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bDepartment of Computer Science and Software Engineering, Université Laval, Québec, Canada

Abstract

In search and rescue operations, an efficient search path, colloquially understood as a path max-

imizing the probability of finding survivors, is more than a path planning problem. Maximizing

the objective adequately, i.e., quickly enough and with sufficient realism, can have substantial pos-

itive impact in terms of human lives saved. In this paper, we address the problem of efficiently

optimizing search paths in the context of the NP-hard optimal search path problem with visibility,

based on search theory. To that end, we evaluate and develop ant colony optimization algorithm

variants where the goal is to maximize the probability of finding a moving search object with

Markovian motion, given a finite time horizon and finite resources (scans) to allocate to visible

regions. Our empirical results, based on evaluating 96 variants of the metaheuristic with standard

components tailored to the problem and using realistic size search environments, provide valuable

insights regarding the best algorithm configurations. Furthermore, our best variants compare fa-

vorably, especially on the larger and more realistic instances, with a standard greedy heuristic and

a state-of-the-art mixed-integer linear program solver. With this research, we add to the empirical

body of evidence on an ant colony optimization algorithms configuration and applications, and

pave the way to the implementation of search path optimization in operational decision support

systems for search and rescue.
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1. Introduction

The act of searching is an important part of many humanitarian operations, such as search

and rescue (SAR), minesweeping and of many surveillance or homeland security operations for the

purpose of protecting individuals, resources or infrastructures from current or future threats. Teams

of searchers on the ground (humans and/or canine), in aircraft, in vessels as well as autonomous

unmanned vehicles (robots) may search for survivors, land or underwater mines, or illicit activities

and abnormal behaviors. In the event of natural disasters, such as earthquakes, floods, landslides,

and other catastrophes involving collapsed buildings, aircraft, or maritime vessels, SAR operations

must be quickly organized and deployed in order to locate and rescue survivors. This is also the case

for smaller scale, albeit more frequent emergencies, such as persons who might have disappeared in

water, a child who might have been lost, a confused person who might have wandered off, a hiker

missing in the woods, etc. In Canada alone, there are thousands of air, maritime and ground SAR

incidents every year (Minister of National Defence, 2013). Searching is, of course, also conducted

by law enforcement agencies who wish to locate and neutralize threats.

But, how and where to search? The answer lies in efficient search planning that ensures the

best use of scarce and constrained search resources. This implies defining search areas and/or

search paths that maximize the chances of an operation’s success, namely finding the search ob-

jects. Search planning is extremely complex since it is normally conducted under time pressure, in

the presence of uncertain whereabouts, uncertain detectability, uncertain conditions of the search

objects, and in degraded and rapidly changing conditions. The recent European migrant crisis and

the human tragedies in the Mediterranean have emphasized the importance of efficient searches to

quickly locate and rescue survivors.

In response to the first large-scale search operations, namely the hunt for enemy submarines off

the Atlantic Coast during WWII, search theory was developed as one of the earlier subdisciplines of

Operations Research, first classified and later published in the open literature (Charnes & Cooper,

1958). One of the problems addressed by search theory is the optimal search path (OSP) for a

moving search object with uncertain location and detectability, an NP-hard problem (Trummel

& Weisinger, 1986). In recent years, search theory has been used for planning of search paths

of autonomous robots in structured environments or of unmanned aerial vehicles in large areas

outdoors (Lau et al., 2008; Sato & Royset, 2010; Goerzen et al., 2010). Applications include
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humanitarian operations, mine countermeasures (Paull et al., 2012; Williams, 2010), evacuations

following a disaster (Yuan & Wang, 2009), seabed surveys in harbors and waterways (Fang &

Anstee, 2010), and search and rescue/recovery operations (Morin et al., 2009, 2010; Berger et al.,

2012; Lo et al., 2012; Stone et al., 2016).

In the OSP formulation, it is generally assumed that a searcher can only scan its location.

This, however, is an unrealistic assumption in an operational context, since regions other than

the searcher’s location may be visible from afar. To remedy this situation and adapt the problem

representation to real-life, we formulated in Morin et al. (2009, 2010) the optimal searcher path

problem with visibility (OSPV) and proposed algorithms based on ant colony optimization (ACO) a

population-based, general stochastic local search technique (Hoos & Stützle, 2004; Dorigo & Blum,

2005). ACO have been applied to a wide area of problems and some of their recent successes in

practical applications include Jovanovic et al. (2019) for the block relocation problem, Yu et al.

(2019) for 3D path planning with dense obstacles, Verbeeck et al. (2014) on orienteering, i.e., the

problem of selecting destinations and planning an optimal path to these selected locations, for

humanitarian relief (Zhu et al., 2019), for disaster relief operations (Yi & Kumar, 2007), and for

unmanned aerial vehicles path planning (Mirjalili et al., 2020).

In this paper, we generalize and improve our previous results by introducing the Ant Search Path

with Visibility (ASPV) algorithm. We describe and discuss the outcomes of a thorough experimen-

tation, conducted using 96 algorithmic variants, where a variant is a combination of pheromone

initialization scheme, pheromone update scheme, diversification and intensification mechanisms.

Based on realistic problem instances sizes, we compare the performance of our best ASPV algo-

rithm variants with those obtained through a Mixed-Integer Linear Program (MILP) using the

ILOG CPLEX solver as well as with a simple greedy heuristic. We show that our algorithms

produce search paths with higher probabilities of success in shorter time. Our results provide an

empirical contribution to the literature on the performance of ACO algorithms in general, and

a first practical contribution towards the implementation of search pattern optimization in the

Advanced Search Planning Tool, the Canadian decision support systems for SAR currently used

in operations.

The rest of the paper is organized as follows. Section 2 provides an overview of related literature.

Section 3 formally describes the OSPV problem. Section 4 presents the ASPV algorithm as well
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as pheromone boosting and restarts. Section 5 describes the experimental methodology. Section 6

contains the results along with a discussion. We conclude in Section 7.

2. Related literature

Problems of search theory may be formulated differently depending on the characteristics of

the situation being addressed (Vermeulen & Van Den Brink, 2005; Stone, 2004), and on the mea-

sure of performance used, such as the probability of detection or the expected time to detection

(Richardson, 2014). One of the main distinctions is whether the search object is moving or sta-

tionary. In two-sided search problems (also known as search games), the search object is active,

i.e., its moves depend on the searcher’s actions. It may be cooperative (e.g.rendez-vous search) or

evading (e.g.pursuit-evasion). In a one-sided search problem, i.e., when the object’s motion model

does not depend on the searcher’s actions, problems are again divided into two groups depending

on the searcher’s movement constraints: the optimal search path problems where the searcher is

constrained to follow a path, also called path-constrained moving target search problem (Eagle &

Yee, 1990), and the optimal search density problems where no such constraint is formulated (Lau

et al., 2008). Two main types of motion models are considered: conditionally deterministic motion

where the trajectory of a search object depends only on its initial position and Markovian motion

models where an object’s movement at a given point in time solely depends on its current loca-

tion (Raap et al., 2017a). One type of search problem is detection search, where the search stops

after the first detection (i.e., there is no target tracking as in surveillance search).

Search effort may be continuous or discrete. In the continuous case, effort may be allocated

as finely as necessary over the entire search space (e.g., time spent by an aircraft over a set of

regions) (Stewart, 1979). In this case, the objective function is convex and the constraints of the

problem form a convex set. As for discrete search effort, it may be measured by the total number

of searchers to deploy over an area of interest or by the total number of scans to allocate to a set

of visible regions (Berger & Lo, 2015; Foraker et al., 2016; Raap et al., 2017b).

