Linear-Time Filtering Algorithms for the Disjunctive Constraint

Hamed Fahimi
Claude-Guy Quimper
Université Laval

Claude-Guy.Quimper@ift.ulaval.ca hamed.fahimi.1@ulaval.ca

July 2014

Disjunctive Constraint

Consider a set of n tasks, with known parameters: The release time $\left(r_{i}\right)$; The deadline $\left(d_{i}\right)$; The processing time $\left(p_{i}\right)$; and the unknown starting times $\left[s_{l}, \ldots, s_{n}\right]$.

Disjunctive Constraint

Consider a set of n tasks, with known parameters: The release time $\left(r_{i}\right)$; The deadline $\left(d_{i}\right)$; The processing time $\left(p_{i}\right)$; and the unknown starting times $\left[s_{1}, \ldots, s_{n}\right]$.

Disjunctive Constraint

Consider a set of n tasks, with known parameters: The release time $\left(r_{i}\right)$; The deadline $\left(d_{i}\right)$; The processing time $\left(p_{i}\right)$; and the unknown starting times $\left[s_{1}, \ldots, s_{n}\right]$.

Constraint:
$\operatorname{DISJUNCTIVE}\left(\left[s_{l}, \ldots, s_{n}\right]\right) \Leftrightarrow s_{i}+p_{i} \leq s_{j}$ or $s_{j}+p_{j} \leq s_{i}$

Disjunctive Constraint

Consider a set of n tasks, with known parameters: The release time $\left(r_{i}\right)$; The deadline $\left(d_{i}\right)$; The processing time $\left(p_{i}\right)$; and the unknown starting times $\left[s_{l}, \ldots, s_{n}\right]$.

Constraint:
$\operatorname{DISJUNCTIVE}\left(\left[s_{1}, \ldots, s_{n}\right]\right) \Leftrightarrow s_{i}+p_{i} \leq s_{j}$ or $s_{j}+p_{j} \leq s_{i}$

- A feasible schedule!

Disjunctive Constraint

- It is NP-Complete to determine whether there exists a solution to the Disjunctive constraint.
- It is NP-Hard to filter out all values that do not lead to a solution.
- Nonetheless, there exist rules that detect in polynomial time some filtering of the domains of the tasks.
- Our goal is to improve some of these existing filtering algorithms for this constraint.

Preliminary

- We aim at designing algorithms with linear complexity.
- To achieve this goal, we assume that sorting can be done with a linear time algorithm, say radix sort.

Time-Tabling

- If $1 s t_{i}<$ ect $_{i}$ for a task, then the interval $\left[1 s t_{i}, e c t_{i}\right)$ is called the compulsory part of i.

Time-Tabling

- If $1 s t_{i}<$ ect $_{\mathrm{i}}$ for a task, then the interval $\left[1 s t_{\mathrm{i}}, \mathrm{ect}_{\mathrm{i}}\right)$ is called the compulsory part of i.
- The Time-Tabling technique filters the domains which are in conflict with the compulsory parts of the tasks.

Time-Tabling

- If $1 s t_{i}<$ ect $_{i}$ for a task, then the interval $\left[1 s t_{i}, e c t_{i}\right)$ is called the compulsory part of i.
- The Time-Tabling technique filters the domains which are in conflict with the compulsory parts of the tasks.

Compulsory part

Time-Tabling

- If $1 s t_{i}<$ ect $_{\mathrm{i}}$ for a task, then the interval $\left[1 s t_{\mathrm{i}}, \mathrm{ect}_{\mathrm{i}}\right)$ is called the compulsory part of i.
- The Time-Tabling technique filters the domains which are in conflict with the compulsory parts of the tasks.

Time-Tabling

- If $1 s t_{i}<$ ect $_{\mathrm{i}}$ for a task, then the interval $\left[1 s t_{\mathrm{i}}, \mathrm{ect}_{\mathrm{i}}\right)$ is called the compulsory part of i.
- The Time-Tabling technique filters the domains which are in conflict with the compulsory parts of the tasks.

First filtering

\longleftarrow Second filtering

Time-Tabling

- Ouellet \& Quimper presented an algorithm for Time-Tabling on a generalized case in $\mathrm{O}(n \log (n))$.
- We took advantage of Union-Find to achieve an algorithm that admits a linear time implementation for the Disjunctive case.

The strategy of our algorithm

The strategy of our algorithm

The strategy of our algorithm

$\operatorname{Merged}\left(\operatorname{Compulsory}\left(\mathrm{A}_{1}\right)\right.$, Compulsory $\left.\left(\mathrm{A}_{2}\right)\right)$

The strategy of our algorithm

$\operatorname{Merged}\left(\operatorname{Compulsory}\left(\mathrm{A}_{1}\right)\right.$, Compulsory $\left.\left(\mathrm{A}_{2}\right)\right)$

- The domain of A_{3} after filtering.

Time lime

- This is a data structure that keeps track of when the resource is executing a task.
- It is initialized with an empty set of tasks $\Theta=\varnothing$.
- It is possible to add a task to Θ in constant time. The task will be scheduled at the earliest time as possible with preemption.
- It is possible to compute the earliest completion time of Θ in constant time at any time!

Θ-Tree and Time line comparison

Operation	Θ-Tree (Vilím)	Time line
Adding a task to the schedule	$\mathrm{O}(\log (n))$	$\mathrm{O}(1)$
Computing the earliest completion time	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Removing a task from the schedule	$\mathrm{O}(\log (n))$ steps	Not supported!

