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Abstract. We show how four-bar linkages can be designed using non-convex op-
timization techniques. Our generative design software takes as input a curve that
needs to be reproduced by a four-bar linkage and outputs the best assembly that
approximates this curve. We model the problem using quadratic constraints and
show how redundant constraints help to solve the problem. We also provide an
algorithm that samples the curve based on its characteristics. Experiments show
that our software is faster and more precise than existing systems. The current
work is part of a larger generative design initiative at Autodesk Research.

1 Introduction

A mechanism is an arrangement of machine parts that generates a specified motion. The
synthesis of a mechanism is the process of determining the position, the orientation, and
other parametric properties of parts according to constraints governing their alignment
or motion. The design of mechanisms has greatly benefited from the advent of com-
puter techniques. Computer-aided design and engineering software (CAD/CAE) have
been widely used in the documentation, analysis, and optimization of designs. Though,
still nowadays, the existing technologies and tools lack a function for automated mech-
anism synthesis. Creating mechanisms that meet specified motion and geometric re-
quirements demands highly trained expert designers. As the available computing power
keeps growing, so does the interest in the development of generative design tools.

In this paper, we address the problem of generating a four-bar linkage that outputs
a prescribed curve (Figure 1). Four-bar linkages are simple yet practically important
mechanisms that can generate complex motion. Since the First Industrial Revolution,
they have been widely applied in mechanical systems, including manufacturing, agri-
culture, robotics, and automotive industry [16]. However, it is a laborious process to
manually design a four-bar linkage based on a target curve. The current state of the art
of four-bar linkage design is a time consuming process, and the results often lack op-
timality or generality. Hence, this paper introduces an automated and efficient four-bar
linkage synthesis approach, which is also an important milestone towards synthesizing
more complex mechanisms.

We first establish the current state of the art regarding mechanical assembly and path
synthesis. We then introduce the terminology and notation used for the four-bar link-
age and the global non-convex optimization strategy. The contributions presented are



Fig. 1. A four-bar linkage and output coupler curve

the feature identification sampling technique, the four-bar linkage quadratic model, the
special constraint on the area of the curve, and the design software developed. Results
emphasizing the speed and quality of our method follow along with a discussion.

2 Related Work

2.1 Mechanical Assembly

A long standing challenge of mechanical design is the automation of design synthe-
sis tasks [21]. Existing mechanism synthesis methods include systematic search [22,
17], machine-learning based approaches [8], stochastic search [26] and graph-based
approach [18, 20]. However, to the best of our knowledge, existing generative design
approaches still lack the generality or performance to be practical.

2.2 Path Synthesis of Four-Bar Linkage

Without a computer-aided approach, a human designer typically uses prior knowledge
and/or atlases of coupler curves to identify a candidate linkage to produce the desired
curve [16]. Then the chosen linkage is modified until it is satisfactory [25].

Analytical approaches formulate the four-bar linkage constraints, solve the problem
and return exact solutions [19, 24]. They require a set of points or positions input by
the user, which can be challenging to provide. In many cases, there is no mechanism
that can produce exactly the desired path. In fact, although the mechanism found goes
through the specified points, it may not go through the desired curve (see Fig. 8 for an
example). Also, analytical approaches are limited to solving problems with five or less
target points, (see [14] and the references therein).

Alternatively, numerical methods are used to synthesize approximate mechanisms
with acceptable tolerance between the input path and the coupler curve. Genetic algo-
rithms have been widely applied to the four-bar mechanism synthesis problem [7, 2].
Genetic algorithms and other stochastic search methods [6] have the same limitation –
there is no assurance that they will find a global optimum. Also, because the objective
function of four-bar mechanisms is highly constrained, the typical evolutionary algo-
rithms have to choose a very large number of initial population so that a considerable
amount of them can play in the next iteration. This technique unnecessarily increases
CPU time and reserves a large amount of memory during the computing iterations. The
lack of consistency also makes it challenging for performance evaluation.



