one time step. Each time the searcher searches a vertex r′ along
path πt and the search operation does not stop, then either the wanderer is not
there, or he is undetected; the latter happens with probability 1−pod(r′). That
is, as long as the search goes on, the wanderer is not found and the knowledge
about his location evolves according to:

pocπt
(r′) = pocπt[..t−1]

(vt)(1− pod(vt))M(vt, r
′) (1)

+
∑

r∈V (G)\{vt}

pocπt[..t−1]
(r)M(r, r′).

The next section summarizes the CP model of the OSP used in [10].

2.1 Modeling the OSP in Constraint Programming

A CP model for the OSP problem follows directly from the problem’s definition.
We define, for each step t (1 ≤ t ≤ T ), a decision variable PATHt that represents
the searcher’s position. The PATHt domain is an enumerated domain such that
dom(PATHt) = V (G). The searcher’s path is constrained by a possible limited
choice for its initial position PATH1 and by the fact that

(PATHt−1,PATHt) ∈ E(G) (2)

for any steps t ∈ {2, . . . , T}. The encoding in the CP-framework is done via a
sequence of Table constraints [15].

We define two sets of implicit variables with bounded domains for probabil-
ities: POCt(v) with dom(POCt(v)) = [0, 1], and POSt(v) with dom(POSt(v)) =
[0, 1] for 1 ≤ t ≤ T and for v ∈ V (G). If the searcher is located in a vertex v,
then she obtains a success probability as modeled by the following constraint set
defined over all time steps t ∈ {1, . . . , T} and vertices v ∈ V (G), where pod(v)
is the known probability of detection in vertex v:

PATHt = v ⇒ POSt(v) = POCt(v)pod(v). (3)

If the searcher is not located in vertex v at step t, then the probability of detecting
the object in v at step t is null. This is modeled by the following constraint set
defined over all time steps t ∈ {1, . . . , T} and vertices v ∈ V (G):

PATHt 6= v ⇒ POSt(v) = 0. (4)

3 poct(v) also stands for the probability of containment [10].



The value of the POC1(r) variables is fixed given the initial distribution on
the wanderer’s location, a value known for all r ∈ V (G). For all subsequent
time steps t ∈ {2, . . . , T} and vertices v ∈ V (G), the evolution of the searcher’s
knowledge on the wanderer’s location is modeled by the following constraint set:

POCt(v) =
∑

r∈V (G)

M(r, r′) (POCt−1(r)− POSt−1(r)) . (5)

A bounded domain variable Z with dom(Z) = [0, 1] is added to represent the
objective value to maximize which corresponds to the cumulative overall prob-
ability of success as defined above by cosπT

where πT is an assignment to the
PATHt variables. Following [10], we observe that the searcher is in one vertex at
a time leading to

Z =

T∑
t=1

max
v∈V (G)

POSt(v) (6)

and improving filtering over the usual double sum definition of the objective.
The objective is finally

max
PATH1,...,PATHT

Z, (7)

subject to Constraints (2) to (6) which leads to cos∗π0
value.

2.2 The DMEAN Bound from the Literature

Martins [16] proposes to bound the objective function using the MEAN bound.
Lau et al. [7] improve on this bound by presenting the discounted MEAN bound
(DMEAN) which tightens the MEAN at a reasonable computational cost. In
the literature, these bounds are usually applied in an OSP-specific depth-first
branch-and-bound algorithm. In this section, we show how to use the DMEAN
bound in our OSP CP model. We chose to implement DMEAN among other
bounds from the literature since both DMEAN and our novel bound are based
on graph theory problems. While DMEAN aims at solving a longest path prob-
lem, the Copwin bound, as will be explained, is based on pursuit games. Just as
DMEAN, MEAN is based on the maximization of the expected number of detec-
tions in the remaining time. The core idea of the MEAN bound is to construct
a directed acyclic graph (DAG) at time t ∈ {1, . . . , T} on vertices consisting of
pairs (r, k) where r ∈ V (G) and t < k ≤ T . A directed edge is added from vertex
(r, k) to vertex (r′, k + 1) if and only if (r, r′) ∈ E(G). The maximal expected
number of detections ZDAG from step t to T is obtained by following the longest
path on the DAG, which can be computed in time linear on |V (G)| + |E(G)|.
Given the beginning πt of a path, it is sufficient to know pocπt

