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Abstract — Mixed-Initiative-Systems (MIS) are hybrid decision-

making systems in which human and machine collaborate in 

order to produce a solution. This paper described an MIS system 

adapted to business optimization problems. These problems can 

be solved in less than an hour as they show a linear structure. 

However, this delay is unacceptable for iterative and interactive 

decision-making contexts where users need to provide their input. 

Therefore, we propose a system providing the decision-makers 

with a convex hull of optimal solutions minimizing/maximizing 

the variables of interest. The users can interactively modify the 

value of a variable and the system is able to recompute a new 

optimal solution in a few milliseconds. Four real-time 

reoptimization methods are described and evaluated. 

Keywords — Linear optimization; Mixed-initiative systems; 

Supply chain optimization; Human-machine interaction. 

I.  INTRODUCTION 

Most decision-making systems (e.g. planning or scheduling 
systems) found in enterprises lie on one of the following 
paradigms. The first one is fully automated systems. It is 
typically the case when an algorithm is used to find an optimal 
solution to the decision problem. In other cases, the planning is 
done by a human expert, sometimes with the help of a visual 
interface allowing him to get real time feedback regarding his 
decisions and choices. Surprisingly, quite a few optimization 
problems are planned manually as such. Indeed, automated 
planning tools are lacking of a political sensitivity or, more 
generally, do not take into consideration many important soft 
constraints that are often quite difficult to model (constraints 
that even human does not realize they exists before he sees a 
solution violating them).  

Mixed-Initiative-Systems (MIS) [1, 2] are hybrid decision-
making systems in which human and machine collaborate in 
order to produce a solution. Most MIS-related research is done 
by the A.I. community and applies to discrete combinatorial 
optimization problems.  

The goal of this research is to propose MIS methods 
adapted to business optimization problems showing a linear 
structure. Preliminary notions regarding MIS and supply chain 
optimization are provided in Section II. The proposed Mixed-
Initiative system for linear optimization is described in Section 
III. It is then evaluated for a real-size industrial supply chain 
problem in Section IV. Finally, section V concludes the paper. 

II. PRELIMINARY NOTIONS 

A. Mixed-Initiative Systems (MIS) 

The motivation behind MIS is that human and machines 
show different strength [3]. Human has an implicit knowledge 
of the problem that cannot always be formalized. Human 
guidance can improve the performance of search 
algorithms [4]. Moreover, the decision-maker is often unaware 
of a constraint or an issue till he sees it in the solution proposed 
by the machine. In this context, involving the human in the 
search for the solution has some values.  

Depending on the context, MIS provide different benefits.  
In some situations, the solution is produced using less 
computation time because the user can guide the search 
according to his intuition [4]. In other contexts, the main 
interest is for the final solution to get a better acceptance level 
by decision-makers because it is more in line with informal 
objectives of the company/decision maker. 

Most MIS-related researches target discrete combinatorial 
optimization problems such as timetabling [5], space mission 
planning and scheduling [6-8], air traffic control [9], military 
applications [10, 11], etc. 

Mixed-Initiative Systems have not yet made their way into 
business management systems such as those used for Supply 
Chain Management (SCM). We believe the main reasons are 
that (1) most of these situations can be modeled as linear 
optimization problems for which good algorithms exists, and 
(2) methods developed for classical A.I. planning could not 
easily be applied to those kind of problems.  

B. Products flow optimization in supply chain management  

The goal of our research is to propose MIS methods 
adapted to business problems showing a linear structure model.  
Such structure is present in supply chain product flows 
problems where decisions typically involve determining, for 
each period of time, the volume of products that needs to be 
transported between business units, the target inventories to 
keep on hand, the amount to replenishment from suppliers, the 
quantities of each product to ship to customers and the 
production quantities [12, 13]. 

These problems are typically solved using commercially 
available software like IBM ILOG CPLEX. They can solve 
problems having several hundreds of thousands variables in a 



few minutes, thanks to well known algorithms like Dantzig’s 
simplex method. 

One shortcoming of these solvers is that they usually return 
one and only one solution for a given problem (defined as a set 
of variables, constraints and an objective function) – although 
thousand of alternative optimal solutions may exist. Most of the 
time, the returned solution is inadequate as the problem 
specification does not take into account the contextual and 
political information known only to the decision maker [4]. It is 
indeed very difficult in a mathematical model to consider all 
the preferences of the user. Moreover, the decision maker does 
not know exactly all the constraints; he “discovers” some when 
he sees solutions violating them. 