The optimal search path (OSP) is a single-sided detection search for a moving object with

uncertain location and detectability. A solution to the OSP problem is a path on a graph that

maximizes the probability of finding the object. This is different from classical path planning where

the aim is often to plan a path from an initial point to a known destination. The OSP has been an
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active research topic since the introduction in 1979 of the first algorithm to solve it (Stewart, 1979).

It is still attracting a lot of attention due to its applications in the robotics literature (Grogan et al.,

2018; Raap et al., 2019). It is NP-hard problem (Trummel & Weisinger, 1986), and a lot of work

to date has consisted of developing bounding techniques for the branch and bound (BB) algorithm

presented by Stewart (1979) or of using a model and solve approaches with a bound (Simard et al.,

2015) or without such a bound (Morin et al., 2012; Morin & Quimper, 2014). Another approach

has been to use metaheuristics such as ACO (Ding & Pan, 2011; Perez-Carabaza et al., 2018). For

a recent survey of the moving target search optimization literature, the reader is referred to Raap

et al. (2019).

The Optimal Search Path with Visibility (OSPV) generalizes the classical OSP problem by

taking into account the fact that a searcher can scan visible regions different from its location

(Morin et al., 2010). The introduction of the possibility to search from a distance adds realism

to the model, albeit at the price of an increased solution space size. Nonetheless, it is a crucial

assumption for achieving models that reflect the way searching is actually conducted. For example,

inter-region visibility is already taken into account to evaluate predefined search patterns in opera-

tional maritime SAR decision support systems such as SAR Optimizer (Abi-Zeid et al., 2019) and

SAROPS (Kratzke et al., 2010). However, these systems do not currently propose nor optimize

search paths. The research presented here is a step in that direction.

3. Optimal Search Path with Visibility: Problem Formulation

The OSPV problem is a single-sided detection search for an object moving in a discrete envi-

ronment of N regions according to a Markovian model. The goal is to construct a search plan over

T time steps that maximizes the probability of finding the object under the searcher’s visibility and

accessibility constraints. A search plan consists of a discrete path and Q discrete effort allocations

at each time step. A unit allocation of search effort is an observation (a scan) by the searcher from

its location to a visible region, possibly its own location. A searcher may actually consist of a team

of agents following a common path while scanning one or many different regions simultaneously.

Let T = {1, ..., T} be the set of time steps, R = {0, . . . , N − 1} the set of regions in the search

environment, Q = {0, . . . , Q} the set of possible effort allocations (scans) that may be assigned to

visible regions in one time step, and A : R → 2R and V : R → 2R the searcher’s accessibility and
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visibility maps. The searcher’s position at a time t ∈ T is yt ∈ R and its effort allocation in region

r at t ∈ T is et(r) ∈ Q. A search plan P is defined by

P = 〈Y,E〉 = 〈[y1, y2, . . . , yT ] , [e1, e2, . . . , eT ]〉 , (1)

where

yt ∈ A(yt−1) , ∀t ∈ T , (2)

et(r) > 0⇒ r ∈ V (yt) , ∀t ∈ T ,∀r ∈ R , (3)∑
r∈R

et(r) = Q , ∀r ∈ T , (4)

e0(r) = 0 , ∀r ∈ R . (5)

Eq. (2) indicates that the searcher may only move to an accessible region and Eq. (3) indicates that

effort can be allocated only to a region visible from the searcher’s location. The total search effort

allocated in one time step is equal to Q (Eq. (4)), the amount of available search effort per time

step, and no search is conducted at time 0 (Eq. (5)). The search P is feasible iff it respects Eqs. (1)–

(5). A feasible search plan P is optimal iff it maximizes a performance measure, the cumulative

overall probability of success or COS (Eq. (12)). In order to understand this performance measure,

we define three types of events: presence, detection and motion.

A presence event Cr
t occurs when the object is located (but not necessarily detected) in region

r at time t. A motion event Msr
t occurs when the object moves from region s to region r at time t.

A detection event Dsr
tq occurs when an allocation of q scans from region s detects an object located

in r at time t1. Under the assumption that searchers are located in the same region, we refer to

the detection event as Dr
t without loss of generality. Since the OSPV is a detection search problem,

the search will stop as soon as a detection occurs.

Motion Model. The object’s motion model is assumed to be stationary Markovian. It is described

by a matrix M where M(s, r) is the probability of an object moving from region s to region r

1No false detections are taken into account in the OSPV problem formalism.
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within one time step. For all t ∈ T , we have

M(s, r)
def
= Pr {Msr

t } . (6)

Detection Model. Given s, r ∈ R, t ∈ T and q ∈ Q, podt(s, r, q) is the conditional probability of a

detection event in region r at time t when a searcher in region s assigns q scans to region r. This

probability, conditional to the object’s presence in r, is defined as follows:

podt(s, r, q)
def
= Pr {Dr

t | Cr
t} . (7)

In practice, a pod is derived from a sensor’s (e.g., a visual search) characteristics under given

environmental conditions, as a function of a given search object type at a given range (Frost,

1999). In the OSPV, we make the common assumption that the detection law is exponential

(Stone, 2004) defined by

podt(s, r, q) = 1− exp (−Wt(s, r)× q) , (8)

where Wt(s, r) is the sweep width, a detectability index of the object (defined in Section 5.4

since it is instance-specific). The exponential detection law provides a lower bound for detection

probabilities obtained with other detection laws (Frost & Stone, 2001).

Presence model. The a priori knowledge on the object’s presence in region r is defined as

poc0(r)
def
= Pr {Cr

0} , (9)

where Pr {Cr
0} is the prior probability that the object is in region r before the search is initiated.

For r ∈ R and t ∈ T , poct(r), the joint probability of the object arriving at t from any region s

and not being detected in region s before t (also called the probability of containment), is

poct(r)
def
= Pr {Cr

t} =
∑
s∈R

Pr
{
Msr

t−1

}
Pr
{
Cs
t−1

} (
1− Pr

{
Ds
t−1

∣∣ Cs
t−1

})
. (10)
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Performance measures. The probability of finding the object in region r at time t is post(r), the

local probability of success. It is the joint probability of a presence event and of a detection event:

post(r)
def
= Pr {Cr

t ∩ Dr
t} = Pr {Cr

t} × Pr {Dr
t | Cr

t} . (11)

The objective is to maximize the total probability of success across all regions and time steps, i.e.,

the cumulative probability of success of a search plan. Since only a single success is possible in a

detection search, we define this probability as

COS(P ) =
∑
t∈T

∑
r∈R

post(r) , (12)

where the local probability of success is

post(r) = poct(r) podt(yt, r, et(r)) . (13)

Following an unsuccessful search at time t− 1, the updated probability of containment at time t is

given by:

poct(r) =
∑
s∈R

M(s, r) [poct−1(s)− post−1(s)] . (14)

A MILP for the OSPV problem. A MILP can be formulated for the OSPV where the objective

is to find a search plan maximizing Eq. (12). This is possible since the pod function, the poc0

distribution, the Markovian motion matrix M and the initial searcher’s position y0 are all known.

