
Noname manuscript No.
(will be inserted by the editor)

Linear-Time Filtering Algorithms for the Disjunctive
Constraint and a Quadratic Filtering Algorithm for the
Cumulative Not-First Not-Last

Hamed Fahimi · Yanick Ouellet ·
Claude-Guy Quimper

Received: date / Accepted: date

Abstract We present new filtering algorithms for Disjunctive and Cumulative

constraints, each of which improves the complexity of the state-of-the-art algo-
rithms by a factor of log n. We show how to perform Time-Tabling and Detectable
Precedences in linear time on the Disjunctive constraint. Furthermore, we present
a linear-time Overload Checking for the Disjunctive and Cumulative constraints.
Finally, we show how the rule of Not-first/Not-last can be enforced in quadratic
time for the Cumulative constraint. These algorithms rely on the union find data
structure, from which we take advantage to introduce a new data structure that we
call it time line. This data structure provides constant time operations that were
previously implemented in logarithmic time by the Θ-tree data structure. Exper-
iments show that these new algorithms are competitive even for a small number
of tasks and outperform existing algorithms as the number of tasks increases. We
also show that the time line can be used to solve specific scheduling problems.

1 Introduction

Constraint programming offers numerous ways to model and solve scheduling prob-
lems. The Disjunctive constraint allows to model problems, where the tasks can-
not be executed concurrently. The Cumulative constraint models the problems
where a limited number of tasks can execute simultaneously. These constraints are
used in many applications. For instance, they are used to solve continuous casting

A preliminary version of this paper appears as [8]

Claude-Guy Quimper
Tel.: +1-418-656-2131 ext. 2099
E-mail: Claude-Guy.Quimper@ift.ulaval.ca

Yanick Ouellet
Tel: +1-418-656-2131 ext. 4799
E-mail: yanick.ouellet.2@ulaval.ca

Hamed Fahimi
Tel: +1-418-656-2131 ext. 4799
E-mail: hamed.fahimi.1@ulaval.ca

2 Hamed Fahimi et al.

scheduling problems [11], cargo assembly planning problems [5], university time
tabling [12], and even carpet cutting problems [25].

Multiple filtering algorithms to prune the search space come with these con-
straints. Due to the vast number of calls to these algorithms throughout the search,
it is essential to design them as efficient as possible. The contribution of data struc-
tures to the efficiency of these algorithms is indispensable.

For the All-Different constraint, that is a special case of Disjunctive and
Cumulative constraints, Puget [21] proposes an O(n log n) filtering algorithm.
The factor log n stems from the operations achieved on a balanced tree of depth
log n. López-Ortiz et al. [16] and Melhorn and Thiel [18] present linear time
algorithms that both use union find data structures to achieve equivalent op-
erations. Viĺım [30] proposes new data structures, called Θ-tree and Θ-λ tree,
that are balanced trees of depth log n. These data structures led to filtering al-
gorithms for the Disjunctive constraint, including filtering algorithms based on
Overload Checking, Not-first/Not-last, and Detectable Precedences [34]. Further-
more, filtering algorithms for the Cumulative constraint were achieved for Edge-
Finding [31], Extended-Edge-Finding, Time-Tabling-Extended-Edge-Finding [20],
and Not-first/Not-last [14]. These algorithms have a log n factor in their running
time complexities that originates from the balanced tree. In order to acquire a
faster running time complexity, we propose to modify some of these algorithms by
using a union find data structure, as it was done for All-Different.

The paper is organized as follows. In Section 2, we review the Disjunctive and
Cumulative constraints, as well as three filtering techniques: Time-Tabling, Not-
first/Not-last, and Detectable Precedences. In addition, we go over the Overload
Checking, which works as a consistency test to provide a necessary condition for
the feasibility of a set of tasks. Section 3 presents algorithmic preliminaries. In
Section 4 we propose the time line data structure. In Section 5, we introduce
new algorithms: a linear time algorithm for Time-Tabling (Section 5.1), a linear
time Overload Checking (Section 5.2), a Not-first/Not-last (Section 5.3), and an
algorithm applying the Detectable Precedences rules (Section 5.4). We also present
algorithms that solve simple scheduling problems in linear time (Section 5.5).
Thereafter, Section 6 presents the experimental results which verify the efficiency
of our algorithms. Section 7 concludes with a summary of our contributions.

This paper is an extension of a previous paper [8]. We present here, for the first
time, an algorithm that enforces the Not-first/Not-last filtering rule in quadratic
time, a linear time algorithm that minimizes total delay, and a linear time algo-
rithm that minimizes maximum lateness.

2 The Disjunctive and Cumulative constraints

We consider the scheduling problem where n tasks (denoted I = {1, . . . , n}) com-
pete to be executed without interruption, on a resource of capacity C. Every task
i has an earliest starting time esti ∈ Z, a latest completion time lcti ∈ Z, a pro-
cessing time pi ∈ Z+, and a height hi ∈ Z+. The height of a task is the rate at
which it consumes the resource and thus hi ≤ C. From these properties, one can
compute the latest starting time lsti = lcti−pi and the earliest completion time
ecti = esti +pi. The energy of a task, computed with ei = hipi, is the amount of

Linear-Time Filtering Algorithms for the Disjunctive Constraint 3

resource it consumes throughout its execution. The notions of the earliest start-
ing time, the latest completion time, the processing time, and the energy can be
generalized to a set of tasks ∅ ⊂ Ω ⊆ I.

estΩ = min
i∈Ω

esti lctΩ = max
i∈Ω

lcti pΩ =
∑
i∈Ω

pi eΩ =
∑
i∈Ω

ei

For empty sets, we have est∅ =∞ and lct∅ = −∞.
A resource is said to be cumulative if it can execute multiple tasks simultane-

ously. The sum of the heights of the tasks executing at a given time cannot exceed
C. A resource is disjunctive when it can only execute one task at a time. In such a
case, we have hi + hj > C for any pair of distinct tasks i, j ∈ I.

In the disjunctive case, a lower bound on the completion time of a set of tasks
Ω ⊆ I can be obtained by scheduling the tasks with preemption. We denote ectΩ
to stand for the earliest completion time of the tasks in Ω when scheduled with
preemption. Similarly, lstΩ signifies the latest starting time of the tasks in Ω when
scheduled with preemption.

ectΩ = max
∅⊂Θ⊆Ω

(estΘ +pΘ) lstΩ = min
∅⊂Θ⊆Ω

(lctΘ −pΘ) (1)

For empty sets, we have ect∅ = −∞ and lst∅ =∞.
For the cumulative case, Viĺım [32] defines the energy envelope of a set of tasks

Ω ⊆ I as follows

EnvΩ = max
Θ⊆Ω

(C estΘ + eΘ). (2)

The envelope is used to compute the earliest completion time of a set of tasks,
when scheduled with preemption.

ectΩ =

⌈
EnvΩ
C

⌉
(3)

To simplify the algorithms, we sometimes reduce a problem with a cumulative
resource with capacity C > 1 to a problem with a resource of unit capacity C = 1.
A task i is transformed into a task i′ with esti′ = C ·esti, lcti′ = C ·lcti, pi′ = ei, and
hi′ = 1. Let Ω be a set of tasks in the original problem and Ω′ be the transformed
tasks corresponding to those in Ω. The following lemma shows how to compute
the energy enveloppe of the set Ω.

