Learning the Parameters of Global Constraints for Medical Scheduling

Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney

Émilie Picard-Cantin

Medical Schedule

People oriented

	1	2	3	4	5	6	7
Q		\ddots					
?							
?)						

Shift / Task oriented

	1	2	3	4	5	6	7
)	ค	Ω			O	ค	
			ค	ค		Ω	是

Scheduling Process

	\sum	+	
Expert	Mode	Solver	Schedul

Scheduling Process

Scheduling Process

Speeding up the modelling process

Speeding up the modelling process

- Challenge: Models differ from one medical team to another

Speeding up the modelling process

- Challenge: Models differ from one medical team to another
- Observation: There are few differences between each model.

Speeding up the modelling process

- Challenge: Models differ from one medical team to another
- Observation: There are few differences between each model.
- Opportunity: For legal reasons, hospitals keep a history of their schedules.

Speeding up the modelling process

- Challenge: Models differ from one medical team to another
- Observation: There are few differences between each model.
- Opportunity: For legal reasons, hospitals keep a history of their schedules.
- Goal: To learn the models from historical data.

Recommander System

Past
schedules

Recommander System

Recommander Past
System
schedules

Recommander System

Discovered Recommander Past Constraints
System
schedules

Recommander System

Discovered Recommander Past Constraints
System
schedules

Expert

Solver
Schedule

Recommander System

Discovered Recommander Past Constraints

System
schedules

Expert
Model

Solver

Schedule

How to learn a constraint?

- Do we have a limit of:
- 2 night-shifts per week?
- 1 night-shift every 3 days?

Which constraint was imposed?

Which constraint was imposed?

Which constraint was imposed?
$x+y \leq 5$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$
- The probability of observing \vec{X} is $P(\vec{X})=\Pi_{i=1}^{n} p_{X_{i}}$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$
- The probability of observing \vec{X} is $P(\vec{X})=\prod_{i=1}^{n} p_{X_{i}}$
- Consider the constraint $C\left(\left[X_{1}, \ldots, X_{n}\right],\left[\alpha_{1}, \ldots, \alpha_{m}\right]\right)$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$
- The probability of observing \vec{X} is $P(\vec{X})=\Pi_{i=1}^{n} p_{X_{i}}$
- Consider the constraint $C\left(\left[X_{1}, \ldots, X_{n}\right],\left[\alpha_{1}, \ldots, \alpha_{m}\right]\right)$
- The probability that a random assignment satisfies C is

$$
G_{C}(\vec{\alpha})=\sum_{\vec{X} \mid C(\vec{X}, \vec{\alpha})} P(\vec{X})
$$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$
- The probability of observing \vec{X} is $P(\vec{X})=\Pi_{i=1}^{n} p_{X_{i}}$
- Consider the constraint $C\left(\left[X_{1}, \ldots, X_{n}\right],\left[\alpha_{1}, \ldots, \alpha_{m}\right]\right)$
- The probability that a random assignment satisfies C is

$$
G_{C}(\vec{\alpha})=\sum_{\vec{X} \mid C(\vec{X}, \vec{\alpha})} P(\vec{X})
$$

Problem Definition

- Consider a random assignment \vec{X} with $P\left[X_{i}=v\right]=p_{v}$
- The probability of observing \vec{X} is $P(\vec{X})=\prod_{i=1}^{n} p_{X_{i}}$
- Consider the constraint $C\left(\left[X_{1}, \ldots, X_{n}\right],\left[\alpha_{1}, \ldots, \alpha_{m}\right]\right)$
- The probability that a random assignment satisfies C is

$$
G_{C}(\vec{\alpha})=\sum_{\vec{X} \mid C(\vec{X}, \vec{\alpha})} P(\vec{X})
$$

- Finding $\vec{\alpha}$ consists in solving:

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

How to compute $G_{C}(\vec{\alpha})$?

- Enumerating and summing the probability of all solutions of a constraint is slow.
- We mainly developed two techniques to compute or bound this probability
- Using Markov chains
- Using dynamic programming

Markov Chains

- Some constraints can naturally be encoded with an automaton.

Sequence Automaton

Sequence Markov Chain

Computing $G_{\text {SEQUENCE }}(\vec{\alpha})$

- Let $M_{\vec{\alpha}}$ be the transition matrix of the Markov chain for the constraint with parameters $\vec{\alpha}$.
- One can compute the probability of reaching the reject state after reading n characters by computing $M_{\vec{\alpha}}^{n}$.
- For every combination of $\vec{\alpha}$, compute $M_{\vec{\alpha}}^{n}$ and evaluate $G_{C}(\vec{\alpha})$.
- Keep $\vec{\alpha}$ that minimizes $G_{C}(\vec{\alpha})$.