(v) for all v ∈ V (G)
to be able to compute the expected detection at step k with t ≤ k ≤ T in vertex
r ∈ V (G). An incident edge into a node (r′, k + 1) is weighted as follows:

RMEAN(r
′, k + 1) =

∑
v∈V (G)

pocπt
(v)Mk+1−t(v, r′)pod(r′) (8)



where Mk+1−t is the transition matrix M to the power of k + 1− t.
The DMEAN bound is based on the additional observation that a wanderer

moving from vertex r to r′ has survived a detection on r to possibly being
captured on vertex r′. On each outgoing edge from a node (r, k) into a node
(r′, k+1), if k = t we let the weight become RDMEAN(r

′, k+1) = RMEAN(r
′, k+

1). Otherwise, if k > t, we let:

RDMEAN(r
′, k + 1) = RMEAN(r

′, k + 1)−RMEAN(r, k)M(r, r′)pod(r′). (9)

That is, the wanderer has a probability RMEAN(r
′, k + 1) of reaching vertex

r′ on time step k + 1 and being detected there, from which we substract his
probability RMEAN(r, k)M(r, r′)pod(r′). This last term is the probability the
wanderer had of being on vertex r at the preceding time step k, transiting on r′
and being captured there. The RDMEAN(r

′, k+1) value thus corresponds to the
probability that the wanderer reaches r, survives an additional search, reaches
r′ and gets caught. Given the beginning of a path πt, an admissible4 bound for
the OSP is obtained by first solving a longest path problem of which ZDAG is
the optimal value and then by summing ZDAG and cosπt

[7].

Remark 1. Given a graph with n vertices and m edges, DMEAN asks for the
construction of a DAG with nT new vertices and mT new edges. Then, if the
current time is k, the longest path can be solved in O ((T − k + 1)(n+m)) steps.

It is convenient, to apply the DMEAN bound in our CP model of the OSP,
to order the path variables in a static order of the searcher’s positions in time.
This is the natural order to solve an OSP since the PATHt variables are the only
decision variables and since the implicit variables representing the probabilities,
including the objective variable Z that represents cos∗π0

, are entirely determined
by the searcher’s path. When opening a node for a searcher’s position at a time
t, we are able to compute, using the chosen bound, a tighter upper bound on the
domain of the objective variable. The DMEAN bound is proved admissible [7],
that is, it never underestimates the real objective value. Whenever the bound
computed on the opened node of the searcher’s position at a time t is lower than
the best known lower bound on the objective value (e.g., the objective value of
the current incumbent solution) that searcher’s move is proven unpromising.

3 Bounding the Optimal Search Path Using Search
Games on Graphs

The cop and robber game on a graph consists in finding a winning strategy for
a cop to catch a robber, considering perfect information for both players (i.e.,
each player knows her/his position and her/his adversary’s position). We focus
on a recent variant where the robber is random (or drunk) [17–19]. We show
how a valid upper bound on the objective function of the OSP can be derived

4 A bound is admissible if and only if it never underestimate (resp. overestimate) the



by considering, after t steps, the best possible scenario for the searcher that
corresponds to allowing her the ability of seeing the wanderer for the remainder
of the game.

3.1 A Game of Cop and Drunk Robber

In this game, a cop and a robber move in turn on a graph G, the cop moving
first. In contrast with the OSP, the cop has probability 1 of catching the robber
when sharing the same vertex, and she sees the robber, who, as does the wan-
derer in the previous game, walks randomly according to a stochastic transition
matrixM . The valueM(r, r′) is the probability that the robber moves to r′ pro-
vided he is in r at the beginning of the turn. It is positive only if (r, r′) ∈ E(G).
The game ends whenever the cop and the robber share the same vertex. The
following definition generalizes Nowakowski and Winkler’s [11] relational charac-
terization for the classic cop and robber game to the stochastic one. We want to
define the relation wMn (r, c) as standing for the probability that the cop catches
the robber within n moves given their positions (r, c) and the robber’s random
movement modelM . Its definition is based upon the observation that in order to
maximize her capture probability, the cop only needs to average her probability
of capture at the next turn on the robber’s possible transitions.

