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Abstract. We consider the transmission of a movie over a broadcast
network to support several viewers who start watching at arbitrary times,
after a wait of at most twait minutes. A recent approach called har-
monic broadcasting optimally solves the case of many viewers watching
a movie using a constant amount of bandwidth. We consider the more
general setting in which a movie is watched by an arbitrary number v of
viewers, and v changes dynamically. A natural objective is to minimize
the amount of resources required to achieve this task. We introduce two
natural measures of resource consumption and performance—total band-
width usage and maximum momentary bandwidth usage—and propose
strategies which are optimal for each of them. In particular, we show that
an adaptive form of pyramid broadcasting is optimal for both measures
simultaneously, up to constant factors. We also show that the maximum
throughput for a fixed network bandwidth cannot be obtained by any
online strategy.

1 Introduction

Video-on-demand. A drawback of traditional TV broadcasting schemes is that
the signal is sent only once and all viewers wishing to receive it must be listen-
ing at time of broadcast. To address this problem, viewers rely on recording
devices (VCR, TiVo) that allow them to postpone viewing time by recording
the program at time of broadcast for later use. A drawback of this solution is
that the viewer must predict her viewing preferences in advance or else record
every single program being broadcast, neither of which is practical. One pro-
posed solution is to implement a video-on-demand (VoD) distribution service
in which movies or TV programs are sent at the viewer’s request. Considerable
commercial interest has inspired extensive study in the networking literature
[CP01,DSS94,EVZ00,EVZ01,JT97,JT98,ME+01,PCL98a,PCL98b,VI96,Won88]
and most recently in SODA 2002 [ES02,B-NL02].

Previous approaches. The obvious approach—to establish a point-to-point
connection between the provider and each viewer to send each desired show at



each desired time—is incredibly costly. Pay-per-view is a system in which the
system broadcasts a selected set of titles and viewers make selections among
the titles offered. Each movie that is, say, n minutes long gets broadcast over k
channels at equally spaced intervals. The viewer then waits at most n/k minutes
before she can start watching the movie. If k were sufficiently large, pay-per-
view would become indistinguishable from video-on-demand from the viewer’s
perspective. This property is known as near video-on-demand (nVoD) or simply
VoD. In practice, movies are roughly 120 minutes long, which would require an
impractical number of channels per movie for even a 5-minute wait time.

Viswanathan and Imielinski [VI96] observed that if viewers have special-
ized hardware available (such as a TiVo, DVD-R, or digital decoder standard
with current cable setups), then it is possible to achieve video-on-demand with
substantially lower bandwidth requirements. In practice, the physical broadcast
medium is typically divided into physical channels, each of which has precisely
the required bandwidth for broadcasting a single movie at normal play speed
(real time). The idea is to simultaneously transmit different segments of a movie
across several channels. The set-top device records the signals and collates the
segments into viewing order.

Harmonic broadcasting. Juhn and Tseng [JT97] introduced the beautiful
concept of harmonic broadcasting which involves dividing a movie into n equal
sized segments of length twait. Throughout the paper, it is assumed that movies
are encoded at a constant bitrate. The n segments are broadcast simultaneously
and repeatedly, but at different rates; refer to Figure 1. Specifically, if we label
the segments S1, . . . , Sn in order, then segment Si is sent at a rate of 1/i. In other
words, we set up n virtual channels, where virtual channel Ci has the capacity
of 1/i of a physical channel, and channel Ci simply repeats segment Si over and
over. Whenever a viewer arrives, the first i segments will have been broadcast
after monitoring for i + 1 time units (one time unit is twait minutes), so the
viewer can start playing as soon as the first segment has arrived. The maximum
waiting time for a viewer in this scheme is twait minutes. The number of physical
channels required by this scheme is the sum of the virtual channel capacity,
1 + 1

2
+ 1

3
+ · · · + 1

n , which is the nth Harmonic number Hn. Asymptotically,
Hn ≈ ln n + γ + O(1/n) where γ ≈ 0.5572 is Euler’s constant.