Although the solution produced by the solver often contains 
hundreds of thousands of variables, in practice the decision-
maker analyzes the solution by consulting only a few charts,   
each one containing a few dozens of variables (e.g. 52 variables 
matching the 52 weeks in the year). An example of this type of 
chart is provided in Figure 1. 

 

Figure 1. Example of a chart used by decision-makers to analyze the solution 

of a supply chain optimization problem. 

When the solution does not satisfy the requirements of the 
decision maker (e.g. he does not like the value for a specific 
variable), the mathematical model has to be modified and 
reoptimized so that a new solution can be found (Figure 2). 

 
Figure 2. Typical process of finding a suitable solution 

Not only is this process very long (solving an integrated 
supply chain planning problem may easily take up between 10 
and 60 minutes), this is also a frustrating iterative process 
because when the decision-maker is not satisfied by a variable 
value, he never knows if the variable is really constrained to 
that specific value in order for the solution to be optimal, or if 
exists other optimal solutions with other values for that 
variable. He does not have the choice but to run new 
optimizations. 

III. THE PROPOSED MIXED-INITIATIVE SYSTEM FOR  

LINEAR OPTIMIZATION PROBLEMS 

A good Mixed-Initiative System for linear optimization 
would provides the user with information regarding whether or 
not the variables of interest are constrained to a certain value in 
order for the solution to be optimal. It also allows the user to 
interactively modify the value of a variable and see, in real-
time, how the other variables should be modified in response to 
that modification. 

The system we propose allows the user to visualize an 
implicit sub-space of optimal solutions for a given set of 
variables. The user can interactively increase or decrease the 
value of a variable and the system reacts by computing and 
displaying, in real time, the new sub-space of optimal solutions 
(Figure 3). 

Figure 3. MIS concept applied to linear programming 

A. Obtaining and displaying a sub-space of optimal solutions  

To palliate the fact that classical solvers return a single 
solution, we proceed as follows. We use a classical solver to 
compute an optimal solution for the problem P. Once the 
optimal objective value is known, we search for other optimal 
solutions. We create a new instance P’ by augmenting the 
instance P with a constraint forcing the objective value to be 
equal to the optimal value found for P. The space of feasible 
solutions of P’ is therefore equivalent to the space of optimal 
solutions of P. For each of the n variables xi displayed on the 
graph, we search for a solution  that minimizes xi and a 
solution  that maximizes xi while preserving the optimality of 
the solutions. These 2n computations can be performed in 
parallel using a supercomputer. 

Then, one can display on the chart (see Figure 4) the range 
of optimality for each variable xi (the minimum and maximum 
values the variable can take in an optimal solution).  

 
Figure 4. An optimal solution with range of optimality for the variables. 



Moreover, it is possible to construct an “average” solution 
to be displayed to the user by summing the 2n solution vectors 
and dividing the result by the scalar 2n. The validity of this 
process relies on the concept of convexity that we present 
bellow. 

A n-dimensional vector represents the values assigned to n 
variables, and therefore a solution to a problem. A vector also 
represents a point in an n-dimensional space. Let x and y be 
two n-dimensional vectors. A linear combination is the 
weighted sum of two or more vectors, e.g. x yα β+ . A linear 

combination is affine if the sum of the weights equals one, e.g.  

( )1x yα α+ − . Any point on the line passing by the points x 

and y is an affine combination of x and y. A linear combination 
is convex if it is affine and if each weight is non-negative, e.g. 

( )1x yα α+ −  for [ ]0,1α ∈ . The points that can be obtained 

by a convex combination of x  and y  are those on the segment 

connecting x  to y . A space S  is convex if any convex 

combination of two points in S  is also in S . 

Theorem 1 is a well-known result in the linear 
programming literature (e.g. [14]). It shows how an optimal 
solution to a linear program can be obtained from the convex 
combination of distinct optimal solutions. We reproduce the 
proof of the theorem as it shows the properties we will exploit 
in our system. 

Theorem 1 : The convex combination of two optimal 
solutions of a linear program is also an optimal solution. 

The space { }, 0S x Ax b x= ≤ ≥ contains the feasible 

solutions of a linear program. Let x S∈ and y S∈ be two 

solutions. We show that any convex combination of x and y 
belongs to S. 

 

Suppose that x and y are two optimal solutions to the linear 

program, i.e. x maximizes the scalar product Tc x and so does y. 