Machine-learning approaches [8, 25] store a large number of coupler curves in a
database. Automated procedures for fitting coupler curves are used to locate potential
linkage solutions from the database. Neural network [12] and sequential quadratic pro-
gramming [8] can be used to match coupler curves. However, such an approach requires
building a large linkage database. Another limitation is that the quality of the generated
motion directly depends on the mechanisms in the database and sampling techniques.

3 Preliminaries

3.1 Mechanical Linkage

A mechanical linkage is a set of rigid bodies, called links, connected by joints. Though
many types of joints exist, we herein only consider the revolute joint or pivot, which
allows for one degree of freedom rotation. This paper focuses on the two-dimensional
four-bar linkage (Figure 1), made of four links in a closed loop. The joints A, B, C and
D are pivots. The positions of A and B are fixed. The motion of point E is the output
of the mechanism, therefore it is called the end effector. The link AB, called the frame,
cannot move. The link AC, called the crank, drives the motion of the linkage. The link
BD is driven back and forth about B and is called the rocker. The link CDE, called the
coupler, couples the rocker to the crank. The path traced by E over a full rotation of the
crank is called the coupler curve. A four-bar linkage is collinear if point E is aligned
with C and D. A linkage is Grashof if one link is able to fully rotate. We assume this
condition is met and the crank AC can fully rotate.

3.2 Non-Convex Global Optimization

Mathematical optimization aims at finding good solutions to a problem according to
some user-defined criteria. Global optimization is a family of techniques that guarantee
that the solutions returned are absolutely optimal. These techniques often consist of
relaxing the problem to a form efficiently solvable to optimality. This relaxed solution
provides a bound for branch and bound search.

To be computable, the global optimization problem is modelled mathematically. The
model consists of a set of variables, a set of constraints that need to be satisfied, and an
objective function. Each variable has a domain, a set of all values it can be assigned.

The solver takes as input the model and finds suitable values for all variables, such
that constraints are satisfied and the objective is optimized. Solvers are available for a
wide range of applications and can be categorized by the types of variables they can
handle, whether Boolean, integer, or real. Solvers can also be categorized by the types
of functions they can handle, whether logic, linear, convex, or non-convex.

Modelling a four-bar linkage requires real variables and non-convex constraints.
The global optimization solver Couenne [5] is specialized in both regards, and is the
solver used for all experimentation presented. It was chosen over related candidates
of comparable performance such as Baron [23] and AlphaBB [4] because it is open
source. The constraint solver IBEX [1] was also considered but did not show sufficient
performance. Other considered continuous solvers include RealPaver [10], SCIP [3]
and LindoAPI [15].



Non-convex problems are difficult to solve even for the best available software.
Couenne combines many techniques from constraint programming and other optimiza-
tion subfields. It uses constraint propagation and interval arithmetic to achieve bounds
tightening on each variable [5], therefore reducing the search space. It relaxes the non-
linear constraints into linear envelopes. It uses branch and bound to create more tightly
bounded subproblems. By adding redundant constraints, this envelope is further tight-
ened. Whether redundant constraints make the solving faster depends on their number
and complexity. Testing is required for validation. Couenne feeds the linear problem to
CPLEX [13] to compute the solution to the relaxation.

4 Contribution

We developed a strategy to effectively design four-bar linkages outputting a desired
curve using non-convex optimization. The benefits of this application are that the syn-
thesis of the continuous curve is accurate, fast, and deterministic. The time frame of
this project spanned six months. The first two months were used to survey the avail-
able technology. The last four months were used to develop the model and strategy.
We modelled the mechanism using its geometric properties, keeping in mind the possi-
ble generalization to mechanisms of higher complexity, and a novel cut (or redundant
constraint) was developed using the area of the curve. We also designed a novel point
sampling technique. We implemented this strategy in a simple design software.

4.1 Fitness Metric

We aim at designing a four-bar linkage which replicates as tightly as possible a contin-
uous curve. To make this problem tractable for the constraint solver, we strategically
sample the curve using the technique describe in Sec. 4.2. The model described in
Sec. 4.3 minimizes a single variable e which represents the maximum distance from
the curve to a sample point. We sample the curve with as little points as possible to
keep the search space small. Note that the solver could return a solution with zero error,
meaning the solution curve reaches all sample points, and yet not match the input curve,
as shown in Fig. 8. In general, it is necessary to evaluate how well the continuous input
curve matches the output curve after it is returned, regardless of the objective value.

