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Abstract

In constraint programming one models a problem by stating constraints on acceptable so-

lutions. The constraint model is then usually solved by interleaving backtracking search and

constraint propagation. Previous studies have demonstrated that designing special purpose

constraint propagators for commonly occurring constraints can significantly improve the effi-

ciency of a constraint programming approach. In this paper we present a fast, simple algorithm

for bounds consistency propagation of the alldifferent constraint. The algorithm has the same

worst case behavior as the previous best algorithm but is much faster in practice. Using a

variety of benchmark and random problems, we show that our algorithm outperforms existing

bounds consistency algorithms and also outperforms—on problems with an easily identifiable

property—state-of-the-art commercial implementations of propagators for stronger forms of lo-

cal consistency.

1 Introduction

Many interesting problems can be modeled and solved using constraint programming. In this ap-
proach one models a problem by stating constraints on acceptable solutions, where a constraint is
simply a relation among several unknowns or variables, each taking a value in a given domain. The
constraint model is then usually solved by interleaving backtracking search and constraint propaga-
tion. In constraint propagation the constraints are used to reduce the domains of the variables by
ensuring that the values in their domains are locally consistent with the constraints.

Previous studies have demonstrated that designing special purpose constraint propagators for
commonly occurring constraints can significantly improve the efficiency of a constraint programming
approach (e.g., [8, 12]). In this paper we study constraint propagators for the alldifferent constraint.
An alldifferent constraint over a set of variables states that the variables must be pairwise different.
The alldifferent constraint is widely used in practice and because of its importance is offered as a
builtin constraint in most, if not all, major commercial and research-based constraint systems.

Several constraint propagation algorithms for the alldifferent constraint have been developed,
ranging from weaker to stronger forms of local consistency (see [15] for an excellent survey). Régin
[8] gives an O(n2.5) algorithm for domain consistency of the alldifferent constraint, where n is
the number of variables, that is based on relating alldifferent constraints to matchings (see the
next section for the definitions of the different forms of consistency). Leconte [4] gives an O(n2)
algorithm for range consistency, a weaker form of consistency than domain consistency, that is based
on identifying Hall intervals. Puget [7], building upon the work of Leconte [4], gives an O(n log n)
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algorithm for bounds consistency, which is in turn a weaker form of local consistency than range
consistency. Mehlhorn and Thiel [6], building upon the work of Régin [8], give an algorithm for
bounds consistency that is O(n) plus the time needed to sort the bounds of the domains, and thus
has the same worst-case behavior as Puget’s algorithm in the general case.

In this paper we present a fast and simple algorithm for bounds consistency propagation of
the alldifferent constraint. The algorithm has the same worst case behavior as the previous best
algorithms but is much faster in practice. Using a variety of benchmark and random problems, we
show that our algorithm outperforms existing bounds consistency algorithms and also outperforms—
on problems with an easily identifiable property—state-of-the-art commercial implementations of
propagators for stronger forms of local consistency.

2 Background

We first define the constraint satisfaction problem and the relevant definitions of local consistency
and then define the task studied in this paper.

A constraint satisfaction problem (CSP) consists of a set of n variables, {x1, . . . , xn}; a finite do-
main dom(xi) of possible values for each variable xi, and a collection of m constraints, {C1, . . . , Cm}.
Each constraint Ci, is a constraint over some set of variables, denoted by vars(C), that specifies the
allowed combinations of values for the variables in vars(C). Given a constraint C, we use the nota-
tion t ∈ C to denote a tuple t—an assignment of a value to each of the variables in vars(C)—that
satisfies the constraint C. We use the notation t[x] to denote the value assigned to variable x by
the tuple t. A solution to a CSP is an assignment of a value to each variable that satisfies all of the
constraints.

We assume in this paper that the domains are totally ordered. The minimum and maximum
values in the domain dom(x) of a variable x are denoted by min(dom(x)) and max(dom(x)), and
the interval notation [a, b] is used as a shorthand for the set of values {a, a + 1, . . . , b}.