Let  T T*c c x c y= =  be the optimal cost. We show that any 

convex combination of x and y is also an optimal solution. � 

The convex hull of a set of points { }1, , nX x x=
� �

…  is the 

space containing all convex combinations of the points in X . 
Formally, we note 

 

From Theorem 1, if the points 1, , nx x
� �

…  are optimal 

feasible solutions to a linear program, then all points in 

( )1conv , , nx x
� �

…

 
are optimal feasible solutions. 

In our system, the convex hull of the solutions is and is  

that minimize and maximize each of n variables form a 
subspace of optimal solutions.  

B. Real-time convex combination of optimal solutions  

A chart like the one depicted in Figure 4 allows the user to 
see the flexibility (range of optimality) he has for any of the 
variable of interest. He can thus change the value of a variable 
within the optimality zone of that variable, for example by 
dragging up or down the top of a bar in the chart. The system 
should then adjust the value taken by the other variables such 
that the solution is still optimal. Normally, this operation would 
require a lengthy complete re-optimization of the problem. 
Based on Theorem 1, we know however that it is possible to 
compute a new optimal solution by generating new convex 
combination of the optimal solutions obtained from the 
previous section. To find a solution with a given variable 
assigned to a specific value, it is sufficient to compute a new 
convex combination of extreme solutions. 

If this could be done in real-time, we could instantly refresh 
the chart and display the impact of the user modification on the 
other variables. The user could thus navigate through the 
solutions space, successively modifying several variables until 
a suitable solution is found. 

Figure 5 illustrate this idea for a small problem with two 
variables. The polygon shows the set of convex combination 
formed by optimal solutions minimizing and optimizing each 
of the variables

1
.  

 
Figure 5. Available optimal zone using convex combinations. 

When the user modifies a variable, we do not just want to 
find any point in the sub-space such that the modified variable 
takes the desired value; we want to find a solution such that the 
other variables move as little as possible so that the overall 
system appears to be stable. If it would not be the case, then 
any modification made to a variable could offset the previous 
modifications made to the other variables and it would never be 
possible for the user to converge to a satisfactory solution. 

Given a solution x, a variable xi, and a value v, finding a 

new solution x′  where i ix v x′ = ≠  while changing as little as 

possible the values of the other variables is an optimization 
problem.  

                                                           
1 This example (Figure 5) also shows that there could be optimal solutions not 

covered by this sub-space. This is why we say that the user navigate in a space 

(formed by convex combination of our extreme solutions) that is in reality a 
sub-space of the optimal solutions. 



We propose four approaches to solve this optimization 
problem. Each of them is a trade-off between responsiveness 
and stability.  

Definition 1: Responsiveness refers to the computation 
time needed to obtain a new solution each time the decision-
maker modifies a variable. It determines the time before the 
software can display the new optimized solution. 

Definition 2: Stability is the property of computing a new 
solution that is as close as possible from the current solution.  

While responsiveness guarantees that the software reacts in 
real-time to the changes of the decider, stability ensures that the 
software does not move the solution away from the choices that 
the decider previously made.  

Responsiveness is measured in milliseconds. Stability is 
given by the Euclidean distance between the original solution x 
and the modified solution x’. 

Since responsiveness is an important criterion, we exclude 
the method of resolving the original problem from scratch. We 
restrict ourselves to find a solution in the convex hull of the 2n 

precomputed solutions 1 1, , , ,n ns s s s… , a much smaller problem 

then the original one. Here are the proposed methods. 

1. Minimizing the Euclidean distance. This method aims 

at finding in the convex hull ( )1 1conv , , , ,n ns s s s…  the solution 

whose Euclidean distance is the closest to x. Let S  be the 

2n n×  matrix whose columns are the solutions 1 1, , , ,n ns s s s… . 

The solution we are looking for is a convex combination of 

these solutions. We are therefore looking for a vector  such 

that x Sα′ = , 
2

1
1

n

i
i
α

=
=∑ , and 0iα ≥ . Moreover, we want 

ix′  to be equal to v . We obtain the following quadratic 

problem where ie is the vector with null components except 

for the thi  one that is equal to one, 1
�

is the vector with all 

components equal to one, and 0
�

is the null vector: 

 

The squared Euclidean distance 
2

x Sα−  can be rewritten 

as T T T T2S S x S x xα α α− + . The problem is a semidefinite 

program. The objective function is quadratic and convex and 
the constraints are linear. Solvers like CPLEX can solve this 
problem using interior point algorithm. 

