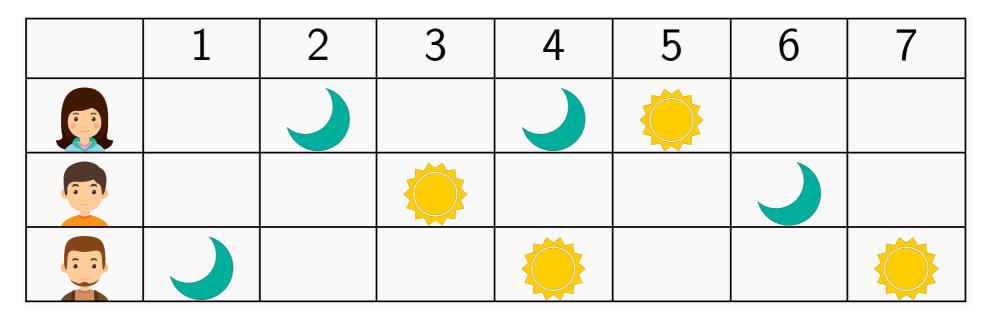
Learning the Parameters of Global Constraints for Medical Scheduling

Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney

Émilie Picard-Cantin

Medical Schedule

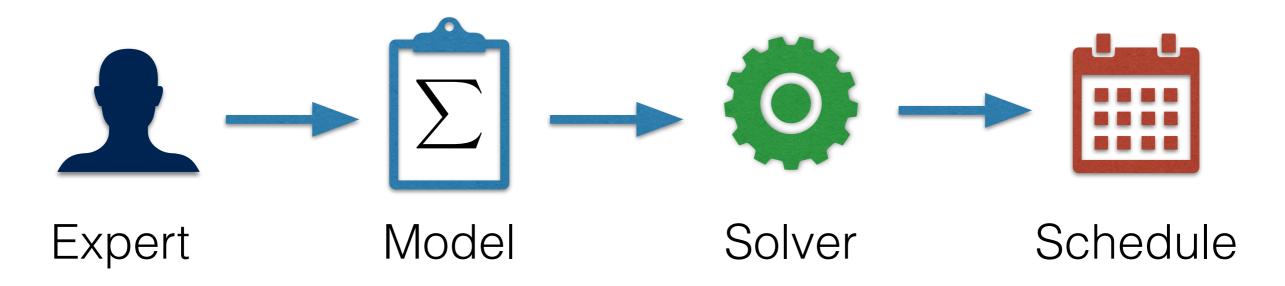
People oriented



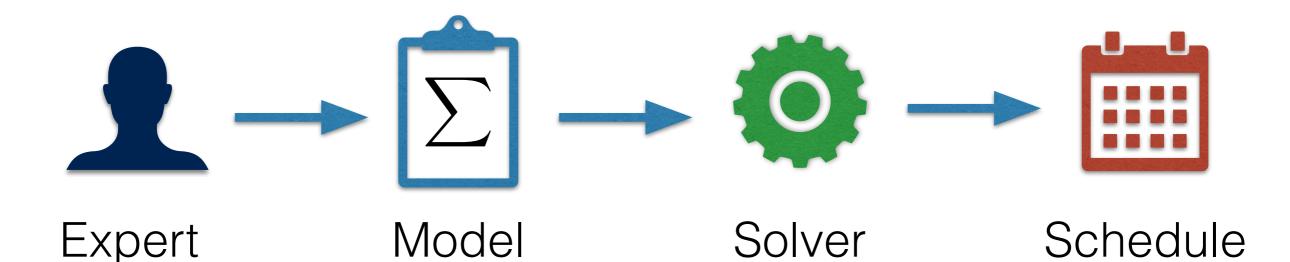
Shift / Task oriented

1	2	3	4	5	6	7
		1				

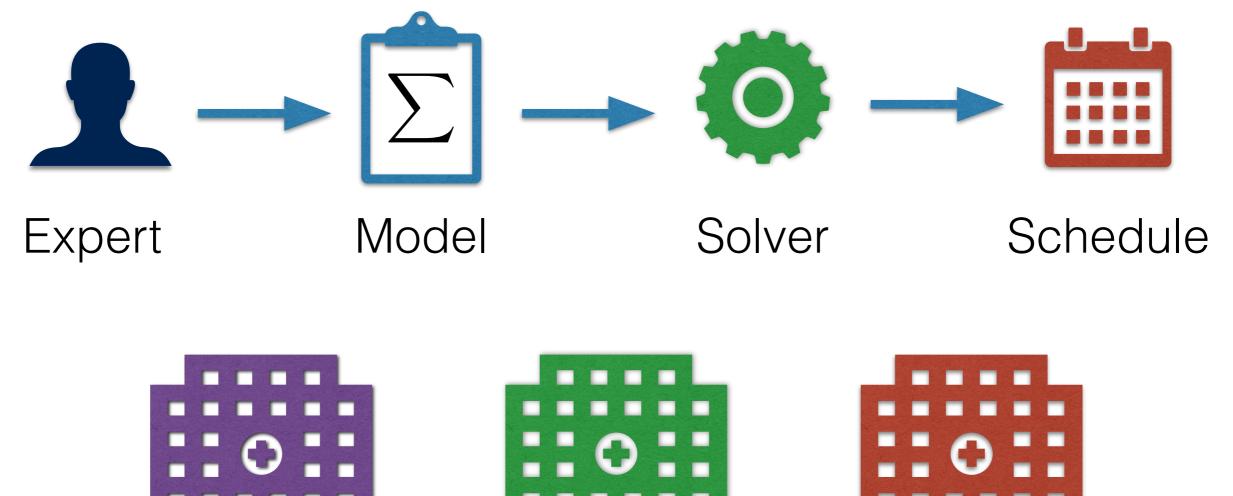
Scheduling Process

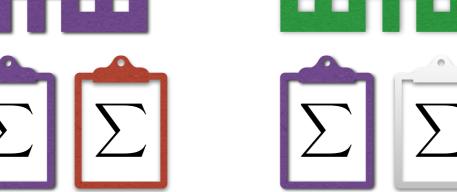


Scheduling Process



Scheduling Process





Challenge: Models differ from one medical team to another

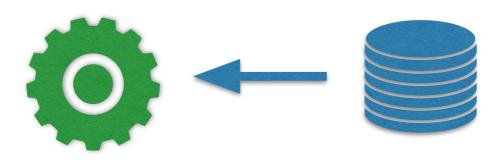
- Challenge: Models differ from one medical team to another
- **Observation**: There are few differences between each model.

- Challenge: Models differ from one medical team to another