As a consequence, the poc update equation, i.e., Eq. (14), can be linearized. Binary decision

variables and constraints can be used to define the search plan (Eqs. (1), (2) and (3)) to optimize

under effort constraints (Eqs. (4) and (5)). Continuous variables can be used to keep trace of the

probability models (Eqs. (8), (12) and (14)). The complete MILP model for the single scan case

(Q = 1) and its extension to the case of multiple scans (Q ≥ 1) can be found in Morin et al. (2009)

and Morin et al. (2010) respectively.
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4. Using Ants for Search Path Planning with Visibility

Ant colony optimization, or ACO, is a metaheuristic optimization technique that probabilisti-

cally constructs and updates a population of candidate solutions to a problem based on a common

“memory”, called the pheromone trails. At each cycle (iteration) of an ACO algorithm, each ant in

the colony builds a single solution by selecting components (unit parts of a solution) according to

the shared knowledge of components’ quality, stored in the pheromone trails. For instance, in our

case, there are two types of solution components, a destination r at time t and an effort allocation

to one or many regions at time t. The probability of an ant choosing a given component to be

part of its solution (called the transition probability) is a function of the component’s pheromone

value and, when available, of the value associated to the component by a heuristic, called heuristic

information. An ACO algorithm cycle consists of stochastically generating one solution per ant

using the trails (the generation process), and of updating these trails (the update process) as a

function of the pheromone model, which provides an update rule dictating which and when the

generated candidate solutions are used to update the trails, and an update equation to quantify a

solution component’s quality.

Various strategies can help ACO algorithms converge towards high quality solutions namely

intensification, diversification, and restarts. Intensification is the process by which ants converge

to better solutions whereas diversification is the process by which stagnation, i.e., numerous cy-

cles without improvement when such improvement is possible, is avoided (Hoos & Stützle, 2004).

Restarts are a widely used diversification mechanism that proved to be successful in a variety of

metaheuristics (Hoos & Stützle, 2004). They enable the algorithm to reinitialize its solving pro-

cess in the absence of local improvements. One particular intensification mechanism is based on

pheromone boosting introduced in Solnon (2002). It could be seen as a diversification mechanism

or as an intensification mechanism depending on the way it is used. An exhaustive treatment of

ACO algorithms can be found in López-Ibáñez et al. (2016).

In order to solve the OSPV, we developed the ASPV algorithm, based on ACO principles,

and defined 96 algorithm variants based on four main components of traditional ACO: pheromone

initialization, pheromone update, with or without restarts, and with or without boosting (Table 1).

For clarity purposes, whenever a variant is named using solely the acronyms defined in Table 1, they

are listed in the following order: pheromone initialization, pheromone update, restart, and boosting.

9



Table 1: Variant components with acronyms, names and section numbers

Type Name Section Name Section

Initialization iU: Uniform 4.2 iO: OSPV 4.2
iR: Random 4.2

Updates uAA: All-Ants 4.5 uGB: Global-best 4.5
uIB: Iteration-best 4.5 uORBU: On restart-best upd. 4.6
uRB: Restart-best 4.6 uOGBU: On global-best upd. 4.5

Restarts rG: Geometric 4.6 rN: Without 4.6
rL: Luby 4.6

Boosting bY: With 4.3 bN: Without 4.3

4.1. ASPV Algorithm Main Routine

Algorithm 1 outlines the main routine of ASPV. Functions Initialize(), Generate(), and

Update() are variant-dependent placeholders. Given an OSPV problem instance Ospv, the total

number C of candidate solutions to generate at each cycle and the pheromone evaporation rate ρ,

used in order to avoid stagnation in a local optimum, the algorithm first initializes the pheromone

trails using the function Initialize() in two pheromone tables: one T × N table τpath for the

pheromone on the move components, and one T ×N table τ eff for the pheromone on effort units

allocation components. Whenever needed, pheromone values normalization is carried out for each

table independently so that the sum of their pheromone values equals 1. In some variants, boosting

is also performed during initialization.

In each cycle, the function Generate() is used to construct a new candidate solution set C

based on the pheromone trails. Then, the function Update() is used to update τpath, τ eff , and the

incumbent (best-so-far) solution P best. Depending on the variant, in some cycles, a restart may

occur. The stopping criterion is based on a time limit.

4.2. Initialize Pheromones

In most ACO algorithms, pheromone trails are initialized to the same values (Dorigo & Stützle,

2019). We call this first variant, where all initial pheromone values are equal, uniform pheromone

initialization (iU). In order to ensure a strong diversification between restarts, we introduce a

random pheromone initialization (iR) variant where the initial pheromone values are generated

from a random uniform distribution between 0 and 1. In both variants, the pheromone values
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Algorithm 1: ASPV(Ospv, C, ρ )

Input: An OSPV problem Ospv, the size of the colony C, and the evaporation rate ρ.
Output: The incumbent search plan P best.

begin
τpath, τ eff ← Initialize() ;
while stopping criterion is not met do
C ← Generate() ;

P best, τpath, τ eff ← Update() ;

end

return P best ;

end

are normalized so that their sum in each table is equal to 1. Both uniform (iU) and random (iR)

pheromone initialization are generic. However, we hypothesize that problem-specific knowledge

can help the algorithm in finding a high quality solution. We therefore introduce an OSPV-based

pheromone initialization procedure (iO). In this variant, the algorithm fixes the pheromone values

of each region s and of each region r visible from s as follows:

τpath
ts =

∑
r∈R

pocmt(r)podt(s, r, 1) , (15)

τ eff
ts = pocmt(s) , (16)

where pocmt(r) is the probability that the search object reaches region r at step t in the absence

of search with pocm0 = poc0:

pocmt(r) =
∑
s∈R

M(s, r)pocmt−1(s) . (17)

It should be noted that, in Eq. (15), podt(s, r, 1) is the probability of detection for a single

scan from region s to region r at time t. As a result, the pheromone trails in τpath
ts correspond

to the overall probability of success at a time t in a region s assuming a single unit of effort can

be allocated to each visible region and that no search has been done prior to time step t. For

the τ eff
ts value, we simply assume that no searches take place. Although this is not true in the

OSPV problem context, the information on the object’s motion initially embedded in the trails

can still be important during the solving process. Once all values have been set using Eqs. (15)
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and (16), a small randomly generated epsilon value is added to the trail values before normalization.

This ensures that a region r with low pocmt(r) still has a probability of being chosen by an ant.

Furthermore, it favors diversification as it gives a little less or a little more importance to Eqs. (15)

and (16).

4.3. Boost Pheromone Initialization Using a Greedy Heuristic

Pheromone boosting basically consists of initializing the pheromone values to promising values.

As such, it is not unlike the OSPV-based pheromone update (iO). The idea of such a preprocessing

step was introduced and illustrated in Ant-Solver which was designed to solve constraint satisfaction

problems (Solnon, 2002). Some form of pheromone boosting, or preprocessing, was also applied

in other problems such as the traveling salesperson problem (TSP), e.g., Dai et al. (2009) used a

minimum spanning tree of the TSP graph to initialize the pheromone.

Our approach to boosting is to use a problem-specific greedy heuristic to find a search plan

P boost to perform a first update of the trails right after initialization. This can be seen as an

intensification mechanism that directs the ants towards a promising subspace of the solution space.