2. Minimizing the maximum distance. Even though 

semidefinite problems can be efficiently solved, they are more 

computationally demanding than linear programs. We propose 

another approach that is likely to be faster. Rather than 

minimizing the Euclidean distance between the new and the 

former solution, we minimize the maximum distance between 

two variables, i.e. we minimize max j j jg x x′= − . The linear 

program we present is inspired from the previous one. Once 

more, we compute the vector α  that expresses x′  in terms of 

a convex combination of the 2n solutions stored in the 

columns of S  ( x Sα′ = ). The two first constraints of this 

linear program force the variable g to be at least as large as 

j jx x′ − . The unknown of this problem are the vector α  and 

the gap variable g. 

 

This problem can be solved using the simplex method, 
which is usually faster than the interior point method used for 
semidefinite problems of the previous approach. The obvious 
drawback is that the objective function is not completely in line 
with our stability metric. Even if we minimize the distance 
between the two variables that are the furthest apart, we do not 
minimize the distance between the other variables. A solution 

x′  where all variables are changed by the same amount would 
be equivalent to a solution where only the variable xi is 
modified.  

3. A bipolar heuristic. We introduce a third method that 

focuses on responsiveness. The bipolar heuristic is a very fast 

way to compute a new solution. Given that the decider wants 

to set the variable xi to the value v, we compute the unique 

convex combination  such that . 

To do so, we set  where  and  

are the values of xi in the precomputed solutions that minimize 

and maximize xi. The geometric interpretation of this method 

is that we choose x’ to be the intersection of the segment 

connecting  to  and the plane . 
This solution is by far the most responsive one, as it does 

not involve any solver. However, it does not take into account 
the stability metric. Indeed, a small change on the variable xi 
can produce big changes on the other variables of the solution. 
For example, consider an example in the plane where we have  

[ ]1 1,0s = − , [ ]1 1,0s = , [ ]2 0, 1s = − , and [ ]2 0,1s =  (see Figure 

6). Let the current solution be [ ]0.5, 0x = . A small move of 

variable x2 from 0 to ε causes the solution to change for 

[ ]0,x ε′ =  even though the solution [ ]0.5,x ε′ =  is a better 

choice. 

 
Figure 6.  Illustrating the bipolar method stability drawback. 



4. The triangular heuristic. To palliate to the non-

stability of the previous approach, we propose the triangular 

heuristic. First, this method determines whether the variable xi 

is increased (v > xi) or decreased (v < xi). If the variable is 

increased, we compute the unique convex combination 

between the current solution x and  that intersects the plane 

. If the variable is decreased, we compute the unique 

convex combination between the current solution x and  that 

intersects the plane . In other words, if the decision-

maker increases xi, we set 

 
where 

. 

If the decider decreases the variable xi, we set 

 
where 

. 

Going back to the example of Figure 6 where x = [0.5, 0]. 
Increasing x2 by ε  sets the new solution to 

[ ]0.5 / 2,x ε ε′ = − . This is significantly more stable that the 

bipolar heuristic. 

There is a second difference between the bipolar heuristic 
and the triangular heuristic. The bipolar heuristic can only 
produce a solution that lies on a segment connecting a solution 

 to a solution  for a given j. The triangular heuristic can 
produce any solution in the convex hull 

. Indeed, there exist a sequence of 
movements that the decider can make in order to reach any 
solution in the convex space. 

Property 1: A sequence of movements made with the 
triangular heuristic from a solution x can reach any solution in 

the convex hull . 

Proof. Let x’ be the final solution in 

. Let S be the matrix whose columns 
are the extreme points of the convex hull. There exists a non-
negative vector  whose components sum to one and that 
satisfies . We prove by induction on the number of 
non-null components in  that any x’ is reachable from a 
sequence of triangular movements. 

Suppose that there exists a single non-null component in . 

This component is equal to one and we have  or 

 for some j. Increasing the value of xj in the current 
solution to its maximum or minimum makes the triangular 
heuristic fix the new solution to x’. 

Suppose that one can reach any solution  with k > 0 
non-null components in , we prove that one can also reach 

any solution  with k + 1 non-null components in . Let 

 be a solution with k + 1 non-null components in . 

Let j be the index of any non-null component in . We 
construct the vector  as follows. 

 

The solution  is reachable since it has only k non-

null components. Moreover, let  be the solution 

associated to the component . It is possible to move from the 
solution x to x’ using the triangular heuristic since this relation 
holds. 