Lemma 1 The energy enveloppe of a set of tasks Ω in the original problem is equal to

the earliest completition time of the transformed tasks when scheduled with preemption,

i.e. EnvΩ = ectΩ′ .

Proof The proof follows the properties of fully elastic scheduling problems pre-
sented in [2]. It is summarized with the equalities ectΩ′ = max∅⊂Θ′⊆Ω′(estΘ′ +pΘ′) =
max∅⊂Θ⊆Ω(C · estΘ + eΘ) = EnvΩ . 2

Let the variable Si denote the starting time of task i with the domain dom(Si) =
[esti, lsti]. The constraint Disjunctive([S1, . . . , Sn], ~p) is satisfied when Si + pi ≤
Sj ∨ Sj + pj ≤ Si for all pairs of tasks i 6= j. A solution to the Disjunctive

4 Hamed Fahimi et al.

constraint is a solution to the disjunctive scheduling problem. The constraint
Cumulative([S1, . . . , Sn], ~p,~h, C) holds if and only if

∀t :
∑

i:Si≤t<Si+pi

hi ≤ C

The Cumulative constraint implies that the total resource consumption rate un-
derway at time t does not exceed C.

It is NP-complete to determine whether the Disjunctive and Cumulative con-
straints are satisfiable and therefore it is NP-hard to enforce bound consistency
on them [1]. Notwithstanding, there are polynomial time algorithms for special-
izations to these constraints. For instance, when C = hi = pi = 1, the Cumulative

constraint is interpreted as an All-Different constraint and bound consistency
can be achieved in linear time [16,18]. When pi = pj for all i, j ∈ I, the Disjunctive

constraint becomes an Inter-Distance constraint and bound consistency can be
achieved in quadratic time [22].

Even though it is NP-Hard to filter the Disjunctive and Cumulative con-
straints, there exist pruning rules that can be enforced in polynomial time. All the
rules we present aim at delaying the earliest starting time of the tasks. To advance
the latest completion time, one can create the symmetric problem where task i

is transformed into a task i′ such that esti′ = − lcti, lcti′ = − esti, hi′ = hi, and
pi′ = pi. Delaying the earliest starting time in the symmetric problem prunes the
latest completion time in the original problem.

Following Vilim’s notations [30,31], we establish the following convention. Let
i ∈ I be a task and Θ ⊆ I \ {i} be a set of tasks. The relation Θ <· i denotes that
the task i must complete once all tasks in Θ have completed, whereas the relation
Θ � i denotes that the task i must start once all tasks in Θ have completed. The
first precedence relation is detected when filtering the Cumulative constraint,
while the second precedence relation is detected when filtering the Disjunctive

constraint.

2.1 Time-Tabling for the Disjunctive constraint

If a task i ∈ I with lsti < ecti exists, the time window [lsti, ecti) is said to be
the compulsory part of i, as such a task must execute within this interval. This is
the key observation behind the Time-Tabling rule. If there exists a task i with a
compulsory part and there exists a task j that satisfies ectj > lsti, inevitably j

must execute after i, i.e. i� j.

lsti < ecti ∧ lsti < ectj ⇒ est′j = max(estj , ecti) (4)

Example 1 Figure 1 corresponds to a set of tasks I = {1, 2} that must execute on
a disjunctive resource of capacity C = 1. Task 1 has the compulsory part [1, 4).
Since lst1 = 1 < ect2 = 2, the earliest starting time of the task 2 is adjusted to
est1 = max(1, 4) = 4 by (4).

Several algorithms apply the Time-Tabling rules [3,4,6,10,15,17,20]. Most of
them were designed for the Cumulative constraint but can also be used for the
more restrictive case of the Disjunctive constraint.

Linear-Time Filtering Algorithms for the Disjunctive Constraint 5

i esti lcti pi ecti lsti est′i
1 0 5 4 4 1 0
2 1 6 1 2 5 4

0 1 2 3 4 5 6 7

1

2est′2

Fig. 1: A set of tasks I = {1, 2} to execute on a disjunctive resource of capacity
C = 1. Due to the compulsory part [1, 4) for task 1, Time-Tabling detects 1 � 2
and adjusts est′2 = 4.

2.2 Overload Checking

The Overload Checking does not filter the search space and rather detects inconsis-
tencies and triggers backtracks during the search. For the Disjunctive constraint,
the Overload Checking fails when a set of tasks Ω ⊆ I whose total processing time
exceeds the time allowed for the tasks to execute.

pΩ > lctΩ − estΩ ⇒ Fail (5)

This can be rewritten in a simpler way.

ectΩ > lctΩ ⇒ Fail (6)

The Overload Checking is generalized for the Cumulative constraint as follows.

eΩ > C(lctΩ − estΩ)⇒ Fail (7)

Example 2 Consider the tasks from Figure 2 that must execute on a disjunctive
resource of capacity C = 1. The Overload Checking returns a failure with the set
Ω = {1, 2}, as the total processing time pΩ = 6 is more than 5, i.e. the amount of
time available in the interval [0, 5).

i esti lcti pi ecti lsti
1 0 4 3 3 1
2 1 5 3 4 2

0 1 2 3 4 5 6 7 8

1

2

Fig. 2: A set of tasks I = {1, 2} to execute on a disjunctive resource of capacity
C = 1. The Overload Checking detects a failure with the set Ω = {1, 2}.

Viĺım [29] and Wolf et al. [35] propose algorithms that run in O(n log n) for
this consistency test.

6 Hamed Fahimi et al.

2.3 Not-first/Not-last

The filtering rule not-first determines whether a task i ∈ I must execute after at
least one task in a set Ω ⊆ I \{i}. The filtering rule for the Disjunctive constraint
is as follows

lctΩ − esti < pΩ + pi ⇒ ¬(i <·Ω) (8)

and it is generalized for the Cumulative constraint as follows

eΩ +hi(min(ecti, lctΩ)− estΩ) > C(lctΩ − estΩ)⇒ ¬(i <·Ω). (9)

Upon the detection of the not-first relation ¬(i<·Ω), the rule applies the adjustment

est′i = max(esti, min
j∈Ω

ectj) (10)

The not-last rule is symmetric to the not-fist rule and prunes the latest completion
times of tasks.

Example 3 For the tasks of Figure 3, the Not-first detects that the total energy of
eΩ + h4(min(ect4, lctΩ)− estΩ) = 5 + 1 · (2− 0) = 7 is greater than the energy of
6 available between lstΩ and lctΩ for Ω = {1, 2, 3}. Thus, task 4 can not precede
Ω and est4 is filtered to minj∈Ω ectj = 1.

i esti lcti pi hi ecti lsti est′i
1 0 3 2 1 2 1 0
2 0 3 2 1 2 1 0
3 0 3 1 1 1 2 0
4 0 5 2 1 2 3 1

0 1 2 3 4 5 6

1

2

3

4est′4

Fig. 3: A set of tasks I = {1, 2, 3, 4} to execute on a cumulative resource of capacity
C = 2. The Not-first detects ¬(4� {1, 2, 3}) and adjusts est′4 = 1

Nuijten [19] presents the Not-first/Not-last rule for the Cumulative constraint.
Schutt et al. [26] correct Nuijten’s algorithm and provide a new algorithm running
in O(n3 log(n)). Further, Kameugne et al. [14] present a sound algorithm which
runs in O(n2 log(n)). Finally, Viĺım [30] presents an algorithm with time complexity
O(n log n) for the Disjunctive constraint.

