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Abstract—Combinatorial optimization problems are often
very difficult to solve and the choice of a search strategy
has a tremendous influence over the solver’s performance.
A search strategy is said to be adaptive when it dynamically
adapts to the structure of the problem instance and identifies
the areas of the search space that contain good solutions.
We introduce an algorithm (RLBS) that learns to efficiently
backtrack when searching non-binary trees. Branching can be
carried on using any usual variable/value selection strategy.
However, when backtracking is needed, the selection of the
node to target involves reinforcement learning. As the trees
are non-binary, we have the opportunity to backtrack many
times to each node during the search, which allows learning
which nodes generally lead to the best rewards (that is, to the
most interesting leaves). RLBS is evaluated for a scheduling
problem using real industrial data. It outperforms classic (non-
adaptive) backtracking strategies (DFS, LDS) as well as an
adaptive branching strategy (IBS).
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I. INTRODUCTION

Combinatorial optimization problems are often very dif-

ficult to solve and the choice of a search strategy has

a tremendous influence over the solver’s performance. To

solve a problem using search, one needs to choose a variable

selection strategy (defining the order in which variables

will be instantiated), a value selection strategy (defining

the sequence in which we will try the variable possible

values) and a backtracking strategy (that determines to which

node we should backtrack/backjump, when a leaf is reached

or a dead-end is encountered). Some backtracking policies

are encoded into full deterministic algorithms (e.g. Depth-

First Search, DFS) while others rely on more dynamic node

evaluation mechanisms (e.g. Best-First Search). Others (e.g.

Limited Discrepancy Search [9]) can be implemented as a

deterministic iterative algorithm or as a node evaluator [3].

Whatever combination of variable selection, value selection,

and backtracking strategy is used, the search remains com-

plete. We only change visiting priorities in order to quickly

find good solutions.

A strategy is said to be adaptive when it dynamically

adapts to the structure of the problem and identifies the

areas of the search space that contain good solutions in order

to search those areas first. Some have proposed adaptive

variable/value selection strategies (e.g. Impact-based Search

(IBS) [17]) or adaptive backtracking strategies (e.g. Adaptive

Discrepancy Search [7], proposed for distributed optimiza-

tion problems).

In this paper, we consider a machine learning approach

for backtracking/node evaluation, which improves the per-

formance of the solver. More specifically, we use Reinforce-

ment Learning (RL) to identify the areas of the search space

that contain good solutions. The approach was developed

for optimization problems for which the search space is

encoded as a non-binary tree (decision variables are non-

binary). As the trees are non-binary, we have the opportunity

to backtrack multiple times to each node during the search.

This allows learning which nodes generally lead to the best

rewards (that is, to the most interesting leaves). Our back-

tracking strategy can be combined with any variable/value

selection strategies.

Section II reviews some preliminary concepts regarding

adaptive search and reinforcement learning. Section III ex-

plains how backtracking can be encoded as a reinforce-

ment learning task and introduces the proposed algorithm

(Reinforcement Learning Backtracking Search, or RLBS).

Section IV presents results for a complex industrial problem

that combines planning and scheduling. RLBS is compared

to more classic (non-adaptive) search strategies (DFS, LDS)

as well as an other adaptive branching strategy (IBS).

Section V concludes the paper.

II. BACKGROUND

Solving a combinatorial optimization problem using

global search comes down to defining three key elements: a

variable selection strategy, a value selection strategy, and a

backtracking strategy [20]. The search space is structred as

a tree based on the variable/value strategies. Regardless of
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the variable/value strategies applied, the search tree always

covers the entire search space. The backtracking strategy

defines in which order the nodes will be visited. Backtrack-

ing strategies can be implemented as iterative algorithms or

node evaluation mechanisms [3].

A. Learning Variable/Value Selection Strategies
Some algorithms learn during the search which variables

are the most difficult to instantiate, in order to dynamically

change the order of the variables (e.g. YIELDS [10]). In [4]

and [8], each time a constraint causes a failure, the priority

of the variables involved in this constraint is increased.
In Impact Based Search (IBS) [17], the impact of the

variables is measured by observing how their instantiation

reduces the size of the search space. Since IBS picks the

variable to assign and the value to try all at once, it can be

considered learning a combination of a variable and value

ordering strategies.