CSPs are usually solved by interleaving backtracking search and constraint propagation. During
the backtracking search when a variable is assigned a value, constraint propagation ensures that the
values in the domains of the unassigned variables are “locally consistent” with the constraints.

Definition 1 (Support) Given a constraint C, a value a ∈ dom(x) for a variable x ∈ vars(C) is
said to have:

(i) a domain support in C if there exists a t ∈ C such that a = t[x] and t[y] ∈ dom(y), for every
y ∈ vars(C);

(ii) an interval support in C if there exists a t ∈ C such that a = t[x] and t[y] ∈ [min(dom(y)), max(dom(y)],
for every y ∈ vars(C).

Definition 2 (Local Consistency) A constraint C is:

(i) bounds consistent if for each x ∈ vars(C), each of the values min(dom(x)) and max(dom(x))
has an interval support in C.

(ii) range consistent if for each x ∈ vars(C), each value a ∈ dom(x) has an interval support in C.

(iii) domain consistent if for each x ∈ vars(C), each value a ∈ dom(x) has a domain support in C.

A CSP can be made locally consistent by repeatedly removing unsupported values from the
domains of its variables.
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Example 1 (Puget [7]) Consider the CSP with six variables x1, . . . , x6; with the following do-
mains, x1 ∈ [3, 4], x2 ∈ [2, 4], x3 ∈ [3, 4], x4 ∈ [2, 5], x5 ∈ [3, 6], and x6 ∈ [1, 6]; and a single
constraint alldifferent(x1, . . . , x6). Enforcing bounds consistency on the constraint reduces the do-
mains of the variables as follows: x1 ∈ [3, 4], x2 ∈ [2], x3 ∈ [3, 4], x4 ∈ [5], x5 ∈ [6], and x6 ∈ [1].

Given an alldifferent constraint over n variables, where each of the variables xi, 1 ≤ i ≤ n, has an
interval domain dom(xi) = [mini, maxi], our task is to make the constraint bounds consistent. More
precisely, we must update the domain of each variable xi to dom ′(xi) = [min′

i, max′

i], the minimum
and maximum value with interval support, or report that no solution exists.

3 Our result

In this section we present our algorithm for bounds consistency propagation of the alldifferent
constraint and analyze its worst-case complexity.

3.1 Finding Hall intervals

Following Leconte [4] and Puget [7], we analyze the task in terms of Hall intervals. An interval I
is a Hall interval if its size equals the number of variables whose domain is contained in I . Clearly,
any solution must use all the values in I for those variables, making these values unavailable for
any other variable. Puget shows that an algorithm for updating lower bounds can also be used to
update upper bounds: simply invert each domain [mini, maxi] to [−maxi,−mini] before running
the algorithm and invert the results back afterwards. The lower bound for variable xi gets updated
where min′

i ≥ b+1, whenever a Hall interval [a, b] with a ≤ mini ≤ b < maxi is found. This condition
implies that any Hall interval [a′, b] with a′ < a causes the same update. Thus, for the purpose of
updating lower bounds, it suffices to restrict attention to left-maximal Hall intervals: those [a, b] for
which a is minimal.

Puget’s algorithm first sorts the variables in non-decreasing order of maxi. We assume for
convenience that maxi ≤ maxj , for i < j. The algorithm then processes each of the variables in
turn, maintaining a set of counters which count how many of the variables processed so far have
a minimum bound of at least k. More precisely, after processing xi, the counter ci

k denotes the
cardinality of the set {j ≤ i : minj ≥ k}. The algorithm stores the counters in a balanced binary
tree, allowing updates in O(log n) time per variable.

Conceptually, our algorithm is similar to Puget’s. The difference is in the maintenance of the
counters. The key observation is that not all counters are relevant. Define vi

k = maxi +1− k− ci
k as

the capacity of k after processing xi. Intuitively this corresponds to as of yet unused values in the
current interval.

If vi
k = 0 and k ≤ maxi then we have ci

k equal to the cardinality of interval [k, maxi], which
is thus recognized as a Hall interval. Capacities increase when maxi+1 > maxi and decrease when
mini+1 ≥ mini. More precisely, from the definition of capacity we have,

vi+1

k − vi
k = maxi+1 −maxi − (ci+1

k − ci
k).

