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Abstract. We introduce the Confidence constraint, a chance con-
straint that ensures, with probability γ, that a set of variables are no
smaller than random variables for which the probability distribution is
given. This constraint is useful in stochastic optimization to ensure that
a solution is robust to external random events. It allows to control the
trade-off between optimizing the objective function and ensuring the sat-
isfiability of the solution under random parameters. We present a filtering
algorithm for this constraint with explanations. We apply the constraint
to a case study, an industrial scheduling problem where tasks have ran-
dom processing times due to possible breakdowns during their execution.
We evaluate our solutions with simulations and show that this new con-
straint allows robust solutions in decent computation time.
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1 Introduction

Decisions in an organization are taken at different levels: strategic, tactical, oper-
ational, and execution. In some situations, it is important that decisions taken at
the operation level take into account what could happen at the execution level.
For instance, one can schedule tasks while taking into account that breakdowns
might occur during the execution and that the schedule might not be followed
as expected. Stochastic optimization allows taking decisions at one level while
coping with random events at the next level. One way to achieve this goal is
by using chance constraints in the optimization model to guarantee that the
solution holds beyond a given threshold probability.

We introduce a new chance constraint called Confidence that forces vari-
ables to take sufficiently large values so that random variables, following a known
distribution, are unlikely to be greater. Let X1, . . . , Xn be decision variables, let
D1, . . . , Dn be statistical distributions, and let γ be the confidence threshold (a
constant parameter). Each distribution Di must have a well-defined cumulative
distribution function cdfi. The Confidence constraint is defined as follows.

Confidence([X1, . . . , Xn], [cdf1, . . . , cdf2], γ) ⇐⇒
n∏
i=1

cdfi(Xi) ≥ γ (1)
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In other words, let Yi be an independent random variable following a distribution
Di. The chance that at least one random variable Yi takes a value greater than
Xi must be less than γ.

Such a constraint is particularly useful in stochastic scheduling where tasks
can execute for a longer time than expected. In order to let sufficient time for the
tasks to execute in a schedule, one can assign processing times to the tasks that
are sufficiently long γ percent of the time. We will show that such an approach
has many advantages and is particularly well suited for constraint programming.

The rest of the paper is divided as follows. Section 2 presents background in-
formation about stochastic optimization. Section 3 introduces the Confidence
constraint and its filtering algorithm. Section 4 presents a case study, an in-
dustrial scheduling problem that led to (and financed) this research. Section 5
presents our simulator that will be used in our experiments in Section 6. We
present and analyze the results in Section 6.3. We conclude in Section 7.

2 Background

Stochastic problems are optimization problems for which part of the input is
given with random variables. One aims at a solution of good quality over all
possible values that these random variables can take. Usually, one wants to
optimize the expected objective value and/or to ensure feasibility occurs with a
given probability.

Stochastic linear programs are linear programs min{cTx | Ax ≤ b, x ≥ 0} for
which some parameters in c, A, or b are replaced by random variables. These
linear problems are particularly well studied [10]. They can, for instance, encode
scheduling problems where processing times are subject to random delays [4].

There are several approaches to stochastic optimization. One important ap-
proach is called scenario-based optimization. It consists, in one way or another, in
achieving deterministic optimization on sample data called scenarios. A scenario
is a possible outcome of stochastic events. The number of possible scenarios grows
exponentially with the number of stochastic variables. Chance constraints [20]
can achieve scenario-based optimization by constraining the solution to satisfy a
scenario with a given probability. The concept emerged in stochastic linear pro-
gramming, but is not intrinsically linear and can be applied to any constraint
satisfaction problem. The formulae described in [20] inspired the ones stated in
Section 3. However, as the they sum probabilities over possible scenarios, some
formulae might take too much time to compute for problems with hundreds of
stochastic variables.

In constraint programming, Walsh [18] proposes an extension of a constraint
satisfaction problem by modeling decision problems with uncertainty. In this
extension, stochastic variables based on probabilistic distributions coexist with
common constraint programming decision variables. The solver computes a pol-
icy, i.e. a solution for each possible outcome of the stochastic variables. While
this suits the needs for many problems, for problems with hundreds of random
variables, one cannot state (not to mention computing) a complete policy.
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The modeling language MiniZinc [12, 17] is also adapted to stochastic opti-
mization [13] keeping the modeling process independent from the solving tech-
nique. It requires to encode a sample of scenarios in a vector. As the number
of random variables grows, the cardinality of the sample scenarios set become
insignificant compared to the number of possibilities and the quality of the so-
lutions decays.