- **Observation**: There are few differences between each model.
- **Opportunity**: For legal reasons, hospitals keep a history of their schedules.

- Challenge: Models differ from one medical team to another
- **Observation**: There are few differences between each model.
- **Opportunity**: For legal reasons, hospitals keep a history of their schedules.
- **Goal**: To learn the models from historical data.

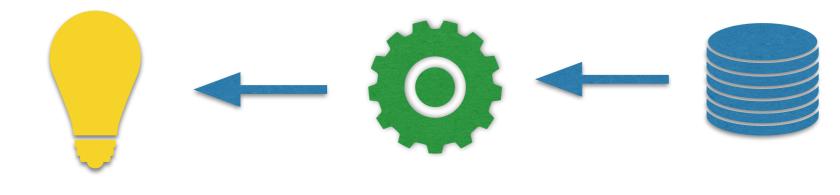
Past schedules

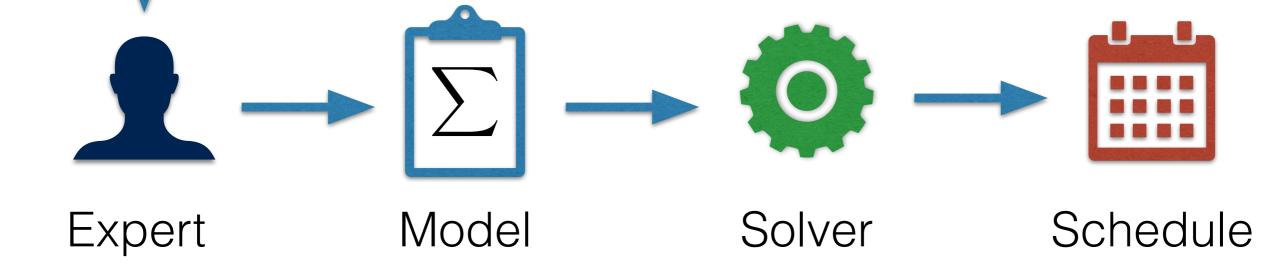
Recommander Past System schedules



Discovered Recommander Past Constraints System schedules

Discovered Recommander Past Constraints System schedules





Past

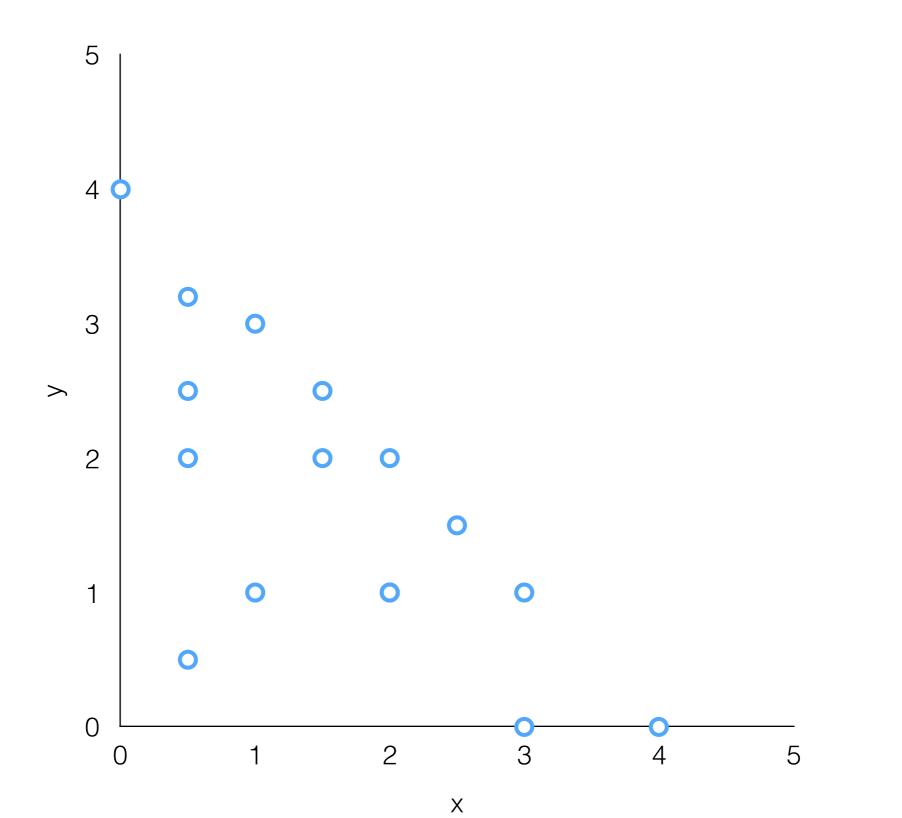
Recommander Discovered Constraints schedules System Holy Grail Model Solver Schedule Expert

