
Leveraging Constraint Scheduling: A Case Study
to the Textile Industry

Alexandre Mercier-Aubin1, Jonathan Gaudreault1, and Claude-Guy Quimper1

Université Laval, Québec, QC, G1V 0A6, Canada

Abstract. Despite the significant progress made in scheduling in the
past years, industrial problems with several hundred tasks remain in-
tractable for some variants of the scheduling problems. We present tech-
niques that can be used to leverage the power of constraint program-
ming to solve an industrial problem with 800 non-preemptive tasks, 90
resources, and sequence-dependent setup times. Our method involves
solving the traveling salesperson problem (TSP) as a simplification of
the scheduling problem and using the simplified solution to guide the
branching heuristics. We also explore large neighborhood search. Exper-
iments conducted on a dataset provided by our partner from the textile
industry show that we obtain non-optimal but satisfactory solutions.

Keywords: multi-resource · scheduling · constraint programming · trav-
eling salesman problem

1 Introduction

Nowadays, most textiles are mass-produced using automated looms. In the con-
text of the fourth industrial revolution [7, 8], the textile industry seeks to expand
the automation to planning and scheduling tasks. While recent progress made
in constraint programming allows tackling many NP-Hard scheduling problems,
the size of the scheduling instances that can be solved for some variants of the
problem remain small compared to what the industry needs. It is common to
observe industrial instances with 800 tasks and limited resources. In this context,
constraint programming can still be used to obtain good, but not optimal, sched-
ules. However, extra work on branching heuristics and the use of local search is
often required to obtain satisfactory results.

We present a study case of a scheduling problem encountered by our in-
dustrial partner, a textile company. More than 800 tasks need to be scheduled
over 90 automated looms. A team of technicians needs to set up the looms be-
fore starting new tasks. The duration of each setup depends on the tasks that
precede and succeed the setup and no more setups than technicians should be
simultaneously scheduled.

We explain how we succeed in obtaining good, but possibly non-optimal,
solutions for large instances. We achieve this goal by solving a simplification of
the problem and using the simplification solution to find better solutions to the
non-simplified problem. We also use a large neighborhood search to improve the

2 A. Mercier-Aubin et al.

solution. Note that similar problems were studied in the literature [4], but the
approach to solve the problem relies on different optimization techniques such
as Mixed Integer Programs.

The paper is divided as follows. Section 2 presents the preliminary con-
cepts about constraint scheduling, the connection between scheduling with setup
times and the traveling salesman problem (TSP), and the large neighborhood
search. Section 3 formally introduces the industrial scheduling problem. Section 4
presents the mathematical models. Section 5 shows how to solve the models. Sec-
tion 6 presents the experimental results. Finally, Section 7 concludes this work.

2 Background

2.1 Constraint Scheduling

We present the main components of common scheduling problems. The actual
industrial scheduling problem we will solve is formally defined in Section 3.

A scheduling problem is composed of a set of tasks I (or activities) that need
to be positioned on a time line. A task i ∈ I has for parameters its earliest
starting time esti, its latest completion time lcti, a processing time pi, a due
date di, and a resource consumption rate hi also called height. We consider non-
preemptive tasks, i.e. that when a task starts, it executes for exactly pi units of
time without interruption. A task must start no earlier than its earliest starting
time and complete no later than its latest completion time. A task that completes
after its due date incurs a penalty that depends on the objective function.

A cumulative resource r has capacity Cr. Multiple tasks can execute on a
cumulative resource r as long as the sum of their heights is no greater than Cr.
By fixing Cr = hi for all tasks i, we obtain a disjunctive resource that can only
execute one task at a time. On such a resource, it could happen that a setup
needs to be performed between the execution of two tasks. The setup time ti,j
is a minimum lapse of time that must occur between the completion of task i
and the starting time of task j, should task i executes before task j. The setup
times satisfy the triangle inequality ti,j + tj,k ≥ ti,k.