Stochastic problems is one way to obtain solutions robust to change. However,
there exist other robust optimization approaches that do not rely on probabil-
ities. For instance, super solutions are solutions that adapt themselves in case
of a change [9]. Such solutions are, however, hard to compute and are often re-
stricted to small instances. The FlexC constraint [6, 7] can model cumulative
scheduling problems where tasks have two processing times: a normal processing
time and a delayed one. The constraint ensures that if any subset of k tasks is
delayed, the cumulative resource is not overloaded. However, the constraint does
not support delays of variable duration.

The outreach of chance constraints goes far beyond scheduling problems.
Rossi et al. [14] present an algorithm designed to compute an optimal policy for
inventory levels. Based on current demand, chance constraints are used in such
a way that one can predict more accurate future demand. While we do not aim
at solving the same problem, this is the closest chance constraint algorithm we
could find in constraint programming to what we propose.

3 The Confidence Constraint

3.1 Description

The Confidence constraint defined in (1) has for scope a vector of integer
variables [X1, . . . , Xn] and has for parameters a vector of random distributions
[D1, . . . , Dn]. A collection of independent random variables Y1, . . . , Yn follow-
ing these distributions i.e. the random variable Yi follows the distribution Di.
Each distribution Di is fully described by its cumulative distribution function
cdfi(v) = P [Yi ≤ v] that computes the probability that the random variable Yi
takes a value smaller than or equal to a value v. We also consider its inverse
function called the quantile function Qi(p) = min{v | P [Yi ≤ v] ≥ p} that com-
putes the smallest value v for which variable Yi takes a value no greater than
v with probability p. The distributions can be common distributions (e.g. Pois-
son, Uniform, ...) or can be custom much like the one shown in Section 4. The
distributions can be different for every variable. Finally, the constraint takes a
parameter γ that is a confidence threshold, a probability between 0 and 1. Note
that even if this constraint handles probabilities, it constrains integer variables
and is therefore compatible with solvers that only handle this type of variable.
Moreover, if the solver does not handle floating point parameters, it is possible
to express γ in percents and to give it an integer value.

The constraint is satisfied when, with probability at least γ, all random vari-
ables Yi take a value smaller than or equal to their corresponding threshold Xi.
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Since the random variables Yi are independent, the constraint is satisfied when

P [

n∧
i=1

Yi ≤ Xi] ≥ γ. (2)

Since the random variables are independent, we obtain

n∏
i=1

P [Yi ≤ Xi] ≥ γ. (3)

For numerical stability reasons, we use this form

n∑
i=1

ln(P [Yi ≤ Xi]) ≥ ln(γ). (4)

The Confidence constraint is useful in problems where unknown events
might arise. In a scheduling problem, it is common to have tasks that take
longer to execute than expected. One usually plans more time than necessary
for these tasks in a schedule. Let Xi be the processing time of task i and Di be
a distribution on the observed processing times in the past. The Confidence
constraint allows planning sufficient times for the execution of the tasks in say,
γ = 95% of the time. This confidence threshold allows making schedules that
can be executed without modification 95% of the time without over estimating
the duration of the tasks.

In a production problem where we want to produce sufficient goods to satisfy
an unknown demand, we let Xi be the amount of good i that is produced and Yi
be the amount that needs to be produced to fulfill the demand. We want Xi ≥ Yi
which is equivalent to −Xi ≤ −Yi. The Confidence constraint can restrict the
quantities −Xi to be smaller than the random variable −Yi with probability γ.

3.2 Filtering Algorithm

Algorithm 1 is the filtering algorithm directly derived from applying interval
arithmetic on inequality (4). Line 1 computes α, the log of the highest proba-
bility that can be reached on the left-hand side of the inequality. It is computed
from the random variables’ cumulative distribution functions. If this probably
is too low, line 2 triggers a failure. Otherwise, the lower bound of each vari-
able domain is tested for consistency. The test on line 3 is equivalent to testing∑
j 6=i ln(P [Yj ≤ max(dom(Xj))]) + ln(P [Yi ≤ min(dom(Xi))]) < ln(γ). If the

test is positive, then min(dom(Xi)) does not have a support and should be fil-
tered out from the domain. In order to evaluate what is the smallest value in
dom(Xi) with a support, we use the quantile function on line 4. We search for
the smallest value v ∈ dom(Xi) such that β + ln(P [Yi ≤ v]) ≥ ln(γ) which
is equivalent to P [Yi ≤ v] ≥ γe−β . This is directly provided by the quantile
function Qi(γe

−β).
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The algorithm accepts any distribution for which the functions cdfi and Qi
can be computed. Such functions for common distributions are already imple-
mented in libraries like Boost [15]. This includes Pareto, Gaussian, Poisson,
Laplace, Uniform, etc. It is also possible to create custom distributions.