To greedily construct P boost = 〈Y,E〉, the algorithm first chooses the accessible region with the

highest overall success probability as the new searcher’s destination. That is, it evaluates each

possible destination by allocating each effort unit greedily to visible regions from that destination,

i.e., it maximizes the local success by scanning one visible region at a time. Then it selects the

accessible region where the overall success, i.e., the sum of all local successes, is the highest. Such

a sequential effort allocation is possible, since we use an exponential detection law making the

detection process memoryless. When P boost is found, it is used to update the pheromone trails

using a given evaporation rate ρboost. Although ρboost and ρ could be different, we use the same

values to avoid an additional parameter in the algorithm.

We use bY to denote variants with boosting and bN to denote variants without.

4.4. Generate Candidate Solutions

Candidate solutions are generated at each cycle of the algorithm by the Generate() function,

which constructs C candidate solutions. A candidate solution P cand ∈ C consists of a searcher’s

path and a sequence of effort allocations. At each time step t ∈ T , the ant chooses a feasible

searcher’s move from yt−1 to yt and defines the allocation vector et by distributing Q effort units
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to visible regions from yt. Each part of a solution, or solution component, is chosen by an ant with

some transition probability depending on the pheromone values associated with the component.

Let P cand.yt ← r and P cand.et(r)++ be the solution components for moving to region r and for

allocating an additional effort unit to region r in search plan P cand at time t. A feasible searcher’s

move P cand.yt ← r is chosen with a transition probability of

pP cand.yt←r =
τpath
tr∑

r′∈A(yt−1) τ
path
tr′

, (18)

and Q feasible effort allocations P cand.et(r)++ are chosen with a transition probability of

pP cand.et(r)++ =
τ eff
tr∑

r′∈V (yt)
τ eff
tr′
. (19)

Solutions are built by adding one component at a time, first a feasible searcher’s move, then Q

feasible effort allocation and so on. Once C solutions have been generated, the Generate() function

returns and the algorithm launches the update process.

4.5. Update Pheromones

The Update() function updates the pheromone trails and is variant-independent in our ASPV

algorithm. However, the “when” is variant-dependent. That is, the solutions used for the update

and the cycle during which the update takes place depend on the algorithm variant. Whenever a

solution P is used to update the pheromone trails, τpath
tr and τ eff

tr are modified as follows:

τpath
tr ← τpath

tr +
ρ

S

(
ost +

COS(P )

T

)
, (20)

τ eff
tr ← τ eff

tr +
ρ

S

(∑
r∈R

post(r) +
∑
r∈R

P.et(r)COS(P )

QT

)
, (21)

where S is a normalization factor that depends on how many updates were carried out in the cycle,

and ost is the overall success at a time step t, i.e., ost =
∑

r∈R post(r). After all updates have been

carried out, we use the evaporation rate ρ to decrease the pheromone values as follows:

τpath
tr ← (1− ρ)τpath

tr , (22)

τ eff
tr ← (1− ρ)τ eff

tr . (23)
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We defined a total of six variants of pheromone update schemes. Four can be used with and

without restarts: The first scheme is an all-ants pheromone updates procedure (uAA) that is

reminiscent of ant systems (Dorigo et al., 1996). In this setting, all candidate solutions generated

in the cycle are used to update the pheromone trails, and updates are performed every cycle.

The second scheme is an iteration-best pheromone update (uIB) procedure where only the best

candidate solution of each cycle is used for the update. The third scheme, global-best updates

(uGB), uses the best-so-far incumbent solution to update the pheromone at each cycle. All three

variants are discussed in recent literature on ACO (López-Ibáñez et al., 2016). Finally, we have

an “on global-best updates” (uOGBU) scheme consisting in updating the pheromone only when

the best candidate solution of an iteration is better than the best-so-far (global-best) incumbent

solution. Two further pheromone update schemes are used only with restarts and are further

discussed in Section 4.6.

4.6. Update Pheromones with Restarts

Restarting is a frequent strategy used in solvers, especially in Boolean satisfiability problems

solvers (Audemard & Simon, 2012) and in constraint optimization or constraint satisfaction prob-

lems solvers (Wu & van Beek, 2007). A restart is used when a specific number of cycles without

improvement of the best incumbent since the last restart is reached. Generally, the number of cycles

without improvement follows a sequence of constants R̄ = 〈r̄0, r̄1, . . .〉 called the restart strategy,

where r̄i ∈ N is the total number of allowed cycles without improvement following i restarts.

Universal, problem independent, restart strategies are often used in solvers, e.g., Gecode (Schulte

et al., 2019). We used two such strategies: a geometric sequence and a Luby sequence. The geo-

metric restart strategy was notably tested by Walsh (1999) and provided good results. It consists

of a sequence such that r̄i = cbi where c is a chosen constant and b is a chosen base. The Luby

restart strategy (and Luby sequence) was introduced by Luby et al. (1993) as an optimal universal

restart strategy for Las Vegas algorithms. Starting at 1, the entire sequence is repeated and a new

value corresponding to double that of the last value is introduced at the end of the sequence:

1,︸︷︷︸
init

1, 2,︸︷︷︸
step 1

1, 1, 2, 4,︸ ︷︷ ︸
step 2

1, 1, 2, 1, 1, 2, 4, 8,︸ ︷︷ ︸
step 3

1, . . . (24)

In practice, the terms of the Luby sequence can be multiplied by a factor to allow for more time
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between restarts. When no restarts are used by a given variant, the acronym rN is used in the

variant name. Geometric restarts are denoted by the rG acronym. Luby restarts are denoted by

the rL acronym.

In the ASPV algorithm context, a restart is a reinitialization of the pheromone trails, which

varies as a function of the pheromone initialization scheme and of whether boosting is used or

not. A distinction is made, when restarts are used, between the best-so-far and the restart-best

solution. We call “global-best solution” the best incumbent across all restarts and “restart-best

solution” the best incumbent since the last restart. This distinction is important for the algorithm

variants; when using the global-best updates (uGB) or the “on global-best updates” (uOGBU),

the best incumbent across all restarts is used to update the trails (either at each cycle for a uGB

variant or when a better solution is found for a uOGBU variant).

Two other pheromone update variants use the best incumbent since the last restart. That is,

the restart-best (uRB) and the “on restart-best updates” (uORBU) pheromone update procedures,

which respectively corresponds to global-best (uGB) and “on global-best updates” (uOGBU) using

the restart-best solution instead of the global-best solution.

5. Experiments

In this section, we describe the experiments conducted to evaluate the 96 proposed ACO algo-

rithm variants in order to determine the best variant. These experiments consisted of three phases:

The configuration phase enables us to find the best parameter pairs for each variant. The “multi-

runs” evaluation phase (M-Eval) enables us to determine how the performance of an ACO varies

between runs on a given instance. The “across-instances” evaluation (A-Eval) phase provides a

better understanding of an ACO performance on a variety of instances as reported in Birattari

(2004). Finally, we compare the results of the best ACO variant with the MILP model described

in Section 3 and with the greedy heuristic described in Section 4.3, hereinafter named Greedy.

5.1. ASPV Configuration and Evaluation

In order to configure each of the 96 variants, we first generated a total of 100 unique pairs of

evaporation factors ρ and colony sizes C from a uniform distribution in the interval [0.001, 0.1] (up

to four decimal places) and in [10, 1000] respectively. The 100 generated parameters pairs, which

that cover a wide range of values, are displayed in the supplementary material. For rG variants

15



using a geometric restart strategy, we chose c = 1 and b = 2 as parameters. The obtained geometric

sequence grows fast even with such small values, which results, very quickly, in long runs without

restarting. For rL variants involving Luby restarts, each term in the sequence was multiplied by

256 in order to avoid a too short time interval between restarts. Nonetheless, the resulting Luby

sequence grows more slowly than the geometric sequence.