2.4 Detectable Precedences

Detectable Precedences is a technique suited for the Disjunctive constraint. For
two distinct tasks i, j ∈ I, when ecti > lstj holds, we say that the precedence
j � i is detectable. Notice that the discrepancy between Detectable Precedences
and Time-Tabling, introduced in Section 2.1, is that the task j does not necessarily

Linear-Time Filtering Algorithms for the Disjunctive Constraint 7

have a compulsory part. The Detectable Precedences technique consists of finding,
for a task i, the set of tasks Ωi = {j ∈ I \ {i} | ecti > lstj} for which there exists
a detectable precedence with i. Once such a set is discovered, one can delay the
earliest starting time of i up to ectΩi

.

est′i = max(esti, ectΩi
) (11)

Example 4 For the tasks of Figure 4, Ω2 = {1} and ectΩ2
= 2. According to (11),

the adjustment rule of Detectable Precedences yields est′2 = 2.

i esti lcti pi ecti lsti est′i
1 0 5 2 2 3 0
2 1 7 3 4 4 2

0 1 2 3 4 5 6 7 8

1 lst1

2

Fig. 4: A set of tasks I = {1, 2} to execute on a disjunctive resource of capacity
C = 1. Dectectable Precedences detects 1� 2 and adjusts est′2 = 2

Viĺım [28] proposes this filtering technique and he later improves it in [29] to
obtain an algorithm with a running time complexity of O(n log n).

3 Algorithmic Preliminaries

3.1 Sorting

Let Iest, Ilst, Iect, Ilct, Ipand Id respectively denote the ordered sets of tasks I
sorted by earliest starting times, latest starting times, earliest completion times,
latest completion times, processing times, and due dates. We show how these sets
can be sorted in linear time O(n). Let w be the word-size of the processor and all
time points are encoded with w-bit integers. This assumption is supported by the
fact that a word of w = 32 bits is sufficient to encode all time points, with a preci-
sion of a second, within a period longer than a century. This is sufficient for most
industrial applications. An algorithm such as radix sort can sort the time points
in time O(wn) which is linear when w is constant. Moreover, since the filtering
algorithms are called multiple times with very similar instances, the insertion sort

can resort the sets in O(kn) time, where k is the number of tasks whose parame-
ters changed since the last execution of the filtering algorithm (see [7]). Since k is
usually constant, it turns out that insertion sort has a linear time behavior.

Using the insertion sort provides a way to make the filtering algorithms incre-
mental, i.e. to take advantage of previous computations. In fact, using the insertion
sort is the only strategy we use to make the algorithms incremental. All other data
structures are recomputed from scratch.

3.2 Union-Find Data Structure

The new algorithms we present rely on the Union-Find data structure. The func-
tion UnionFind(n) initializes n disjoint sets {0}, {1}, . . . , {n−1} in O(n) steps. The

8 Hamed Fahimi et al.

function Union(a, b) merges the set that contains the element a with the set that
contains the element b. The functions FindSmallest(a) and FindGreatest(a) re-
turn the smallest and greatest element of the set that contains a. These three
functions run in O(α(n)) steps, where α is Ackermann’s inverse function. It is
explained in [7] how to implement this data structure using trees. The small-
est and greatest element of each set can be stored in the root of these trees.
This implementation is the fastest in practice. However, we use this data struc-
ture in a very specific context where the function Union(a, b) is called only when
FindGreatest(a)+1 = FindSmallest(b). Such a restriction allows to use the Union-
Find data structure as presented by Gabow et al. [9] who implement the functions
Union(a, b), FindSmallest(a) and FindGreatest(a) in constant time. This imple-
mentation is the fastest in theory, but not in practice due to a large hidden con-
stant.

4 The Time Line Data Structure

We introduce the time line data structure. This data structure is initialized with
an empty set of tasks Θ = ∅. It is possible to add, in constant time, a task to Θ

and to compute, in constant time, the earliest completion time ectΘ. Viĺım [29]
proposes the Θ-tree data structure that supports the same operations. It differs in
two points from the time line. First, inserting a task in a Θ-tree requires O(log n)
steps. Second, removing a task from a Θ-tree is done in O(log n) steps, whereas
this operation is not supported in a time line. The time line is therefore faster
than a Θ-tree, but can only be used in the contexts where the removal of a task
is not required. Table 1 shows the advantage of time line as well as its limitation
compared with the Θ-tree .

Operation Θ−tree Time line

Initialization O(n) O(n)
Adding a task to the schedule O(log(n)) O(1)
Computing the earliest completion time O(1) O(1)
Removing a task from the schedule O(log(n)) Not supported

Table 1: Comparison of Θ-tree and time line.

The data structure is inspired from López-Ortiz et al. [16]. We consider a
sequence t[0..|t| − 1] of unique time points, sorted in chronological order, formed
by the earliest starting times of the tasks, and a sufficiently large time point,
which is maxi∈I lcti +

∑n
i=1 pi. The vector m[0..n − 1] maps a task i to the time

point index such that t[m[i]] = esti. The time points, except for the last one,
have a residual capacity, stored in the vector c[0..|t| − 2]. The residual capacity
c[a] denotes the amount of time the resource is available within the semi-open
time interval [t[a], t[a+ 1]) should the tasks in Θ be scheduled at their earliest
starting time with preemption. Initially, since Θ = ∅, the resource is fully available
and c[a] = t[a + 1] − t[a]. A Union-Find data structure s is initialized with |t|
elements. This data structure maintains the invariant that a and a + 1 belong

Linear-Time Filtering Algorithms for the Disjunctive Constraint 9

to the same set in s if and only if c[a] = 0. This allows us to quickly request,
by invoking s.FindGreatest(a), the earliest time point no earlier than t[a] with
a positive residual capacity. Finally, the data structure has an index e which is
the index of the latest time point whose residual capacity has been decremented.
Algorithm 1 initializes the time line data structure. It proceeds by initializing the
components t, m, c, s, and e that define the time line data structure.

Algorithm 1: InitializeTimeline(I)

t← [], c← [];
for i ∈ Iest do

if |t| = 0 ∨ t[|t| − 1] 6= esti then
t.append(esti);

m[i]← |t| − 1;

t.append(maxi lcti +
∑n
i=1 pi);

for k = 0..|t| − 2 do
c[k]← t[k + 1]− t[k];

s← UnionFind(|t|);
e← −1;

The data structure allows to “schedule” a task i on the time line at its earliest
time and with preemption. The value m[i] maps the task i to the index of the time
point associated to the earliest starting time of task i. Algorithm 2 schedules a task
on the time line. It iterates through the time intervals [t[m[i]], t[m[i] + 1]), [t[m[i] +
1], t[m[i] + 2]), . . . and decreases the residual capacity of each interval down to 0
until a total of pi units of capacity is decreased. Each time a residual capacity c[k]
reaches zero, the union-find merges the index k with k + 1 which allows, in the
future, to skip arbitrarily long sequences of intervals with null residual capacities
in constant time. The function ScheduleTask returns the time at which the newly
scheduled task on the time line completed.