Note that ci+1

k is the cardinality of the set {j ≤ i + 1 : minj ≥ k} = {j ≤ i : minj ≥ k}∪ {j = i + 1 :
minj ≥ k}) = ci

k + δ, where δ = 1 if k ≤ mini+1 and 0 otherwise. Hence,

vi+1

k = vi
k + maxi+1 −maxi − δ, (1)

where δ = 1 if k ≤ mini+1 and 0 otherwise. This shows the following.

Lemma 1 (Domination) Let k < k′. If vi
k ≤ vi

k′ then vi′

k ≤ vi′

k′ for any i′ > i.
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Capacity vi
k′ is dominated by vi

k in the sense that the former cannot reach 0 before the latter, and if
both reach 0, then the Hall interval starting at k′ is not left-maximal. If k is not equal to any mini,
then it is always dominated by the next greater mini, hence we need only remember capacities for
which k equals some mini. The critical set C is the set of such indices of undominated capacities.
This set starts out as C0 =

⋃
{mini} and becomes smaller over time as variables are processed and

capacities become dominated. We denote by C i the critical set after processing xi. The next lemma
shows that we can effectively test when each particular capacity vi

k becomes zero or negative.

Lemma 2 (ZeroTest) Let k, l ∈ C i be successive critical indices, such that k ≤ mini < l and let

d = vi
k − vi

l be their difference in capacity. Suppose that for all mini < m ≤ maxi, capacity vi
m ≥ 0.

Then when vi
k is positive we have maxi + 1 − l + d ≥ 2 and when vi

k is zero or negative we have

vi
k = maxi + 1− l + d.

Proof: Since vl is not dominated by vk, Lemma 1 implies d > 0. By definition, vi
l = maxi+1−l−ci

l.
Now either ci

l = 0 and then vi
k = vi

l + d = maxi + 1− l + d, or ci
l > 0, which implies that for some

j ≤ i, l ≤ minj . In that case, l ≤ maxi, which implies both (by assumption of the lemma) vi
l ≥ 0,

giving vi
k = vi

l + d ≥ 1, and maxi + 1− l + d ≥ 1 + d ≥ 2.

Our algorithm maintains the critical set C as a linked list in which each critical index points back
to the preceding one, which, as shown above, has a larger capacity. The update rule (Equation 1)
increases all capacities vi−1

k , k > mini, by a certain amount, namely, maxi+1 − maxi − δ, and all
capacities vi−1

k , k ≤ mini, by 1 less than that amount. This means that differences between adjacent
critical capacities remain constant, except in one place: between capacities vk and vl of the ZeroTest
Lemma, where the difference is reduced by 1. Therefore, testing for a zero or negative capacity
need only be done at this vk. Our linked list data structure is designed to perform this operation
efficiently. All dominated indices form forests pointing toward the next critical index. A dummy
index at the end, which never becomes dominated (3 larger than the largest max suffices), ensures
that every dominated index has a critical one to point to. When a difference in capacity, say between
indices k1 < k2, is reduced from 1 to 0, k2 becomes dominated. It must then point to the next critical
index, say k3, which instead of pointing to k2 must now point to k1.

Example 2 Consider once again the CSP introduced in Example 1. The variables are already
ordered by non-decreasing max. After placing a final dummy index at 9, we get initial capacities
(relative to max = 4) of

v0
1 = 4, v0

2 = 3, v0
3 = 2, v0

9 = −4.

We represent this with the data structure

1
1
←− 2

1
←− 3

6
←− 9,

which tracks the differences between adjacent critical capacities. Initially, these are the differences
between the indices themselves. Processing x1 ∈ [3, 4] reduces the difference between v3 and v9 from
6 to 5:

1
1
←− 2

1
←− 3

5
←− 9.

Processing x2 ∈ [2, 4] reduces the difference between v2 and v3 from 1 to 0, causing v3 to become
dominated by v2:

1
1
←− 2

5
←− 9.