 

This is the relation computed when the decider changes the 

value of  to . � 

Property 1 ensures that any solution in the convex hull can 
be reached. 

 
Figure 7.  An example of the triangular method. 

IV. EVALUATION 

A. The industrial case study 

The industrial partner in this project is looking to put in 
place an efficient process for integrated sales and operation 
planning (S&OP). As part of this process is the use of a large 
scale linear programming model with over 200,000 variables 
and 100,000 constraints we introduced in [13]. This model 
generates a unified tactical plan for the production and 
distribution network. This plan is divided in fifty two weekly 
periods and integrates decisions pertaining to production, 
distribution and sales. 

Production. Lumber production from sawmills involves 
three main processes: sawing, drying and planning. The sawing 
process is divergent as a single product entering the production 
line gets transformed into several different products. Different 
production recipe can be chosen in order to influence the 
products’ basket that gets produced. The drying of the wood 
allows giving its stability over its life time. The drying is done 
by batch in large kilns and the process can lasts from 2 to 5 
days depending on several factors like the species, the lumber 
dimension (section width and thickness) and the original 
moisture content. Kiln drying may be preceded by an air drying 
operation that can lasts from 2 to 18 weeks. Air drying usage 
reduces kiln dry time and may increase the lumber quality. The 
reduction in kiln dry time depends not only on the time the 
wood was air dried, but also the period of the year at which the 
air drying was done. Finally, the planing is the process that 
gives the lumber its finish and exact dimension. Because of the 



wood characteristics and defects, not two lumber units entering 
the planing process are exactly identical. It is therefore 
impossible to precisely predict the final products exiting the 
planing process given a set of input products. Historical 
production planing data are used to estimate the production of a 
given input product. The tactical production planning help 
determine, for each sawmill in the network and for each week, 
the sawing recipe to use, the volume of each sawed product to 
air dry along with the air dry duration, the volume of each 
product to kiln dry and the volume of each product to plane 
along with the planing recipe to use. 

Sales. In the North American forest products industry, 
lumber market prices follow a seasonal pattern. The planning 
model takes this into account and may suggest producing in 
advance some quantities of a given product that will be sold at 
a later time during the year when the market price is more 
profitable. At the planing stage, the model will suggest the 
most appropriate recipe considering the selling prices for that 
period. The model not only considers the varying selling price 
in time. It also considers the limited volume that can be sold in 
given markets per product per period. The user running the 
model can also constrains the percentage of the production that 
goes to service each market. Another complexity comes from 
the fact that the drying operation is optional and that some 
customers may want to buy green planed lumber at a 
discounted price. So when the drying capacity is reached but 
there is still planing capacity, lumber can be routed directly 
from the completion of the sawing operation to the planing 
activity. 

Distribution. The company runs three sawmills in the 
province of Quebec in Canada and makes use of two 
distribution centers in the eastern United States and one in 
Quebec. It is not always required for the lumber products to go 
through a distribution centre to reach a market, but it is 
sometimes more economical. Transportation can also occur 
between mills as in the company’ network, not all sawmills 
have planing capability. From a sawmill with no planing 
capability, the dry lumber can either be moved to another 
sawmill with planing capability or it can be transported to a 
distribution centre or be sent directly to a customer. The model 
help determine where to send the lumber along with the 
transportation mode to use which can be either by trucks or by 
rail. 

Planning the overall network of sawmills taking into 
consideration market requirement, price fluctuation, production 
capacity and transportation alternatives and costs is not an easy 
task. To solve to optimality this complete problem can take up 
to 45 minutes using CPLEX, one of the leading software to 
solve linear programming models. 

B. Experiments 

The main purpose of these experimentations is to evaluate 
the behavior of the system in terms of stability and 
responsiveness metrics (as defined in Section III.B) for the 
proposed approaches.  

We first generated an optimal solution for the industrial 
case introduced previously. Then, we simulated the situation 
where the decision-maker visualizes various charts with 
different number of variables on them (1, 10, 20, 30, 40, and 52 
variables). For each variable we computed its optimality range. 
We then simulated the situation where the decision-maker asks 
for modification of some variable values. We tested the 
behavior of the system for small modifications (the  variable is 
increased or decreased by a gap corresponding to 7% of its 
optimality range, i.e. the difference between the maximum and 
minimum a variable can take), medium modifications (45% of 
optimality range) and large modifications (75% of optimality 
range). 