Algorithm 1: Confidence
Filtering([dom(X1), . . . ,dom(Xn)], [D1, . . . , Dn], γ)

Let Yi be a random variable following distribution Di for i ∈ {1, . . . , n};
1 α←

∑n
i=1 ln(cdfi(max(dom(Xi))));

2 if α < ln(γ) then
Fail with explanation

∧n
i=1[[Xi ≤ max(dom(Xi))]] =⇒ False;

for i ∈ {1, . . . , n} do
β ← α− ln(cdfi(max(dom(Xi))));

3 if β + ln(cdfi(min(dom(Xi)))) < ln(γ) then
4 v ← Qi(γe

−β);
Filter Xi with explanation∧
j 6=i[[Xj ≤ max(dom(Xj))]] =⇒ [[Xi ≥ v]];

From the arithmetic of intervals, the algorithm enforces bounds consistency
on the Confidence constraint, but also domain consistency. Indeed, the al-
gorithm tests on line 3 the assignment [max(dom(X1)), . . . ,max(dom(Xi−1)),
min(dom(Xi)),max(dom(Xi+1)), . . . ,max(dom(Xn))]. If this assignment satis-
fies the Confidence constraint, so does [max(dom(X1)), . . . ,max(dom(Xi−1)),
v,max(dom(Xi+1)), . . . ,max(dom(Xn))] for any value v ∈ dom(Xi). Hence, all
values in dom(Xi) are domain consistent. Otherwise, the value min(dom(Xi))
is filtered out from the domain of Xi and the quantile function guarantees that
the new lower bound on the domain satisfies the constraint.

The running time complexity is dominated by the number of calls to the
cumulative distribution functions and the quantile functions. In the worst case,
the algorithm performs 3n calls to the cumulative distribution functions and at
most n calls to the quantile functions. This leads to a running time complexity
of O(n).

4 Case Study

4.1 The deterministic version

We have an industrial partner in the textile industry whose needs motivate
the theoretical contribution and whose data allow to empirically evaluate this
contribution on an industrial problem.

The textile manufacturer has to schedule a set of tasks I on looms L. The
tasks represent textile pieces to weave or setups to prepare a loom for the next
textile. A piece of textile i has a style zi which is a number that encodes the
width of the textile, the type of thread, the weaving pattern, etc. A task i is
pre-assigned to loom li ∈ L in order to simplify the problem. In order to process
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the task, this loom needs to be set up with configuration ci. Each task i ∈ I
has a due date di and a priority ri. The higher the priority, the more urgent the
task is. In the deterministic version of the problem, every piece of textile i has
a predefined weaving duration pi.

Looms are disjunctive resources [3] that can only weave one piece of textile
at the time or being subject to one set up at the time. A loom l ∈ L becomes
available at time al. Prior to this time point, the loom completes tasks that
were started and that cannot be changed. A loom l is initially in configuration
cinit
l and upon a major setup operation of duration pmajor

l , its new configuration
becomes cfinal

l . There is only one possible major setup per loom. A loom l can
only execute a task i if it is assigned to that loom (li = l). It executes the
task before its major setup if ci = cinit

l or after if ci = cfinal
l . A major setup is

performed by a worker from the set W . Hence, at most |W | major setups can
be performed simultaneously.

A minor setup takes place between two consecutive weaving tasks on a loom,
but does not change the configuration of the loom. There are up to 3 types
of employees p ∈ P interacting with a loom during a minor setup. The order
is always as follows: weavers, beam tiers, and mechanics. Therefore, a minor
setup is decomposed into an ordered sequence of 3 tasks, one associated for
each profession. The minor setup duration is sequence-dependent in the sense
that the duration ti,j,p for the profession p is a function of the task i before
the setup and the task j after. Employees are cumulative resources. Since there
are qp employees of profession p ∈ P , up to qp minor setup tasks associated to
profession p can be simultaneously executed across the looms.