Constraint programming can be used to solve scheduling problems. One can
define a starting time variable Si with domain dom(Si) = [esti, lcti−pi]. The
constraints Cumulative([S1, . . . , Sn], [p1, . . . , pn], [h1, . . . , hn], Cr) or
Disjunctive([S1, . . . , Sn], [p1, . . . , pn]) ensures that the cumulative or disjunc-
tive resource is not overloaded. Extra constraints can easily be added to the
model such as a precedence constraint Si + pi + ti,j ≤ Sj that forces a task i to
complete before a task j can start.

Combining the concepts presented above results in a large variety of schedul-
ing problems. For instance, the Resource-Constrained Project Scheduling Prob-
lem (RCPSP) contains cumulative resources and non-preemptive tasks subject
to precedence constraints. Constraint solvers can find optimal solutions to in-
stances of the RCPSP with 120 tasks [15]. However, with setup times, constraint
solvers can only solve instances up to 120 tasks but never to optimality [1]. In

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 3

order to improve the performances, search strategies and branching heuristics
can be provided to the solver. It is also possible to use the constraint solver
within a large neighborhood as explained in Section 2.2.

2.2 Local Search

A local search is a heuristic method that starts from a suboptimal and possibly
unfeasible solution and tries to improve its feasibility and its objective value. At
each iteration, an operator is applied, and the solution is modified. If the modified
solution becomes more feasible or more optimal, it becomes the current solution.
The operator modifies the values of a subset of the variables in the problem.
When a large number of variables are modified, we say that the heuristic method
is a large neighborhood search.

A constraint solver can be used as a large neighborhood search operator.
One takes the current solution and forces a subset of variables to take the same
values as the current solution. The remaining variables are let free. The result
is a constraint satisfaction problem (CSP) with fewer variables to assign that
is generally easier to solve. The solution of this CSP becomes the new current
solution that can be further improved by selecting a different subset of variables.

There exists various strategies to select which variables to reassign in a
scheduling problem. One could randomly select a fixed percentage of the tasks
to reschedule [9]. It is also possible to select a time window from which all tasks
whose execution is contained in this window are rescheduled [14]. Another option
is to fix some precedences observed in the current solution between a subset of
pairs of tasks and let the remaining pairs of tasks free from any precedence [13].
When minimizing the makespan in scheduling problems of 300 tasks, these tech-
niques can significantly improve the objective function [5].

2.3 The Traveling Salesperson Problem

The traveling salesperson problem (TSP) is a classic optimization problem. In
its directed variant, we have n cities and a distance matrix D such that Di,j is
the distance to travel from i to j. The matrix satisfies the triangle inequality
Di,j +Dj,k ≥ Di,k. The salesperson plans on finding the shortest circuit visiting
each city exactly once.

There is a strong connection between the TSP and the scheduling problem
with setup times. For a scheduling problem with n tasks I and setup times
ti,j , one creates an instance of the TSP with n+ 1 cities and a distance matrix
Di,j = ti,j for i, j ∈ I andDi,j = 0 otherwise. The extra city marks the beginning
(and the end) of the schedule. The salesperson visits the cities (tasks) in order
to minimize the sum of the distances (setup times). Figure 1 illustrates the
reduction.

The solver Concorde [3] represents the state-of-the-art for solving the TSP.
It can find and prove optimal solutions to instances with 85,000 cities. As it was
designed solely for this type of problem, it cannot handle additional constraints.
For example, if the tasks have earliest starting times and latest completion times,

4 A. Mercier-Aubin et al.

A B

C D

0

4 km

5
km

3 km 3 km

5
km

6 km

Fig. 1: Example of a scheduling problem with setup times reduced to a TSP
problem. The node 0 is the dummy node. Dotted lines have null costs. The blue
lines represent the optimal schedule: C,A,B,D.

the scheduling problem reduces to a TSP with time windows [11]. The solver
Concorde cannot solve such problems.

Solving the TSP can help solving scheduling problems. For instance, Tran
and Beck [17] use the TSP as the slave problem in a Benders decomposition to
solve a problem with resource allocation and setup times.