Processing x3 ∈ [3, 4] reduces the difference between v2 and v9 from 5 to 4:

1
1
←− 2

4
←− 9.
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The zero capacity v2 = max + 1 − 9 + 4 = 0 signals a Hall interval [2, max] = [2, 4]. Processing
x4 ∈ [2, 5] increases max to 5 while reducing the difference between v2 and v9 from 4 to 3:

1
1
←− 2

3
←− 9.

The zero capacity v2 = max + 1 − 9 + 3 = 0 signals a Hall interval [2, max] = [2, 5]. Processing
x5 ∈ [3, 6] increases max to 6 while reducing the difference between v2 and v9 from 3 to 2:

1
1
←− 2

2
←− 9.

The zero capacity v2 = max+1−9+2 = 0 signals a Hall interval [2, max] = [2, 6]. Finally, processing
x6 ∈ [1, 6] reduces the difference between v1 and v2 from 1 to 0, causing v2 to become dominated by
v1:

1
2
←− 9.

The zero capacity v1 = max + 1− 9 + 2 = 0 signals a Hall interval [1, max] = [1, 6].

3.2 Updating bounds

Finding Hall intervals is only part of the solution. We also need to efficiently update the bounds.
For this we use another linked list structure, in which indices inside a Hall interval point to the
location representing its upper end, while those outside of any Hall interval point left toward the
next such index. We store the list of bounds in an array named bounds. Intervals are hereafter
numbered by their order of occurrence in this array. The linked list is implemented as an array t

using indices to the bounds as pointers. The differences between critical capacities appearing above
the arrows in Example 2 are stored in an array d. The algorithm shown in Figure 1 solves one half
of the problem: updating all lower bounds.

Variable niv holds the number of intervals, while nb holds the number of unique bounds. The
algorithm uses the following arrays:

• maxsorted[0..niv-1] is the array of intervals sorted by max.

• bounds[0..nb+1] is a sorted array of all min’s and max’s.

• t[0..nb+1] holds the critical capacity pointers; that is, t[i] points to the predecessor of i in
the bounds list.

• d[0..nb+1] holds the differences between critical capacities; that is d[i] is the difference of
capacities between bounds[i] and its predecessor element in the list bounds[t[i]].

• minrank and maxrank give the index in array bounds of the min and (max +1) of an interval.

• h[0..nb+1] holds the Hall interval pointers; that is, if h[i]< i then the half-open interval
[bounds[h[i]],bounds[i]) is contained in a Hall interval, and otherwise holds a pointer to the
Hall interval it belongs to. This Hall interval is represented by a tree, with the root containing
the value of its right end.

The algorithm uses two functions for retrieving/updating pointer information:

• pathmax(a, x) which follows the chain x,a[x],a[a[x]],..., until it stops increasing, returning
the maximum found.

• pathset(a, x, y, z) which sets each of the entries a[x],a[a[x]],...,a[w] to z, where w is
such that a[w] equals y.
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for (i = 1; i <= nb+1; i++) {

t[i] = h[i] = i-1

d[i] = bounds[i] - bounds[i-1]

}

for (i = 0; i < niv; i++) {

(x, y) = (maxsorted[i]->minrank, maxsorted[i]->maxrank)

z = pathmax(t, x+1)

j = t[z]

if (--d[z] == 0) {

t[z] = z+1

z = pathmax(t, t[z])

t[z] = j

}

pathset(t, x+1, z, z)

if (d[z] < bounds[z] - bounds[y])

return Failure

if (h[x] > x) {

w = pathmax(h, h[x])

maxsorted[i]->min = bounds[w]

pathset(h, x, w, w)

}

if (d[z] == bounds[z] - bounds[y]) {

pathset(h, h[y], j-1, y)

h[y] = j-1;

}

}

return Success

Figure 1: Algorithm for updating lower bounds.

The values minrank and maxrank give the index in array bounds of the min and (max+1) of an
interval. The first for-loop initializes arrays t, h and d.

The algorithm examines each interval in turn, sorted by their upper bounds. It then updates
capacities accordingly, followed by path compression operations on the underlying data structures.
At each step we test for failure (a negative capacity) or a newly discovered Hall interval (a zero
capacity, which indicates that the width of the interval is equal to the number of variables whose
domain falls within that interval).