How to learn a constraint?

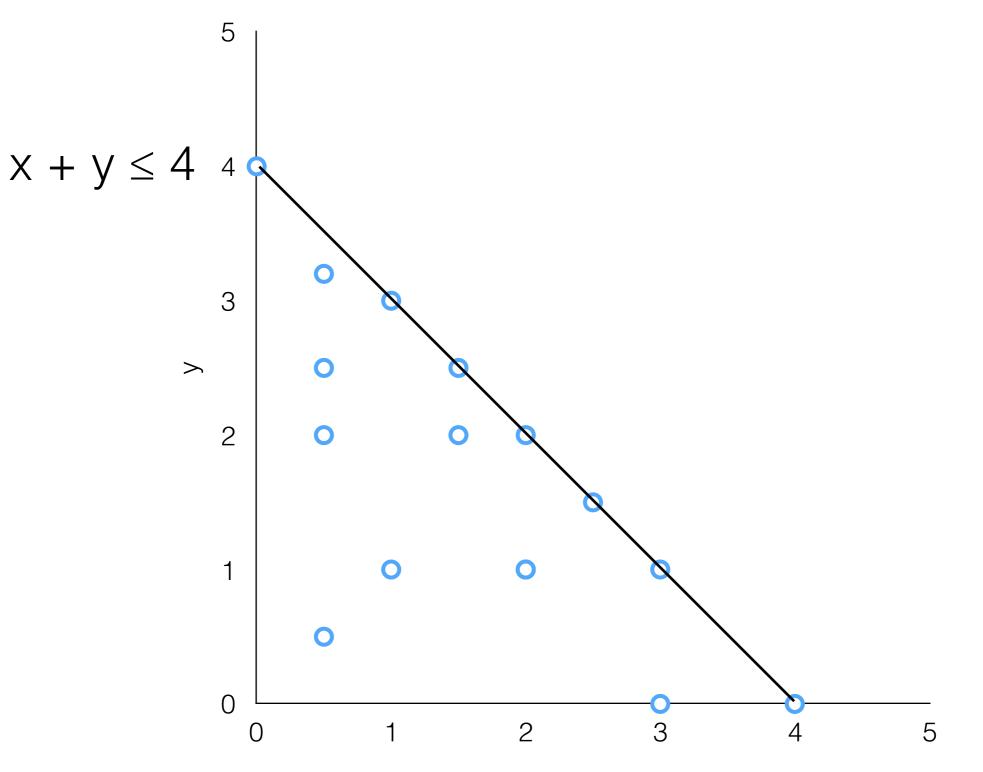
1	2	3	4	5	6	7

- Do we have a limit of:
 - 2 night-shifts per week?
 - 1 night-shift every 3 days?

Which constraint was imposed?