3 Problem Description

We describe the industrial problem specified by our industrial partner. The pa-
rameters introduced in this section are summarized in Table 1. A task consists of
weaving a textile on a loom. We therefore have a set of tasks I and a set of looms
L. Each task i ∈ I is pre-assigned to a loom li and has for processing time pi. A
loom l ∈ L becomes available at time al. Prior to this time, the loom is busy ter-
minating a task not in I that can neither be interrupted nor rescheduled. Each
task i ∈ I has a style zi, a due date di, and a priority ri. We wish to minimize
the total tardiness weighted by priority, i.e.

∑
i∈I ri ·max(0, Si + pi − di) where

Si is the starting time of the task. The scheduling horizon spans from time 0
to time H. In practice, we have a horizon of 240 hours with a time step of 15
minutes resulting in H = 240× 60

15 = 960.

Major setups: Each loom l ∈ L has an initial configuration cinit
l and a final

configuration cfinal
l . If cinit

l 6= cfinal
l then there is a major setup of duration pmajor

l

to change the configuration of the loom l. Only one major setup is possible
during the scheduling horizon. A specialized worker is selected from a pool W to
achieve this major setup. A task i ∈ I needs to be executed on a loom li when
it has configuration ci ∈ {cinit

li
, cfinal
li
}. If ci = cinit

li
, the task needs to be executed

prior to the major setup and after the major setup if ci = cfinal
li

.

Minor setups: A minor setup needs to be performed between two consecutive
tasks i, j ∈ I on a loom. While a major setup entails a configuration change, a
minor setup only gets the loom ready for its next job. This setup is decomposed

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 5

Task 1

Task 4

Mech1 TierWeaver Task 2

Mech1 Weaver Tier

Mech. type 2

Minor setup Major setup

Task 5 Mech Weaver Tier

Task 3

Task 6

Minor setup Minor setup

Fig. 2: Example of scheduling on two looms with one of each resource.

into several steps, each executed by a person of a different profession in P which
is disjoint from the set of workers W . The professions are sorted in order of
execution and labeled with integers from 1 to |P |, i.e. that the first step of a
minor setup is executed by profession 1, the second step is executed by profession
2, and so on. The order of execution is the same for all minor setups. The person
of the profession p ∈ P needs ti,j,p time to execute his/her part of the minor
setup between task i ∈ I and j ∈ I. There are qp people of the profession p.
Consequently, no more than qp minor setup steps can be simultaneously executed
by the people from the profession p.

Figure 2 shows a schedule on two looms with a worker of each category. We
see conflicts delaying minor setups on the second loom.

I : Set of tasks.
L : Set of looms.
P : Set of professions for minor setups.
W : Set of specialized workers for major setups.
ri : Priority of task i.
di : Due date of task i.
zi : Style of task i.
li : Loom assigned to task i.

cinit
l : Initial configuration of loom l.

cfinal
l : Final configuration of loom l.
ci : Required configuration for task i.
pi : Processing time of task i.

pmajor
l : Major setup time of loom l.
ti,j,p : Minor setup time between tasks i and j for the profession p.
al : Earliest available time of loom l.
qp : Number of workers of the profession p available for the minor setups.

Table 1: Parameters of the problem

6 A. Mercier-Aubin et al.

4 Models

We present an optimization model that is later submitted to a constraint solver.
The variables and domains are summarized in Table 2. Constraints are stated
from (1) to (11).

There are three types of events to schedule: tasks, major setups, and minor
setups between a task and its successor. Let Si ∈ [al, H), Smajor

l ∈ [ali , H), and
Sminor
i,p ∈ [ali , H) be their starting time variables for tasks i ∈ I, loom l ∈ L, and

profession p ∈ P . Their domains prevent the events from starting before their
respective loom l becomes available.

The variable Fl encodes the first task to execute on loom l. The variable Ni
encodes the task that succeeds task i on the loom. If i is the last task, its value is
set to a sentinel. There is one sentinel per loom: σ = {σ1, . . . , σ|L|}. The variable
Ni is also defined when i ∈ σ is a sentinel. The next task of a sentinel is the first
task on the next loom. Consequently, the vector N is a permutation of I ∪ σ
with a single cycle.