Several well-established curve matching metrics exist. The Hausdorff distance [11]
d is the greatest distance from any point on the curves to the closest point on the other
curve. To render the metric independent of the size of the curves, we normalize it with
the greatest x- or y-dimension of the curve. The normalized Hausdorff distance is herein
designated as Q. In compliance with Fig. 2, the equation for Q is:

Q =
d

max (∆x,∆y)

Figure 3 shows matching curves for different Q values. A Q value of 0 is a perfect
match. The user can define a threshold T under which the curves are considered a good
match. It is worth noting that Q does not consider the course of the curve, which might
result in undesired matches, especially when a curve self-crosses. However, features of
the model such as the area constraint discussed in Sec. 4.4 make these events unlikely.



Fig. 2. The Hausdorff distance is obtained by finding, for all points on one curve, the closest point
on the other, and keeping the distance of the furthest pair. X- and y-dimensions are also shown.

(a) (b) (c)

Fig. 3. Q = (a) 1.7 %; (b) 4.4 %; (c) 20.8 %

4.2 Curve Sampling Technique

The input curve is pre-sampled into a high resolution array of coordinates. The sampling
process consists of choosing n points from this array. Here we propose a strategy to
choose the n sample points T1, . . . , Tn that best represent the input curve. We call the
number n of sample points the sample number. A compromise needs to be made when
choosing the sample number. Indeed, large sample numbers increase the execution time.
However, they also improve the Q value as they better represent the continuous curve.

Some points are more important than others, like cusps or sharp turns. We call these
points of interest features. Figure 4 shows a curve with features and one without. It is
also important to have some sample points between the features to depict the general
behaviour. The remaining sampling points are spread evenly between the features. It is
possible for a curve to have no feature (e.g. an ellipse). In this case, the samples are
distributed uniformly with one placed at the point of maximal curvature (Fig. 4).

Fig. 4. Sampling technique: features are marked by × and remaining points by ◦.

To identify the features, we find all maxima of curvature. However, we do not com-
pute the actual curvature, because it approaches infinity at cusps and reaches inconve-
niently high values at very sharp turns. Instead, as shown on Fig. 5, we compute the
squared change in angle θ2 between segments of the high resolution pre-sampled array.
We square θ to amplify the variation.



Fig. 5. The deviation θ between consecutive segments

We compute the median absolute deviation from all squared angles θ2. Using the
first derivative of θ2 with respect to the distance travelled on the curve, we identify
the local maxima. There are usually many extrema, and filtering is needed. We keep
only the extrema whose θ value is significantly greater than the overall values over the
curve. Experience has shown that filtering out data within 10 times the median absolute
deviation yields satisfactory results. Algorithm 1 presents the equivalent pseudocode.

Algorithm 1 Feature filtering(x,y)
1: Θ ← {θ2i | θi is the exterior angle at (xi, yi)}
2: Θ̂ ← {θ2i ∈ Θ | θ2i−1 < θ2i > θ2i+1}
3: m← median(Θ)
4: d← median{|θ2i −m| | θ2i ∈ Θ}
5: return {(xi, yi) | θ2i ∈ Θ̂ ∧ θ2i > m+ 10d}

4.3 Model

The model ensures that the effector E moves as close as possible to the target curve. It
minimizes the distance when the effector passes to each of the n sample points. In other
words, the solver has to find a mechanism and compute n positions for this mechanism.
Each position brings the effector close to its corresponding target point. This section
describes the variables, constraints and objective function that compose the model.

Variables A collinear four-bar linkage is defined by eight parameters, which are the
x- and y-coordinates of pivots A and B, the lengths of links AC, BD, and CD, and the
distance from C to E. The variable for the length between two points such as AC is de-
noted AC. The solved linkage is interpreted directly from the values of these variables.
We nevertheless define two more redundant variables. The variable AB represents the
distance between A and B. The variable w gives the ratio of length CE over CD.

We add to the model variables for the x- and y-coordinates of C, D, and E for each
target point, for a total of 6n variables. A single error variable e represents the maximum
of all distances between effector positions Ei and their corresponding sample point Ti.