After each modification, an optimal solution is computed 
using one of the four approaches and we measure 
responsiveness (computation time) and stability (Euclidean 
distance between original and recomputed solutions). 

C. Results  

Figure 8 provides results for responsiveness of the system 
(in milliseconds). We recall that solving the original problems 
each time a modification is asked by the user would require a 
few minutes for each modification. Using the proposed 
approaches the worst case observed was a recomputation time 
of 600 milliseconds (minimization of the Euclidean Distance 
approach), see subfigure i. We were not expecting this method 
to perform so well because of the computation time required to 
solve a quadratic optimization problem. Nonetheless, it appears 
the problem is small enough to provide good performance.  

 

Figure 8. Solution recomputation time (in milliseconds) in reaction to small (i), medium (ii) and large (iii) variable value modifications,  

according to the number of variables displayed. 



However, as expected, computation time rapidly grows 
with the number of variable displayed on the charts. Clearly, in 
a situation where the decision maker would be visualizing 4 or 
5 charts with 52 variables on each of them, the Euclidean 
approach would not meet our real-time expectations. 

Subfigures i, ii, and iii show that the size of the 
modification asked by the user has a strong effect on the 
responsiveness of the Euclidean approach. The larger the 
modification is (in terms of % of the optimality range) the 
easier is the computation of the new solution. The explanation 
is the following. In the extreme case where the user constrains 

the variable to take its value ix , the system is limited to the 

solutions corresponding to an extreme point of our convex hull. 
Said otherwise, there is not much exploration to perform. 

The responsiveness of the method that minimizes the 
maximum distance is not affected by how much a variable is 
changed. Its linear optimization problem is small and easy to 
solve – although it is of not as efficient as the heuristic 
methods. However, those three approaches meat our real-time 
expectations. 

Figure 9 shows the Euclidean distance between the original 
and the recomputed solution after a small (i), medium (ii) or 
large (iii) modification and according to the number of 
variables displayed. The method that minimizes the Euclidean 
distance always offer the best results. 

As expected from Section III.B, the bipolar heuristic gives 
the worst results. Small modifications of a variable value 
(subfigure i) lead to huge modifications to other variables. 
Even worse, the beta-testers considered unacceptable that the 
new solutions are computed without any consideration for 
changes they made previously.  

For small modifications (subfigure i), minimization of the 
maximum distance or using the triangular heuristic provides 
stability very close to the Euclidean approach. Actually, for the 
minimization of the maximum distance, results on the chart are 
indistinct from those of the Euclidean approach. 

However, minimizing the maximum distance sometimes 
leads to the problematic situation discussed in Section III.B, i.e. 
the largest change is minimized but the other variables move 
for no valid reason. The triangular heuristic does not have this 
drawback.  

We analyze the impact of small, medium and large 

modifications (comparing subfigures i, ii and iii). The larger 

the modification asked by the user is, the more the different 

approaches give similar results. As discussed previously, large 

modifications to a variable value lead to a very small space of 

optimal solutions to which all the approaches are restricted. 

V. CONCLUSION 

Supply chain optimization leads to large problems with 
hundreds of thousands variables. They however can be solved 
in reasonable time (less than an hour) as they often show a 
linear structure. However, this computation time is 
unacceptable for iterative and interactive decision-making 
contexts where decision-makers need to provide their input.  

In this research, we proposed a system that provides the 
decision-makers with a representation of an optimal solution 
space directly on the charts they are used to work with. This 
space is modeled as a convex hull of optimal solutions 
minimizing/maximizing the variables of interest. Users can 
interactively modify the value of a variable and the system is 
able to recompute a new optimal solution in less than a second 
(instead of optimizing the original problem, which is very 
long). 

We developed four approaches for this real-time re-
optimization. The minimization of the maximal distance and 
the bipolar heuristics both have drawbacks in terms of solution 
stability. The minimization of the Euclidean distance is optimal 
regarding this aspect. It should be used in situations where the 
decision-makers based their decision on the analysis of a small 
subset of variables (typically a chart with a dozen of variables) 
although the optimization problem can have hundreds of 
thousands of variables. If the decision-makers need to 
simultaneously analyze and modify charts with hundreds of 
variables, the triangular heuristic should be used as our 
experiments reported near optimal performance.  

 
Figure 9. Euclidean distance between the original and recomputed solution after a small (i), medium (ii) or large (iii) variable value modification,  

according to the number of variables displayed. 
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