Algorithm 2: ScheduleTask(i)
ρ← pi;
k ← s.FindGreatest(m[i]);
while ρ > 0 do

∆← min(c[k], ρ);
ρ← ρ−∆;
c[k]← c[k]−∆;
if c[k] = 0 then

s.Union(k, k + 1);
k ← s.FindGreatest(k);

e← max(e, k);
return t[k + 1]− c[k]

10 Hamed Fahimi et al.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(a)

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(b)

12 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(c)

12 2 3

i esti lcti pi
1 4 15 5
2 1 10 6
3 5 8 2

Fig. 5: A trace of Example 5.

Let Θ be the tasks that were scheduled on the time line using Algorithm 2.
Algorithm 3 computes ectΘ in constant time.

Example 5 Consider the tasks whose parameters are stated on Figure 5. Initializing
the time line produces the structure

{1} 3→ {4} 1→ {5} 23→ {28}

where the numbers in the sets are the time points and the numbers on the arrows
denote the residual capacities. After executing ScheduleTask(1) (see Figure 5a), the
residual capacity between the time points 4 and 5 becomes null and the union-find

merges both time points into the same set. The structure becomes {1} 3→ {4, 5} 19→
{28}. After calling ScheduleTask(2) (Figure 5b), the time line becomes {1, 4, 5} 16→
{28} and after calling ScheduleTask(3) (Figure 5c), it becomes {1, 4, 5} 14→ {28}.
The function EarliestCompletionTime retrieves the earliest completion time by
computing 28− 14 = 14.

Theorem 1 Algorithm 1 runs in O(n) amortized time while Algorithm 2 and Algo-

rithm 3 run in constant amortized time.

Proof Let ci be the residual capacity vector after the ith call to an algorithm
among Algorithm 1, Algorithm 2, and Algorithm 3. We define a potential function
φ(i) = |{k ∈ 0..|t|−2 | ci[k] > 0}| that is equal to the number of positive components
in the vector ci. Prior to the initialization of the time line data structure, we have
φ(0) = 0, as the residual capacity vector is empty. Always we have φ(i) ≥ 0. After
the initialization, we have φ(1) = |t| − 1 ≤ n. The two for loops in Algorithm 1
execute n+ |t| − 1 ≤ 2n ∈ O(n) times. Therefore, the amortized complexity of the
initialization is O(n) + φ(1)− φ(0) = O(n).

Suppose the while loop in Algorithm 2 executes a times. There are at least
a − 1 and at most a components in the residual capacity vector that are set to

Algorithm 3: EarliestCompletionTime(e)

if e ≥ 0 then
t[e + 1] - c[e]

else
return −∞;

Linear-Time Filtering Algorithms for the Disjunctive Constraint 11

zero, hence a− 1 ≤ φ(i)− φ(i− 1) ≤ a. The amortized complexity of Algorithm 2
is therefore a+ φ(i)− φ(i− 1) ≤ a− (a− 1) ∈ O(1).

Algorithm 3 executes in constant time and does not modify the residual capac-
ity vector c which implies φ(i) = φ(i − 1). The amortized complexity is therefore
O(1) + φ(i)− φ(i− 1) = O(1). 2

5 Novel Algorithms

5.1 Time-Tabling

We present Algorithm 4, a linear time algorithm that enforces the Time-Tabling
rule on the Disjunctive constraint. For this algorithm, the union-find data struc-
ture is sufficient to implement the algorithm and therefore it does not require the
use of the time line data structure. This new algorithm is not idempotent. How-
ever, it provides some guarantees on the level of filtering it achieves. Consider the
set of compulsory parts F = {[lsti, ecti) | i ∈ I ∧ lsti < ecti}. Consider a task j ∈ I.
The algorithm guarantees that after the filtering occurs, the interval [est′j , ect′j)
does not intersect with any interval in F . However, the pruning of estj to est′j
might create a new compulsory part [lstj , ect′j) that could cause some filtering in
a further execution of the algorithm.

These guarantees are identical to those that the Sweep algorithm in [3] offers.
Letort et al. [15] improve the Sweep algorithm to update the set of compulsory
parts F with the newly created compulsory part [lstj , ect′j) leading to fewer itera-
tions before converging to the fixed point. In contrast, Gay et al. [10] propose an
algorithm which filters less than the one we propose, but it achieves a linear time
complexity. They also propose a quadratic-time algorithm that does the same level
of filtering as the Sweep algorithm by Letort et al. [15]. All algorithms that achieve
Time-Tabling converge to a fixed point in a polynomial number of iterations. It
is more likely that the algorithms that filter more in a single iteration converge
faster to the fixed point.

Algorithm 4 proceeds in three steps, each of which is associated to a for
loop. The first for loop on line 1 creates the vectors l and u that contain the
lower bounds and upper bounds of the compulsory parts. The compulsory parts
[l[0], u[0]), [l[1], u[1]), . . . , [l[m−1], u[m−1]) form a sequence of sorted and disjoint
semi-open intervals such that each of them is associated to a task i that satisfies
lsti < ecti. If two compulsory parts overlap, on line 2 the algorithm returns In-

consistent. When processing the task i that has a compulsory part [l[k], u[k]), on
line 3 the algorithm ensures that the task i starts no earlier than u[k− 1], so that
the tasks that have a compulsory part are all filtered.

The second for loop on line 4 creates a vector r that maps a task i to the
compulsory part whose upper bound is the smallest one to be greater than esti.
Therefore, the relation u[r[i]− 1] ≤ esti < u[r[i]] holds.

The third for loop on line 5 filters the tasks that do not have a compulsory
part. The tasks are processed by non-decreasing order of processing times. Line 6
checks whether est′i +pi > l[r[i]]. If so, then the Time-Tabling rule applies and the
new value of est′i is pruned to u[c]. The same task is then checked against the next
compulsory part [l[r[i] + 1], u[r[i] + 1]) and so on. Suppose that a task is filtered
both by the compulsory part [l[c], u[c]) and the compulsory part [l[c+ 1], u[c+ 1]).

12 Hamed Fahimi et al.

Algorithm 4: TimeTabling(I)

m← 0, k ← 0, l← [], u← [], r ← [];
est′i ← esti, ∀ i ∈ I;
for i ∈ Ilst do1

if lsti < ecti then // If the task i has a compulsory part

if m > 0 then

if u[m− 1] > lsti then return Inconsistent;2

est′i ← max(est′i, u[m− 1]);3

l.append(lsti);
u.append(est′i +pi);
m← m+ 1;

if m = 0 then // Without compulsory parts, no filtering is needed
return Consistent;

for i ∈ Iest do4

while k < m ∧ esti ≥ u[k] do
k ← k + 1;

r[i]← k;

s← UnionFind(m);
for i ∈ Ip do5

if ecti ≤ lsti then
c← r[i];
first update← True;
while c < m ∧ est′i +pi > l[c] do6

c← s.FindGreatest(c);
est′i ← max(est′i, u[c]);
if est′i +pi > lcti then return Inconsistent;
if ¬first update then

s.Union(r[i], c);

first update← False;
c← c+ 1;

return Consistent;

Since we process the tasks by non-decreasing order of processing times, any further
task that is filtered by the compulsory part [l[c], u[c]) will also be filtered by the
compulsory part [l[c+1], u[c+1]). The algorithm uses a Union-Find data structure
to ensure that these two compulsory parts are glued together. The next task j that
satisfies est′j +pj > l[c] will be filtered to u[c+ 1] in a single iteration. The Union-
Find data structure can union an arbitrary long sequence of compulsory parts.