Example 3 Consider again the CSP from Examples 1 & 2. Table 1 shows a trace of the algorithm
for updating lower bounds (Figure 1) when applied to the CSP. Each row represents an iteration
where a variable is processed. In the first graph the nodes are the elements of the vector bounds.
The arrows illustrate the content of the vector t and the numbers over them are given by the vector
d. The nodes of the second graph are also the values found in vector bounds but the arrows are
given by the vector h that keeps track of the Hall intervals.
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Initial situation

-1 1
2 1

2
1

3
2

5 6 7
1 1

9
1

-1 1 2 3 5 6 7 9

x1 ∈ [3, 4]

-1 1
2 1

2
1

3
1

5 6 7
1 1

9
1

-1 1 2 3 5 6 7 9

x2 ∈ [2, 4]

-1 1
2 1

2

3

1
5 6 7

1 1
9

1

-1 1 2 3 5 6 7 9

x3 ∈ [3, 4] new Hall interval [2, 4]

-1 1
2 1

2

3

5

6 7
1 1

9
1

-1 1 2 3 5 6 7 9

x4 ∈ [2, 5], x′

4 ← [5, 5] Hall: [2, 5]

-1 1
2 1

2

3 5 6

7
1

9
1

-1 1 2 3 5 6 7 9

x5 ∈ [3, 6], x′

5 ← [6, 6] Hall: [2, 6]

-1 1
2 1

2

3

5

6

7

9
1

-1 1 2 3 5 6 7 9

x6 ∈ [1, 6] Hall: [1, 6]

-1 1
2

2 3 5

6

7

9
1

-1 1 2 3 5 6 7 9

Table 1: Trace of the example: Each row represents an iteration where a variable is processed. The
first graph illustrates the state for the vectors bounds, t and d while the second graph shows the
state of the vectors bounds and h.
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3.3 Time complexity

The running time of the algorithm is dominated by the various calls to pathmax and pathset. Since
each chain followed in a pathmax call is also followed in a subsequent pathset call, we can restrict
our analysis to the time spent in the latter. Consider the right-running chains in array t. The
following Lemma shows that all but a logarithmic number of indices see a rise in the value of a
certain potential function as a result of path compression.

Lemma 3 For any increasing sequence 0 < i1 < i2 < · · · < ik < n there are at most log n elements

ij such that blog(ik − ij)c = blog(ij+1 − ij)c.

Proof: Note that the potential function blog(ij+1− ij)c can take on at most log n values. If ij < ij′
share the same potential, then blog(ik − ij)c ≥ blog(ij′+1 − ij′ + ij+1 − ij)c ≥ blog(ij+1 − ij)c + 1.
Hence all but the last index with this potential will see a rise.

Since the potential function can never exceed log n this implies that a linear number of path
compressions can take only O(n log n) steps. The situation with array h is similar. It follows that
the entire algorithm runs in time O(n log n).

The theoretical performance of the algorithm can be improved further by observing that the
union operations are always performed over sets whose bounds appear consecutively in a left to
right ordering. This is known as the interval union-find problem. Gabow and Tarjan [1] gave a
linear time solution on a RAM computer provided that the keys fit in a single word of memory. This
is a reasonable assumption in current architectures with 32 or 64 bit words. Using this technique
we obtain a linear time algorithm which matches the theoretical performance of Mehlhorn and
Thiel’s solution. We implemented this algorithm on the Intel x386 architecture using direct assembly
code calls from a C++ program. However, in practice, the O(n log n) solution outperformed both
Mehlhorn and Thiel’s algorithm and the algorithm using the interval union find data structure.