Variable Domain Description

Smajor
l [al, H) Start of the major setup on loom i
Si [ali , H) Start of task i
Sminor
i,p [ali , H) Start of the minor setup for profession p between

task i and its successor
Ni {j ∈ I | lj = li} ∪ {σli} Next task after task i
Fl {i ∈ I | li = l} First task on loom l
T [0,∞) Total tardiness weighted by priority

Table 2: Variables and their domains

The model contains the constraints (1) to (11). The objective function (1)
minimizes the tardiness of the tasks, weighted by priority. Constraints (2) and (3)
ensure that a task requiring its loom’s initial configuration executes before the
major setup or else waits after the major setup to execute. Constraint (4) en-
sures that the first step of the minor setup following task i starts once task i
is completed. Constraint (5) is a precedence constraint over the different steps
of a minor setup. Constraint (6) makes the task Ni start immediately after the
minor setup is completed. Indeed, once the loom is ready, there is no need to
postpone the task. Constraints (7) and (8) ensure that the last task of a sentinel
on a loom is the first task on the next loom. The loom that succeeds the last
loom is the first loom. That creates a circuit visiting each task exactly once.
This idea of a circuit is inspired from Focacci et al. [6] and led to the addition of
constraint (9) to the model. This constraint [10] offers a strong filtering on the
next variables N .

The model contains global constraints specialized for scheduling problems.
We use the notation [f(x) | x ∈ X] to represent the vector [f(x1), . . . , f(xn)] for
X = {x1, . . . , xn}. The constraint (10) limits to qp the number of simultaneous

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 7

minor setups accomplished by a person of the profession p. The constraint (11)
limits to |W | the number of simultaneous major setups. The constraint (12)
breaks a symmetry by forcing tasks producing the same product style on the
same loom to execute in order of due dates.

Minimize T subject to:

Minimize
∑
i∈I

ri ·max(0,Si + pi − di) (1)

ci = cinit
li =⇒ Si + pi ≤ Smajor

Ai
∀i ∈ I (2)

ci 6= cinit
li =⇒ Smajor

Ai
+ pmajor

l ≤ Si ∀i ∈ I (3)

Si + pi ≤ Sminor
i,1 ∀i ∈ I (4)

Sminor
i,p+1 ≥ Sminor

i,p + ti,Ni,p ∀i ∈ I,∀p ∈ P \ {|P |} (5)

SNi
= Sminor

i,|P | + ti,Ni,|P | ∀i ∈ I (6)

Nσl
= Fl+1 ∀l ∈ [1, |L| − 1] (7)

Nσ|L| = F1 (8)

Circuit(N) (9)

Cumulative([Sminor
i,p | i ∈ I], [ti,Ni,p | i ∈ I], 1, qp) ∀p ∈ P (10)

Cumulative([Smajor
l | l ∈ L], [pmajor

l | l ∈ L], 1, |W |) (11)

Sa ≤ Sb ∀a, b ∈ I, za = zb ∧ la = lb ∧ da ≤ db (12)

5 Resolution

We present four methods to solve the model from the previous section. Some are
pure heuristics or are rules of thumb used in the industry. These methods are
either used as a point of comparison or are integrated as a branching heuristics
in the constraint solver.

5.1 The Greedy Method Based on Due Dates

The first method, denoted Greedy, consists of executing the tasks on a loom
in non-decreasing order of due dates. Ties are arbitrarily broken. If a resource
is unavailable to either execute the minor or major setup that precedes a task,
it delays the execution of the task until the resource becomes available and has
time to complete the setup.

While this method might return a sub-optimal solution, it is nevertheless a
rule of thumb used by people in the industry to generate an initial schedule that
can be improved later. It is also a point of comparison for other methods.

5.2 The Circuit Method

The next approach denoted Circuit focuses on the Circuit constraint. We
want to find the circuit that minimizes the sum of the setup times. While this

8 A. Mercier-Aubin et al.

objective function is not the weighted tardiness, it is correlated. Indeed, shorter
setups lead to shorter idle times and therefore earlier completion times.