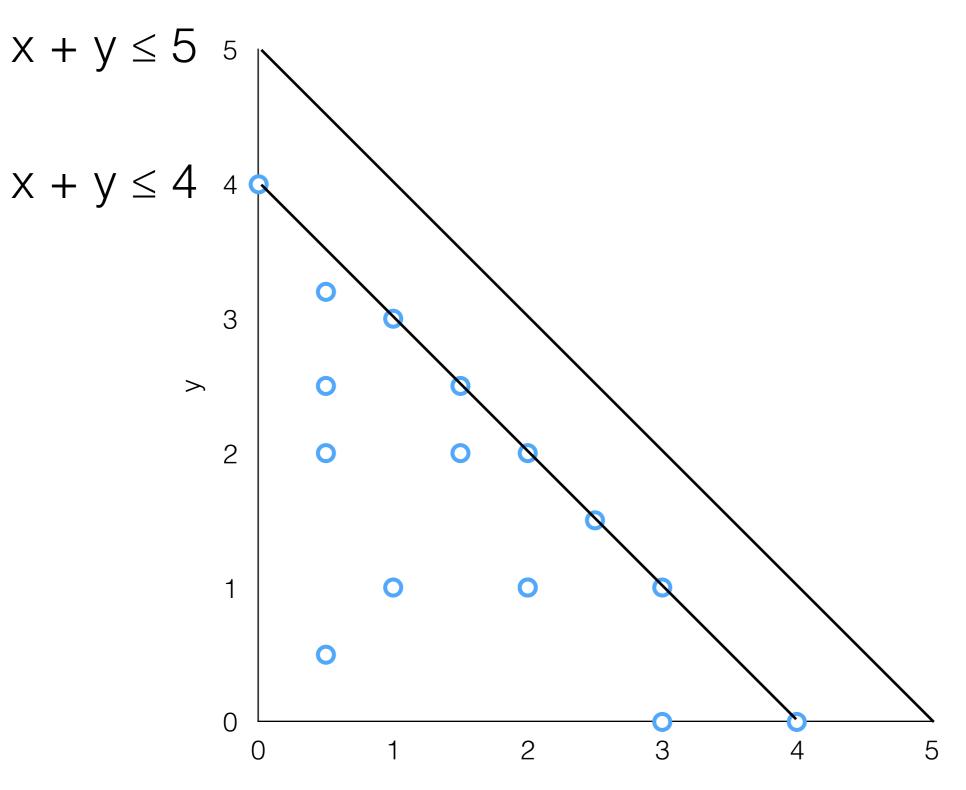


Which constraint was imposed?



Х

Which constraint was imposed?



Х

• Consider a random assignment \vec{X} with $P[X_i = v] = p_v$

- Consider a random assignment \vec{X} with $P[X_i = v] = p_v$
- The probability of observing \vec{X} is $P(\vec{X}) = \prod_{i=1}^{n} p_{X_i}$

- Consider a random assignment \vec{X} with $P[X_i = v] = p_v$
- The probability of observing \vec{X} is $P(\vec{X}) = \prod_{i=1}^{n} p_{X_i}$
- Consider the constraint $C([X_1, \ldots, X_n], [\alpha_1, \ldots, \alpha_m])$

- Consider a random assignment \vec{X} with $P[X_i = v] = p_v$
- The probability of observing \vec{X} is $P(\vec{X}) = \prod_{i=1}^{n} p_{X_i}$
- Consider the constraint $C([X_1, \ldots, X_n], [\alpha_1, \ldots, \alpha_m])$
- The probability that a random assignment satisfies C is

$$G_C(\vec{\alpha}) = \sum_{\vec{X}|C(\vec{X},\vec{\alpha})} P(\vec{X})$$

- Consider a random assignment \vec{X} with $P[X_i = v] = p_v$
- The probability of observing \vec{X} is $P(\vec{X}) = \prod_{i=1}^{n} p_{X_i}$
- Consider the constraint $C([X_1, \ldots, X_n], [\alpha_1, \ldots, \alpha_m])$
- The probability that a random assignment satisfies C is

$$G_C(\vec{\alpha}) = \sum_{\vec{X}|C(\vec{X},\vec{\alpha})} P(\vec{X})$$

- Consider a random assignment \vec{X} with $P[X_i = v] = p_v$
- The probability of observing \vec{X} is $P(\vec{X}) = \prod_{i=1}^{n} p_{X_i}$
- Consider the constraint $C([X_1, \ldots, X_n], [\alpha_1, \ldots, \alpha_m])$
- The probability that a random assignment satisfies C is

$$G_C(\vec{\alpha}) = \sum_{\vec{X}|C(\vec{X},\vec{\alpha})} P(\vec{X})$$

• Finding $\vec{\alpha}$ consists in solving:

$$\min_{\vec{\alpha}} G_C(\vec{\alpha})$$

$$C(\vec{X}, \vec{\alpha}) \qquad \forall \vec{X} \in \text{Examples}$$

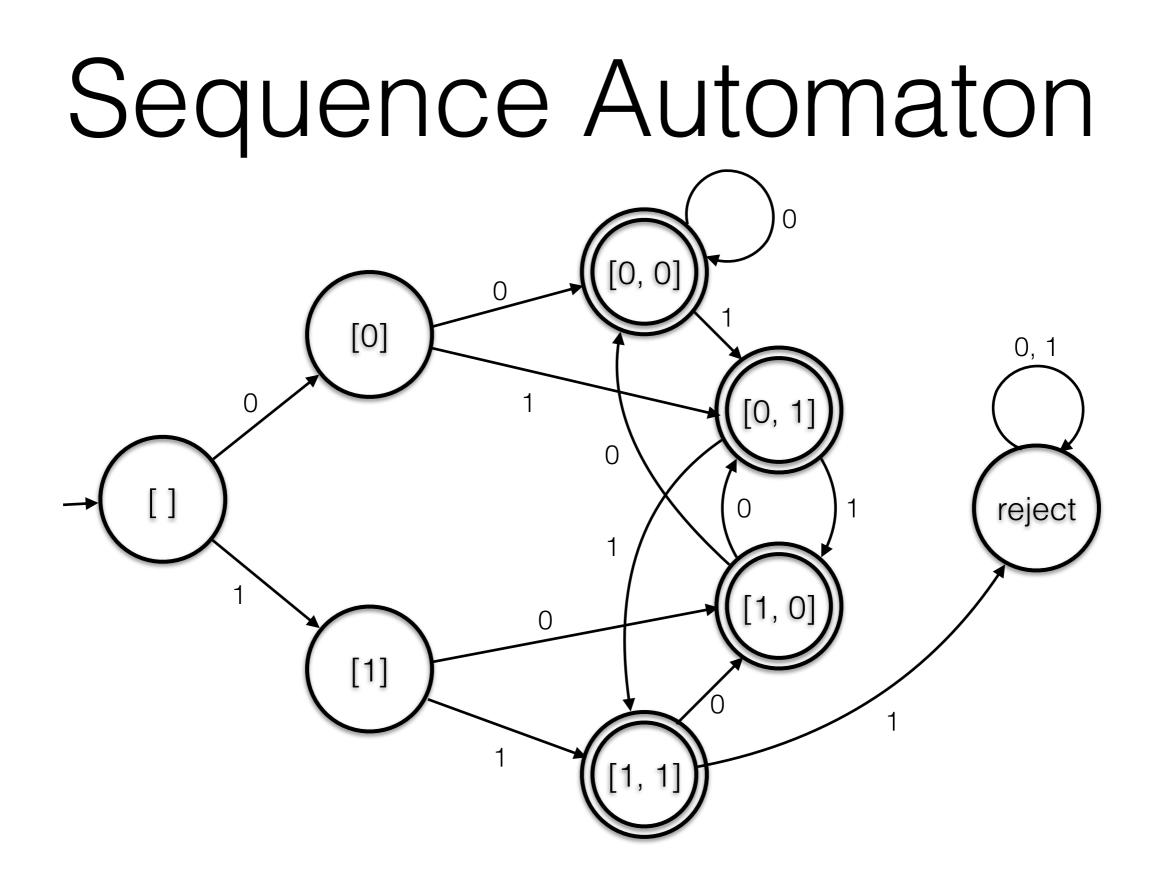
How to compute $G_C(\vec{\alpha})$?

- Enumerating and summing the probability of all solutions of a constraint is slow.
- We mainly developed two techniques to compute or bound this probability
 - Using Markov chains
 - Using dynamic programming

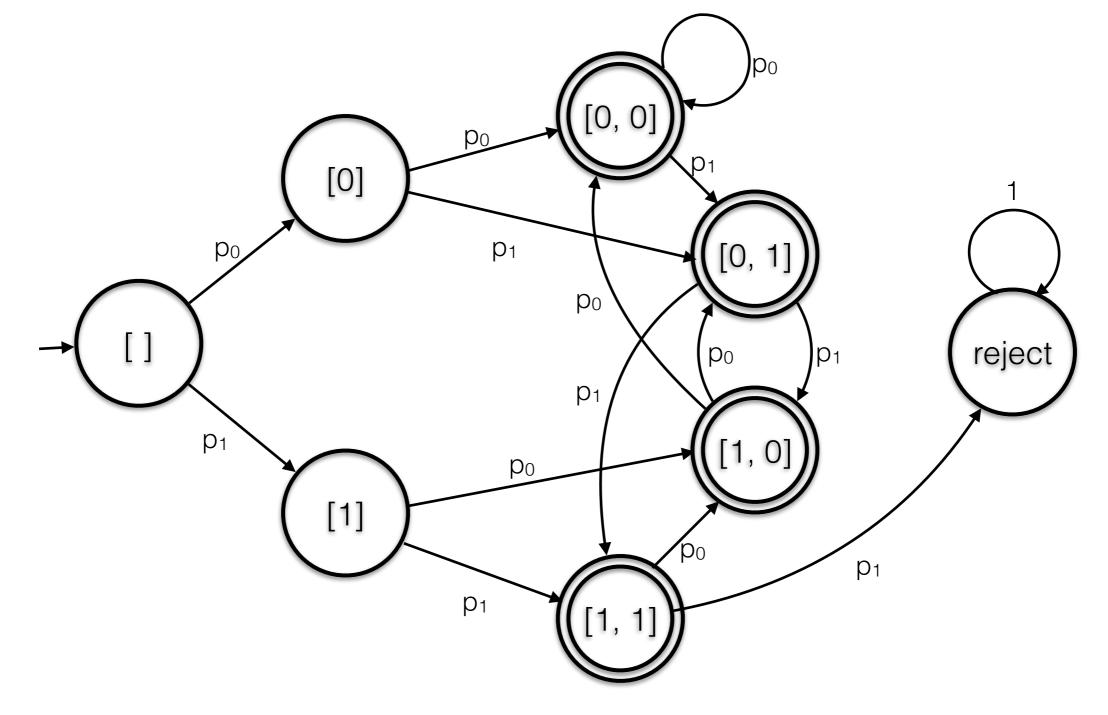
Markov Chains

Some constraints can naturally be encoded with an automaton.

SEQUENCE(
$$[X_1, \ldots, X_n], \{1\}, 0, 2, 3$$
)
at least 0 very 3 days
at most 2



Sequence Markov Chain



Computing $G_{SEQUENCE}(\vec{\alpha})$

- Let $M_{\vec{\alpha}}$ be the transition matrix of the Markov chain for the constraint with parameters $\vec{\alpha}$.
- One can compute the probability of reaching the reject state after reading *n* characters by computing $M^n_{\vec{\alpha}}$.
- For every combination of $\vec{\alpha}$, compute $M_{\vec{\alpha}}^n$ and evaluate $G_C(\vec{\alpha})$.
- Keep $\vec{\alpha}$ that minimizes $G_C(\vec{\alpha})$.