4 Experimental results

We implemented our new bounds consistency algorithm (denoted hereafter as BC) and Mehlhorn
and Thiel’s [6] bounds consistency algorithm (denoted MT) using the ILOG Solver C++ library,
Version 4.2 [3]1. The ILOG Solver already provides implementations of Leconte’s [4] range con-
sistency algorithm (denoted RC), Régin’s [8] domain consistency algorithm (denoted DC), and an
algorithm that simply removes the value of an instantiated variable from the domains of the re-
maining variables (denoted as VC, for value consistency). To compare against Puget’s [7] bounds
consistency algorithm, we use the runtime results reported by Puget [7] for RC and our own runtime
results for RC as calibration points. We believe this is valid as Puget also uses a similar vintage of
ILOG Solver and when we compared, we were careful to use the same constraint models and variable
orderings.

We compared the algorithms experimentally on various benchmark and random problems. All
the experiments were run on a 300 MHz Pentium II with 228 MB of main memory. Each reported
runtime is the average of 10 runs except for random problems where more runs were performed.

We first consider a problem introduced by Puget ([7]; denoted here as Pathological problems)
that were “designed to show the worst case behavior of each algorithm”. A Pathological problem
consists of a single alldifferent constraint over 2n + 1 variables with dom(xi) = [i− n, 0], 0 ≤ i ≤ n,
and dom(xi) = [0, i−n], n + 1 ≤ i ≤ 2n. The problems were solved using the lexicographic variable
ordering. On these, our BC propagator offers a clear performance improvement over propagators
for stronger forms of local consistency (see Figure 2). Comparing against the best previous bounds

1The code discussed in this section is available on request from vanbeek@uwaterloo.ca
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Figure 2: Time (sec.) to first solution for Pathological problems.

consistency algorithms, our BC propagator is approximately 2 times faster than MT and, using
RC as our calibration point to compare against the experimental results reported by Puget [7],
approximately 5 times faster than Puget’s algorithm.

m VC RC DC MT BC
8 0.9 0.5 0.6 0.6 0.3
9 9.0 3.8 4.6 4.4 2.3

10 87.3 31.7 39.5 36.5 18.9
11 1773.6 688.1 871.2 841.4 437.6

Table 2: Time (sec.) to optimal solution for Golomb ruler problems.

We next consider the Golomb ruler problem (see [2], Problem 6). Briefly, a Golomb ruler is a set
of m integers 0 = a1 < a2 · · · < am such that the m(m− 1)/2 differences aj − ai, 1 ≤ i < j ≤ m are
distinct. Such a ruler is said to contain m marks and to be of length am. Following Smith et al. [11]
we modeled the problem using auxiliary variables (the “ternary and all-different model” in [11]) and
we used the lexicographic variable ordering. This appears to be the same model as Puget [7] uses in
his experiments as the number of fails for each problem and each propagator are the same. On these
problems, our BC propagator is approximately 1.6 times faster than the next fastest propagator
used in our experiments (see Table 2) and, again using RC as our calibration point, approximately
1.5 times faster than Puget’s bounds consistency algorithm.

We next consider instruction scheduling problems for single-issue processors with arbitrary la-
tencies. Instruction scheduling is one of the most important steps for improving the performance
of object code produced by a compiler. Briefly, in the model for these problems there are n vari-
ables, one for each instruction to be scheduled, latency constraints of the form xi ≤ xj + d where
d is some small integer value, a single alldifferent constraint over all n variables, and redundant
constraints called “distance constraints” (see [13] for more details; additional redundant constraints
are identified there which we omit in this study in order to focus on the alldifferent constraint). In
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n VC RC DC MT BC
69 0.02 0.04 0.04 0.02
70 0.02 0.05 0.04 0.02

111 0.08 0.07 0.12 0.11 0.07
211
214 40.64 0.67 1.20 0.94 0.46
216 0.31 1.08 0.72 0.38
220 0.29 0.93 0.66 0.32
377 0.84 3.94 2.41 0.79
381 0.28 0.50 3.18 1.15 0.39
394 2.66 7.15 2.66 1.65
556
690 1.91 26.88 3.95 1.61
691 14.47 40.50 6.30 3.14
856 7.72 17.09 10.86 5.48

1006 10.35 87.23 15.90 5.95

Table 3: Time (sec.) to optimal solution for instruction scheduling problems. A blank entry means
the problem was not solved within a 10 minute time bound.

our experiments, we used fifteen representative hard problems that were taken from the SPEC95
floating point, SPEC2000 floating point and MediaBench [5] benchmarks. The minimum domain
size variable ordering heuristic was used in the search (see Table 3). On these problem too, our BC
propagator offers a clear performance improvement over the other propagators.