Without loss of generality, all variables for coordinates are bounded from -10 to 10.
Link lengths are bounded from 0 to 10. The ratio w is bounded from 0 to 4. It is helpful
for the algorithm’s filtering to bound the domain of e with the upper error bound eu.

The information on the variables is gathered in Tab. 1.



Table 1. Variables for four-bar linkage model

Type Variables Domains Quantity
Defining parameters Ax, Ay, Bx, By [−10, 10] 4

AB, AC, BD, CD, CE [0, 10] 5
w [0, 5] 1

Position parameters Cx, Cy, Dx, Dy, Ex, Ey [−10, 10] 6n

Error e [0, eu] 1

Constraints are relationships between the variables. The solver must find values for
the variables to satisfy all constraints. Here we explain all the constraints of our model.

The first set of constraints force the coordinates to be separated by distances corre-
sponding to the lengths of the bars. For example, for the crank AC we have:

(Ax − Cxi
)2 + (Ay − Cyi

)2 = AC2 ∀ i ∈ [1, n]

We use a similar constraint to define the error e as the upper bound of the squared
distance from points Ei to points Ti.

(Txi
− Exi

)2 + (Tyi
− Eyi

)2 ≤ e ∀ i ∈ [1, n]

The following constraints ensure that the points C, D, and E are collinear. We use
the fact that the components of vectors CE and CD respect the ratio w.

w · (Dxi
− Cxi

) = Exi
− Cxi

∀ i ∈ [1, n]

w · (Dyi
− Cyi

) = Eyi
− Cyi

∀ i ∈ [1, n]

The lengths of the bars are not sufficient to determine the configuration of the mech-
anism. As shown in Fig. 6, the same bars can be arranged into two distinct mechanisms.
The two solutions share a symmetry along the segment joining B and C. For each tar-
get point Ti, the coordinates for Ei have to be on the same side of the segment BCi.
Since Ti and Ei must lie close to one another, constraining either one is equivalent. The
cross-product of vectors BC and BE changes sign depending on which side of BC the
point E is. By constraining the sign of the cross-product to be the same for all positions,
we constrain the configuration. We therefore add either of the next two constraints.

(Txi − Cxi)(By − Cyi) ≥ (Tyi − Cyi)(Bx − Cxi) ∀ i ∈ [1, n] (1)
(Txi − Cxi)(By − Cyi) ≤ (Tyi − Cyi)(Bx − Cxi) ∀ i ∈ [1, n] (2)

The two constraints are mutually exclusive, so a model may represent one configuration
at a time. To access the whole search space, we can run the two configurations in par-
allel. We term them the left and right configurations, according to the inequality sign.



Fig. 6. The two possible configurations of the same links

The Grashof condition [9] states that the shortest link in a four-bar linkage can fully
rotate only if the combined length of the shortest and longest links is smaller than the
combined length of the remaining two links. The following constraints enforce this:

AB ≥ AC BD ≥ AC CD ≥ AC
CD +BD ≥ AC +AB + s

AB + CD ≥ AC +BD + s

AB +BD ≥ AC + CD + s

A security constant s is added to the three last constraints to avoid equality. Otherwise,
the mechanism could fold over itself completely. In this state, its behaviour is indeter-
minate, as it can unfold in two ways, as shown in Fig. 7. It is the singularity where the
mechanism can switch between the two configurations of Fig. 6. Singularities are gen-
erally undesirable as they require additional control and involve high mechanical stress.
The security constant s can be tuned to the desired tolerance. For all experiments herein
s was set to 0.1, to minimally reduce the search space while preventing singularities.

Fig. 7. Singular behaviour when CD + BD = AC + AB

It is worth noting that the model does not require the solution found to follow the
sample points in any order. Therefore, in theory, the solver could return a mechanism
which goes through the sample points in an undesired order. However, this is unlikely
for two reasons. First, part of the sampling is done by filling gaps between the features.
This creates a continuity between the points which the solutions tend to follow naturally.
Second of all, violating the order of the points generally results in a significant change
in the curve area, which is constrained as discussed in Sec. 4.4.