When parameters are sets

- If the parameter contains a set, there is an exponential number of combinations to explore.

$$
\begin{aligned}
& \operatorname{Among}\left(\left[X_{1}, \ldots, X_{n}\right], l, u, \vec{z}\right) \\
& \operatorname{Sequence}\left(\left[X_{1}, \ldots, X_{n}\right], l, u, w, \vec{z}\right) \\
& \operatorname{SubSetFocus}\left(\left[X_{1}, \ldots, X_{n}\right], l, m, \vec{z}\right)
\end{aligned}
$$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound on $G_{C}(\vec{\alpha})$

$$
\begin{aligned}
p & =\sum_{v} z_{v} \cdot p_{v} \\
G_{C}(\vec{\alpha}) & \geq G_{C}(\operatorname{ext}(\vec{\alpha})) \\
& \geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
\end{aligned}
$$

Branch \& Bound

$\min _{\vec{\alpha}} G_{C}(\vec{\alpha})$

$\forall \vec{X} \in$ Examples

Probability that a value belongs to the set.

- We use this ompute a bound on $G_{C}(\vec{\alpha})$

$$
p=\sum_{v} z_{v} \cdot p_{v}
$$

$$
\begin{aligned}
G_{C}(\vec{\alpha}) & \geq G_{C}(\operatorname{ext}(\vec{\alpha})) \\
& \geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
\end{aligned}
$$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound on $G_{C}(\vec{\alpha})$

$$
\begin{aligned}
p & =\sum_{v} z_{v} \cdot p_{v} \\
G_{C}(\vec{\alpha}) & \geq G_{C}(\operatorname{ext}(\vec{\alpha})) \\
& \geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
\end{aligned}
$$

Branch \& Bound

$$
\begin{array}{r}
\min _{\vec{\alpha}} G_{C}(\vec{\alpha}) \\
C(\vec{X}, \vec{\alpha})
\end{array}
$$

- We use this strategy

$$
p=\sum_{v} z_{v} \cdot p_{v}
$$

$$
G_{C}(\vec{\alpha}) \geq G_{C}(\operatorname{ext}(\vec{\alpha}))
$$

$$
\geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
$$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound on $G_{C}(\vec{\alpha})$

$$
\begin{aligned}
p & =\sum_{v} z_{v} \cdot p_{v} \\
G_{C}(\vec{\alpha}) & \geq G_{C}(\operatorname{ext}(\vec{\alpha})) \\
& \geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
\end{aligned}
$$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound on $G_{C}(\vec{\alpha})$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound $\sim n(\vec{\alpha})$

Branch \& Bound

$$
\begin{aligned}
\min _{\vec{\alpha}} & G_{C}(\vec{\alpha}) \\
& C(\vec{X}, \vec{\alpha}) \quad \forall \vec{X} \in \text { Examples }
\end{aligned}
$$

- We use this strategy to compute a bound on $G_{C}(\vec{\alpha})$

$$
\begin{aligned}
p & =\sum_{v} z_{v} \cdot p_{v} \\
G_{C}(\vec{\alpha}) & \geq G_{C}(\operatorname{ext}(\vec{\alpha})) \\
& \geq \sum_{k=0}^{n} D[k, \operatorname{ext}(\vec{\alpha})]\left(\min _{p} p^{k}(1-p)^{n-k}\right)
\end{aligned}
$$

Studied Constraints

SubSetFocus
Sequence
Among
GCC
AtMostNValue
AtLeastNValue
AtMostBalance
AtLeastBalance

	Rank of				
Num. of examples	initial constraint				
1	8	4	3	1	∞
Num. of instances					
2	42	119	0	439	600
3	78	148	0	374	600
4	105	172	0	323	600
5	139	170	0	291	600
10	261	117	0	222	600

Table 1: Results for SubsetFocus. Number of instances for which the initial constraint was ranked first, second, third or was not found.

Conclusion

- We were able to make a recommander system that helps experts to determine the parameters of certain constraints.

Conclusion

- We were able to make a recommander system that helps experts to determine the parameters of certain constraints.
- The system is not used!

Conclusion

- We were able to make a recommander system that helps experts to determine the parameters of certain constraints.
- The system is not used!
- It could have saved hundreds of hours in expert time.