During the configuration phase, each of the 96 algorithm variants was run using each of the

100 parameter pairs on 50 different instances of the OSPV problem with varying complexity as

described in Section 5.4 (a total of 5,000 runs per variant). For each variant, the parameter pair with

the highest average performance across all instances was deemed the best for that variant and was

kept for the evaluation phase. In the M-Eval phase, each algorithm variant, configured according to

the best parameter pair, was run on another 50 instances not seen during the configuration phase

30 times (a total of 1,500 runs per variant). Furthermore, for comparison purposes, the greedy

heuristic from Section 4.3 and the MILP model of the OSPV problem from Section 3 were also run

on each of the 50 M-eval problem instances. In the A-Eval phase, the five best ACO algorithms

identified in the M-Eval phase, were run once on 1,500 new instances (7,500 runs in total). The

A-Eval benchmark consisted of 30 instances for each pair of horizon T and number of scans Q

described in Section 5.4. The average performance of the ACO was compared to that of Greedy

on this particular benchmark. The MILP model was excluded from the A-Eval phase since it did

not fare well on the largest instances of the M-Eval phase.

The framework used to generate the problem instances and to run the algorithms was developed

using the C++ programming language. The experiments of the configuration phase and of the

M-Eval phase were run in parallel using GNU Parallel (Tange, 2011) on Intel Xeon Gold 6148

Skylake (2.4GHz) CPUs. Up to 8 GB of memory were allowed per core for the MILP solver. Due

to the unavailability of the Skylake CPUs, the experiments of the A-Eval phase were run in parallel

using GNU Parallel (Tange, 2011) on an AMD Ryzen 9 5900X CPU. The problem instances and

the allowed solving time for each instance size are specified in Section 5.4.

5.2. Performance metrics

In order to evaluate the performances of the algorithm variants, we use the relative cumulative

overall probability of success of a search plan P , normalized as a function of the minimum and the

maximum cumulative probabilities of success attained, by the considered variants or algorithms,
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in the allowed time.

For the configuration phase, the performance metric is defined as follows:

RCOSconf(P i
c,v,P i

v) =


COS(P i

c,v)− min
P ′∈Pi

v

COS(P ′)

max
P ′∈Pi

v

COS(P ′)− min
P ′∈Pi

v

COS(P ′) , if max
P ′∈Pi

v

COS(P ′) 6= min
P ′∈Pi

v

COS(P ′) ;

1 , otherwise ,

(25)

where P i
c,v is the search plan obtained by configuration c of variant v on instance i. Recall that we

have 100 configuration pairs, 96 variants and 50 instances. P i
v is the set of 100 plans corresponding

to the 100 parameter configurations of variant v run on instance i. We then compute, for each

configuration c of variant v, RCOSconf(c, v), the average of RCOSconf(P i
c,v,P i

v) over the instances i.

The configuration c with the highest RCOSconf(c, v) is selected to be used for variant v in the

evaluation phases (M-Eval and A-Eval).

For the M-Eval phase where we select the best ACO variant, the performance metric is defined

as follows:

RCOSeval(P i,j
v ,P i) =


COS(P i,r

v )− min
P ′∈Pi

COS(P ′)

max
P ′∈Pi

COS(P ′)− min
P ′∈Pi

COS(P ′) , if max
P ′∈Pi

COS(P ′) 6= min
P ′∈Pi

COS(P ′) ;

1 , otherwise ,

(26)

where P i,j
v is the search plan obtained by the jth run of variant v on instance i. Recall that we

have 30 runs per instance and variant, and 96 variants. P i is the set of 2880 plans obtained for

any variant on instance i. We then compute, for each variant v, RCOSeval(v), the average of

RCOSeval(P i,j
v ,P i) over the runs j and the instances i. The ACO variant with the highest value

of the metric RCOSeval(v) is selected as the best ACO variant.

For the comparison between the best ACO variant, the MILP solved by IBM ILOG CPLEX

12.9 (hereinafter referred to as CPLEX) and Greedy during the M-Eval phase, the performance

metric of Eq. 26 is used. However, in that equation, the set of search plans P i includes the COS

of the benchmark methods, i.e., Greedy and the best performing configuration of CPLEX (we

describe the tested configurations in Section 5.3). Still, the metric used for comparison purposes

is RCOSeval(i, v), the average of RCOSeval(P i,j
v ,P i) over the runs j.

For the A-Eval phase where we further compare the best ACOs from the M-Eval phase with
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Greedy, we used the RCOSeval(P i,j
v ,P i) metric from Eq. 26, and we computed the mean signed

relative COS difference between variant v and Greedy as follows:

MSDG(v) =
1

|I|
∑
i∈I

(
RCOSeval(P i,j

v ,P i)−RCOSeval(P i,j
Greedy,P

i)
)
, (27)

where P i contains the COS of our five best ACO variants and of our greedy heuristic for instance i,

j = 1 since there is a single run of each algorithm (ACO variants and Greedy) per instance, and

set I is a set of instances, e.g., 30 instances with a given time horizon T and number of scans Q

(as described in Section 5.4).

5.3. MILP Solver Configuration

One of our objectives was to compare the best ACO variant with an MILP formulation (de-

scribed at the end of Section 3). We solved the MILP model using ILOG CPLEX 12.9. It is

well known that the performance of CPLEX depends on its configuration and that the default

configuration performs well on a variety of problems. In fact, when conducting a search for a

solution, a MILP solver, such as CPLEX, builds a search tree. Each node of the search tree is

either a partial solution or a subproblem (depending on the exact algorithm used by the solver).

Complete solutions are found at the leaves of the tree. The node selection strategy that guides the

solver in the selection of the next node to explore, i.e., the next subtree, can therefore influence

the search process. Another element that is important in configuring the CPLEX algorithm is the

MIP emphasis parameter which biases the solver towards finding feasible solutions or proving the

optimality of the current incumbent solution.

Our experiment was designed with six CPLEX configurations: the default configuration, em-

phasis on feasibility, emphasis on optimality, default configuration with a scaling of the probabilities

by a factor of 105, best estimate node selection, and depth-first node selection. Since the perfor-

mance of CPLEX is meant as a benchmark, we include in P i, for the computation of RCOSeval(i, v)

during the M-Eval phase, the highest COS value among the 6 CPLEX configurations for each of

the 50 instances i.

5.4. Generated Search Environments Characteristics

In order to generate OSPV problem instances, the search environment was represented by a

grid of l cells by l cells. The accessibility map was defined by the distance that a searcher can
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travel in one time step, i.e., an accessibility radius amax, and the visibility map was defined by the

maximal effort allocation range, i.e., a visibility radius vmax:

(r ∈ A(s)⇔ dist(s, r) ≤ amax) , ∀s, r ∈ R , (28)

(r ∈ V (s)⇔ dist(s, r) ≤ vmax) , ∀s, r ∈ R , (29)

where dist(s, r) is the distance between s and r in distance units. For our instances, the detectability

index (W) from Eq. 8 is such that

Wt(s, r) =


vmax−dist(s,r)

area(r) if r ∈ V (s) ;

0 if r /∈ V (s) ,
∀t ∈ T , ∀s, r ∈ R , (30)

where area(r) is the area of region r (in square distance units). We assume that the detectability

of the object in a region r decreases as the distance between the current searcher’s region s and r

increases. This detectability becomes 0 when the maximum visibility range vmax is reached. The

initial searcher’s position y0 is randomly generated from a uniform distribution over regions. The

poc0(t) distribution is obtained from a uniform random distribution over the interval [0, 1] and

then normalized to obtain a sum of 1. The probability that the object moves from a region s to an

accessible region r is obtained from a uniform random distribution on the interval [0, 1] whereas it

is null to any non-accessible region r′.