In the deterministic version of the problem, the unknowns are the starting
time Si of each task i ∈ I, the starting time Sminor

i,p of the minor setup succeeding

a task i ∈ I for each profession p ∈ P , and the starting time Smajor
l of the major

setup of loom l ∈ L. The objective function is the weighted tardiness where the
weights are the task priorities. We use this metric since the tight deadlines make
it unreasonable to search for a schedule without tardiness.

The constraint model is similar to the one of a resource-constrained project
scheduling problem (RCPSP) [2]. In a RCPSP, there are tasks to schedule and
cumulative resources. Our problem differs from the RCPSP in the sense that
minor setups have sequence-dependent processing times.

Figure 1 presents the constraint model of the deterministic problem as pub-
lished in [1]. The variable Fl encodes the first task on loom l. The order of the
tasks is encoded in an array of variables N such that for any piece of textile i,
Ni is the next piece of textile to weave. The dummy task σl acts as a sentinel to
encode the last task to execute on loom l. The task following the last task on a
loom is the first task on the next loom (see constraints (11) and (12)). The vec-
tor N forms a circuit visiting all the tasks hence Constraint (13). We model the
disjunctive resources using less than or equal to constraints. Two Cumulative
constraints model the different setup types (minor and major).
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Minimize
∑
i∈I

ri ·max(0,Si + pi − di) (5)

ci = cinitli =⇒ Si + pi ≤ Smajor
li

∀i ∈ I (6)

ci 6= cinitli =⇒ Smajor
li

+ pmajor
l ≤ Si ∀i ∈ I (7)

Si + pi ≤ Sminor
i,1 ∀i ∈ I (8)

Sminor
i,p+1 ≥ Sminor

i,p + ti,Ni,p ∀i ∈ I, ∀p ∈ P \ {|P |} (9)

SNi = Sminor
i,|P | + ti,Ni,|P | ∀i ∈ I (10)

Nσl = Fl+1 ∀l ∈ [1, |L| − 1] (11)

Nσ|L| = F1 (12)

Circuit(N) (13)

Cumulative([Sminor
i,p | i ∈ I], [ti,Ni,p | i ∈ I], 1, qp) ∀p ∈ P (14)

Cumulative([Smajor
l | l ∈ L], [pmajor

l | l ∈ L], 1, |W |) (15)

Sa ≤ Sb ∀a, b ∈ I, za = zb ∧ la = lb ∧ da ≤ db (16)

Fig. 1: Model equations directly taken from our previous paper [1]

4.2 The stochastic version

The solver acts as a black box and returns a solution that satisfies the con-
straints. The resulting schedule is valid, yet this solution does not consider the
probabilities of different stochastic events. Since a loom weaves many threads,
each job has a high chance of having multiple breakdowns. Each task is subject
to two types of breakdowns with different probabilities and repair time. A warp
thread has a high chance of breaking, but is quick to repair and the repair process
is often automated. However, a weft thread rarely breaks, but when it does, an
employee gets involved. Since both types of breakdowns are observable on a day-
to-day basis, we must be able to consider them in a single distribution. In our
case, the breakdowns follow Poisson distributions. We suppose the independence
of both types of breakdowns (warp thread and weft thread). Since the sum of two
independent random Poisson variables is a random Poisson variable [8], we can
sum the λ-parameters of both breakdown distributions. Therefore, the duration
of the breakdowns in our problem is a random variable that follows the sum of
two Poisson distributions, which is equivalent to a single Poisson distribution.
Depending on the task i ∈ I and the loom l ∈ L, the weft thread has an average
number of breakdowns βweft

i,l between 0 to 10 times and when it breaks, it takes
10 minutes to repair. The warp thread has an average number of breakdowns
βwarp
i,l between 0 and 40 times and it takes 2 or 4 minutes to repair. The average

numbers of breakdowns βweft
i,l and βwarp

i,l are proportional to the duration of task
i on loom l. The λ-parameter of the Poisson distribution for the delay caused
by the breakdowns is therefore 10 · βweft

i,l + 2 · βwarp
i,l or 10 · βweft

i,l + 4 · βwarp
i,l . Our
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case study is about solving the stochastic version of this problem when weaving
tasks might take longer to execute than expected.