Pâris et al. [PCL98b] improved this scheme and gave more precise bounds
on the required bandwidth and needed waiting time. Engebretsen and Sudan
[ES02] proved that harmonic broadcasting is an optimal broadcasting scheme
for one movie with a specified maximum waiting time. This analysis assumes
that the movie is encoded at a constant bitrate, and that at every time interval
[itwait, (i + 1)twait] i ∈ {0, 1, . . . , n − 1}, at least one viewer starts watching the
movie. Hence, harmonic broadcasting is effective provided there are at least as
many viewers as segments in the movie (e.g., 24 for a 120-minute movie and a
5-minute wait), but overkill otherwise.

Adaptive broadcasting. We introduce a family of adaptive broadcasting
schemes which adapt to a dynamic number v of viewers, and use considerably
less bandwidth for lower values of v.
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Fig. 2. Adaptive harmonic broadcasting.

To simplify the analysis, we decompose the entire broadcasting duration
(which might be infinite) into timespans of T = mtwait minutes in length, (i.e.,
m segments long), and consider requests from some number v of viewers arriv-
ing within each such timespan. Notice that some segments sent to a viewer who
started watching in timespan [0, T ] are actually broadcast in the next timespan
[T, 2 T ]. We ignore the cost of such segments counting only those segments re-
ceived during the current timespan. Provided that T is big enough, the ignored
cost is negligible compared to the cost induced by non-overlapping viewers. Let
v denote the number of viewers in a timespan, ignoring any leftover viewers
who started watching in the previous timespan. The number v can change from
timespan to timespan, and thus bounds stated in terms of v for a single timespan
adapt to changes in v. The bounds we obtain can also be combined to apply to
longer time intervals: in a bound on total bandwidth, the v term becomes the
average value of v, and in a bound on maximum bandwidth used at any time,
the v term becomes the maximum value of v over the time interval.

The viewer arrival times are unknown beforehand, and hence the algorithm
must react in an online fashion. In this scenario, our goal is to minimize band-
width required to support VoD for v viewers, where the maximum waiting time
is a fixed parameter twait. Such an algorithm must adapt to changing (and un-
known) values of v, and adjust its bandwidth usage according. In particular, it is
clear that in general harmonic broadcasting is suboptimal, particularly for small
values of v. Carter et al. [CP01] introduced this setting of a variable number of
viewers, and proposed a heuristic for minimizing bandwidth consumption; here
we develop algorithms that are guaranteed to be optimal.

Objectives. For a given sequence of viewer arrival times, we propose three
measures of the efficiency of an adaptive broadcasting strategy:

1. Minimizing the total amount of data transmitted, which models the require-
ment of a content provider who purchases capacity by the bit from a data
carrier. The total capacity required on the average is also a relevant metric
if we assume a large number of movies being watched with requests arriving
randomly and independently.

2. Minimizing the maximum number of channels in use at any time, which
models the realistic constraint that the available bandwidth has a hard up-
per limit imposed by hardware, and that bandwidth should be relatively
balanced throughout the transmission.



3. Obtaining a feasible schedule subject to a fixed bandwidth bound, which
models the case where the content provider pays for a fixed amount of band-
width, whether used or not, and wishes to maximize the benefit it derives
from it. (In contrast to the previous constraints, this measure favors early
broadcasting so that the bandwidth is always fully used.)

Broadcasting schemes can be distinguished according to two main categories:
integral which distribute entire segments of movies from beginning to end in
physical channels, in real time, and nonintegral which distribute segments at
various nonintegral rates and allow viewers to receive segments starting in the
middle. For example, pay-per-view is a simple integral scheme, whereas harmonic
broadcasting is nonintegral. Integral broadcasting is attractive in its simplicity.