Definition 1. Given r, c the respective positions of the robber and the cop in G,
M the robber’s random walk matrix, we define:

wM0 (r, c) := 1 if r = c; otherwise, it is 0;

wMn (r, c) :=

1 if c ∈ N [r], n ≥ 1;

max
c′∈N [c]

∑
r′∈N [r]

M(r, r′)wMn−1(r
′, c′) if c /∈ N [r], n ≥ 1. (10)

where N [z] := {z} ∪ {v ∈ V (G) | (v, z) ∈ E(G)} is the closed neighbourhood of
z.

The following proposition gives sense to the previous definition.

Proposition 1. If the cop plays first on G and M governs the robber’s random
walk, then wMn (r, c) is the probability a cop starting on vertex c captures the
drunk robber on his start vertex r in n steps or less.

Proof. By induction. The base case, with n = 0, is clear. Suppose the proposition
holds for n − 1 ≥ 0 with n > 0 and let us now prove it for n. If c ∈ N [r], then
wMn (r, c) = 1 and the result follows because the cop indeed catches the robber. If
c /∈ N [r], then let the cop move to some vertex c′. The position of the robber at
the end of the round is r′ with probabilityM(r, r′). The probability that the cop
catches the robber depends on this last one’s next move and on wn−1 following
the expression

∑
r′∈N [r]M(r, r′)wMn−1(r

′, c′). Hence, the best possible move for
the cop is argmaxc′∈N [c]

∑
r′∈N [r]M(r, r′)wMn−1(r

′, c′). The wanted probability is
thus wMn (r, c). ut

value of the objective to maximize (resp. minimize).



Proposition 1 could provide a trivial upper bound on the probability of find-
ing the wanderer, but a tighter one is presented in the following section. The
bound we will derive is inspired from Proposition 1 but is closer to the OSP’s
objective function.

3.2 Markov Decision Process (MDP) and the OSP Bound

In Section 3.1, we presented a game where the robber is visible, a setting that
we will use as a bound on the OSP’s objective function. We formulate this
game as a MDP from which we derive the Copwin bound and the proof that
it is admissible. As a recall, a MDP [20–22] is a stochastic decision process
generalizing Markov chains. In a MDP, an agent evolves in a state space S.
Every time the agent finds itself in a state s ∈ S, it takes an action a in a
set A of possible actions. The system then randomly transits to another valid
state s′ according to a given transition probability P [s′ | s, a] (where | denotes
a conditional). In order to guide the agent’s choice of actions, a reward function
R : S×A×S → R is defined that assigns to every triple (s, a, s′) a real number.
The goal of the agent is then to maximize its expected reward within a time
bound T . We first formulate the game of cop and robber defined above as an
MDP and then deduce a valid OSP bound. The following definition presents the
MDP; its solution encodes the optimal strategy for the cop.

Definition 2 (MDP Cop and Drunk Defending Robber). Let G be a
graph, M a stochastic transition matrix on V (G) and T the maximal number of
time steps. We define a MDP M = (S,A, P,R) as follows. A state is a triplet
(r, c, t) consisting in both positions of the robber and the cop r, c ∈ V (G) in
addition to the current time t ∈ {1, . . . , T + 1}.

S := (V (G) ∪ {jail})× V (G)× {1, 2, . . . , T + 1}.

The set of actions is V (G), the vertices on which the cop moves.

A := V (G).

From a pair of positions of the cop and the robber at a certain time, once the
cop chooses an action another state is chosen randomly with probability P .

P
[
(r′, c′, t′) | (r, c, t), a

]
:= 0 whenever a 6= c′ or c′ 6∈ N [c] or t′ 6= t+ 1

otherwise, P is defined as :

P
[
(r′, c′, t+ 1) | (r, c, t), c′

]
:=


1 if r = r′ = jail;

pod(r) if r = c′, r′ = jail;

(1− pod(r))M(r, r′) if r = c′, r′ 6= jail;

M(r, r′) if r 6∈ {c, c′, jail}.

(11)

R((r′, c′, t′) | (r, c, t), a) :=

{
1 if r′ = jail 6= r, t ≤ T ;
0 otherwise.