A solution with fixed processing times: One way to solve the problem could be
to artificially increase the duration of the weaving tasks by a given percentage.
This prevents the unplanned events from starving the resource pool available
for setups which causes ripple effects. The drawback of this technique happens
when we overestimate the duration and the number of delays. The delays must
be chosen in a smart and intuitive manner. Giving the solver a choice of where
to take risks can lead to a better solution. This is where our constraint comes
in.

A solution with flexible processing times: As a second solution, we rather modify
the constraint model with an additional variable Pi to represent the duration
of a weaving task, including breakdowns, and a variable Bi that includes only
the breakdowns. The task duration Pi cannot be shorter than the deterministic
version of the problem, but could be longer if we plan time for breakdowns. We
therefore insert this constraint.

Pi = pi +Bi (17)

We impose a Confidence constraint on the duration of the breakdowns to
ensure that we plan for sufficiently long breakdowns with probability γ.

Confidence([Bi | i ∈ I], [cdfi | i ∈ I], γ) (18)

The Confidence constraint can guarantee that a breakdown does not alter the
subsequent tasks with probability γ. That is, if the breakdown is shorter than
what is computed by the solver, all tasks can still start at the expected time. If
the breakdown is longer than what was planned, it might cause a ripple effect and
delay the execution of the future tasks, but this only happens with probability
1 − γ. Therefore, a valid solution to our problem is a solution that causes no
disturbances, γ % of the time. The rest of the new model with variable processing
time is similar to [11]. The constraints 6 and 8 are modified by replacing pi with
Pi.

5 Simulation

The simulation model is used to evaluate the quality of the solutions. This implies
measuring robustness by emulating scenarios and how well the solutions cope
with stochastic events such as breakdowns. The simulator produces an in-depth
three-dimensional depiction of the work environment. It considers the number
of employees, their positions, the time each employee takes to move between
looms, the number of looms, etc. By using a simulator, we can compare different
solutions without trying them in practice. Since the company might be reluctant
to directly apply the results to their schedules, this also acts as a way to alleviate
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doubts. The simulator was designed to test scenarios and to answer questions
that are much beyond the scope of this paper and even beyond scheduling in
general. It can be used to see the effect of strategic decisions on textile production
and the effect of modifying the number of resources on the performance of the
plant.

For our purpose, the simulation model receives as input the same data as
our optimization model (configuration of the looms, availability of the resources,
duration of the tasks) and the output of the optimization (the starting time of the
tasks). One point that is worth mentioning is that the optimization model uses,
for each weaving task, a distinct distribution for the duration of the breakdowns.
However, the simulator averages out these distributions per loom and uses the
same distribution for all weaving tasks on a given loom.

6 Experiments

6.1 Methodology

Three different methods were compared. First, in the Deterministic model, we
ignore the stochastic events. The Deterministic model consists of using the
model from Figure 1 without any change. In the Fixed model, we artificially
increase the tasks’ processing times by the sum of the average breakdown dura-
tion multiplied by the average number of breakdowns. This corresponds to the
first solution presented in Section 4.2. Finally, the Confidence method is the
model that uses our chance constraint with γ ∈ {0.01, 0.05, 0.1, 0.2, 0.3, . . .,
0.8, 0.9, 0.95, 0.99}. The processing time of a task becomes a variable equal to
the sum of the deterministic processing time (a constant) and the duration of
breakdowns (another variable). These breakdown duration variables are subject
to the Confidence constraint using the Poisson distributions. This corresponds
to the second solution presented in Section 4.2.

The CP model was written in the MiniZinc 2.4.2 language [12]. We use the
solver Chuffed [5] with the free search parameter [16]. The simulation is mod-
eled using the academic version of SIMIO [19]. We ran the experiments on a
computer with the configuration: Ubuntu 19.10, 64 GB ram, Processor Intel(R)
Core(TM) i7-6700K CPU @ 4.00GHz, 4 Cores, 8 Logical Processors. All opti-
mization processes were given a timeout of 30 minutes and 10 hours.

To compare the quality of the schedules provided by the different methods,
we use the mean simulated weighted tardiness. Let Esi be the ending time of
task i in simulation s. The mean simulated weighted tardiness T̄ is calculated
as follows:

T̄ =
1

n

n∑
s=1

∑
i∈I

ri max(0, Esi − di) (19)

The inner sum computes the weighted tardiness of a simulation s while the outer
sum averages over n simulations. We use n = 100 simulations. A simulation is
a randomly generated scenario based on probabilities, i.e. that the duration of
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the breakdowns are randomly drawn according to the Poisson distributions we
established.