Our results. We propose and analyze three adaptive broadcasting schemes,
as summarized in Table 1. In Section 2, we show that a lazy integral broad-
casting scheme is exactly optimal under Measure 1, yet highly inefficient under
Measure 2, which makes this scheme infeasible in practice. Nonetheless this re-
sult establishes a theoretical baseline for Measure 1 against which to compare
all other algorithms. Then in Section 3 we analyze an adaptive form of harmonic
broadcasting (which is nonintegral) that uses at most ln n channels at any time,
as in harmonic broadcasting, but whose average number of channels used over
the course of a movie is ln min{v, n}+ 1 plus lower-order terms (Section 3). The
latter bound matches, up to lower-order terms, the optimal bandwidth usage by
the lazy algorithm, while providing much better performance under Measure 2.
However, ln n channels is suboptimal, and in Section 4, we show that an integral
adaptive pyramid broadcasting scheme is optimal under Measure 2 up to lower-
order terms while still being optimal up to a constant multiplicative factor of
lg e ≈ 1.4427 under Measure 1. Lastly in Section 5 we show that a natural greedy
strategy is suboptimal for Measure 3, and furthermore that no online strategy
matches the offline optimal performance when multiple movies are involved.

Broadcasting alg. Integral? Total bandwidth usage Max. bandwidth usage

Harmonic [JT97, . . . ] No OPT(n) ∼ n ln n + γ n ln n + γ

Lazy [§2] Yes OPT(n, v) ∼ n ln min{v, n} ∼ nln 2/ ln ln n

+ (2γ − 1) n
Adapt. harmonic [§3] No m ln min{(n + 1)v/m, n + 1} ln n + γ

+ m + v
Adapt. pyramid [§4] Yes m lg min{(n+1)v/m, n+1} min{v(t), lg n}

+ O(m) + O(1)
Table 1. Comparison of our results and harmonic broadcasting.

2 Lazy Broadcasting

First we consider Measure 1 in which the objective is to minimize the total
amount of data transmitted (e.g., because we pay for each byte transferred).
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Fig. 3. Lazy broadcasting schedule with
v = n viewers (one every segment).
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segment).

Here the goal is to maximize re-use among multiple (offset) transmissions of the
same movie.4 For this case, we propose lazy broadcasting and show that it is
exactly optimal under this measure. This algorithm has a high worst-case band-
width requirement, and hence is impractical. However, it provides the optimal
baseline against which to compare all other algorithms. In particular, we show
that adaptive harmonic broadcasting is within lower-order terms of lazy, and
adaptive pyramid broadcasting is within a constant factor of lazy, and there-
fore both are also roughly optimal in terms of total data transmitted. Because
the worst-case bandwidth consumption of harmonic and pyramid broadcasting
is much better than that of lazy broadcasting, these algorithms will serve as
effective compromises between worst-case and total bandwidth usage. The lazy
algorithm sends each segment of the movie as late as possible, the moment it is
required by one or more viewers; see Figure 3. All transmissions proceed at a
rate of 1 (real time / play speed).

Theorem 1. The total amount of data transmitted by the lazy algorithm is the
minimum possible.

Proof. Consider any sequence of viewers’ arrival times, and a schedule A which
satisfies requests of these viewers. Perform the following two operations on movie
segments sent by schedule A, thereby changing A. For each time that a movie
segment is sent by A:

1. If the movie segment is not required by A because every viewer can otherwise
record the movie segment beforehand, delete the movie segment.

2. If the movie segment is not required when A transmits it but is required at
a later time, delay sending the segment until the earliest time at which it is
required and then send at full rate.

4 Amortization of data transfers has been observed empirically over internet service
provider connections. In this case, it is not uncommon to sell up to twice as much
capacity than physically possible over a given link, based on the observed tendency
that it is extremely uncommon for all users to reach their peak transmission rate
simultaneously.



After processing all movie segments, repeat until neither operation can be
done to any movie segment. This process is finite because the number of segments
and time intervals during which they can be shown is finite, and each operation
makes each segment nonexistent or later. The claim is that the resulting schedule
is the same as the lazy schedule. The proof can be carried out by induction on
the number of segments requested.