When parameters are sets

• If the parameter contains a set, there is an exponential number of combinations to explore.

AMONG $([X_1, \ldots, X_n], l, u, \vec{z})$ SEQUENCE $([X_1, \ldots, X_n], l, u, w, \vec{z})$ SUBSETFOCUS $([X_1, \ldots, X_n], l, m, \vec{z})$

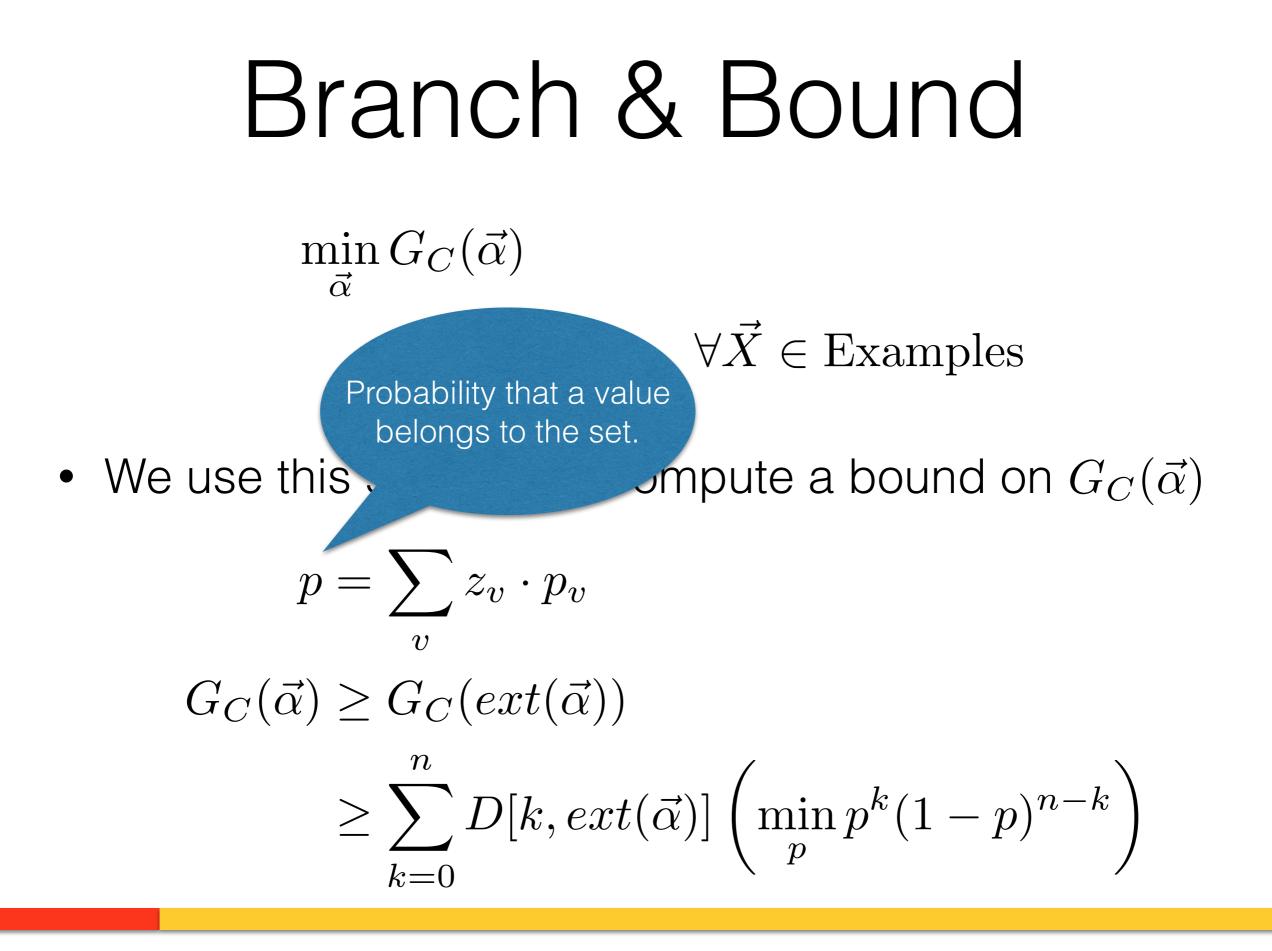
$$\min_{\vec{\alpha}} G_C(\vec{\alpha})$$

$$C(\vec{X}, \vec{\alpha}) \qquad \forall \vec{X} \in \text{Examples}$$

$$p = \sum_{v} z_{v} \cdot p_{v}$$

$$G_{C}(\vec{\alpha}) \ge G_{C}(ext(\vec{\alpha}))$$

$$\ge \sum_{k=0}^{n} D[k, ext(\vec{\alpha})] \left(\min_{p} p^{k} (1-p)^{n-k}\right)$$