We generated instances of increasing complexity, namely grids of l by l cells with l ∈ {2, 3, . . . , 11}

for a number of regions N ∈ {22, 32, . . . , 112}, where the time horizon T = N . In comparison, in-

stances found in the literature for similar problems related to search path planning use a horizon

of 20 steps (Perez-Carabaza et al., 2018) or of up to 40 steps (Sato & Royset, 2010). In addition,

these do not take into account the visibility dimension like we do, which increases the size of the

search space of an algorithm by a factor representing the number of feasible allocations of Q units

of effort growing exponentially in T .

For the configuration and the M-Eval phases, we generated, for each grid size, an instance with

Q ∈ {1, 2, . . . , 5} and we set T = N (50 different instances per phase). For the A-Eval phase, we

generated 30 instances per pair of horizon T and number of scans Q (1,500 instances). The allowed

solving time was set per instance as a function of the time horizon T (Table 2).
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Table 2: Solving wall clock time in seconds for each time horizon T

T Allowed time (sec.) T Allowed time (sec.)

4 60 49 720
9 120 64 960
16 240 81 1200
25 360 100 1500
36 540 121 1800

6. Results and Discussion

We present and discuss the M-Eval phase results where each algorithm variant was applied to

50 previously unseen instances (30 runs per instance) using their best configuration parameters as

determined in the configuration phase described in the supplementary material. We then compare

the five best ASPV variants of the M-Eval phase to Greedy on 1,500 new problem instances for the

A-Eval phase and report the results of the best variant. The results of the remaining four variants

are included in the supplementary material.

6.1. Comparison Between ACO Variants (M-Eval Phase)

Figure 1 shows, for each ASPV variant, the distribution of the relative COS, RCOSeval(P i,j
v ,P i),

over 30 runs of each of the 50 instances. Variants are ordered in decreasing order of average

RCOSeval(P i,j
v ,P i), RCOSeval(v), across all instances which is displayed as a blue diamond. For

each variant, the box displays the first quartile, the median, and the third quartile. Whiskers

extends from the first (resp. the third) quartile to the lowest value not smaller (resp. highest value

not larger) than 1.5 times the interquartile range from the first quartile down (resp. third quartile

up). Outliers are represented as black dots.

We notice that, except for the variant in position 20, only variants using the OSPV pheromone

initialization procedure (iO) made it to the top 20 performers (considering the RCOSeval(v) perfor-

mance criterion). This supports the implementation of a problem-specific pheromone initialization,

iO, for the OSPV.

The fact that the boosting procedure (bY) is used in 4 of the top 5 variants also supports

this point since boosting, in our terminology, involves a first round of pheromone updates using

a solution from a greedy procedure. Boosting, nonetheless, appears to have a lesser impact than

problem specific pheromone initialization (iO).
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iU − uAA − rN − bN (96)
iR − uAA − rN − bN (95)
iU − uAA − rG − bN (94)
iU − uAA − rL − bN (93)
iO − uAA − rN − bN (92)
iU − uAA − rN − bY (91)

iR − uOGBU − rG − bN (90)
iO − uAA − rG − bN (89)

iU − uOGBU − rG − bN (88)
iU − uAA − rL − bY (87)
iR − uAA − rN − bY (86)
iU − uAA − rG − bY (85)
iR − uAA − rG − bN (84)
iO − uAA − rL − bN (83)
iO − uAA − rN − bY (82)
iO − uAA − rL − bY (81)
iO − uAA − rG − bY (80)
iR − uAA − rL − bY (79)
iR − uAA − rL − bN (78)
iR − uAA − rG − bY (77)

iO − uOGBU − rG − bN (76)
iU − uOGBU − rG − bY (75)
iR − uOGBU − rG − bY (74)
iO − uOGBU − rG − bY (73)
iR − uOGBU − rL − bN (72)
iR − uOGBU − rN − bN (71)
iR − uORBU − rL − bN (70)
iU − uOGBU − rL − bN (69)
iU − uOGBU − rN − bN (68)
iR − uORBU − rG − bN (67)
iU − uORBU − rL − bN (66)

iR − uGB − rN − bN (65)
iU − uORBU − rG − bN (64)
iR − uOGBU − rL − bY (63)

iR − uIB − rN − bN (62)
iR − uOGBU − rN − bY (61)

iR − uGB − rL − bN (60)
iR − uGB − rN − bY (59)

iU − uOGBU − rL − bY (58)
iR − uRB − rG − bN (57)
iR − uGB − rG − bN (56)
iU − uGB − rN − bN (55)

iU − uOGBU − rN − bY (54)
iU − uGB − rG − bN (53)
iR − uRB − rL − bN (52)
iU − uIB − rN − bN (51)

iR − uGB − rL − bY (50)
iU − uORBU − rL − bY (49)
iR − uORBU − rL − bY (48)

iR − uIB − rN − bY (47)
iU − uGB − rL − bN (46)
iU − uGB − rN − bY (45)

iR − uORBU − rG − bY (44)
iR − uRB − rL − bY (43)

iU − uGB − rG − bY (42)
iU − uGB − rL − bY (41)
iU − uRB − rG − bN (40)

iO − uOGBU − rL − bN (39)
iU − uORBU − rG − bY (38)
iO − uOGBU − rN − bN (37)

iU − uIB − rN − bY (36)
iU − uRB − rL − bN (35)
iR − uGB − rG − bY (34)

iR − uIB − rL − bN (33)
iR − uIB − rG − bN (32)
iU − uRB − rL − bY (31)
iU − uIB − rL − bN (30)

iR − uRB − rG − bY (29)
iO − uORBU − rL − bN (28)

iU − uIB − rG − bN (27)
iU − uRB − rG − bY (26)

iU − uIB − rL − bY (25)
iO − uORBU − rG − bN (24)

iR − uIB − rL − bY (23)
iO − uGB − rN − bN (22)
iR − uIB − rG − bY (21)
iU − uIB − rG − bY (20)

iO − uGB − rG − bN (19)
iO − uIB − rN − bN (18)

iO − uOGBU − rL − bY (17)
iO − uOGBU − rN − bY (16)

iO − uGB − rN − bY (15)
iO − uGB − rL − bN (14)
iO − uIB − rN − bY (13)

iO − uGB − rL − bY (12)
iO − uORBU − rL − bY (11)

iO − uRB − rL − bY (10)
iO − uGB − rG − bY (9)
iO − uRB − rL − bN (8)
iO − uIB − rG − bN (7)

iO − uRB − rG − bN (6)
iO − uORBU − rG − bY (5)

iO − uIB − rL − bN (4)
iO − uIB − rL − bY (3)

iO − uRB − rG − bY (2)
iO − uIB − rG − bY (1)
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Figure 1: Distribution of the RCOSeval values (calculated on a per instance basis) for all 30 runs of each ASPV

variant on all instances; blue diamonds represent the per variant average RCOSeval(v) (M-Eval phase)
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Both Luby (rL) and geometric (rB) restarts, are used in 16 out of the top 20 variants, which

illustrates their benefit as a diversification mechanism in our context.