2

Now that we know that the lazy schedule optimizes the total amount of
data transmitted, we give analytic bounds on this amount. First we study a full
broadcast schedule (nonadaptive). This is equivalent to the setting in which a
new viewer arrives at every time boundary between segments, see Figure 3. No-
tice that the ith segment is sent at time i to satisfy the request of the first viewer.
The other first i − 1 viewers also see this transmission and record the segment.
On the other hand, the (i+1)st viewer did not witness this transmission, and
requests the segment i time units after it started watching the movie, i.e., after
time i. Hence Si must be resent at time 2i. In general, the ith segment must
be sent at precisely those times that are multiples of i. Thus the ith segment is
sent a 1/i fraction of the time, which shows that the total amount of bandwidth
required is n(Hn + O(1)) for a timespan of n segments. In fact, we can obtain
a more precise lower bound by observing that, at time i, we transmit those seg-
ments whose index divides i, and hence the total amount of bandwidth required
is the sum of the divisors of i for i = 1, 2, . . . , n.

Theorem 2. The total amount of data transmitted by the lazy algorithm for n
viewers arriving at equally spaced times during a timespan of n segments for a
movie n segments long is n ln n + (2γ − 1) n + O(

√
n) segments.

The lazy algorithm is similar to the harmonic broadcasting algorithm, the
only difference being that harmonic broadcasting transmits the ith segment of
the movie evenly over each period of i minutes, whereas the lazy algorithm sends
it in the last minute of the interval. Comparing the bound of Theorem 2 with the
total bandwidth usage of harmonic broadcasting, n ln n + γn + O(1) segments,
we find a difference of ≈ 0.4228 n+ o(n). Thus, harmonic broadcasting is nearly
optimal under the total bandwidth metric, for v = n viewers.

In contrast to harmonic broadcasting, which uses Hn ∼ ln n channels at once,
the worst-case bandwidth requirements of the lazy algorithm can be substantially
larger:

Theorem 3. The worst-case momentary bandwidth consumption for lazy trans-
mission of a movie with n segments and n viewers is, asymptotically, at least
nln 2/ ln ln n.

In the case of v < n viewers (see Figure 4), Theorem 1 still shows optimality,
but the bounds in Theorem 2 become weak. The next theorem gives a lower
bound on the bandwidth consumed by the lazy algorithm. A matching upper
bound seems difficult to prove directly, so instead we rely on upper bounds for



other algorithms which match up to lower-order terms, implying that lazy is at
least as good (being optimal).

Theorem 4. The total amount of data transmitted by the lazy algorithm for v
viewers arriving at equally spaced times during a timespan of n segments for a
movie n segments long is at least n ln min{v, n} + (2γ − 1)n + O(

√
n) in the

worst case.

3 Adaptive Harmonic Broadcasting

In this section we propose a variation of harmonic broadcasting, called adaptive
harmonic broadcasting, that simultaneously optimizes total bandwidth (within
a lower-order term) and worst-case bandwidth usage at any moment in time.
The key difference with our approach is that it adapts to a variable number of
viewers over time, v(t). In contrast, harmonic broadcasting is optimal only when
viewers constantly arrive at every of the n movie segments.

Adaptive harmonic broadcasting defines virtual channels as in normal har-
monic broadcasting, but not all virtual channels will be broadcasting at all times,
saving on bandwidth. Whenever a viewing request arrives, we set the global vari-
able trequest to the current time, and turn on all virtual channels. If a channel
Ci was silent just before turning it on, it starts broadcasting Si from the begin-
ning; otherwise, the channel continues broadcasting Si from its current position,
and later returns to broadcasting the beginning of Si. Finally, and most impor-
tantly, channel Ci stops broadcasting if the current time ever becomes larger
than trequest + i twait.

Figure 2 illustrates this scheme with viewers arriving at times t = 0, 4, 6.

Theorem 5. The adaptive harmonic broadcasting schedule broadcasts a movie
n segments long to v active viewers with a maximum waiting time twait using at
most Hn channels at any time and with a total data transfer of m min{ln(n +
1) − ln(m/v), ln(n + 1)} + m + v segments during a timespan of T = m twait

minutes.

Proof. Let ti denote the time at which viewer i arrives, where t1 ≤ t2 ≤ · · · ≤ tv
and tv − t1 ≤ T . Let gi = (ti+1 − ti)/twait denote the normalized gaps of time
between consecutive viewer arrivals.