(12)



The game is initialized as follows: the cop chooses her initial position c on a
subset X of the graph vertices, and then the initial position r of the robber is
picked at random according to the probability distribution pocπ0

, which results
in an initial state (r, c, 1) for the MDP. A turn starts with a cop move. If the
cop transits to the robber state (r = c′), then there is probability pod(r) that
she catches the robber, which results in the robber going to jail (r′ = jail) and
staying there for the rest of the game. The cop then receives a reward of 1. If the
catch fails (r′ 6= jail, with probability 1−pod(r)) or if the cop did not transit to
the robber state (r 6= c′), the robber is still free to roam, following M . Note that
the state transition probabilities (11) are non-null only when valid moves are
considered (time goes up by one and a = c′ ∈ N [c]). Note also that, when the
robber is in jail, no more reward is given to the cop. In the MDPM, the cop’s
goal is to find a strategy, also called policy, to maximize her expected reward,
that is, the probability to capture the robber before a total of T steps is reached.
A strategy in M consists in first choosing an initial position (for the cop) and
then in following a function f : S → A that, given the current state, tells the
cop which action to take, that is, which state to transit to. Note that, since the
current position of the robber is included in the current state of the MDP, the
cop therefore has full information on the system when she is elaborating her
strategy.

Because of M’s Markov property, whenever a strategy f is fixed, one can
compute the value uf (r, c, t) of each state (r, c, t) of the MDP, that is, the ex-
pected reward the cop can obtain from that state when following the strategy
f . The optimal strategy, noted u∗, is therefore the one that gives the highest
value on all states (r, c, t). The cop’s optimal strategy consists in moving to the
robber’s position if possible, and then trying to capture him. If the robber is not
positioned on one of the cop’s neighbours, the cop moves to the position that
maximizes her probability of capture in the remaining time allowed. Similarly
to Proposition 1, the value of this optimal strategy is:

u∗(r, c, t) =


max
c′∈N [c]

∑
r′∈N [r]

M(r, r′)u∗(r′, c′, t+ 1) if r /∈ N [c], t < T ;

1− (1− pod(r))T+1−t if r ∈ N [c], t ≤ T ;
0 if r /∈ N [c], t = T.

(13)

If r 6∈ N [c], the cop, who moves first, must choose a next state that will result in
the best probability of eventual capture, given the robber’s present position, and
knowing that the robber’s next move is governed byM . If r ∈ N [c], the cop tries
to catch the robber with probability of success pod(r); if she fails, the robber
will transit to one of his neighbours, and hence the cop can keep on trying to
catch the robber until success or until the maximal time has been reached. It is
important to note here that the robber is completly visible and the game is not
played simultaneously, hence why the cop can follow the robber. Equation (13)
is analogous to (10) with time steps reversed and pod(r) = 1 for all vertices.
The formula follows from the fact that at the beginning of time step t, the cop
has T + 1− t remaining attempts.



Since the optimal probability of capture in the OSP problem is always lower
than the optimal probability of capture in the cop and robber game, we have
the following proposition:

Proposition 2. The probability cos∗π0
of finding the wanderer is always at most

that of catching the robber:

cos∗π0
≤ max

c∈X

∑
r∈V (G)

pocπ0
(r)u∗(r, c, 1),

where X is the subset of V (G) of possible initial positions of the cop.

Proof. Clearly, cos∗π0
is bounded by the optimal probability of capture of the cop

and robber game. In the MDP, the optimal probability of capture is obtained
if the cop’s first choice maximizes his probability of capture considering that at
that moment the robber is not yet positioned on the graph but will be according
to the probability distribution pocπ0

. ut

Unfortunately, Proposition 2’s bound is of no use in a branch-and-bound attempt
for solving the OSP problem, because a bound for each πt and each t = 0, . . . , T
is needed. The next proposition generalizes it appropriately.

Proposition 3. Let πt = v1, v2, . . . , vt. Then

cos∗πt
≤ cosπt

+ max
c′∈N [vt]

∑
r′∈V (G)

pocπt
(r′)u∗(r′, c′, t+ 1), (14)

where N [v0] is interpreted as the possible initial positions of the cop.