Table 2. List of constraints for four-bar linkage model

Constraint Quantity
(Ax −Bx)2 + (Ay −By)2 = AB2 1
(Ax − Cxi)

2 + (Ay − Cyi)
2 = AC2 n

(Bx −Dxi)
2 + (By −Dyi)

2 = BD2 n
(Cxi − Exi)

2 + (Cyi − Eyi)
2 = CE2 n

w · (Dxi − Cxi) = Exi − Cxi n
w · (Dyi − Cyi) = Eyi − Cyi n

AB ≥ AC 1
BD ≥ AC 1
CD ≥ AC 1
CD +BD ≥ AC +AB + s 1
AB + CD ≥ AC +BD + s 1
AB +BD ≥ AC + CD + s 1
(Txi − Cxi) · (By − Cyi) ≶ n
(Tyi − Cyi) · (Bx − Cxi)

(Txi − Exi)
2 + (Tyi − Eyi)

2 ≤ e n

Objective Function The goal is to minimize the distance between the two continuous
curves, using the continuous metric Q. Implementing Q in the model would require
approximating the curve with a very large number of points. To avoid enlarging the
model, we have opted for using only carefully selected points to approximate the curve.

The variable e is defined in an analogous way to Q, but for a low resolution ap-
proximation of the curve. We therefore choose the objective function of minimizing
e, which is the maximum distance between the output and input curves at the sample
points. Therefore, even though ultimately we want to minimize the continuous metric
Q, we had to define a discrete metric for the solver to use.

4.4 Constraint on Area

So far, the information contained about the curve is limited to the sample points. There
is a chance that the solution found may go through the sample points, yet not produce
the desired output (see Fig. 8). If we add more points for a tighter fit, the model will
grow proportionately, with added variables and non-convex constraints. In general, it is
desirable that the search space be as small as possible while sacrificing little precision.

Fig. 8. Possible solution to a curve with few sample points



A relationship found empirically allowed including the area of the curve in the
model. Figure 9 (a) shows that the area of the coupler curve varies linearly with the
ratio w of CE over CD. Thus, an expression of the following form can be induced:

Area(w) = a · w + b

(a) (b)

Fig. 9. Variation of area with respect to ratio w

To determine a and b, two points are needed. First, when w is 0, the end effector E
coincides with C and the coupler curve is a circle with radius AC. Second, when w is
1, the E coincides with point D and moves on an arc of null area (Fig. 9 (b)).

Area(0) = π ·AC2 Area(1) = 0

By substitution, we obtain the following expression:

Area = π ·AC2 (CE/CD − 1)

The sign of the area tells us if the end effector is travelling clockwise or counterclock-
wise. Since this information is not known beforehand, we modify the constraint as such:

Area = π ·AC2 |CE/CD − 1| (3)

The area is a constant computed from the input curve. Since we can constrain the
area of the coupler curve, even smaller sample numbers yield precise solutions. Cases
such as seen in Fig. 8 are no longer possible. This allows keeping the model small.

4.5 Simple Design Software

A software application implementing the solving process was developed in Python. It
allows the user to draw a curve and returns a four-bar linkage that approximates it.
The user draws a curve by positioning control points on a minimal graphic interface
as shown in Fig. 10 (a). The curve is then analyzed. A few samplings are done with
different sample numbers. For each sample number, two models are constructed: one
with constraint (1) and the second with constraint (2). A portfolio approach is used and
all models are launched in parallel. When a solution is returned, its distance to the input
curve is evaluated with Q. If Q is below the user-defined threshold, all processes stop
and the best solution is returned and displayed to the user, as shown at Fig. 10 (b).



(a) (b)

Fig. 10. Design software screenshots; (a) User draws a curve; (b) Matching linkage is displayed.

5 Experimentation

We first show a precision and speed comparison with a genetic algorithm. Then, we
characterize the performance of our approach. Last, we demonstrate the flexibility of
the model by using it to design a robotic gripper.