Theorem 2 Algorithm 4 enforces the Time-Tabling rule in O(n) steps.

Proof Each of the two first for loops iterate through the tasks once and execute
operations in constant time. Each time the while loop on line 6 executes more
than once, the Union-Find data structure merges two compulsory parts. This can
occur at most n times. 2

Linear-Time Filtering Algorithms for the Disjunctive Constraint 13

5.2 Overload Checking

The Overload Checking algorithm, as described by Viĺım [29], can be directly im-
plemented with a time line data structure rather than a Θ-tree. One schedules
the tasks on the time line, with preemption, using Algorithm 2, in non-decreasing
order of latest completion times. If after scheduling a task i on the time line, Al-
gorithm 3 returns an earliest completion time greater than lcti, then the Overload
Checking fails. The total running time complexity of this algorithm is O(n). The
proof of correctness follows Viĺım’s.

The Overload Checking can be adapted to the Cumulative constraint with a
resource of capacity C. Following Section 2, one transforms the task i of height hi
into a task i′ with esti′ = C ·esti, lcti′ = C · lcti, pi′ = ei, and hi′ = 1. The Overload
Checking fails on the original problem if and on if it fails on the transformed
model. The transformation preserves the running time complexity of O(n).

5.3 Not-first/Not-last

Kameugne et al. [14] introduce a sound Not-first/Not-last algorithm running in
O(n2 log n) time (see Algorithm 5), which turns out to be the state-of-the-art for
the Cumulative constraint.

Algorithm 5: NotFirst(I) (Kameugne et al. [14])

for i ∈ I do
est′i ← esti;

for i ∈ I do

Θ ← ∅;1

minEct←∞;
for j ∈ I do

if esti < ectj ∧j 6= i then

Θ ← Θ ∪ {j};2

minEct← min(minEct, ectj);
if Env(Θ, hi) > C · lctj −hi ·min(ecti, lctj) then3

est′i ← max(est′i,minEct);
break;

Algorithm 5 uses a Θ-tree to compute the energy envelope of Θ with respect
to a task i at line 3. The energy envelope Env(Θ, hi) is computed by choosing a
subset of tasks Ω ⊆ Θ that maximizes the amount of energy required to consume
C − hi units of resource over the time interval [0, estΩ) in addition to the energy
of the tasks in Ω.

Env(Θ, hi) = max
Ω⊆Θ

(C − hi) estΩ + eΩ

Using the transformation from Section 2, one can compute the energy envelope
Env(Θ, hi) using the time line. One transforms the tasks in I into a set of tasks I′.

14 Hamed Fahimi et al.

The task j ∈ I becomes a task j′ ∈ I′ with estj′ = (C−hi)·estj , lctj′ = (C−hi)·lctj ,
pj′ = ej , and hj′ = 1. The line 1 of Algorithm 5 initializes a time line using the
set of tasks I′ by calling Algorithm 1. Algorithm 2 is used to schedule task j′

on the time line at line 2. From Lemma 1, we obtain that Env(Θ, hi) is given by
the earliest completion time of the time line. In other words, Algorithm 3 returns
Env(Θ, hi).

The energy envelope computed by the time line is always the same as the
energy envelope computed by the Θ-tree. Therefore, the time line yields the same
filtering as the Θ-tree. The time line removes a log n factor from the running time
of the algorithm, leading to a total running time complexity of O(n2). The proof
of correctness follows the one by Kameugne et al [14].

5.4 Detectable Precedences

We introduce a new algorithm to enforce the rule of detectable precedences for
the Disjunctive constraint. The algorithm by Viĺım et al. [34] cannot be simply
adapted for the time line data structure, as it requires to temporarily remove a
task from the current schedule. As mentionned on Table 1, this operation is not
supported by the time line. Nonetheless, our method, presented in Algorithm 6,
circumvents this issue while maintaining linearity for the complexity of the algo-
rithm.

Suppose that the problem has no tasks with a compulsory part, i.e. ecti ≤ lsti
for all task i ∈ I. The algorithm simultaneously iterates over all the tasks i in
non-decreasing order of earliest completion times and on all the tasks k in non-
decreasing order of latest starting times. Each time the algorithm iterates over
the next task i, it iterates (line 2) and schedules on the time line (line 3) all
tasks k whose latest starting time lstk is smaller than the earliest completion time
ecti. Once the while loop completes, the set of tasks scheduled on the time line is
{k ∈ I \ {i} | lstk < ecti}. We apply the detectable precedence rule by pruning the
earliest starting time of task i up to the earliest completion time of the time line
(line 4).

Suppose that there exists a task k with a compulsory part, i.e. ectk > lstk. This
task could be visited in the while loop before being visited in the main for loop.
We do not want to schedule on the time line the task k before it is filtered. We
therefore call the task k the blocking task. When a blocking task k is encountered
in the while loop, the algorithm waits to encounter the same task in the for loop.
During this waiting period, the filtering of all tasks is postponed. A postponed
task i necessarily satisfies the conditions lstk < ecti ≤ ectk and ecti < lsti. Since
lstk < ecti then the precedence k � i holds. When the for loop reaches the blocking
task k, it filters the blocking task, schedules on the time line the blocking task,
and filters the postponed tasks. The blocking task and the set of postponed tasks
are reset. It is not possible to simultaneously have two blocking tasks since their
compulsory parts would overlap, which is inconsistent with the Time-Tabling rule.

Example 6 Figure 6 shows a trace of Algorithm 6. The for loop on line 1 processes
the tasks Iect = {1, 2, 3, 4} in that order. For the two first tasks 1 and 2, nothing
happens: the while loop is not executed and no pruning occurs as no tasks are
scheduled on the time line. When the for loop processes task 3, the while loop

Linear-Time Filtering Algorithms for the Disjunctive Constraint 15

Algorithm 6: DetectablePrecedences(I)

InitializeTimeline (I);
j ← 0;
k ← Ilst[j];
postponed tasks← ∅;
blocking task← null;
for i ∈ Iect do1

while j < |I| ∧ lstk < ecti do2

if lstk ≥ ectk then

ScheduleTask (k);3

else
if blocking task 6= null then return Inconsistent;
blocking task← k;

j ← j + 1;
k ← Ilst[j];

if blocking task = null then

est′i ← max(esti, EarliestCompletionTime());4

else

if blocking task = i then
est′i ← max(esti, EarliestCompletionTime());
ScheduleTask (blocking task);
for z ∈ postponed tasks do

est′z ← max(estz , EarliestCompletionTime());5

blocking task← null;
postponed tasks← ∅;

else
postponed tasks← postponed tasks ∪ {i};

for i ∈ I do
esti ← est′i;

processes three tasks. The while loop processes the task 2 which is scheduled on
the time line. When it processes task 4, the while loop detects that task 4 has
a compulsory part in [14, 18) making task 4 the blocking task. Finally, the while
loop processes task 1 which is scheduled on the time line. Once the while loop
completes, the task 3 is not filtered since there exists a blocking task. Its filtering
is postponed until the blocking task is processed. The for loop processes the task
4. In this iteration, the while loop does not execute. Since task 4 is the blocking
task, it is first filtered to the earliest completion time computed by the time line
data structure (est′4 ← 13). Task 4 is then scheduled on the time line. Finally, the
postponed task 3 is filtered to the earliest completion time computed by the time
line data structure (est′3 ← 19).