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
185	8	8	10	15										

- Between each two consecutive time points, there is a capacity that denotes the amount of time that the resource is available through. The capacities are initially equal to the difference between the consecutive time points.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

$$
\{1\} \xrightarrow{3}\{4\} \xrightarrow{1}\{5\}^{23}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- We schedule the tasks, one by one. After scheduling, the free times will reduce.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

$$
\{1\} \xrightarrow{3}\{4\} \xrightarrow{1}\{5\}^{21}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- We schedule the tasks, one by one. After scheduling, the free times will reduce.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

$$
\{1\} \xrightarrow{0}\{4\} \xrightarrow{0}\{5\} \xrightarrow{19}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- Once a capacity equals null, the corresponding time points are merged by Union-Find.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 4 | 5 | | | |

$$
\{1\} \xrightarrow{0}\{4\} \xrightarrow{0}\{5\} \xrightarrow{19}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- Once a capacity equals null, the corresponding time points are merged by Union-Find.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

$$
\{1,4,5\} \xrightarrow{19}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

$$
\{1,4,5\} \xrightarrow{19}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

1		5																28

$$
\{1,4,5\} \xrightarrow{13}\{28\}
$$

Time line example

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	6

1		5																28

$$
\{1,4,5\} \xrightarrow{13}\{28\}
$$

- The earliest completion time is computed in constant time by $28-13=15$.

Overload Checking

Overload Checking

- Using the idea of a Θ-Tree, Vilím presented the following algorithm for the overload check.
$1 \Theta:=\emptyset$;
2 for $j \in T$ in non-decreasing order of lct $_{j}$ do begin
$3 \Theta:=\Theta \cup\{j\}$;
4 if ect $_{\odot}>$ lct $_{j}$ then
5 fail; \{No solution exists \}
6 end;

Overload Checking

- Using the idea of a Θ-Tree, Vilím presented the following algorithm for the overload check.
$1 \Theta:=\emptyset$;
2 for $j \in T$ in non-decreasing order of lct $_{j}$ do begin
$3 \Theta:=\Theta \cup\{j\}$;
4 if ect $_{\Theta}>$ lct $_{j}$ then
5 fail; \{No solution exists \}
6 end;
- We keep the same algorithm and only replace the Θ-Tree with time line to achieve a linear time algorithm.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{t}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{t}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

Example

Example

Detectable Precedences

- Vilím introduced the idea of detectable precedences and presented an algorithm in $\mathrm{O}(n \log (n))$.

Detectable Precedences

- Vilím introduced the idea of detectable precedences and presented an algorithm in $\mathrm{O}(n \log (n))$.
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.

Detectable Precedences

- Vilím introduced the idea of detectable precedences and presented an algorithm in $\mathrm{O}(n \log (n))$.
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.
- The time line does not allow the removal of a task.

Detectable Precedences

- Vilím introduced the idea of detectable precedences and presented an algorithm in $\mathrm{O}(n \log (n))$.
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.
- The time line does not allow the removal of a task.
- We modified the algorithm so that no removal of a task is required.

Experiments

- In order to show the advantage of the state of the art algorithms, we ran the experiments on job-shop and open-shop scheduling problems.
- After 10 minutes of computations, the program halts
- The problems are not solved to optimality.
- The number of backtracks that occur will be counted.
- We compare two algorithms which explore the same tree in the same order.
- A larger portion of the search tree will be traversed within 10 minutes with the faster algorithm.

Tables of results

$n \times m$	OC	DP	TT
4×4	0.96	1.00	1.00
5×5	1.03	1.12	1.75
7×7	1.02	1.16	2.09
10×10	1.06	1.33	2.14
15×15	1.03	1.39	2.15
20×20	1.06	1.56	2.17
p-value	0.25	$8.28 \mathrm{E}-14$	$5.95 \mathrm{E}-14$

$n \times m$	OC	DP	TT
10×5	1.07	1.27	2.11
15×5	1.02	1.35	2.27
20×5	1.00	1.55	2.12
10×10	1.01	1.25	2.18
15×10	1.26	1.42	1.97
20×10	1.00	1.47	2.14
30×10	1.08	1.56	2.36
50×10	1.05	1.48	3.18
15×15	0.95	1.48	2.16
20×15	1.04	1.61	2.13
20×20	1.09	1.46	1.71
p-value	0.17	$1.41 \mathrm{E}-12$	$3.38 \mathrm{E}-20$

- The results of three methods on open-shop and job-shop benchmark problems with n jobs and m tasks per job. The numbers indicate the ratio of the cumulative number of backtracks between all instances of size nm after 10 minutes of computations.

Conclusion

- Thanks to the constant time operation of the Union-Find data structure, we designed a new data structure, called time line, to speed up filtering algorithms for the Disjunctive constraint.
- We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm	Previous complexity	Now complexity
Time-Tabling	$\mathrm{O}(n \log (n))$ Quimper)	$\mathrm{O}(n)$ Quimper)
Overload check	$\mathrm{O}(n \log (n))$ Vilím	$\mathrm{O}(n)$ Quimper)
Detectable	$\mathrm{O}(n \log (n))$ precedences	$\mathrm{O}(n)$ Quimper)

$$
\left[\begin{array}{c}
\text { Thant } \\
\text { goul! } \\
\text { gos }
\end{array}\right]
$$