We solve the TSP instance induced by the Circuit constraint using the
solver Concorde [3]. Concorde is quick to solve TSP instances, especially for in-
stances with fewer than 1000 cities. We sort the looms in non-decreasing amount
of time available to execute the minor setups, i.e. for each loom l ∈ L, we com-
pute H − al −

∑
i|li=l pi − p

major
l . Loom by loom in the sorted order, we assign

their tasks in the same order found by Concorde. We delay the minor and ma-
jor setups until the resource is available. The resulting schedule minimizes the
amount of time spent by the workers on the setups without considering tardiness.

5.3 The CP Method

The next approach denoted CP consists in coding the model with the MiniZ-
inc [12] language and submitting the model to the constraint solver Chuffed [2].

As a branching heuristics, we generate a template solution before the search
with either the method Greedy or Circuit. During the search, we choose a
next variable Ni that can be assigned to the same value as in the template
solution. That was implemented by declaring a vector B of Boolean variables
connected to the model with the constraints Bi = 1 ⇐⇒ Ni = N t

i where N t
i

is the successor of task i in the template solution. The heuristics branches on
the vector B by setting the variables to the value 1. This has for effect to set
Ni = N t

i . In case the value 0 is selected for Bi (for instance, after a backtrack),
that imposes the constraint Ni! = N t

i but this does not fix the variable Ni. Once
the variables in B are assigned, the solver chooses the starting variables of a
task, a minor setup, or a major set up with the smallest value in its domain
and assigns this variable to this smallest value. This has for effect to set all next
variables that were not already assigned to a value.

5.4 The LNS Method

The large neighborhood search, denoted LNS, starts with an initial solution
that could be, for instance, the solution obtained from the methods Greedy
and Circuit. It iteratively improves this solution by randomly selecting looms.
The CP method is then called to reschedule the tasks on these looms while
leaving the tasks on unselected looms untouched.

A note about our implementation. For each iteration, we generate a MiniZinc
data file that contains the execution time of the unselected tasks. The model has
unary constraints of the form Si = v to fix the variables to a value. A constraint
states that the objective value must improve over the best solution found so far.
We solve for satisfaction, i.e. we stop the search once we found an improving
solution. An iteration of the LNS is given a timeout (we use 5 minutes) after
which, if no solution is found, we pass to the next iteration without changing the
current solution but by reseting 10% fewer looms. Whenever the solver returns
unsatisfiable, we reset 10% more looms until a solution is found or infeasibility
is proven (which implies that the current solution is optimal).

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 9

Since the time for compiling the MiniZinc code is significant and could be
avoided if the local search was directly implemented in C++ calling the Chuffed
solver, we do not count the MiniZinc compilation time in the solving time. The
search stops when the computation time, that excludes MiniZinc compilation
time, reaches a timeout.

In a context of a local search, we do not use the branching heuristics described
in Section 5.3 since this heuristics aims at finding a solution similar to a template
solution. In a local search, one rather wants to find a solution that is different
from the current one. We simply randomly assign the next variables N .

6 Experiments

6.1 Instances

Our industrial partner shared 4 instances with 571, 592, 756, and 841 tasks.
From each instance, we create a dataset of 10 instances by randomly selecting
10 %, 20 %, . . . , 100 % of the tasks from the original instance. Once the tasks
are selected, this selection is used for all the tests and all the solving methods.
This allows to see how our algorithms scale with the number of tasks. The
number of looms |L| = 90, the number of professions |P | = 3 with quantities
[q1, q2, q3] = [5, 3, 2], and the number of workers |W | = 1 for the major setups
remains constant for all instances of all datasets.

6.2 Experimental Setup

The CP model1 was written in the MiniZinc language [12]. We use the solver
Chuffed [2] with the free search parameter [16]. The LNS method is implemented
in Python. We ran the experiments on a computer with the following configu-
ration: Ubuntu 19.10, 16 GB ram, Processor Intel(R) Core(TM) i7-6700K CPU
@ 4.00GHz, 4008 Mhz, 4 Cores, 8 Logical Processors.

6.3 Methodology

We solved all instances using the Greedy and Circuit method. For the CP
method, we tried three different branching heuristics: CP+Greedy assigns the
next variables according to the solution of Greedy, CP+Circuit uses the
solution from Circuit, and CP+Random randomly assigns the next variable
and uses restarts with a Luby sequence with a scale of 250.

