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ABSTRACT
We consider two variants of the well-known “sailor in the
fog” puzzle. The first version (the “asteroid surveying”
problem) is set in three dimensions and asks for the short-
est curve that starts at the origin and intersects all planes
at unit distance from the origin. Several possible solutions
are suggested in the video, including a curve of length less
than 12.08. The second version (the “river shore” problem)
asks for the shortest curve in the plane that has unit width.
A solution of length 2.2782 . . . is described, which we have
proved to be optimal.
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1. THE “ASTEROID SURVEYING” PROB-
LEM

In a popular puzzle from recreational mathematics [2, 3,
5], a sailor rows a mile out to sea, throws an anchor and a
fishing line, and promptly falls asleep. By the time he wakes
up, a dense fog has surrounded him. Knowing the distance
to the shore but not knowing the direction, he wants to
devise a path that is guaranteed to reach shore and that
minimizes the distance travelled in the worst case. In other
words, he would like to find the shortest curve that starts
at the origin and intersects all lines at distance 1 from the
origin. This problem was solved by Isbell in 1957 [3], and the
optimal curve was discovered to have length

√
3+7π/6+1 =

6.3972 . . .
Puzzles of this kind have gained interest from researchers

in computer science, particularly since the introduction of
competitive analysis for robot navigation problems. One
natural question, posed recently at CCCG’02 [1], concerns
the three-dimensional generalization:
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What is the shortest curve in IR3 that starts at
the origin and intersects all planes at distance 1
from the origin?

This precise question arises in the following contrived (but
amusing) setting. Imagine that a spaceship has already
landed on the surface of a spherical asteroid, of unit radius.
What is the shortest path that the spaceship can take in or-
der to survey the entire surface of the asteroid? A point on
the surface is visible from some point on the path if and only
if the tangent plane through the point intersects the path.
Insisting that the path starts at the boundary of the sphere
rather than the origin only subtracts 1 from the optimal
path length. So, the two questions are indeed equivalent.

A curve intersects all planes at distance 1 from the origin if
and only if the curve’s convex hull contains the unit sphere
centered at the origin. Given any curve, we can compute
the largest sphere centered at the origin inscribed in the
convex hull and then scale coordinates by the reciprocal of
the radius of this sphere to obtain a feasible solution.

In the video, we first consider a few simple polygonal
curves, for example, through the vertices of a cube (with
length 14+

√
3 = 15.7320 . . .), through the vertices of a reg-

ular tetrahedron (with length 6
√

6 + 3 = 17.6969 . . .), and
through the vertices of a regular octahedron (with length
5
√

6 +
√

3 = 13.9794 . . .).
We then present the best curve that we have found cur-

rently through experimentation. It belongs to a family of
spirals of the form

{((1 − at2) sin(bπt), (1 − at2) cos(bπt), ct) | −1 ≤ t ≤ 1},
with line segments attached from the top point to an ex-
tra point (x0, y0, z0) and the bottom point to a symmetric
point (−x0,−y0,−z0). The origin is implicitly connected to
(x0, y0, z0). See Figure 1 (left). (For clarity sake, the por-
tion of the path from the origin is not drawn in the figure
or the video.)

Intuitively, the 1 − at2 factor fattens the spiral near the
middle, while the extra two line segments short-cut the curve
near the top and bottom. A guided computer search sug-
gests the following choice of parameters: a = 0.4, b =
1.18, c = 1.12, x0 = −0.37, y0 = −0.199, z0 = 1.24. After
scaling by a factor of roughly 1.363, this yields a feasible so-
lution of length less than 12.08 (or in the asteroid surveying
setting, 11.08).

2. THE “RIVER SHORE” PROBLEM
We next return to two dimensions and consider a related

puzzle posed by Ogilvy [4]: starting at an unknown point
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Figure 1: Our best “asteroid surveying” curve (left) and the optimal “river shore” curve (right).

inside a river of width 1, what is the shortest path that is
guaranteed to reach one of the two shores of the river?

With a little thought, the question is seen to be equivalent
to the following:

What is the shortest curve in IR2 that has width 1?

(Recall that the width of a curve is defined as the width
of the minimum strip enclosing the curve.) Notice that a
solution to the sailor-in-the-fog puzzle, scaled by a half, has
width at least 1, but the converse is not necessarily true.

For closed curves, we can take the circle of diameter 1,
which has perimeter π. Interestingly, there are infinitely
many closed curves (so-called curves of constant width) with
the property that the width of the minimum enclosing strip
along every direction is always 1, and surprisingly, all of
them have the same perimeter π (this is known as Barbier’s
theorem).

For open curves, we can do better. For example, a V-
shape formed by the vertices of an equilateral triangle al-
ready gives length 4/

√
3 = 2.3094 . . .

Better still, we consider a family of curves formed by the
concatenation of a line segment, a circular arc, and a line
segment, together with their reflection. We determine the

best parameters using calculus and find a curve of length

2

�
x

2
+ arccos

4x

x2 + 4
− arccos

1

x
+ � x2 − 1 � = 2.2782 . . .

for x = 2
√

z, where z = 0.2722 . . . is a root of the cubic
3z3 + 9z2 + z − 1. See Figure 1 (right). This curve is in
fact optimal; the main ideas behind the proof are sketched
in the video.
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