To simplify the analysis, we do the following discretization trick. Process
viewers that arrived on [0, T ] interval from left to right. Delete all viewers that
arrived within time twait from the last viewer we considered (tlast) and replace
them by one viewer with arrival time tlast + twait. Clearly, this only can increase
bandwidth requirements in both intervals [tlast, tlast + twait] and [tlast + twait, T ].
Choose the next viewer that have not been considered so far and repeat the
procedure. This discretizing procedure gives a method of counting “distinct”
viewers, namely, on the interval [0, T ] there are no more than m of them and gi ≥
1 for all i. In particular, if the number of viewers is more than m then adaptive



harmonic broadcasting scheme degrades to simple harmonic broadcasting and
theorem holds. Consider the case v ≤ m.

The total amount of bandwidth used by all viewers is the sum over all i
of the bandwidth B(i) recorded by viewer i in the time interval between ti

and ti+1. Each B(i) can be computed locally because we reset the clock trequest

at every time ti that a new viewer arrives. Specifically, B(i) can be divided
into (1) the set of virtual channel transmissions that completed by time ti+1,
that is, transmissions of length at most gi; and (2) the set of virtual channel
transmissions that were not yet finished by time ti+1, whose cost is trimmed.
Each channel Cj of the first type (j ≤ gi) was able to transmit the entire segment
in the time interval of length gi, for a cost of one segment. Each channel Cj of
the second type (j ≥ gi) was able to transmit for time gi at a rate of 1/j, for a
cost of a gi/j fraction of a segment. Thus, B(i) is given by the formula

B(i) =

bgic
∑

j=1

1 +
n

∑

j=bgic+1

gi/j = bgic + gi ·
(

Hn − Hbgic

)

.

We have the bound B(i) ≤ gi(1 + ln((n + 1)/gi)) + 1, proof omitted. Now the
total amount of data transmitted can be computed by summing over all i, which
gives

B =

v
∑

i=1

B(i) ≤
v

∑

i=1

[

gi

(

1 + ln
n + 1

gi

)

+ 1

]

≤ m + v +

v
∑

i=1

gi ln
n + 1

gi
.

The last summation can be rewritten as n + 1 times
∑v

i=1(gi/(n + 1)) ln((n +
1)/gi). This expression is the entropy H , which is maximized when g1 = g2 =
· · · = gv = m/v. Hence the total amount of bandwidth B is at most m + v +
m ln(v(n + 1)/m), as desired when v ≤ m. 2

This proof in fact establishes a tighter bound on the number of channels required,
namely, the base-e entropy of the request sequence. Sequences with low entropy
require less bandwidth.

4 Adaptive Pyramid Broadcasting

In this section we propose an integral adaptive broadcasting scheme which is
optimal up to constant factors for both Measure 1 and Measure 2, that is, total
amount of data transmitted and minimizing the maximum number of channels
in use at any time.

Viswanathan and Imielinski [VI96] proposed the family of pyramid broadcast-
ing schemes in which the movie is split into chunks of geometrically increasing
size, that is, |Si| = α|Si−1| for some α ≥ 1, with each segment being broadcast
at rate 1 using an entire physical channel.

In our case, we select α = 2 and |S0| = twait. Thus, there are N = dlg(n+1)e
chunks S0, . . . , SN−1, each consisting of an integral number of segments. Chunk



Si has length 2i twait (except for the last one), and hence covers the interval
[(2i − 1)twait, (2

i+1 − 1)twait] of the movie. We first analyze the bandwidth used
by any protocol satisfying two natural conditions.

Lemma 1. Consider any broadcast protocol for sending segments S0, . . . , SN−1

satisfying the following two conditions: (A) for every viewer, every segment is
sent at most once completely, (B) no two parts of the same segment are sent
in parallel; then the total bandwidth usage for v viewers within a timespan of
T = m twait minutes is at most m min{N, N − lg(m/v) + 1} segments.