Theorem 3 The algorithm DetectablePrecedences runs in linear time.

Proof The for loop on line 1 processes each task only once, idem for the while loop.
Finally, a task can be postponed only once during the execution of the algorithm

16 Hamed Fahimi et al.

i esti lcti pi ecti lsti postponed tasks est′i
1 0 19 4 4 15 ∅ 0
2 2 22 9 11 13 ∅ 2
3 9 30 7 16 23 {3} 19
4 12 20 6 18 14 ∅ 13

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 lst1

2 lst2

3ect3

4

Fig. 6: The tasks Iect = {1, 2, 3, 4} and the visual representation of a solution
to the Disjunctive constraint. The algorithm DetectablePrecedences prunes the
earliest starting times est′3 = 19 and est′4 = 13.

and therefore line 5 is executed at most n times. Except for InitializeTimeline

and the sorting of Iect and Ilst that are executed once in O(n) time, all other
operations execute in amortized constant time. Therefore, DetectablePrecedences
runs in linear time. 2

5.5 Minimizing maximum lateness and total delay

Numerous objective functions can be optimized in a scheduling problem. Let Ei
denote the completion time of a task i. The due date of a task, denoted di, is the
last time that a task is expected to complete, without incurring penalties. The
lateness and delay of a task i are computed with Li = Ei − di and Di = Ei − esti.
We consider two problems: minimizing the maximum lateness (maxi∈I Li) and
minimizing total delay (

∑
i∈I Di).

Not only is the time line data structure useful to design filtering algorithms for
global scheduling constraints, but also it is strong enough to efficiently solve simple
preemptive scheduling problems whose best known algorithm runs in Θ(n log(n)).
While these problems are generally easy to solve, improving their running time
complexity is still relevant. Indeed, these simple problems can be used as a re-
laxation for more complex problems and the algorithms we present can be used
within a branch and bound.

The first algorithms for the problems of minimizing maximum lateness and
minimizing total delay in the disjunctive and preemptive case were introduced
in [13]. These algorithms are roughly similar. To minimize maximum lateness, the
algorithm in [13] schedules the tasks, with preemption and at their earliest time,
in non-decreasing order of due dates. To minimize the total delay, the algorithm
schedules the tasks in non-decreasing order of processing times.

It turns out that the time line provides a more efficient way to implement
these algorithms as one can see with Algorithms 7 and 8. These algorithms use
the ending time of the tasks returned by the function ScheduleTask to compute
the optimal objective value.

Linear-Time Filtering Algorithms for the Disjunctive Constraint 17

Algorithm 7: MinimizingMaximumLateness(I)

InitializeTimeline (I);
for i ∈ Id do

Ei ← ScheduleTask(i);
Li ← Ei − di;

Lmax ← maxi∈I(Li);
return Lmax;

Algorithm 8: MinimizingTotalDelay(I)

InitializeTimeline (I);
for i ∈ Ip do

Ei ← ScheduleTask(i);
Di ← Ei − esti;

D ←
∑
i∈I Di;

return D;

Horn [13] proves that these algorithms minimize the maximum lateness and
total delays. Since ScheduleTask runs in constant time, the overall complexities of
Algorithms 7 and 8 are linear.

6 Experimental Results

We conducted two experiments. The first experiment compares the filtering algo-
rithm for the Disjunctive constraint against the state-of-the-art algorithms that
perform the same level of filtering. The second experiment performs a similar
comparison for the Cumulative constraint.

We implemented our algorithms in Choco 2.1.5 and, as a point of compari-
son, the Overload Checking and the Detectable Precedences from Viĺım [29], the
Time Tabling algorithm from Ouellet and Quimper [20], and the Not-first/Not-
last from Kameugne et al. [14]. All experiments were run on an Intel Xeon X5560
2.667GHz quad-core processor. We used the impact based search and DomOver-

WDeg heuristic with a timeout of 10 minutes. These search strategies were already
available in the solver and were sufficient to compare the execution times of the
algorithms. However, there exist other heuristics, not implemented in that specific
version of Choco, that could be more suited for solving scheduling problems. Unless
specified otherwise, each filtering algorithm is individually tested, i.e. we did not
combine the filtering algorithms. For the instances that were solved to optimality
within 10 minutes, the two filtering algorithms of the same technique, whether it is
Overload Checking, Detectable Precedences, Time-Tabling, or Not-first/Not-last
produce the same number of backtracks since they achieve the same filtering and
therefore explore the same search tree.

18 Hamed Fahimi et al.

n×m OC DP TT

4× 4 0.99 1.00 1.00

5× 5 1.03 1.00 1.72

7× 7 0.99 1.08 1.74

10× 10 1.18 1.33 2.31

15× 15 1.06 1.22 2.58

20× 20 1.82 1.41 2.91

Table 2: Open-shop with n jobs and m tasks per job. Ratio of the average number
of backtracks between all instances of size n × m after 10 minutes of computa-
tions. OC: our Overload Checking vs. Viĺım’s. DP: our Detectable Precedences vs
Viĺım’s. TT: Our Time-Tabling vs Ouellet et al.

6.1 Algorithms for the Disjunctive constraint

We compare our filtering algorithms against the state-of-the-art filtering algo-
rithms enforcing the same level of filtering. For all algorithms, we sort the tasks
using the insertion sort, which mainly keeps track of the vector which was sorted
by the previous call to the algorithm and reuses that in the current iteration.

The experiments are carried out on the job-shop and open-shop scheduling
problems. In these problems, n jobs, consisting of a set of non-preemptive tasks,
execute on m machines. Each task executes on a predetermined machine with a
given processing time. In the job-shop problem, the tasks belonging to the same
job execute in a predetermined order. In the open-shop problem, the number of
tasks per job is fixed to m and the order in which the tasks of a job are processed
is immaterial. In both problems, the goal is to minimize the makespan. We use
the benchmark provided by [27] that includes 82 and 60 instances of the job-shop
and open-shop problems.

We model the problems with a starting time variable Si,j for each task j of job i.
We post a Disjunctive constraint over the starting time variables of tasks running
on the same machine. For the job-shop scheduling problem, we add the precedence
constraints Si,j + pi,j ≤ Si,j+1. For the open-shop scheduling problem, we add a
Disjunctive constraint among all tasks of a job. We declare a makespan variable
Emax subject to the constraints Emax ≥ Si,j + pi,j . For the job-shop problem, this
last inequality is only posted on the last task of each job.

To compare the algorithms, for all instances of the same size, we average the
number of backtracks achieved within 10 minutes and we report the ratio of these
backtracks between both algorithms. Since both algorithms explore precisely the
same search tree in the same order, a ratio greater than 1 indicates that our
algorithms explore a larger portion of the search tree and therefore they perform
faster.