B. Learning to Backtrack
Approaches where the system learns to evaluate the qual-

ity of the nodes are of particular interest for backtracking

strategies. Ruml [18] makes an interesting proposal regard-

ing this. While a basic Limited Discrepancy Search (LDS)

policy gives the same importance to any discrepancy, Best

Leaf First Search (BLFS) dynamically attributes different

weights to discrepancies according to their depth. BLFS uses

a linear regression in order to establish the value of the

weights. The model was not really used in order to define a

backtracking strategy. Instead, the search algorithm proceeds

by a series of successive descents in the tree. Ruml has

achieved very good results with this algorithm (see [19]). It

was the inspiration for the following algorithm.
Adaptive Discrepancy Search (ADS) [7] is an algorithm

that was proposed for distributed optimization but it could

be used in a classic COP context. During the search, it dy-

namically learns which nodes it pays the most to backtrack

to (in order to concentrate on those areas of the tree first).

For each node, it tries learning a function Improvement(i)
predicting how good would be the first leaf reached after

backtracking to this node for the i-th time, in comparison

to previous backtracks to the same node. The drawback of

this method is that (1) whenever a new solution is found,

a function needs to be learned for every ancestor node of

the tree leaf corresponding to that solution, and (2) the

learning process involves regression over a vector that grows

over time [13]. Hence, the learning becomes more resource

consuming as the search goes on.

C. Reinforcement Learning
The algorithm in Section III introduces a simplified learn-

ing mechanism based on a basic reinforcement learning

technique.
The fundamental idea of Reinforcement Learning (RL) is

to figure out a way to map actions to situations in order

to maximize the total reward. The learner is not told which

actions to take, it must discover by itself which actions lead

to the highest reward (at long-term). Actions may affect not

only the immediate reward but also the next situation and,

through all, all subsequent rewards [2]. Moreover, the actions

may not lead to the expected result due to the uncertainty

of the environment.
RL uses a formal framework defining the interaction

between the learner and the environment in terms of states,

actions, and rewards. The environment that supports RL

is typically formulated as a finite-state Markov Decision

Process (MDP). In each state s ∈ S, a set of actions a ∈ A
are available to the learner, among which it has to pick the

one that maximizes the cumulative reward. The evaluation

of actions is entirely based on the learner’s experience,

built through its interactions with the environment. The goal

of the learner is to find, through its interactions with the

environment, an optimal policy π : S → A maximizing

the cumulative reward. The cumulative reward is either

expressed as a sum of all the rewards R = r0+r1+ · · ·+rn
or as a discounted sum of the rewards R =

∑
t γ

trt. The

discount factor 0 ≤ γ ≤ 1 is applied to promote the

recent rewards. The discounted sum representation of the

cumulative reward is mostly used for an MDP with no

terminal state.
In a RL task, each action a, in each state s, is associated

with a numeric value Q(s, a) that represents the desirability

to take the action a in the state s. These values are called Q-

Values. The higher the Q-Value, the more likely the action

is going to lead to a good solution, according to the learner’s

judgment. Every time a reward is returned to the learner, the

learner must update the Q-Value of the action that has led

to this reward. However, the older Q-Value should not be

completely forgotten, otherwise the learner would be acting

based on the very last experience every single time. To do

so, we keep a part of the old Q-Value and we update it

with a part of the new experience. Also, we assume that the

learner is going to act optimally afterward. Moreover, the

expected future rewards need to be discounted to express

the idea of the sooner a reward is received, the better.
Let s be the current state, s′ the next state, a an action,

r the returned reward after having taken the action a, α the

learning rate, and γ the discount factor. The update formula

for the Q-Values is as follows:

Qt+1(st, at)← (1−α)Qt(st, at)+α[rt+1+γmax
a′

Qt(s
′
t+1, a

′)]
(1)

This update formula comes in handy when the learner has

to learn an action-value representation, like in Q-Learning

[21]. The update is almost instantaneous.