Proof. Because there are N = dlg(n + 1)e chunks, and no chunk is sent more
than once at a time (Property B), we surely use at most m N bandwidth. This
bound proves the claim if v ≥ m, so assume from now on that v < m.

We classify chunks into two categories. The short chunks are chunks Sj for
j = 0, . . . , t− 1 for some parameter t to be defined later. By Property A, chunk
Sj is sent at most v times, and hence contributes at most v 2j to the bandwidth.

Thus, the total bandwidth used by short chunks is at most
∑t−1

j=0 v 2j = v (2t−1).
The long chunks are chunks Sj for j = t, . . . , N − 1. By Property B, at

most one copy of Sj is sent at any given moment, so chunk Sj contributes at
most m segments to the total bandwidth. Thus, the total bandwidth used by
long chunks is at most m (N − t). Total bandwidth v (2t − 1) + m (N − t) is
minimized for the value of t roughly lg(m/v). Thus the total bandwidth is at
most m(N − lg(m/v) + 1) − v segments as desired. 2

There are several protocols that satisfy the conditions of the previous lemma.
In particular, we propose the following adaptive variant of pyramid broadcasting;
see Figure 5. Suppose there are v viewers arriving at times t1 ≤ t2 ≤ · · · ≤ tv. We
discretize the viewer arrival schedule as follows: all viewers arrived in the interval
(i twait, (i + 1) twait] are considered as one viewer arriving at time (i + 1) twait

for i = 0, . . . , T/twait and this made-up viewer will start watching the movie
immediately (i.e. at time (i + 1) twait). Thus the waiting time for any user is
at most twait, however the average waiting time is twice as less if viewers are
arriving in the uniform fashion.

If at time tj + 2i − 1 viewer j has not seen the beginning of segment Si, then
this segment Si is broadcast in full on channel i, even if viewer j has already
seen parts of Si. By this algorithm, viewer j is guaranteed to see the beginning
of segment Si by time tj + 2i − 1. Because we send segments from beginning to
end, and in real time, viewer j will therefore have seen every part of Si by the
time it is needed. Furthermore, this protocol sends every segment at most once
per viewer, satisfying Property A.

It is less obvious that we never send two parts of Si in parallel. Suppose
viewer j requests segment Si. This means that we never started broadcasting
segment Si between when j arrived (at time tj) and when Si is requested (at time
tj +2i). Because Si has length 2i, and because we send segments in their entirety,
this means that at time tj + 2i we are done with any previous transmission of
Si. Lemma 1 therefore applies, proving the first half of the following theorem:
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Theorem 6. The total bandwidth usage of adaptive pyramid broadcasting is at
most m min{dlg(n+1)e , lg((n+1)v/m)+1} segments, which is within a factor
of lg e ≈ 1.4427 (plus lower order terms) of optimal. Furthermore, the maximum
number of channels in use at any moment t is at most min{v(t), dlg(n + 1)e}.

Finally, we prove that the maximum number of channels used by adaptive
pyramid broadcasting is optimal among all online adaptive broadcasting algo-
rithms: in a strong sense, the number of channels cannot be smaller than v,
unless v is as large as ∼ lg n.

Theorem 7. Consider any online adaptive broadcasting algorithm that at time
t uses c(t) physical channels to serve v(t) current viewers and for which c(t) ≤
v(t) at all times t. Then there is a sequence of requests such that, for all v ∈
{1, 2, . . . , lg n − lg lg n}, there is a time t when v(t) = v and c(t) = v(t).

Proof. Consider the sequence of requests at times 0, 1
2
n, 3

4
n, 7

8
n, 15

16
n, . . . , (1−

1/2i)n, . . . . In this sequence of requests, we claim that no re-use of common
segments between different viewers is possible in the time interval [0, n). Consider
the ith viewer, who arrives and starts recording at time (1 − 1/2i)n. In the
time interval [(1 − 1/2i)n, n), the ith viewer needs to be sent the first n/2i − 1
segments of the movie. (The −1 term is because the viewer waits for the first
time unit (segment), and only starts watching at time (1 − 1/2i)n + 1.) But all
previously arriving viewers must have already been sent those segments before
time (1 − 1/2i)n, because by construction they have already watched them by
that time. Therefore, no segments that are watched by any viewer in the time
interval [0, n) can have their transmissions shared between viewers.