For the methods based on CP, we tried the three configurations with LNS
and without LNS. At each iteration, 50 % of the looms are rescheduled. A
specific iteration is given a timeout of 5 minutes to improve the solution.

All methods are given a timeout of 15 minutes. As the search goes, the CP
methods (with or without LNS) keeps improving their best solution. We keep
track of the objective value and time of the solutions as we find them during the
search.
1 The MiniZinc files are freely available on Claude-Guy Quimper’s web site or directly

at http://www2.ift.ulaval.ca/˜quimper/publications/CPAIOR2020Submission.zip

10 A. Mercier-Aubin et al.

6.4 Results

Graph Builder

Circuit Greedy CP+Random

Number of Tasks

8
0

1
4

0

2
0

0

2
6

0

3
2

0

3
8

0

4
4

0

5
0

0

5
6

0

W
e

ig
th

e
d

 T
a

rd
in

e
ss

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

5500000

6000000

6500000

7000000

7500000

8
0

1
4

0

2
0

0

2
6

0

3
2

0

3
8

0

4
4

0

5
0

0

5
6

0

8
0

1
4

0

2
0

0

2
6

0

3
2

0

3
8

0

4
4

0

5
0

0

5
6

0

0

100

200

300

400

500

600

700

800

900

Time(s)

Fig. 3: Comparison between Circuit, Greedy, and one of the methods based
on CP

Figure 3 shows the performances of the methods Greedy and Circuit. Each
point represents a solution obtained for an instance: on the x-axis is the number
of tasks in the instance and on the y-axis is the objective value of the solution
returned by the method. The color indicates after how much time (in seconds)
the solution was found.

As expected, instances with a larger number of tasks get a larger weighted
tardiness. Indeed, since the resources and the due dates remain the constant
among all instances, it gets harder to deliver products on time if we increase the
number of orders without increasing the resources or delaying the due dates.

Both the methods Greedy and Circuit solve every instance in less than a
second. The quality of the solution is not competitive with any method using
CP. However, we will see that Greedy and Circuit are nevertheless useful to
guide the branching heuristics of the CP solver.

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 11

CP+Greedy CP+Random CP+Circuit
W

ith
o
u
tL

N
S

W
ith

L
N

S

Number of Tasks

8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

W
e
ig

th
e
d
 T

a
rd

in
e
s
s

0

1500000

3000000

4500000

6000000

0

1500000

3000000

4500000

6000000

8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

8
0

1
4
0

2
0
0

2
6
0

3
2
0

3
8
0

4
4
0

5
0
0

5
6
0

0

100

200

300

400

500

600

700

800

900

Time(s)

Fig. 4: Comparison of methods based on CP

Figure 4 presents a comparison of the six methods based on CP. The left,
middle, and right graphs make the branching heuristics vary. It is either based
on the Circuit, Greedy, or the random heuristics. The graphs on the top use
the standard CP search while the graphs at the bottom use the LNS. For the
LNS, the initial solutions are also based on Circuit, Greedy, and Random.
For CP+Circuit+LNS and CP+Greedy+LNS, the next variables Ni are set
in the initial solution according to the precedences in the solutions generated
by Circuit and Greedy. For CP+Random+LNS, the initial solution is com-
pletely random.

The first thing to analyze on Figure 4 is how the methods behave on instances
with more than 500 tasks. The methods CP+Random CP+Random+LNS are
unable to solve all instances while other methods do. The CP+Greedy method
is more stable than CP+Random while CP+Random obtains better solu-
tions. CP+Circuit and CP+Circuit+LNS outperform CP+Random and
CP+Random+LNS in both stability and objective value.

Globally, CP+Circuit and CP+Circuit+LNS offer the solutions with the
smallest weighted tardiness. This might look surprising at first sight because
Circuit aims at minimizing the amount of setups while Greedy directly min-
imizes tardiness. However, the solution that Circuit generates is optimal ac-
cording to the amount of setup while the Greedy algorithm only returns an
approximation for the weighted tardiness. Guiding the search towards a solution
that is optimal, even according to a different but correlated criteria, provides
the best solution.