To systematically study the scaling behavior of the algorithms, we next consider random prob-
lems. The problems consisted of a single alldifferent constraint over n variables and each variable
xi had its initial domain set to [a, b], where a and b, a ≤ b, were chosen uniformly at random from
[1, n]. The problems were solved using the lexicographic variable ordering. In these “pure” prob-
lems nearly all of the run-time is due to the alldifferent propagators, and one can clearly see the
quadratic behavior of the RC and DC propagators and the nearly linear incremental behavior of
the BC propagator (see Figure 3). On these problems, VC (not shown) could not solve even the
smallest problems (n = 100) within a 10 minute time bound and MT (also not shown) was 2.5 – 3
times slower than our BC propagator.

Having demonstrated the practicality of our algorithm, we next study the limits of its applica-
bility. Schulte and Stuckey [10] investigate cases where it can be proven a priori that maintaining
bounds consistency during the backtracking search, rather than a stronger form of local consistency
such as range or domain consistency, does not increase the size of the search space. The Golomb
ruler problem is one such example. In general, of course, this is not the case and using bounds
consistency can exponentially increase the search space.

To systematically study the range of applicability of the algorithms, we next consider random
problems with holes in the domains of the variables. The problems consisted of a single alldifferent
constraint over n variables. The domain of each variable was set in two steps. First, the initial
domain of the variable was set to [a, b], where a and b, a ≤ b, were chosen uniformly at random
from [1, n]. Second, each of the values a + 1, . . . , b − 1 is removed from the domain with some
given probability p. The resulting problems were then solved using both the lexicographic and the
minimum domain size variable ordering heuristics. These problems are trivial for domain consistency,
but not so for bounds and range consistency. We recorded the percentage that were not solved by
BC and RC within a fixed time bound (see Figure 4). If there are no holes in the domains of the
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Figure 3: Time (sec.) to first solution or to detect inconsistency for random problems. Each data
point is the average of 100 problems.

variables, then bounds consistency is equivalent to range and domain consistency. As the number
of holes increases, the performance of bounds and range consistency decreases and they become
less appropriate choices. The range of applicability of BC can be extended somewhat following a
suggestion by Puget [7] of combining bounds consistency with value consistency (denoted hereafter
as BC+ and MT+; see Figure 4).

n VC RC DC MT+ BC+

all 8 0.0 0.0 0.1 0.2 0.1
9 0.2 0.2 0.3 0.6 0.3

10 0.6 0.8 1.0 2.3 1.0
11 2.7 3.5 4.4 10.4 4.6
12 13.1 17.0 21.6 52.3 22.6

first 100 0.1 0.1 0.4 0.2 0.1
200 0.3 0.5 2.4 1.0 0.5
400 1.1 2.9 17.5 4.3 1.9
800 5.7 20.3 160.0 22.0 10.1

1600 32.5 164.4 1264.2 111.8 56.2

Table 4: Time (sec.) to find first or all solutions for n-queens problems.

We next consider the well-known n-queens problem. We use the model and variable ordering
heuristic given in [3]. Briefly, the model consists of 3n variables with three alldifferent constraints
over n variables each and the variable ordering heuristic consists of choosing the variable with the
minimum domain size and breaking ties by choosing the variable with the smallest minimum domain
value (see Table 4). On these problems, reasoning about the holes in the domains is crucial and
bounds consistency alone, both BC and MT, cannot solve them. BC+ and MT+ can solve them
but are not competitive with VC alone.
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Figure 4: Percentage not solved within 5 seconds for problems with 100 variables. Each data point
is the average of 100 problems. The cutoff (5 seconds) was chosen to be the value that was at least
two orders of magnitude slower than domain consistency, the fastest propagator on these problems.

