Four-Bar Linkage Synthesis Using Non-Convex Optimization

Vincent Goulet' Wei Li² Hyunmin Cheong ${ }^{2}$ Francesco lorio ${ }^{2}$ Claude-Guy Quimper'

The problem

Four-bar linkages are simple mechanical systems able to output a large variety of shapes, called coupler curves. The path synthesis problem takes a curve as input from the user and finds the best matching linkage.

b)

C)

The solution

Since d is dependent on scale we divide it by the largest dimension of the input curve to obtain our similarity metric \boldsymbol{Q} :

The lower the \mathbf{Q} value, the better the match. A perfect match has Q = 0\%. In this work, curves with Q lower than 5\% are considered a satisfactory match.

Curve Sampling Strategy
$\begin{aligned} & \text { The user-input curve is reduced } \\ & \text { to an array of carefully chosen } \\ & \text { points. Choosing the right points } \\ & \text { reduces the size of the model } \\ & \text { while sacrificing as little accuracy } \\ & \text { as possible. } \\ & \text { We find that points at maxima of } \\ & \text { curvature on the curve have the } \\ & \text { most impact on the } \mathbf{Q} \text { metric. } \\ & \text { curvature }\end{aligned}$ Curvature gets inconveniently
large at sharp turns. To solve this problem, we approximate the curve with small segments and calculate the difference of angle of adjacent segments. The maxima are then identified and filtered

Finally, some points are evenly spread between the identified features to depict general behavior.

Software

A simple Python software implementing the solution was developed. The user prompted to draw a Bezier curve.

The software launches several sampling options at once

The \mathbf{Q} metric is calculated for the returne
The \mathbf{Q} metric is calculated for the returne solutions. If it is below the acceptance
threshold, the execution is stopped and the solution is returned as an animation
thet

Experimentation

Choice of solver

The model has real variables and non-linear, non-convex constraints. Compatible solvers include:

- Ibex

- RealPaver	- BARON
- alphaBB	Couenne
- SCIP	LindoAPI

Couenne showed the best performance. Its strategy features bound tightening, linearization and branch and bound.

Benchmark

The benchmark is composed of 100 randomly generated coupler curves such that all types of reproducible shapes are represented. These curves are present in the benchmark

Comparison with evolutionary algorithm

Out of many alternative approaches from related works, the evolutionary algorithm presented by Cabrera et al. appears as a popular reference.

Our results show that the non-convex optimization solved much more curves. Only 9 curves timed out at 400 s with Couenne, while 69 timed out using the evolutionary algorithm.

Area constraint evaluation

Sampling	Area	$Q<5 \%$			No
		5 s	60 s	400 s solution	
$\{\mathbf{4 , 5 , 5 \}}$	Yes	$\mathbf{5 9}$	$\mathbf{8 3}$	$\mathbf{9 2}$	$\mathbf{0}$
$\{4,56$	No	37	58	63	0
$\{6,7,8\}$	Yes	51	81	89	1
$\{6,7,8\}$	No	50	68	78	1
$\{1,12,16\}$	Yes	30	59	69	11
$\{10,12,16\}$	No	33	57	66	14

The results show that the constraint had the most impact when there were fewer sample points. The best combination was using few points and the constraint.