As for the worst performers, the “all ants” (uAA) pheromone update procedure is over-

represented in the last quartile (the 24 worst performers). In fact, 18 out of 24 of the worst

performers use “all ants” (uAA) pheromone updates. The other worst performers use the “on

updates of the global-best” (uOGBU) pheromone update. We notice that uAA is the least restric-

tive update procedure (all other things being equal, updates are performed the most frequently),

whereas uOGBU pheromone update is the most restrictive (all other things being equal, updates

are performed less frequently). Some uOGBU variants, however, did perform well and made it

to the top 20. Those “good” uOGBU variants are two variants with OSPV-based pheromone

initialization (iO) and boosting (bY). The 16th best variant employed Luby restarts (rL). How-

ever, the restart procedure in the context of an uOGBU does not give many opportunities for

pheromone updates; the global-best solution, used to decide when updates are performed, does

not change between restarts. The 16th and 17th best variants both used iO and bY, two problems

specific pheromone initialization (including boosting). As a result, it appears best, in the ASPV,

to avoid the two extreme update procedures (uAA and uOGBU) unless a mechanism for better

convergence is implemented. In fact, the various middle-of-the-road approaches to trails updating,

namely iteration-best (uIB), restart-best (uRB), global-best, and “on updates of the restart-best”

(uORBU), all performed well in general.

Finally, regarding the spread and distribution of the global performance of variants based the

RCOSeval(v) metric, we notice that the worst variant, iU – uAA – rN – bN, has an average

performance of .32 whereas the best performer, iO – uIB – rG – bY, has an average performance

of .914. A total of 13 variants have an average performance across all instances lower or equal to

.5, 21 variants have an average performance in the interval (.5, .8), 32 in (.8, .85], 28 in (.85, .9],

and only 2 have an average performance above .9.

6.2. Benchmarking ACO Variants Against a MILP and a Greedy Approach (M-Eval Phase)

In light of the results presented in Section 6.1, we retained the iO – uIB – rG – bY variant for

comparison with the MILP and Greedy results in the M-Eval phase.

Table 3 shows the performance of the three considered approaches, grouped by instance, for

a subset of instances (complete results are included in the supplementary material). Each cell
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Table 3: Average relative COS, RCOSeval(i, iO – uIB – rG – bY) of the top ASPV variant, RCOSeval(P i,b
CPLEX,P

i)
of CPLEX for its best configuration b, and RCOSeval(P i,1

Greedy,P
i) for the single run of Greedy; for the ASPV

algorithm, the 95% confidence interval over 30 runs around the mean is reported; italic font indicates that the method
is dominant, but not strictly dominant; bold font indicates that the method is strictly dominant; the complete table
is included in the supplementary material (M-Eval phase)

Number of scans (Q)

Method T 1 2 3 4 5

9 [1 , 1 ] [.99, .99] [1 , 1 ] [.97 , .97 ] [1 , 1 ]
25 [.96, .98] [.95, .97] [.94, .96] [.9, .92] [.94 , .96 ]
49 [.97, .97] [.96, .97] [.96, .97] [.97, .98] [.95, .96]
81 [.88, .90] [.92, .94] [.95, .96] [.97, .98] [.97, .98]

iO - uIB - rG - bY

121 [.82, .86] [.87 , .90 ] [.95, .96] [.92, .93] [.94, .95]

9 .98 .95 .96 .89 .94
25 .47 .89 .92 .89 .96
49 .66 .68 .92 .93 .80
81 .64 .35 .58 .81 .93

Greedy

121 .49 .87 .35 .80 .82

9 1 1 1 .87 .88
25 1 .35 .41 .30 –

Best of CPLEX

≥ 36 – – – – –

represents the result of 30 runs for ASPV per instance, the best run for CPLEX, or a single

Greedy run. The results reported for the iO – uIB – rG – bY ASPV variant are the 95 % confidence

intervals around the mean RCOSeval(i, v) over 30 runs. For CPLEX, we report the best performing

configuration for each instance. We performed a single run of Greedy since it is a deterministic

algorithm without configuration parameters. Italic font indicates that the method, or algorithm, is

dominant, but not strictly dominant: there exists another approach with an equivalent performance

or we cannot conclude the difference is significant. Bold font indicates that the method is strictly

dominant, we can conclude that it outperforms the other approaches.

We can see that, in most cases and especially on larger instances, the top ASPV variant

outperforms both Greedy and the best CPLEX configuration in the allowed time. When T and

Q are small, CPLEX has a good performance. It outperforms the metaheuristic in four cases. Of

course, the benefits of using a metaheuristic such ACO is often on the largest instances, since those

are the realistic ones. In our case, CPLEX cannot find a good initial solution in the allowed time

for instances where T ≥ 36 (represented by a dash).

23



.2

.2

.37

.77

.85

.59

.68

.73

.83

.89

.67

.67

.67

.74

.71

.69

.61

.57

.43

.76

.69

.78

.59

.63

.54

.79

.81

.74

.48

.55

.73

.63

.74

.72

.34

.72

.81

.81

.62

.5

.7

.87

.71

.75

.5

.75

.79

.82

.64

.47

T = 4 9 16 25 36 49 64 81 100 121
Q

=
1

2
3

4
5

0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1 0 .5 1

0
.5
1

0
.5
1

0
.5
1

0
.5
1

0
.5
1

RCOS: Greedy

R
C

O
S

:  
iO

 −
 u

IB
 −

 r
G

 −
 b

Y
(A

C
O

 M
R

−
E

va
l r

an
k:

 1
)

Figure 2: Performance of the best ASPV variant from the M-Eval phase, RCOSeval(P i,1
iO – uIB – rG – bY,P

i), against
performance of Greedy, RCOSeval(P i,1

Greedy,P
i), for the 1,500 new problem instances of the A-Eval phase grouped

by number of scans Q (on columns) and horizon T (on rows); the MSDG (average of the y-axis value minus x-axis
value), rounded to the 2nd decimal, is presented for each group; blue triangles are cases where the ASPV variant
solution is best, red squares are cases where the greedy solution is best, and black circles are ties (A-Eval phase)

6.3. Further Evaluation of the Five Best ASPV Variants (A-Eval Phase)

Figure 2 shows the performance of the best ASPV variant from the M-Eval phase, iO – uIB –

rG – bY, against that of Greedy on new instances. The mean signed difference between the variant

and Greedy, MSDG , is displayed for each instance group. We see that ASPV outperforms Greedy

in the vast majority of the runs and that the MSDG is higher than .5 in favor of the iO – uIB –

rG – bY variant on 41 groups out of 50. Each point on the graph corresponds to a single instance

among the 1,500 instances in the benchmark. There are a few specific instances where the variant

did not improve the solution over Greedy in the allowed time (red squares). In practice, these

can be considered as ties since the solution of Greedy is readily available and can be used as the

retained solution. As such, there would be no real negative impact to using the ASPV algorithm to

search for a better solution in practice. Moreover, for the vast majority of instances ASPV finds a

solution that is as good (black circles) or better (blue triangles) than Greedy in the allocated time.

Similar conclusions can be drawn for the other top four variants (see the supplementary material).