We next consider the Quasigroup existence problems (see [2], Problem 3 and the code given
there). Following Stergiou and Walsh [12] the problem is modeled using 2n alldifferent constraints
over n variables each, where n is the order of the problem. Each axiom defines additional constraints.
The problems were solved using the minimum domain size variable ordering heuristic (see Table 5).
On these problems too, reasoning about the holes in the domains is crucial and bounds consistency
alone, both BC and MT, cannot solve them. BC+ and MT+ can solve them but are not competitive
with DC.

Interestingly, in these experiments, RC was never the propagator of choice. On problems where
holes arise in the domains, DC was the best choice (except for on n-queens problems, where VC was
considerably faster), and on problems where holes do not arise in the domains, BC was the clear
best choice. Clearly, whether the domains have holes in them is a property that is easily identified
and tracked during the search. Thus, the best choice of propagator could be automatically selected,
rather than left to the constraint modeler to specify as is currently the case.

5 Conclusions

We presented an improved bounds consistency constraint propagation algorithm for the important
alldifferent constraint. Using a variety of benchmark and random problems, we showed that our algo-
rithm significantly outperforms the previous best bounds consistency algorithms for this constraint
and can also significantly outperform propagators for stronger forms of local consistency.
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axiom order VC RC DC MT+ BC+

3 8 0.2 2.9 2.7 0.2 0.2
9 773.8 630.5 557.0 667.3 641.6

4 8 9.0 7.5 6.9 8.1 7.7
9 1.6 1.3 0.8 1.4 1.4

5 8 0.2 0.1 0.2 0.1 0.1
9 1.1 0.9 0.9 0.9 0.9

10 14.4 12.0 6.3 12.3 12.1
11 67.1 21.1 9.7 21.5 21.2
12 1077.2 708.9 231.6 721.9 712.9

6 8 0.0 0.0 0.0 0.0 0.0
9 0.2 0.2 0.2 0.2 0.2

10 2.0 1.9 1.9 2.1 2.0
11 32.4 31.7 32.1 33.6 32.0
12 842.1 815.8 820.2 864.6 829.5
13 10.0 10.0 10.3 10.8 10.3

7 8 0.9 0.8 0.9 1.0 0.9
9 2.1 2.1 2.3 2.4 2.2

10 499.8 483.8 506.0 529.9 495.2

Table 5: Time (sec.) to first solution for Quasigroup problems. For each axiom, problems of order
8, . . . , 13 were solved. The absence of an entry means the problem was not solved within a 1 hour
time bound.

References

[1] H. N. Gabow and R. E. Tarjan. A Linear-Time Algorithm for a Special Case of Disjoint Set
Union. Journal of Computer and System Sciences, 30(2): 209-221, 1985.

[2] I. P. Gent and T. Walsh. CSPlib: A benchmark library for constraints. In Proceedings of the

Fifth International Conference on Principles and Practice of Constraint Programming, pages
480–481, Alexandria, Virginia, 1999.

[3] ILOG S. A. ILOG Solver 4.2 user’s manual, 1998.

[4] M. Leconte. A bounds-based reduction scheme for constraints of difference. In Proceedings of

the Constraint-96 International Workshop on Constraint-Based Reasoning, pages 19–28, Key
West, Florida, 1996.

[5] C. Lee, M. Potkonjak, and W. Manginoe-Smith. Mediabench: a tool for evaluating and syn-
thesizing multimedia and communications. In Proceedings of International Symposium on Mi-

croarchitecture, pages 330–335, 1997.

[6] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sortedness and
alldifferent constraint. In Proceedings of the Sixth International Conference on Principles and

Practice of Constraint Programming, pages 306–319, Singapore, 2000.

[7] J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In Proceedings of

the Fifteenth National Conference on Artificial Intelligence, pages 359–366, Madison, Wisconsin,
1998.

13
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In Proceedings of the First International Conference on Principles and Practice of Declarative

Programming, pages 98–116, Paris, 1999.

[15] W. J. van Hoeve. The alldifferent constraint: A survey, 2001. Submitted manuscript. Available
from http://www.cwi.nl/~wjvh/papers/alldiff.pdf.

14