We use the software described in section 4.5 throughout the experimentation.We
generated a benchmark of 100 random curves. For each instance, N different samplings
are made. For each sampling, we launch the two possible linkage configurations (con-
straints (1) or (2)). A total of 2N models are solved in parallel. If a solution with Q
lower than threshold T is found, the execution is stopped and the solution is returned.
Tests conducted with the experimental timeout of 900 seconds demonstrated that 84.5
% of solutions were returned before 60 seconds, and 99.6 % were returned before 400
seconds. Thus, the timeout was set at 400 seconds. The solving flow is shown on Fig. 11.

Fig. 11. How a curve is solved



5.1 Benchmark

The benchmark consists of 100 coupler curves of randomly generated linkages. The
linkages were generated within the search space of the model. The curves are resized to
fit inside a 4 by 4 units square centred at the origin. All curves measure at least 1 unit
at their widest. This benchmark spans a wide range of shapes in the search space of our
model, which all possess at least one solution. Some curves are presented at Fig. 12.

Fig. 12. Example curves from the benchmark

5.2 Results

Comparison with Genetic Algorithm To present the performance of our non-convex
optimization approach, we compare it to results obtained with the genetic algorithm
proposed by Cabrera [7], thereafter referred to as the GA.

For the comparison, we replace the solver block from Fig. 11 either with the non-
convex solver Couenne or the GA. The rest of the solving flow remains unchanged.
Three samplings are done (N = 3) with n1 = 6, n2 = 7 and n3 = 8. The threshold T is
set at 5 %, so when a solution with lower Q value is returned, the execution stops. We set
s = 0.1, and eu = 0.01, which was found to yield the best performance through iterative
testing. Figure 13 shows the distribution of the solutions with respect to Q at timeout.
The metric quantifies how well the input and output curves match in a continuous way.

Fig. 13. Distribution of Q values for non-convex optimization and evolutionary approaches

We see that the majority of the curves were solved by Couenne with Q lower than 5
%. In contrast, all curves solved by the genetic algorithm returned a Q value below 20 %,
but less precise on average. Table 3 emphasizes that the median Q returned by Couenne
and the median absolute deviation are lower than those of the genetic algorithm.



Fig. 14. Distribution of solving times for both approaches. The curves at 400 timed out.

For the non-convex optimization, Q is computed after Couenne has returned an
optimal solution. Therefore, any solution returned by Couenne before timeout is optimal
with respect to the discrete metric of the model. As for the GA, Q is computed once
every few hundred generations. This constitutes an advantage for the GA because sub-
optimal solutions found by Couenne must time out before evaluation. Even so, as shown
in Fig. 14, the non-convex optimization approach is faster and times out less often.

Bounds tightening allows propagation of the restricted domain of variable e. This
considerably reduces the search space from the beginning. As for the GA, the final
solution depends a lot on the initial random population. Though it consistently finds a
reasonable approximation of the curve, it usually stalls in local minima.

Characterization We show the critical impact of the area constraint and how the fea-
ture identification sampling improves the model compared to a uniform sampling.

To evaluate the impact of the area constraint, the benchmark was solved twice over
three sample number sets; once with the area constraint and once without. Table 4 shows
the number of curves in the benchmark solved with Q lower than 5 % in less than τ
seconds, for three values of τ . The number of curves with no solution returned is given.

Higher sample numbers yield longer times of computation without significantly im-
proving the accuracy. In general, the area constraint improved the number of curves
solved. Also, when the fewer sampling points are used, the area constraint is most ef-

Table 3. Average, variance, median and me-
dian absolute deviation of Q.

Approach Q̄ σ2 (Q) Q̃ MAD (Q)

Couenne 3.22 71.59 1.00 1.48
Genetic 8.02 16.52 7.25 10.75

Table 4. Number of curves solved under 5,
60 or 400 seconds with different samplings

Sampling Area Q < 5 % No
5 s 60 s 400 s solution

{4, 5, 6} Yes 59 83 92 0
{4, 5, 6} No 37 58 63 0
{6, 7, 8} Yes 51 81 89 1
{6, 7, 8} No 50 68 78 1
{10, 12, 16} Yes 30 59 69 11
{10, 12, 16} No 33 57 66 14



ficient. Without the area constraint, the software performs best with sample numbers
{6, 7, 8}. With the area constraint, lower sample numbers yield a better performance.