D. Reinforcement Learning and Search
The idea of using RL in solving combinatorial problems

is supported by many publications [14], [16], [22]. Some
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researches tried to apply RL to solve optimization problems

and some have considered solving Constraint Satisfaction

Problems (CSP) using RL techniques.

For instance, Xu et al. [22] proposed a formulation of

a CSP as a RL task. A set of different variable ordering

heuristics is provided to the algorithm that learns which one

to use, and when to use it, in order to solve a CSP in a shorter

amount of time. The learning process is accomplished in

an offline manner and applied on different instances of the

same CSP. The states are the instances or sub-instances of

the CSP and the actions are defined as the variable ordering

heuristics. A reward is assigned each time an instance is

solved. This approach relies on Q-learning to learn the

optimal variable ordering heuristic at each decision point

of the search tree, for a given (sub)-instance of the CSP.

Moreover, Loth et al. [11] have proposed the Bandit

Search for Constraint Programming (BASCOP) algorithm

that guides the seach (branching decisions) during the

search, based on statistical gathered estimates BASCOP has

been applied on a job shop problem in [12].

Miagkikh et al. [14] also proposes a local search technique

using RL. This approach solves COPs based on a population

of RL agents. The pairs 〈variable, value〉 are considered

as the RL task states, and the branching strategies as the

actions. Each RL agent is assigned a specific area of the

search space where it has to learn and find good local

solutions. The expertise of the entire population of RL agents

is used. A new solution is produced by taking a part of the

locally-best solution found by one agent and by completing

it with the expertise of another agent.

Moll et al. [16] see the local search as a policy of a

Markov Decision Process (MDP) where states represent so-

lutions and actions define neighboring solutions. Reinforce-

ment learning techniques can be used to learn a cost function

in order to improve local search. One way to do so is to

learn a new cost function over multiple search trajectories

of the same instance. Boyan and Moore’s STAGE algorithm

[5] follows this approach and alternates between using the

learned and the original cost function. By enhancing the

predictive accuracy of the learned cost function, the guidance

of the heuristics improves as the search goes on.

Another approach that uses reinforcement learning to

improve local search in the context of combinatorial opti-

mization is to learn a cost function off-line, and then use it on

new instances of the same problem. Zhang and Dietterich’s

work [23] falls into this category.

III. RLBS: BACKTRACKING AS A REINFORCEMENT

LEARNING TASK

This section introduces Reinforcement Learning Back-
tracking Search (RLBS). Branching is performed according

to any usual variable/value selection heuristic. Each time we

reach a leaf/solution, we need to select the node to backtrack

to. To each available candidate (node with at least one

unvisited child) corresponds a possible action (“backtracking

to this node”). Once we select a node, the search continues

from that point until we reach a new leaf/solution. The

difference between the quality of this new solution and the

best solution so far is the reward we get for performing the

previous action. As we are searching a non-binary tree, we

backtrack multiple times to each node during the search.

This is an opportunity to identify the actions that pay the

most (that is, nodes that are more likely to lead to interesting

leaves/solutions). Since the method is implemented as a node

evaluation mechanism, the search remains complete.

This situation reminds the k-armed-bandit problem [1], a

single-state reinforcement learning problem. Many actions

are possible (pulling one of the arms/levels of the slot

machine). Each action may lead to a stochastic reward and

we need balancing between exploration and exploitation.

In our specific backtracking situation, performing an action

makes us discover new nodes/actions, in addition to giving

us a reward (which is stochastic and non-stationary).

A. Learning

As in classic reinforcement learning, the valuation (Q-

value) of an action a is updated each time we get a reward

after performing a. As we are in a single-state environment,

the discount factor γ is equal to 0 and (1) reduces to (2):

Qt+1(at)← Qt(at) + α[rt+1(at)−Qt(at)] (2)

where r(a) is the reward and α is the learning rate.

The next action to perform is selected based on those

valuations. A node that paid well at first but never got good

solutions afterward will see its Q-value decrease over time,

until it becomes less interesting than other nodes/actions.