Proof. As in the preceding proof, cos∗πt
is bounded by the optimal reward ob-

tained when first playing the OSP game along πt and then (if the wanderer is
not yet detected) switching to the cop and robber game: this is done by making
the wanderer (robber) visible to the searcher (cop). When starting this second
phase (at the t+1 step), the cop must choose his next position in order to max-
imize the probability of capture; at this moment, the robber is not yet visible
but his next position is governed by pocπt

. If the cop chooses c′, his probability
of capture will be

∑
r′∈V (G) pocπt

(r′)u∗(r′, c′, t+ 1) and the result follows. ut

Remark 2. An important aspect of Copwin is its ability to be mostly precom-
puted. For any vertices r, c ∈ V (G) and time t ∈ {1, . . . , T + 1}, the values
u∗(r, c, t) are computed recursively (starting with t = T ) and then stored.
Then, when the bound is called the next value of Equation (14) depends on
the neighbours of the searcher’s position and the vertices of the graph, requiring
O ((∆+ 1)n) extra operations on an n vertex graph of maximal degree ∆. Since
DMEAN’s complexity is O ((T − k + 1)(n+m)), Copwin is faster on most time
steps and on many instances.

We note that Pralat and Kehagias [18] also formulated the game of cop and
visible drunk robber as an MDP, but instead of using this framework to compute
the probability of capture of the robber it was formulated to obtain the expected
number of time steps before capture.



Applying the Copwin bound in CP requires filtering the upper bound of the
objective function variable Z. The solver can be configured to branch in a static
order of the PATHt variable, which is, as discussed in Section 2.2, the natural
order of the decision variables to solve an OSP. We proved that our bound is
admissible in that it never underestimates the real objective value. In the next
section, we use the Copwin bound jointly with a CP model of the OSP and
compare its performance to that of the DMEAN bound from literature.

4 Experiments

All experiments were run on the supercomputer Colosse from Université Laval
using the Choco 2.1.5 solver [23] along with the Java Universal Network/Graph
(JUNG) 2.0.1 framework [24]. The total allowed CPU time is 5 minutes (or 5
million backtracks) per run. We used a total of six graphs representing different
search environments. In the grid G+, the nodes are connected to their North,
South, East, and West neighbour. The grid G∗ has the same connections than
G+ but also adds connectivity to the North-East, North-West, South-East, and
South-West neighbours. The last grid is a typical hexagonal grid we call GH with
the searcher moving on its edges. Grid-like accessibility constraints are common
in search theory problems in that they model aerial or marine search operations
where the searcher has few accessibility constraints but her own physical con-
straints. This justifies the presence of grids in our OSP benchmarks. We also
added a fourth grid with supplementary constraints on accessibility. This last
grid GV is a hexagonal grid with a supplementary node in the center of each
hexagon. We then had removed edges randomly to simulate supplementary ac-
cessibility constraints. The last two graphs, GL and GT , are real underground
environments. The GL graph is the graph of the Université Laval’s tunnels. The
GT graph is the graph of the London Underground subway (also known as the
Tube). Both neighbours of an intermediate station, i.e., a node of degree 2, were
connected together while the node was removed. This practice results in a more
interesting graph environment for searches.

For each instance, we selected a p ∈ {0.3, 0.6, 0.9} and put pod(r) = p
for all vertex r. For the wanderer’s Markovian transition matrix, we pick ρ ∈
{0.3, 0.6, 0.9} and considered that at any position v, the wanderer has probability
ρ of staying in v and probability 1 − ρ

deg(v) to move to one of his deg(v) neigh-
bours. We uniformly distributed the remaining probability mass 1 − ρ on the
neighbouring vertices. Finally, we chose T ∈ {5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25}.
This leads to a total of 594 instances.

We conducted the experiment in three parts. In the first two parts, we com-
pare our novel bound to the DMEAN bound we reviewed in Section 2.2. First,
we implemented the two bounds as separate constraints on the upper bound of
the objective value. Both bounds are evaluated on the same problem instances.
This enables us to assess the bounds performance with respect to the objective
value of the best incumbent solution found by the solver and to the time required
to attain it.