Now define the buffer amount of a viewer to be the the amount of time that
each viewer is “ahead”, i.e., the amount of time that a viewer could wait before
needing its own rate-1 broadcast until the end of the movie (which is at least
time n). Because there is no re-use between viewers, we maintain the invariant
that, if there are v current viewers, then the total buffer amount of all viewers is
at most v. A buffer amount of 1 for each viewer is easy to achieve, by having each
viewer record for the one unit of wait time on its own rate-1 channel. It is also
possible to “transfer” a buffer amount from one viewer to another, by partially
using one viewer’s channel to send part of another viewer’s needed segment, but
this operation never strictly increases the total buffer amount.



In the time interval [(1 − 1/2v−1)n, (1 − 1/2v)n), there are exactly v ac-
tive viewers, and each viewer needs to watch (1/2v−1 − 1/2v)n segments, ex-
cept for one viewer who watches one fewer segment. Viewers might during this
time “use up” their buffer amount, by using their channels for the benefit of
other viewers, catching up to real time. However, this can only decrease the
resource requirement during this time interval by up to v, so the total re-
source requirement is still at least v(1/2v−1 − 1/2v)n − v − 1. On the other
hand, if there are c physical channels in use during this time interval when ex-
actly v viewers are active, then the maximum bandwidth usable in this time
interval, c(1/2v−1 − 1/2v)n, must be at least the resource requirement. Thus,
c ≥ v − (v − 1)/((1/2v−1 − 1/2v)n) = v − 2v(v − 1)/n.

Because c measures physical channels, c is integral, so the bound on c in fact
implies c ≥ v provided the error 2v(v − 1)/n is less than 1. If v ≤ lg n − lg lg n,
then 2v(v−1) = (n/ lg n)(lg n− lg lg n−1) < n. Therefore, for any v in this range
(as claimed in the theorem), we need as many physical channels as viewers. 2

Adaptive pyramid broadcasting inherits the simplicity-of-implementation prop-
erties that have made pyramid broadcasting popular: not only is the algorithm
integral on segments, it is integral on chunks, always broadcasting entire seg-
ments from beginning to end in real time.

5 Greedy Broadcasting and Offline Scheduling

Suppose we have a fixed amount of available bandwidth, and our goal is to
satisfy as many viewers as possible. The natural greedy algorithm is to send
the segments of a movie that are required soonest, as soon as there is available
bandwidth. We imagine a wavefront sweeping through the requests in the order
that they are needed. The front time must always remain ahead of real time,
or in the worst case equal to real time. If the front time ever falls behind real
time, some viewer will not be satisfied. The greedy algorithm is suboptimal in
the following sense:

Theorem 8. There is a sequence of requests for a single movie that is satisfiable
within a fixed available bandwidth but for which the greedy algorithm fails to find
a satisfactory broadcast schedule.

Theorem 9. There is a family of request sequences for two movies that is sat-
isfiable offline within a fixed available bandwidth, but which can force any online
scheduling algorithm to fail.

6 Conclusions and Open Questions

We introduced the concept of adaptive broadcasting schedules which gracefully
adjust to varying numbers of viewers. We measured the performance of three
new algorithms under two metrics inspired by realistic bandwidth cost consider-
ations. In particular, we showed that adaptive harmonic broadcasting is optimal



up to lower-order terms under total amount of data transmitted, and that adap-
tive pyramid broadcasting achieves optimal maximum channel use at the cost of
a constant factor penalty on the total amount of data transmitted. All the algo-
rithms generalize to multiple different-length movies being watched by different
numbers of viewers, and the same worst-case optimality results carry over.

We also showed that any online algorithm might fail to satisfy a given band-
width requirement that is satisfiable offline for a two-movie schedule. One open
question is to determine the best competitive ratio on the fixed bandwidth bound
achievable by online broadcasting schedules versus the offline optimal.
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