B. Initialization of the Algorithm

At the beginning of the search, we descend to the first

leaf of the tree using a DFS. We then backtrack once to

each open node (this is similar to the first 2 iterations of

LDS), which allows computing their Q-Values. Then, we

start using the Q-Values in order to choose the next node to

backtrack to. Each time a new node is visited for the first

time, its Q-Value is initialized using its parent’s value.

IV. EXPERIMENTATION USING INDUSTRIAL DATA

The main goal of this research was to come up with a

more efficient way to select the node to backtrack to during

search, for (1) combinatorial optimization problems (2) for

which we already know good variable/value selection strate-

gies. We carried out experiments for a combined planning

and scheduling problem from the forest-products industry

(lumber planning and scheduling problem) for which good

variable/value selection strategies are already known.

The problem is difficult as it involves divergent processes
with coproduction: a single process simultaneously produces

multiple products from one type of raw material. Moreover,
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Table I
COMPUTATION TIME REDUCTION OF RLBS VS. LDS WITH DIFFERENT LEARNING RATE VALUES

ααα Case 1 Case 2 Case 3 Case 4 Case 5 Average
0.1 ↓ 97.32% ↓ 96.56% ↓ 92.97% ↓ 52.96% ↓ 99.63% ↓ 87.89%
0.2 ↓ 97.36% ↓ 96.48% ↓ 93.06% ↓ 53.18% ↓ 99.63% ↓ 87.94%
0.3 ↓ 97.38% ↓ 95.44% ↓ 90.26% ↓ 53.64% ↓ 99.63% ↓ 87.27%
0.4 ↓ 97.40% ↓ 95.27% ↓ 93.47% ↓ 53.90% ↓ 99.63% ↓ 87.93%
0.5 ↓ 97.43% ↓ 86.87% ↓ 93.67% ↓ 54.09% ↓ 99.63% ↓ 86.34%
0.6 ↓ 97.47% ↓ 80.54% ↓ 93.68% ↓ 54.28% ↓ 99.63% ↓ 85.12%
0.7 ↓ 97.47% ↓ 78.64% ↓ 93.77% ↓ 54.39% ↓ 99.63% ↓ 84.78%
0.8 ↓ 97.48% ↓ 77.24% ↓ 93.82% ↓ 54.70% ↓ 99.63% ↓ 84.58%
0.9 ↓ 97.48% ↓ 76.40% ↓ 93.88% ↓ 54.87% ↓ 99.63% ↓ 84.45%

Figure 1. Objective function value according to computation time of
LDS and RLBS for case #1 (α = 0.2)

Figure 2. Objective function value according to computation time of
LDS and RLBS for case #2 (α = 0.2)

Figure 3. Objective function value according to computation time of
LDS and RLBS for case #3 (α = 0.2)

Figure 4. Objective function value according to computation time of
LDS and RLBS for case #4 (α = 0.2)

alternative processes can produce the same product. Finally,

it involves complex setup rules. The objective is to minimize

orders lateness.

The problem is fully described in [6] which provides

a variable/value selection heuristic specific for it. In [7],

this heuristic was used to guide the search in a constraint

programming model. Provided with this branching strategy,

LDS outperformed DFS as well as a mathematical program-

ming approach. In [15], parallelization was used to improve

performance (the visiting order of the nodes is the same as

the centralized version, so it implements the same strategy).

We used the same variable/value selection heuristic as

in previous work. We also used the same industrial data

provided by a Canadian forest-products company. However,

in order to be able to compare the algorithms according to

the time needed to get optimal solutions, we reduced the

size of the problems (5 periods instead of 44 periods).