In the second part, we implemented both bounds as a single constraint on
the upper bound of the objective value. Both bounds were computed simultane-
ously by the constraint. The minimal value of both bounds was used to update
the upper bound of the domain of the Z variable representing the objective if
required. That is, whenever that minimal value is lower than the upper bound
on the domain of the Z variable. If the domain of Z is emptied, then one of the
bounds produced a value that is lower than the best known lower bound on the
objective thus leading to a backtrack. For each bounding technique (DMEAN
and Copwin), we count how many times, during the search, the bounding of
the objective value causes a backtrack. We gave a single point to a bound that
leads to a backtrack that way. We note that on occasions both bounds could
receive a point. In all cases, the solver branches on the PATHt decision variables
in their natural order, i.e., in ascending order of the time steps. We thus were
able to record the exact time step at which each backtrack occurred. Such an
experiment enables one to empirically assess which bound is more efficient at
pruning the search tree no matter without considering any time constraints.

We show, in the third part, how the bounds perform when paired with the
total detection (TD) heuristic used as a value-selection heuristic [10]. The TD
heuristic is on many account similar to the bound derived in this paper which
gives its theoretical justification. However, rather than using the cop and robber
games theory to bound the objective value, TD is a heuristic that assigns values
to the variables PATHt. Even in this context, the Copwin bound performs and
stays competitive.

4.1 Results and Discussion

Figure 1 shows the best incumbent objective value (COS) for all OSP problem
instances. Hence, COS is the estimation of cos∗π0

at the end of the solving process.
Each dot represents the solution to a single OSP instance. The figure compares
the objective value obtained when the solver uses the DMEAN bound against
the objective value obtained when the solver uses the Copwin bound for all
instances. The closer a dot is to the diagonal line, the closer it is to being the
same value for both bounds which is viewed as both bounds having had the same
effectiveness on this instance. It does appear the Copwin bound tends to lead
the solver to better objective values in the total allowed time. Thus, Copwin is
not only faster than DMEAN, it is sharp enough to help the solver to exploit
more promising branches.

Figure 2 shows the number of times each bound empties the domain of the
objective value variable in the search tree for each type of graph. We chose
to plot the score dependant on the time step (or level in the search tree) to
better analyse where branches were being pruned. It appears that on average
Copwin empties the objective value variable’s domain more often than DMEAN
independently of the graph, even though on some instances such as GL both lead
to a great number of prunings. This is a strong indication that Copwin performs
well on all accounts on most instances: for a fixed resolution time, it leads to
better objective values while pruning more branches than the DMEAN bound.



●

●

●●

●

●

●

●

●

●●●●●●●●●●●●
●●
●

●
●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

● ●●
● ●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
● ●

●

● ●

●
● ● ●

● ● ●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●●
●

●●

● ● ●
● ● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●
●●●

● ●
●

● ● ●
● ● ●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●●
●●

●

●●
●
● ● ●

● ● ●
● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ● ●

●
●●

●●

●

●
●

●

●
●

●

●●
●

● ●

●

●
●

●
● ● ●

● ● ●
● ● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●● ●●●

●●

●

●●

●

●
●

●

●●
●

●●
●

● ●

●
●● ●

● ● ●
● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●
●●●

●●

●

●●

●

●
●

●

●●●
●●●

●
●

●

●● ●

● ● ●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●● ●●●
●●●0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
COPWIN COS

D
M

E
A

N
 C

O
S

Fig. 1. Two by two comparison of DMEAN best incumbent COS value against Copwin
best incumbent COS value for all 594 OSP instances; the incumbent solution of each
instance is represented by a dot on the graph.

We present on Figure 3, the objective value of the best so far solution against
computational time for both bounding strategies. We present these comparisons
on three representative instances: one in which Copwin is better than DMEAN,
one in which it is worse and another where both bounds lead to a similar perfor-
mance. These graphs confirm the intuition that, most of the time, Copwin finds
good solutions more quickly than DMEAN.

Figure 4 summarizes further experiments where Copwin and DMEAN were
paired with the TD heuristic. Even though both bounds lead the solver to
greater objective values, we observe that Copwin’s objective values are on aver-
age slightly better. Thus, the behavior observed on Figure 1 is preserved when
a good heuristic is added.

As an addition to the graphs of Figures 1 to 4, we include Table 1 which
contains the results of the experiments of the Copwin versus the DMEAN bound
for all graphs with T = 17.