During the simulation of a schedule, tasks can be delayed by breakdowns
that were not planned by the solver. The task on a loom can only start after
its predecessor, on the same loom, is completed. An idle technician always start
working on a setup when the loom gets ready. If s/he has the choice between
setting up two looms, the priority is given to the setup that was planned earlier
in the original schedule. A loom that completes a task earlier than expected must
wait before starting the next task as we suppose that the material for this next
task is not necessarily ready before its planned start time. Indeed, when a task
is planned, it instructs people on the floor to prepare the material in order for
the task to start on time. This preparation is not part of the optimization since
it adds too much complexity to the decision process. The resources in charge
of preparing the material are voluntary omitted from the problem definition.
However, if, during the execution of the plan, we inform at the last minute that
a task can start earlier, we cannot assume that the preparation will be ready. In
other words, the tasks are subject to precedence constraints with tasks that are
external to the problem.

6.2 Instances

To compare the methods, we had access to four datasets. In these datasets,
there are 5 workers for minor setups, 1 for major setups, and a total of 81 looms
available. The scheduling horizon is 14,400 minutes which is roughly two weeks
of work time. Table 1 shows the characteristics of each instance, including the
number of pieces of textiles to weave. It also reports the resource usage rate
r = 1

H|L|
∑
i pi where H is the scheduling horizon, |L| is the number of looms

and pi is the processing time (without breakdowns) of task i. We also report the
usage rate when processing times are augmented with the expected breakdown
duration. These breakdowns approximately add 4% to the resource usage in the
last three datasets.

Dataset 1 consists of a reduced dataset where pieces of textiles with a due
date of 0 (these tasks are already late) and some others with due dates larger
than the horizon are removed. This leads to an easier dataset to solve for which
optimal solutions are obtained within 30 minutes of computation time with every
method.

Datasets 2, 3, and 4 are not modified, but cannot be optimally solved even
after 10 hours. These datasets are more realistic with respect to what is usually
observed in the industry where one has to work with suboptimal solutions. Those
are directly extracted from our industrial partner’s database.

In every instance, there is |W | = 1 mechanic available for major setups, 2
mechanics, 5 weavers, and 3 beam tiers available at all time for minor setups.
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Table 1: Dataset descriptions
Dataset 1 2 3 4

Textile pieces 448 602 480 525

Resource usage (%)
without / with average breakdowns

47.23/51.37 48.06/52.33 52.94/57.79 48.07/48.30

6.3 Results

In Figures 2, 4, 6, and 8, we present the results of our models with different
methods on the x-axis. The Confidence method was tested with different con-
fidence thresholds γ. The y-axis is the weighted tardiness. There are two colors
of dots and lines. Red presents the prediction value. The prediction is essentially
the objective value of the solution returned by the solver, i.e. the weighted tardi-
ness if the plan executes as expected by the Confidence constraint. Blue shows
the mean simulated weighted tardiness of the 100 runs with its 95 % confidence
interval.

Figure 2 shows the results for the reduced dataset solvable to optimality. No-
tice that the red curve is non-decreasing, since an optimal schedule that satisfies
the Confidence constraint with threshold γ is a feasible, but potentially subop-
timal, schedule for a smaller threshold. For this instance, which is rather trivial
to solve since few tasks were competing for the resources, the best strategy was
to plan no extra time for the breakouts. In case of a breakout, the next tasks are
simply postponed until the delayed task is completed. At this time, the resource
is always available to perform the setup to execute the next task and no further
delay is caused. This strategy is achieved by the Deterministic method and
the Confidence constraint with γ = 0.01. However, the Confidence predicted
value is closer to reality. At the opposite, for γ = 0.99, the weighted tardiness
is at its highest since the duration of nearly all tasks is set to the longest possi-
ble duration. Notice how the Fixed method offers a performance similar to the
Confidence method with γ = 0.5.