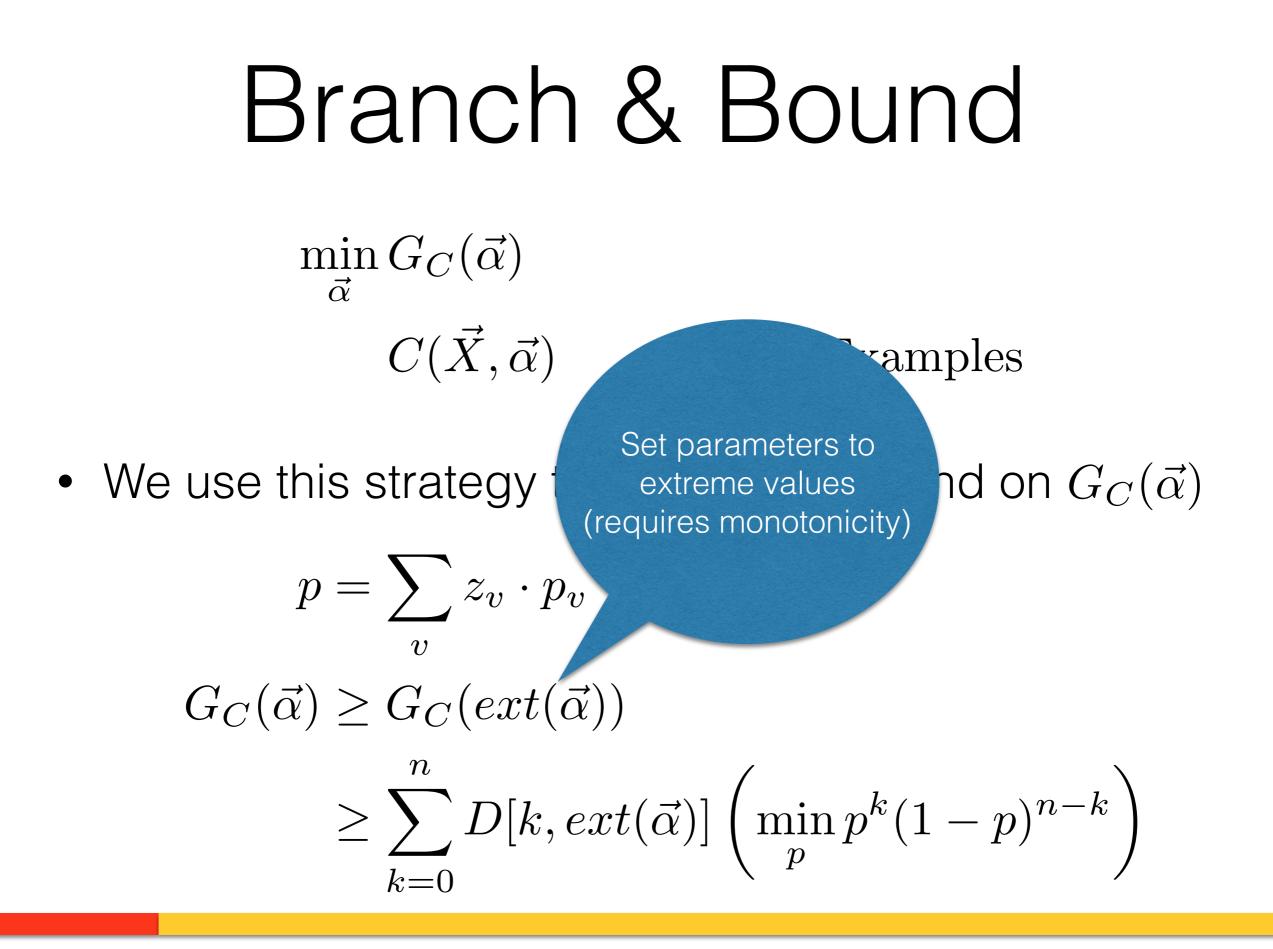
$$\min_{\vec{\alpha}} G_C(\vec{\alpha})$$

$$C(\vec{X}, \vec{\alpha}) \qquad \forall \vec{X} \in \text{Examples}$$

$$p = \sum_{v} z_{v} \cdot p_{v}$$

$$G_{C}(\vec{\alpha}) \ge G_{C}(ext(\vec{\alpha}))$$

$$\ge \sum_{k=0}^{n} D[k, ext(\vec{\alpha})] \left(\min_{p} p^{k} (1-p)^{n-k}\right)$$



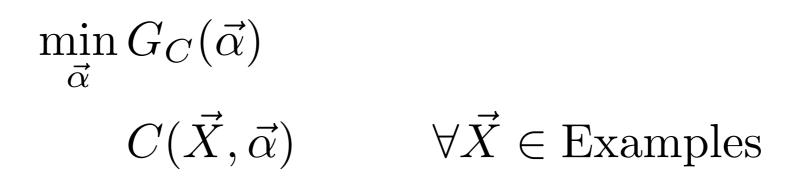
$$\min_{\vec{\alpha}} G_C(\vec{\alpha})$$