We evaluated RLBS on 5 industrial instances of the

lumber planing and scheduling problem using different

learning rate values (see table I), and it turned out that,

on average, RLBS performs best with a learning rate value

of α = 0.2 (with an average computation time reduction

of 87.94%). Therefore, we use this learning rate value for

all the experiments to compare RLBS to an LDS-based
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Figure 5. Objective function value according to computation time of
LDS and RLBS for case #5 (α = 0.2)

Table II
COMPUTATION TIME NEEDED TO GET THE BEST SOLUTION (RLBS AND ADS VS. LDS)

Case 1 Case 2 Case 3 Case 4 Case 5 Average
LDS 132282 38861 20133 18197 226666 87227.8
ADS 133352 39079 20436 4612 38079 47111.6
RLBS 3494 1367 1398 8519 839 3123.4

Reduction ADS ↑ 0.80% ↑ 0.56% ↑ 1.50% ↓ 74.65% ↓ 83.20% ↓ 31.00%
Reduction RLBS ↓ 97.36% ↓ 96.48% ↓ 93.06% ↓ 53.18% ↓ 99.63% ↓ 87.94%

Table III
AVERAGE COMPUTATION TIME TO GET A SOLUTION OF A GIVEN QUALITY (RLBS AND ADS VS. LDS)

Case 1 Case 2 Case 3 Case 4 Case 5 Average
LDS 3154147 724758 154336 964493 2716473 1542841.4
ADS 2897119 625379 98702 352457 848643 964460
RLBS 119949 68569 13776 518047 44561 152980.4

Reduction ADS ↓ 8.15% ↓ 13.71% ↓ 36.05% ↓ 63.46% ↓ 68.76% ↓ 38.03%
Reduction RLBS ↓ 96.20% ↓ 90.54% ↓ 91.07% ↓ 46.29% ↓ 98.36% ↓ 84.49%

policy (selecting the node showing the least discrepancies),

and to ADS.

Figures 1 to 5 present the results for five different cases.

Table II shows the reduction of computation time (measured

as the number of visited nodes) needed to get an optimal

solution. RLBS reduced computation time for each case (on

average by 87.94%) while ADS reduced it for only 2 cases

(with an average of 31.00%).

As in industrial context we usually do not have time to

wait for the optimal solution, we also wanted to consider

the time needed to get solutions of intermediate qualities.

Table III shows, for each case, the average time needed to

get a solution of any given quality. The last column shows

that on average, for all problems and all needed solution

qualities, the expected improvement of computation time

provided by RLBS is 84.49%. ADS reduces the average

computation time to get a solution of a given quality by

38.03% on average.

According to the tables II and III, we can conclude that

RLBS is on average about 5 times faster than LDS, and

about 3 times faster than ADS.

Finally, we generated small toy problems (Fig. 6) in

order to compare RLBS with additional algorithms for

which we were not able to solve the original problem in

reasonable time (over 150 hours using Choco v2.1.5). We

compared it to other approaches that do not change the

branching heuristics (DFS, LDS). We also include results for

Impact-Based Search (IBS) (which prevents us from using

our specific variable/value selection heuristic) in order to

illustrate that trying to learn how to branch instead of using

good branching heuristics might not be the best option (at

least not for the studied problem and IBS). IBS showed

the worst result, presumably because it cannot make use

of the specific branching strategy known to be efficient for

this problem. DFS was also outperformed by LDS, as it is

reported in the literature for this problem.

V. CONCLUSION

We proposed a simple learning mechanism based on

reinforcement learning which allows a solver to dynamically

learn how to backtrack without changing the branching

strategy used. It was evaluated for a difficult industrial

planning and scheduling problem which is only efficiently
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Figure 6. Objective function value according to computation time of
RLBS, LDS, IBS and DFS for a toy problem (α = 0.2)

solved when using specific branching heuristics. The pro-

posed adaptive strategy greatly improved the performance

in comparison with standard backtracking policies. This is

made possible as the mechanism allows identifying which

nodes are the most profitable to backtrack to and, thus,

focusing on them first.

Using real industrial data showed the value of this ap-

proach. However, there are still open questions regarding

how the algorithm should perform with problems for which

we do not know good branching heuristics. In this situation,

is it worth trying to identify which node we should backtrack

to?

The combination of our adaptive backtracking strategy

and adaptive branching strategies (like BASCOP [11] which

uses reinforcement learning for branching) would be another

interesting research opportunity.
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