For the datasets 2, 3, and 4, we clearly see on Figures 3 to 8 that the solver
does not produce optimal solutions even within 10 hours. Indeed, the red curve
is non-monotonic. Moreover, results of the dataset 2 with γ = 95% are not
reported as no solution was obtained within 10 hours. This happens with even
lower confidence thresholds when using a timeout of 30 minutes. However, notice
that the simulation follows the predictions of the model for the higher values of
γ. The gap between the objective value obtained by the solver (red) and the
simulation (blue) decreases by increasing γ. In every case, the best solution,
as evaluated by the simulator (blue), comes from the Confidence method. In
Dataset 4, the best solution is obtained at γ = 20%. The Confidence model
trades objective value for robustness. The Confidence model outperforms the
Fixed model in both objective value and robustness. We can also notice that
choosing a bad γ value can make or break the quality of a solution. The solutions
for γ = 1% and γ = 95% are worse than the Deterministic model solution.
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Fig. 2: Dataset with 448 textile pieces to weave
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Fig. 3: Dataset with 602 textile pieces
to weave. 30 minutes timeout.
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Fig. 4: Dataset with 602 textile pieces
to weave. 10 hours timeout.
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Fig. 5: Dataset with 480 textile pieces
to weave. 30 minutes timeout
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Fig. 6: Dataset with 480 textile pieces
to weave. 10 hours timeout.
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Fig. 7: Dataset with 525 textile pieces
to weave. 30 minutes timeout.
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Fig. 8: Dataset with 525 textile pieces
to weave. 10 hours timeout.
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With the confidence intervals, we notice that the mean is usually quite precise
with 100 runs of the simulation model. The lengthy events are rarer, therefore,
increasing the number of simulations decreases the variability. Yet, using a higher
value of γ also reduces the variability. With Confidence the prediction expects
more tardiness, but the guarantee of not causing ripple effects makes it so the
mean simulated weighted tardiness is better.

The Deterministic method has no stochastic optimization involved and
completely ignores potential breakdowns. We would have thought that during
the simulation, this method would most likely lag behind the planned schedule
and finally execute a non-optimize schedule. However, it seems that in a context
where resources are not scarce (dataset 1), repairing the plan as it executes is
not a bad way to proceed. This pattern gradually vanishes with bigger instances.

On the harder datasets (datasets 2, 3, and 4), the objective value adopts
a wavy form. Our main hypothesis is that varying γ does not only affect the
objective value, it also affects the difficulty to solve the problem. So decreasing
γ would normally decrease the objective value, but in some situations, the search
heuristic gets trapped and the solver returns a worse solution once the timeout
is reached. This is especially apparent with a timeout of 30 minutes.

The harder datasets (2, 3, and 4) have tighter schedules. A ripple effect from
a breakdown can produce increasingly more lateness. We assume that the use-
fulness of the Confidence scales with the risk of the ripple effect. In Figures 4,
6, and 8, the curves are respectively centered around γ = 50%, 5%, 20%. The red
curve seems to show that γ = 100% cannot be achieved. This can be explained
by the difficulty of satisfying the higher percent of a Poisson cdf function and
the tendency of probability products to tend towards 0.

When we compare the different solutions graphs with the Table 1, we can
notice the following. The more resource usage there is, the harder it is to solve
the problem with a higher γ value. The instances also get harder as the number of
tasks increases. While we don’t include computation times, we noticed that in the
dataset 1, the computation times were similar (less than a second of difference)
to the deterministic model until 99% where it spiked. The computation times
for the other datasets where inconclusive since no optimal solution was found.

The Fixed method often overestimates the breakdown times needed to create
robustness and produces schedules where tasks are planned to be executed late.
The Fixed method is more rigid compared to Confidence because it cannot
allow to choose where the risk should be taken in order to minimize the weighted
tardiness. More often than not, the Fixed approach gives results similar to
the Confidence method with γ = 0.5, but slightly worse. In a context where
resources are abundant, it would be interesting to compute the processing times
by using a value shorted than the average breakdown time.

The Confidence method shows that the weighted tardiness computed by
the solver is a good indicator of the weighted tardiness obtained in the simula-
tion. It would be interesting to push further the evaluation with instances, not
necessarily industrial, for which we can control the scarcity of the resources. A
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search heuristic adapted to stochastic optimization could also help with this type
of problem and reduce the computation times.

7 Conclusion

We presented the Confidence constraint, a new global chance constraint that
provides robust solutions in stochastic contexts. We presented a linear time fil-
tering algorithm with explanations. We compared the Confidence constraint
to a Deterministic and Fixed approach and determined that the new global
chance constraint offers good prediction about the weighted tardiness obtained
in the simulation. It is planned that our industrial partner sets the γ-parameter
according to how much risk they are willing to take and readjusts it every week.
The deterministic method is implemented and being deployed by our indus-
trial partner, while the stochastic optimization is still under evaluation. More
stochastic events need to be taken into account such as the arrival of new orders.
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