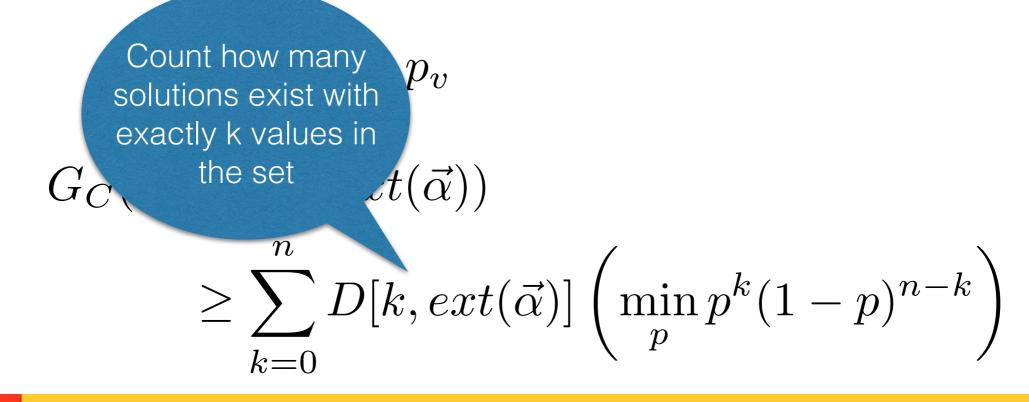
$$C(\vec{X}, \vec{\alpha}) \qquad \forall \vec{X} \in \text{Examples}$$

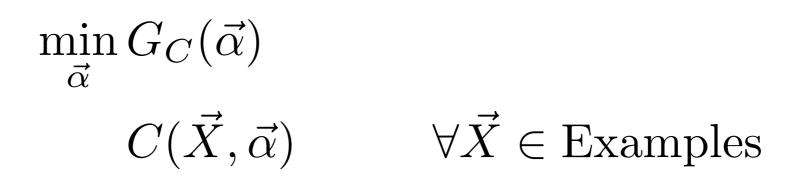
$$p = \sum_{v} z_{v} \cdot p_{v}$$

$$G_{C}(\vec{\alpha}) \ge G_{C}(ext(\vec{\alpha}))$$

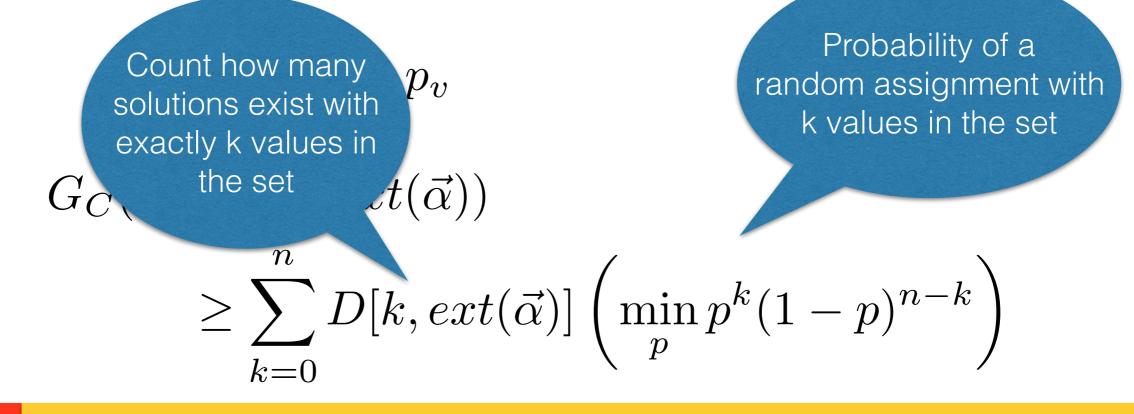
$$\ge \sum_{k=0}^{n} D[k, ext(\vec{\alpha})] \left(\min_{p} p^{k} (1-p)^{n-k}\right)$$







• We use this strategy to compute a bound on $G_{\vec{\alpha}}(\vec{\alpha})$



$$\min_{\vec{\alpha}} G_C(\vec{\alpha})$$

$$C(\vec{X}, \vec{\alpha}) \qquad \forall \vec{X} \in \text{Examples}$$

$$p = \sum_{v} z_{v} \cdot p_{v}$$

$$G_{C}(\vec{\alpha}) \ge G_{C}(ext(\vec{\alpha}))$$

$$\ge \sum_{k=0}^{n} D[k, ext(\vec{\alpha})] \left(\min_{p} p^{k} (1-p)^{n-k}\right)$$

Studied Constraints

SUBSETFOCUS SEQUENCE AMONG GCC ATMOSTNVALUE ATLEASTNVALUE ATMOSTBALANCE ATLEASTBALANCE

Experiments

	Rank of			of	
	initial constraint			straint	
Num. of examples	1	2	3	∞	Num. of instances
1	8	46	1	545	600
2	42	119	0	439	600
3	78	148	0	374	600
4	105	172	0	323	600
5	139	170	0	291	600
10	261	117	0	222	600

Table 1: Results for SUBSETFOCUS. Number of instances for which the initial constraint was ranked first, second, third or was not found.

Conclusion

• We were able to make a recommander system that helps experts to determine the parameters of certain constraints.

Conclusion

- We were able to make a recommander system that helps experts to determine the parameters of certain constraints.
- The system is not used!

Conclusion

- We were able to make a recommander system that helps experts to determine the parameters of certain constraints.
- The system is not used!
- It could have saved hundreds of hours in expert time.