5 Conclusion

We tackled the OSP problem from search theory using constraint programming.
As a first contribution, we provided the first implementation of the DMEAN
bound from the search theory literature in CP. As our main contribution, we
developed the Copwin bound, a novel and competitive bound based on MDPs.
This bound is derived from a simple and elegant relaxation of a search problem
into a graph theory pursuit game. Involving a polynomial computational cost,
the Copwin bound leads to an improved solver performance on the vast majority



● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●0

5000

10000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(a) G+

● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●

●0

10000

20000

30000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(b) G∗

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●

●0

5000

10000

15000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(c) GH

● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●

●0

10000

20000

30000

40000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(d) GV

● ● ● ● ● ● ● ●

●

●

●

●

●
● ●

●

●0

20000

40000

60000

80000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(e) GL

● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ●

●0

5000

10000

15000

0 5 10 15
Time steps

N
um

be
r 

of
 c

ut
s

(f) GT

Fig. 2. Total number of cuts in the solver’s search tree for both bounds against
searcher’s path length with T = 17; results for each instance are aggregated on motion
models ρ and on detection models pod(r). refers to the use of Copwin whereas
refers to DMEAN.

0.0

0.2

0.4

0.6

0 100 200 300
Time (ms)

C
O

S
 v

al
ue

(a) GT , 0.9, 0.9

0.000

0.025

0.050

0.075

0.100

0 100 200 300
Time (ms)

C
O

S
 v

al
ue

(b) G+, 0.9, 0.6

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300
Time (ms)

C
O

S
 v

al
ue

(c) GL, 0.3, 0.9

Fig. 3. The COS value achieved and the time it was found for each bound. Red lines
are associated with Copwin and blue ones with DMEAN. Each title refers to the graph
type, the instance pod(r), the instance ρ and maximal time steps of 17.



●

●

●●

●

●

●

●

●

●●●●●●●●●●●●
●●
●

●
●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●
●●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●

●●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
COPWIN COS (with TD)

D
M

E
A

N
 C

O
S

 (
w

ith
 T

D
)

Fig. 4. Comparison of the best incumbent COS value obtained with the TD heuristic
for the Copwin bound against the best COS value obtained with the TD heuristic for
the DMEAN bound for all OSP problem instances; the incumbent solution of each
instance is represented by a dot on the graph.

of OSP problem instances in our benchmark. Altough we used the bound on a
CP model of the OSP, it remains a general technique applicable to other OSP
algorithms.

Acknowledgement

This research is funded by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Fonds de recherche du Québec - Nature et
technologies (FRQ-NT).

Computations were made on the supercomputer Colosse from Université
Laval, managed by Calcul Québec and Compute Canada. The operation of
this supercomputer is funded by the Canada Foundation for Innovation (CFI),
NanoQuébec, RMGA and the Fonds de recherche du Québec - Nature et tech-
nologies (FRQ-NT).



Table 1. Results on OSP problem instances; bold values are better.

pod(r) ρ Objective (COS) Time† (s) Backtracks

DMEAN Copwin DMEAN Copwin DMEAN Copwin

GT with T = 17

0.3 0.3 0.111 0.113 298 197 3578 2791
0.6 0.139 0.129 200 144 2045 2157
0.9 0.362 0.354 275 208 2973 3304

0.9 0.3 0.252 0.258 131 287 1400 4613
0.6 0.318 0.325 259 236 3082 3544
0.9 0.736 0.736 292 185 3543 2706

G+ with T = 17

0.3 0.3 0.011 0.014 96 37 283 118
0.6 0.007 0.036 88 281 243 1307
0.9 0.001 0.022 90 111 276 497

0.9 0.3 0.030 0.077 95 296 290 1394
0.6 0.020 0.103 95 272 283 1229
0.9 0.001 0.047 26 262 19 1174

GV with T = 17

0.3 0.3 0.035 0.079 154 296 2510 7240
0.6 0.038 0.105 146 206 2510 4922
0.9 0.036 0.229 158 196 2510 4898

0.9 0.3 0.099 0.215 159 240 2510 5539
0.6 0.112 0.304 155 264 2510 6040
0.9 0.109 0.531 161 219 2510 4996

GL with T = 17

0.3 0.3 0.344 0.318 273 145 9224 7749
0.6 0.417 0.359 287 139 9666 7476
0.9 0.516 0.480 297 122 9298 6462

0.9 0.3 0.638 0.651 278 119 11304 6249
0.6 0.713 0.713 289 146 11603 7890
0.9 0.811 0.833 249 162 9489 8727