Tables 2 and 3 show the results for the open-shop and job-shop problems. From
these tables, we cannot conclude that the new Overload Checking is faster and we
cannot conclude that it is slower, either. This is caused by the initialization of the
time line that is slower than the initialization of the Θ−tree. In order to amortize
the initialization time, the Overload Checking requires to process instances larger
than those in Table 2 and 3.

Linear-Time Filtering Algorithms for the Disjunctive Constraint 19

n×m OC DP TT

10× 5 0.94 1.12 1.86

15× 5 0.95 1.16 2.07

20× 5 0.94 1.37 2.15

10× 10 0.95 1.13 2.10

15× 10 0.84 1.20 2.06

20× 10 0.93 1.34 2.48

30× 10 0.95 1.38 2.80

50× 10 1.02 1.51 3.29

15× 15 0.90 1.14 2.38

20× 15 0.89 1.38 2.35

20× 20 0.92 1.25 1.70

Table 3: Job-shop with n jobs and m tasks per job. Ratio of the average number
of backtracks between all instances of size n × m after 10 minutes of computa-
tions. OC: our Overload Checking vs. Viĺım’s. DP: our Detectable Precedences vs
Viĺım’s. TT: Our Time-Tabling vs Ouellet et al.

The new algorithm of Detectable Precedences shows improvements on both
problems especially when the number of variables increases. One way to explain
why the ratios are greater compared with the Overload Checking is that the most
costly operations in Viĺım’s algorithm is the insertion and removal of a task in the
Θ-tree which can occur up to 3 times for each task. With the new algorithm, the
most costly operation is the scheduling of a task on the time line which occurs
only once per task.

The ratios verify that the new Time-Tabling algorithm is faster for both job
shop and open shop problems. The new Time-Tabling is much faster than the one
by Ouellet and Quimper [20], probably because our time tabling is specialised for
the Disjunctive constraint while Ouellet’s one is designed for the Cumulative

constraint, a more general constraint.

Furthermore, we randomly generated large but easy instances with a single
Disjunctive constraint over variables with uniformly generated domains. Unsatis-
fiable instances and instances solved with zero backtracks were discarded. Table 4
shows the ratio for the number of branches per millisecond and it verifies that the
new algorithms are consistently faster, including the new overload checking when
used on larger instances.

We also combined the filtering algorithms together to see how well they in-
teract together. We tried the combinations (OC+DP), (OC+TT), (DP+TT) and
(OC+DP+TT) with our proposed algorithms. Few instances were solved to opti-
mality, but the quality of the makespan obtained (smaller is better) allows us to
compare the performance of the different combinations. For the job shop problem,
on 55% of the instances (OC+DP) yields the best makespan, on 17% of the in-
stances (OC+TT) yields the best makespan, on 27% of the instances (DP+TT)
yields the best makespan and on 1% of the instances (OC+DP+TT) yields the best
makespan. For the open shop problem, on 55% of the instances (OC+DP) yields
the best makespan, on 22% of the instances (OC+TT) yields the best makespan
and on 23% of the instances (DP+TT) yields the best makespan. Thus, Overload

20 Hamed Fahimi et al.

Overload Checking Detectable Precedences Time-Tabling

n TT (bt/ms) TL (bt/ms) TT (bt/ms) TL (bt/ms) Ouellet (bt/ms) UF (bt/ms)

10 261.02 248.3 10.29 16.11 56.62 122.31

20 154.17 168.97 32.04 48.34 30.65 104.46

30 137.30 137.03 28.09 43.15 46.67 133.89

40 52.12 49.28 37.71 60.81 32.14 83.16

50 27.00 27.06 51.69 92.55 16.17 69.54

60 57.01 57.68 23.59 41.72 12.95 60.00

70 31.38 32.69 11.41 20.24 17.43 78.76

80 20.13 20.20 31.33 46.96 17.60 45.01

90 50.23 51.09 23.57 39.33 24.41 66.88

100 17.97 19.22 24.78 42.2 21.76 83.91

Table 4: Random instances with n tasks. The numbers in bold denote which data
structure performs faster. Times are measured in milliseconds. bt/ms stands for
the number of branches per millisecond. TT: Θ−tree, TL: time line, UF:Union-
Find data structure.

Checking combined with Detectable Precedences is a strong combination to solve
both open shop and job shops problems.

6.2 Algorithms for the Cumulative constraint

Experiments for the Cumulative constraint were conducted on the PSPLIB bench-
marks [1] of the Resource Constrained Project Scheduling Problems (RCPSP).
This problem consists of multiple resources of different capacities on which n tasks
can simultaneously be executed. Each task i has a set of predecessors. The goal is
to minimize the makespan.

We model the problem with a starting time variable Si for each task i. For each
resource, we post a Cumulative constraint over the starting time variables of all
tasks using that resource. Precedence constraint between two tasks i and j are
modeled with the constraint Si + pi ≤ Sj . We declare a makespan variable Emax

subject to the constraints Emax = max(S1 + p1, . . . , Sn + pn) that we minimize.
We implemented in Choco 2.1.5 the Not-first/Not-last algorithm from [14] with
the time line and, as a point of comparison, with the Θ-tree. We did not use other
filtering algorithms. We used the heuristic DomOverWDeg.

On the 2040 instances of the PSPLIB benchmark, 395 were optimally solved
within ten minutes by both versions of the algorithm. The solved instances are
distributed among the 30-task instances (154), the 60-task instances (121), and
the 90-task instances (120). The majority of these instances were solved under one
second, but 18 of the 30-task instances were more difficult. They were solved with
an average of 80.05 seconds for the Θ-tree and 51.94 seconds for the time line.
None of the 120-task instances were solved to optimality. Figure 7 shows that the
time line does significantly more backtacks per second than the Θ-tree for almost
all instances. The time line is therefore faster than the Θ-tree.

Linear-Time Filtering Algorithms for the Disjunctive Constraint 21

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●●
●●●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●
●

●

●●●●●●
●

●●●●
●●●●●●●●●●
●●●●●●●●●
●

●
●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●
●

●
●●●

●
●●●

●●●●●
●●
●●●

●

●●
●●
●●●
●●●●●●●

●

●●
●

●

●●

●
●

●
●●●●
●

●●●●●
●●●●

●●●●●●●●●
●●●●●

●

●●●
●

●●●●●●
●

●●●●
●●

●

●
●

●●●
●

●●
●●

●

●

●●●●
●

●
●●●
●●●●●
●●●
●

●●●●●

●

●
●

●
●●

●
●

●

●●
●

●●
●

●

●●
●●●●●

●

●

●

●●
●

●
●

●

●

●

●●●●●●●●●●●●
●●

●●

●

●
●

●

●●

●

●

●

●
●●●●

●
●●●●●●●

●

●●

●

●
●

●

●

●●●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●
●●

●

●
●

●
●

●●
●

●●●●●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●●●●●
●

●

●●

●
●

●

●

●
●

●●
●

●

●●

●

●
●●

●

●●

●
●●●

●

●●

●

●

●

●

●●
●

●●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 10000 20000 30000 40000

0
10

00
0

20
00

0
30

00
0

40
00

0

Theta−tree versus time line

Theta−tree (backtracks/sec.)

T
im

e
lin

e
(b

ac
kt

ra
ck

s
/ s

ec
.)