The feature identification sampling is compared to a uniform sampling with no anal-
ysis of the curve. The experiment was conducted with sets of sample numbers {4, 5, 6}
and {6, 7, 8}. Figure 15 shows how the sampling affects the distribution of Q.

(a) (b)

Fig. 15. Distribution of Qs over benchmark with both sampling techniques; (a) sample numbers
{4, 5, 6}; (b) sample numbers {6, 7, 8}

For both sets of sample numbers, the feature identification brought the Q distribu-
tion closer to 0 %. This shows that without increasing the complexity of the model,
choosing points strategically can help achieve greater precision.

Design of a Gripper A benefit of using mathematical optimization is that the model is
easily customizable for specific applications. Say we wish to design a gripping mech-
anism made of symmetric four-bar linkages such that the tip goes through four points,
with low precision plow for the first three points and high precision phigh on the last. Fur-
thermore, the location of the anchors is restricted. The problem is shown at Fig. 16 (a).

(a) (b) (c)

Fig. 16. (a) Target points and anchor bounding box; (b) Synthesized four-bar linkage; (c) Gripper

To adapt the model, only the following modifications need to be done. We replace
Ax, Ay, Bx, By ∈ {−10, 10} by Ax, Bx ∈ {xmin, xmax}; Ay, By ∈ {ymin, ymax}. We
set eu = plow. We add constraint (Tx3

−Ex3
)2+(Ty3

−Ey3
)2 ≤ phigh and disable the

area constraint. The resulting gripping mechanism shown at Fig. 16 (b) was obtained in
0.20 seconds, with the modified model.



5.3 Discussion

Our software can quickly and accurately synthesize collinear four-bar linkages for given
coupler curves. Indeed, the speeds reached are suitable for interactive applications. Be-
cause we use a non-convex optimization solver, our approach is flexible and can be read-
ily adjusted to meet specific needs or different goals. Unlike analytical approaches [19,
24], we are not limited by the number of target points to reach. Moreover, the area
constraint allows the solver to extrapolate between the target points.

Our method aims at matching a continuous curve rather than a discrete set of target
points. However, many related works [7, 6] focus on matching target points. Our results
show capabilities in both goals. Indeed, the distance to the target point is bounded by
the error, which cannot be higher than eu or to a maximum of 1 % of the size of the
curve. Any solution discussed matched its target points at least to this precision.

Our approach also presents benefits compared to machine-learning approaches. A
database cannot guarantee coverage of the whole search space. With our approach, the
search space is fully explorable and only limited by user-defined restrictions.

Though we focused on minimizing the error, this can be easily changed by replacing
the objective function. One could minimize the sum of dimensions, the area of the
coupler curve, or the difference of area between the input curve and the output curve.

5.4 Future Work

The software usability could be improved by providing tools to edit constraints.
Our software could extend to four-bar linkages where points C, D and E are not

collinear. Difficulties include more symmetric configurations and the generalization of
the area constraint. Joints such as sliders and complex mechanisms such as geared five
and six-bar mechanisms could be modelled. 3D-mechanisms could also be tackled. Our
software could be combined with other design analyses such as stress analysis. Multiple
linkages could be linked to a gearing software for timing control. Finally, the model
could be generated as the user defines his own mechanisms by adding bars and joints.

6 Conclusion

The current state of the art of four-bar linkage synthesis is limited in speed, memory
consumption, lack of optimality or lack of generality. Our paper contributes an im-
proved method to the general and fast solving of mechanical linkages. We showed how
to accurately solve complete coupler curves in a short time for collinear four-bar link-
ages using non-convex optimization. For closed curves, a novel constraint can leverage
the area of the curve for increased accuracy and performance. For our best model, 90 %
of the curves could be solved under 400 seconds, 59 % of which below 5 seconds.

Our approach was implemented in simple software where a user can enter a curve
and visualize the solution found. This milestone paves the way for modelling mecha-
nisms of increased complexity such as the general four-bar linkage or five-bar linkages.
It also provides a very flexible basis for solving four-bar linkages with various con-
straints or different objectives.
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