G∗ with T = 17

0.3 0.3 0.069 0.072 270 286 1264 2264
0.6 0.107 0.117 273 183 1261 1482
0.9 0.235 0.324 276 281 1254 2461

0.9 0.3 0.192 0.205 274 252 1264 2077
0.6 0.304 0.333 264 219 1261 1842
0.9 0.671 0.711 259 231 1253 1925

GH with T = 17

0.3 0.3 0.023 0.087 258 241 522 618
0.6 0.015 0.122 255 277 519 742
0.9 0.001 0.318 250 233 514 623

0.9 0.3 0.064 0.227 274 258 522 686
0.6 0.043 0.342 260 286 520 719
0.9 0.003 0.816 248 280 516 680

† The time to last incumbent solution.



References

1. Trummel, K., Weisinger, J.: The complexity of the optimal searcher path problem.
Operations Research 34(2) (1986) 324–327

2. Stewart, T.: Search for a moving target when the searcher motion is restricted.
Computers and Operations Research 6(3) (1979) 129–140

3. Stone, L.: Theory of Optimal Search. Academic Press, New York (2004)
4. Netsch, R.: The USCG search and rescue optimal planning system (SAROPS)

via the commercial/joint mapping tool kit (c/jmtk). In: Proceedings of the 24th
Annual ESRI User Conference, August. Volume 9. (2004)

5. Abi-Zeid, I., Frost, J.: A decision support system for canadian search and rescue
operations. European Journal of Operational Research 162(3) (2005) 636–653

6. Washburn, A.R.: Branch and bound methods for a search problem. Naval Research
Logistics 45(3) (1998) 243–257

7. Lau, H., Huang, S., Dissanayake, G.: Discounted MEAN bound for the optimal
searcher path problem with non-uniform travel times. European Journal of Oper-
ational Research 190(2) (October 2008) 383–397

8. Morin, M., Lamontagne, L., Abi-Zeid, I., Lang, P., Maupin, P.: The optimal
searcher path problem with a visibility criterion in discrete time and space. In:
Proceedings of the 12th International Conference on Information Fusion. (2009)
2217–2224

9. Sato, H., Royset, J.O.: Path optimization for the resource-constrained searcher.
Naval Research Logistics (2010) 422–440

10. Morin, M., Papillon, A.P., Abi-Zeid, I., Laviolette, F., Quimper, C.G.: Constraint
programming for path planning with uncertainty. In: Principles and Practice of
Constraint Programming. (2012) 988–1003

11. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math-
ematics 43(2) (1983) 235–239

12. Quilliot, A.: Problème de jeux, de point fixe, de connectivité et de représenta-
tion sur des graphes, des ensembles ordonnés et des hypergraphes. PhD thesis,
Université de Paris VI (1983)

13. Bonato, A., Nowakowski, R.: The game of cops and robbers on graphs. American
Mathematical Soc. (2011)

14. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science 399(3) (2008) 236–245

15. Beldiceanu, N., Demassey, S.: Global constraint catalog.
http://sofdem.github.io/gccat/ (2014) Accessed: 2015-04.

16. Martins, G.H.: A new branch-and-bound procedure for computing optimal search
paths. Master’s thesis, Naval Postgraduate School (1993)

17. Kehagias, A., Mitsche, D., Prałat, P.: Cops and invisible robbers: The cost of
drunkenness. Theoretical Computer Science 481 (2013) 100–120

18. Kehagias, A., Prałat, P.: Some remarks on cops and drunk robbers. Theoretical
Computer Science 463 (2012) 133–147

19. Komarov, N., Winkler, P.: Capturing the Drunk Robber on a Graph. arXiv preprint
arXiv:1305.4559 (2013)

20. Bäuerle, N., Rieder, U.: Markov Decision Processes with Applications to Finance.
Springer (2011)

21. Puterman, M.L.: Markov decision processes: discrete stochastic dynamic program-
ming. Volume 414. John Wiley & Sons (2009)

22. Barto, A.G., Sutton, R.S.: Reinforcement learning : An introduction. MIT press
(1998)



23. Laburthe, F., Jussien, N.: Choco solver documentation. École de Mines de Nantes
(2012)

24. O’Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.B.: The JUNG (Java
universal network/graph) framework (2010)