12 A. Mercier-Aubin et al.

The third observation is that CP+Circuit+LNS generally outputs better
solutions than CP+Circuit. The same goes for CP+Greedy+LNS compared
to CP+Greedy. While other methods perform better with our homemade LNS,
the random heuristic offers poor results.

Finally, we observe that using LNS is beneficial. The poor results of the LNS
on the random heuristic is most likely due to a bad initial solution.

7 Conclusion

We presented a model to solve an industrial instance presented by our partner.
We showed how a solution from a simplification (the TSP) can guide the search
to obtain better solutions. Our model is now able to find solutions to the expected
range of tasks. The integration of our program to the operations planning team
is in progress.

References

1. Chakrabortty, R.K., Sarker, R.A., Essam, D.L.: Resource constrained project
scheduling with uncertain activity durations. Computers & Industrial Engineering
112, 537 – 550 (2017). https://doi.org/https://doi.org/10.1016/j.cie.2016.12.040,
http://www.sciencedirect.com/science/article/pii/S0360835216305186

2. Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed, a
lazy clause generation solver (2018)

3. Cook, W.: In Pursuit of the Traveling Salesman: Mathematics at the Limits of
Computation. Princeton University Press, Princeton University Press (2011)

4. Costa, A., C.F..F.S.: A hybrid genetic algorithm for job sequencing and worker
allocation in parallel unrelated machines with sequence-dependent setup times.
The International Journal of Advanced Manufacturing Technology 69, 2799–2817
(2013)

5. Danna, E., Perron, L.: Structured vs. unstructured large neighborhood search: A
case study on job-shop scheduling problems with earliness and tardiness costs. In:
Rossi, F. (ed.) Principles and Practice of Constraint Programming – CP 2003. pp.
817–821. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

6. Focacci, F., Laborie, P., Nuijten, W.: Solving scheduling problems with setup times
and alternative resources. In: Proceedings of the Fifth International Conference on
Artificial Intelligence Planning Systems. pp. 92–101 (2000)

7. Hermann, M., Pentek, T., Otto, B.: Design principles for industrie 4.0 scenarios. In:
49th Hawaii International Conference on System Sciences (HICSS). pp. 3928–3937
(2016)

8. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for
implementing the strategic initiative industrie 4.0: Securing the future of german
manufacturing industry; final report of the industrie 4.0 working group. Tech. rep.,
Forschungsunion (2013)

9. Kajgard, E.: Route optimisation for winter road maintenance using constraint mod-
elling (2015)

10. Lauriere, J.L.: A language and a program for stating and solving combinatorial
problems. Artificial intelligence 10(1), 29–127 (1978)

Leveraging Constraint Scheduling: A Case Study to the Textile Industry 13

11. Lpez-Ibez, M., Blum, C., Ohlmann, J.W., Thomas, B.W.: The travelling salesman
problem with time windows: Adapting algorithms from travel-time to makespan
optimization. Applied Soft Computing 13(9), 3806–3815 (2013)

12. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Miniz-
inc: Towards a standard cp modelling language. In: Principles and Practice of
Constraint Programming – CP 2007. pp. 529–543 (2007)

13. Psaraftis, H.N.: k-interchange procedures for local search in a precedence-
constrained routing problem. European Journal of Operational Research 13(4),
391–402 (1983)

14. Savelsbergh, M.W.P.: Local search in routing problems with time windows. Annals
of Operations Research 4(1), 285–305 (Dec 1985)

15. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Why cumulative decomposition
is not as bad as it sounds. In: Gent, I.P. (ed.) Principles and Practice of Constraint
Programming - CP 2009. pp. 746–761. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2009)

16. Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Learning from
learning solvers. In: Rueher, M. (ed.) Principles and Practice of Constraint Pro-
gramming. pp. 455–472. Springer International Publishing, Cham (2016)

17. Tran, T.T., Beck, J.C.: Logic-based benders decomposition for alternative resource
scheduling with sequence dependent setups. In: Proceedings of the 20th European
Conference on Artificial Intelligence ECAI’12. pp. 774–779 (2012)