Fig. 7: Comparison of the backtracks per seconds of the Not-first/Not-last algo-
rithm with the Θ-tree versus the same algorithm with time line for instances of
the PSPLIB benchmark with a time limit of ten minutes.

6.3 Further Discussion

The experimental results confirm that the time line data structure can improve
the solving time of the solver. While we now have faster algorithms for the Time-
Tabling, Overload Checking, Not-First/ Not-Last, and Detectable Precedences, it
is important to point out that our experimental setup did not outperform state of
the art methods for solving the RCPSP instances. Indeed, a careful combination
of branching heuristics, search strategies, filtering algorithms, and also lazy clause
generation is necessary to achieve good performances [23,24]. This strongly moti-
vates to further exploit the time line data structure not only to filter, but also to
explain the filtering.

The Time-Table Edge-Finding [20,23,33] filtering rule offers a good compro-
mise between the filtering level and the computation time. It remains an open
question whether the time line can be used to improve the computation time
required to apply this rule.

7 Conclusion

We introduced a new data structure called the time line. We took advantage of
this data structure to present three new filtering algorithms for the Disjunctive

constraint that all have a linear running time complexity in the number of tasks.
For the Cumulative constraint, our linear-time Overload Checking can be adapted
and the time line provides an improvement for Not-first/Not-last. The new algo-
rithms outperform the best algorithms known so far that achieve the same level
of filtering. This data structure can also be exploited to achieve more efficient
algorithms to solve the scheduling problems of minimizing maximum lateness and
total delay.

22 Hamed Fahimi et al.

As future work, we believe that the time line data structures could be adapted
to provide explanations and therefore allow lazy clause generation. It also remains
an open question whether the Edge-Finding and the Time-Table-Edge-Finding can
be adapted to use the time line data structure to apply the rules in O(kn) time
where k is the number of distinct task heights.

References

1. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques for highly
disjunctive and highly cumulative project scheduling problems. Constraints 5(1-2), 119–
139 (2000)

2. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic
Publishers (2001)

3. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative
heights. In: Proceedings of the 8th International Conference on Principles and Practice of
Constraint Programming (CP 2002), pp. 63–79 (2002)

4. Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint in the
context of non-overlapping rectangles. In: Proceedings of the 5th International Conference
on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimisation Problems (CPAIOR 2008), pp. 21–35 (2008)

5. Belov, G., Boland, N., Savelsbergh, M.W.P., Stuckey, P.J.: Exploration of models for a
cargo assembly planning problem. ArXiv e-prints (2015)

6. Caseau, Y., Laburthe, F.: Cumulative scheduling with task intervals. In: Proceedings of
the Joint International Conference and Symposium on Logic Programming (JICSLP), pp.
369–383 (1996)

7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 2nd
edn. McGraw-Hill Higher Education (2001)

8. Fahimi, H., Quimper, C.G.: Linear-time filtering algorithms for the disjunctive constraint.
In: AAAI, pp. 2637–2643 (2014)

9. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union.
In: Proceedings of the 15th annual ACM symposium on Theory of computing, pp. 246–251
(1983)

10. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the cumulative
constraint. In: Principles and Practice of Constraint Programming, pp. 149–157. Springer
(2015)

11. Gay, S., Schaus, P., Smedt, V.D.: Continuous casting scheduling with constraint program-
ming. In: International conference on principles and practice of constraint programming,
pp. 831–845. Springer (2014)

12. Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building university timetables using
constraint logic programming. In: International Conference on the Practice and Theory
of Automated Timetabling, pp. 130–145. Springer (1995)

13. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quarterly 21(1),
177–185 (1974)

14. Kameugne, R., Fotso, L.P.: A cumulative not-first/not-last filtering algorithm in o (n 2log
(n)). Indian Journal of Pure and Applied Mathematics 44(1), 95–115 (2013)

15. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative
constraint. In: Proceedings of the 18th International Conference on Principles and Practice
of Constraint Programming (CP 2012), pp. 439–454 (2012)

16. López-Ortiz, A., Quimper, C.G., Tromp, J., van Beek, P.: A fast and simple algorithm for
bounds consistency of the alldifferent constraint. In: Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-03), pp. 245–250 (2003)

17. Le Pape, C.: Des systèmes d’ordonnancement flexibles et opportunistes. Ph.D. thesis,
Université Paris IX (1988)

18. Mehlhorn, K., Thiel, S.: Faster algorithms for bound-consistency of the sortedness and the
alldifferent constraint. CP 2, 306–319 (2000)

19. Nuijten, W.W.: Time and resource constrained scheduling: a constraint satisfaction ap-
proach. Ph.D. thesis, Technische Universiteit Eindhoven (1994)

Linear-Time Filtering Algorithms for the Disjunctive Constraint 23

20. Ouellet, P., Quimper, C.G.: Time-table-extended-edge-finding for the cumulative con-
straint. In: Proceedings of the 19th International Conference on Principles and Practice
of Constraint Programming (CP 2013), pp. 562–577 (2013)

21. Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. In: Proceed-
ings of the 15th National Conference on Artificiel Intelligence (AAAI-98) and the 10th
Conference on Innovation Applications of Artificial Intelligence (IAAI-98), pp. 359–366
(1998)

22. Quimper, C.G., López-Ortiz, A., Pesant, G.: A quadratic propagator for the inter-distance
constraint. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence (AAAI 06), pp. 123–
128 (2006)

23. Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the
cumulative resource constraint. In: Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2013), pp. 234–250
(2013)

24. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving rcpsp/max by lazy clause
generation. Journal of Scheduling 16(3), 273–289 (2013)

25. Schutt, A., Stuckey, P., Verden, A.: Optimal carpet cutting. pp. 69–84 (2011)
26. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumulative schedul-

ing in O(n3 log(n)). In: International Conference on Applications of Declarative Program-
ming and Knowledge Management (INAP 2005), pp. 66–80 (2006)

27. Taillard, E.: Benchmarks for basic scheduling problems. European Journal Opererational
Research 64(2), 278–285 (1993)

28. Viĺım, P.: Batch processing with sequence dependent setup times: New results. In: Proceed-
ings of the 4th Workshop of Constraint Programming for Decision and Control (CPDC’02)
(2002)

29. Viĺım, P.: o(n logn) filtering algorithms for unary resource constraint. In: Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pp. 335–347. Springer (2004)

30. Viĺım, P.: Global constraints in scheduling. Ph.D. thesis, Charles University in Prague
(2007)

31. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in o(knlogn).
In: International Conference on Principles and Practice of Constraint Programming, pp.
802–816. Springer (2009)

32. Viĺım, P.: Max energy filtering algorithm for discrete cumulative resources. In: Integra-
tion of AI and OR techniques in constraint programming for combinatorial optimization
problems, pp. 294–308. Springer (2009)

33. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In:
Proceedings of the 8th International Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2011),
pp. 230–245 (2011)

34. Viĺım, P., Barták, R., C̆epek, O.: Unary resource constraint with optional activities. In:
Proceedings of the 10th International Conference on Principles and Practice of Constraint
Programming, pp. 62–76 (2004)

35. Wolf, A., Schrader, G.: o(n log(n)) overload checking for the cumulative constraint and
its application. In: International Conference on Applications of Declarative Programming
and Knowledge Management, pp. 88–101. Springer (2005)