6.4. Summary of Results

Our results show that ASPV perform best on the M-Eval and A-Eval instances, supporting

its generalization potential to other OSPV instances, following a rigorous configuration phase
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involving multiple variants. In addition, we conclude that restarts, when used in conjunction with a

suitable pheromone update scheme such as uIB (iteration-best), uRB (restart-best), or uORBU (on

updates of the restart-best solution) are quite efficient for the OSPV. Problem-specific pheromone

initialization and boosting also proved useful in our context since most top ASPV variants use

these mechanisms. Furthermore, the best ASPV variant provides clearly superior results to the

greedy heuristic, which in turn tends to outperform CPLEX on the larger instances.

7. Conclusion

In this paper, we presented the ant search path with visibility (ASPV) algorithm, an ant

colony optimization (ACO) algorithm developed specifically for the optimal search path problem

with visibility (OSPV), a path planning problem with visibility from search theory. Since the

OSPV problem’s complexity grows exponentially with the total search time available (T ) and

combinatorially with the number of scans (Q), our tailored ACO metaheuristic proved useful for

obtaining high quality search plans.

In addition to providing a metaheuristic implementation for an active research area in search

theory, namely, the optimal search path problem and its variants, we added to the body of em-

pirical evidence in the ACO literature. In fact, we benchmarked a total of 96 algorithm variants,

where a variant is a combination of pheromone initialization scheme, pheromone update scheme,

diversification mechanism in the form of restarts, and intensification mechanism in the form of a

pheromone boosting procedure. Our best variant involved problem-specific pheromone initializa-

tion, iteration-best pheromone updates, a geometric restart procedure and pheromone boosting.

This variant as well as most variants, outperformed a state-of-the-art general-purpose MILP solver

as well as a problem-specific greedy heuristic on our largest and more realistic benchmark instances.

This supports the practical usefulness of ACO for path planning problems based on search theory,

and adds practical results for detection search problems.

Moreover, our findings are in line with recent results and observations from the ACO literature.

First, our best variants, in the OSPV context, use restarts based on a predefined schedule using an

increasing sequence of allowed cycles without improvement. It was also observed in the literature

on ACO that restarts improve diversification and convergence for other problems (López-Ibáñez

et al., 2016). Second, we observed, in the context of the OSPV, a lack of convergence from the
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less restrictive pheromone updates procedures, e.g., the “all ants” (uAA) updates, and a better

convergence for the variants where the “best” solution contributes strongly to the pheromone trails.

This is consistent with the observation that more “elitist” ACO implementations tend to have better

convergence than more “permissive” ones (Dorigo & Stützle, 2019). Third, in our experiments, the

best variants share the following characteristics: a problem-specific pheromone initialization (iO)

with boosting (bY), a restart-best update or an iteration-best update procedure (either uRB or

uIB) along with restarts (either a Luby or geometric restart schedule, rL or rG). This enables the

variants to better balance exploitation (intensification) and exploration (diversification) which is a

core characteristic of successful ACO algorithms (Dorigo & Stützle, 2019).

Finally, the OSPV problem formulation and the best ASPV algorithm variants open the door

to search pattern optimization. As such, they are milestones in the development of operational

decision support systems for search and rescue planning (where search patterns are currently fixed),

further improving search operations planning and increasing the potential to save lives.
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López-Ibáñez, M., Stützle, T., & Dorigo, M. (2016). Ant colony optimization: A component-wise

overview. Handbook of Heuristics, 311–351. Springer International Publishing.

Minister of National Defence (2013). Quadrennial Search and Rescue Review.

https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/archive-nss-qdrnnl-rvw/archive-nss-qdrnnl-

rvw-en.pdf. Accessed: 2021-07-23.

Mirjalili, S., Song Dong, J., & Lewis, A. (2020). Ant Colony Optimizer: Theory, Literature Re-

view, and Application in AUV Path Planning. Nature-Inspired Optimizers: Theories, Literature

Reviews and Applications, Studies in Computational Intelligence, 7–21. Springer International

Publishing. https://doi.org/10.1007/978-3-030-12127-3_2

Morin, M., Lamontagne, L., Abi-Zeid, I., Lang, P., & Maupin, P. (2009). The optimal searcher

path problem with a visibility criterion in discrete time and space. Proceedings of the 12th

International Conference on Information Fusion, 2217–2224.

Morin, M., Lamontagne, L., Abi-Zeid, I., & Maupin, P. (2010). The ant search algorithm: An ant

colony optimization algorithm for the optimal searcher path problem with visibility. Advances

in Artificial Intelligence: 23rd Canadian Conference on Artificial Intelligence, 196–207.

Morin, M., Papillon, A.-P., Abi-Zeid, I., Laviolette, F., & Quimper, C.-G. (2012). Constraint

28

https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1016/j.ejor.2018.09.038
https://doi.org/10.1007/978-3-030-12127-3_2


programming for path planning with uncertainty. International Conference on Principles and

Practice of Constraint Programming, 988–1003.

Morin, M. & Quimper, C.-G. (2014). The Markov transition constraint. International Conference

on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems,

405–421.

Paull, L., Saeedi, S., Seto, M., & Li, H. (2012). Sensor-driven online coverage planning for au-

tonomous underwater vehicles. IEEE/ASME Transactions on Mechatronics, 18(6), 1827–1838.

Perez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., & Jesus, M. (2018). Ant colony

optimization for multi-uav minimum time search in uncertain domains. Applied Soft Computing,

62, 789–806.

Raap, M., Meyer-Nieberg, S., Pickl, S., & Zsifkovits, M. (2017a). Aerial vehicle search-path

optimization: A novel method for emergency operations. Journal of Optimization Theory and

Applications, 172(3), 965–983.

Raap, M., Preuß, M., & Meyer-Nieberg, S. (2019). Moving target search optimization – A literature

review. Computers & Operations Research, 105, 132–140.

Raap, M., Zsifkovits, M., & Pickl, S. (2017b). Trajectory optimization under kinematical con-

straints for moving target search. Computers & Operations Research, 88, 324–331.

Richardson, H. R. (2014). Search theory. Wiley StatsRef: Statistics Reference Online. American

Cancer Society. https://doi.org/https://doi.org/10.1002/9781118445112.stat00134

Sato, H. & Royset, J. O. (2010). Path optimization for the resource-constrained searcher. Naval

Research Logistics, 57(5), 422–440.

Schulte, C., Tack, G., & Lagerkvist, M. (2019). Modeling and Programming with Gecode.

Simard, F., Morin, M., Quimper, C.-G., Laviolette, F., & Desharnais, J. (2015). Bounding an

optimal search path with a game of cop and robber on graphs. International Conference on

Principles and Practice of Constraint Programming, 403–418.

Solnon, C. (2002). Boosting ACO with a preprocessing step. Applications of Evolutionary Com-

puting: EvoWorkshops, 163–172.

Stewart, T. (1979). Search for a moving target when the searcher motion is restricted. Computers

and Operations Research, 6, 129–140.

Stone, L. D. (2004). Theory of Optimal Search. Academic Press.

29

https://doi.org/https://doi.org/10.1002/9781118445112.stat00134


Stone, L. D., Royset, J. O., Washburn, A. R., et al. (2016). Optimal search for moving targets.

Springer.

Tange, O. (2011). GNU parallel – The command-line power tool. ;login: The USENIX Magazine,

36(1), 42–47. https://doi.org/http://dx.doi.org/10.5281/zenodo.16303

Trummel, K. & Weisinger, J. (1986). The complexity of the optimal searcher path problem.

Operations Research, 34(2), 324–327.
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