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Consider a set of n tasks, with known parameters:  
 The release time        ; The deadline         ; The processing time         ; 
 and the unknown starting times [s1,…,sn]. 
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•  A feasible schedule!	
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• It is NP-Complete to determine whether there exists a solution to the 

Disjunctive constraint.	


• It is NP-Hard to filter out all values that do not lead to a solution.	


• Nonetheless, there exist rules that detect in polynomial time some 
filtering of the domains of the tasks. 	


• Our goal is to improve some of these existing filtering algorithms for 
this constraint.	
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•  We aim at designing algorithms with linear complexity.	


•  To achieve this goal, we assume that sorting can be done with a linear 
time algorithm, say radix sort.	




•  If lsti < ecti for a task, then the interval [lsti,ecti)  is called the 
compulsory part of i. 
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• Ouellet & Quimper presented an algorithm for Time-Tabling on a 
generalized case in O(nlog(n)).	


• We took advantage of Union-Find to achieve an algorithm that 
admits a linear time implementation for the Disjunctive case.	
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•  The domain of A3 after filtering.	
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• This is a data structure that keeps track of when the resource is executing 
a task.  	


• It is initialized with an empty set of tasks Θ = ∅.	


• It is possible to add a task to Θ in constant time. The task will be 
scheduled at the earliest time as possible with preemption.	


• It is possible to compute  the earliest completion time of Θ in constant 
time at any time!	




19 

Operation Θ-Tree (           ) Time line  

Adding a task to 
the schedule	


O(log(n))	
 O(1)	


Computing the 
earliest 

completion time	


O(1)	

 

O(1)  

Removing a task 
from the schedule	


O(log(n)) steps 
 

Not supported ! 
	




•  Between each two consecutive time points,   
there is a capacity that denotes the amount of 
time that the resource is available through. The 
capacities are initially equal to the  difference 
between the consecutive time points. 	
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•  We schedule the tasks, one by one. After 
scheduling, the free times will reduce. 	
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•  Once a capacity equals null, the corresponding 
time points  are merged by Union-Find.	
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•  That allows to run a linear search over the time 
line for periods that have free time. This search 
will jump over the occupied regions in constant 
time.	
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•  The earliest completion time is computed in constant time by 
28-13 = 15.	
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•  Using the idea of a Θ-Tree,           presented the following algorithm 
for the overload check. 
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•  Using the idea of a Θ-Tree,           presented the following algorithm 
for the overload check. 

	

•  We keep the same algorithm and only replace the Θ-Tree with time 

line to achieve a linear time algorithm.	

	




• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is 
called detectable. 
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•  A<<C, B<<C. 
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•  A<<C, B<<C. 
•  Since {A , B } << C, the domain of C will be filtered to  
   estC ≥ estA + pA + pB = 21. 
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•  A<<C, B<<C. 
•  Since {A , B } << C, the domain of C will be filtered to  
   estC ≥ estA + pA + pB = 21. 
•  The domain of C after filtering. 
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•             introduced the idea of detectable precedences and presented 
an algorithm in O(nlog(n)).	


•  This algorithm temporarily removes a task from the schedule, 
computes the earliest completion time of the set, and reinserts the 
task to the schedule.	


• The time line does not allow the removal of a task.	


•  We modified the algorithm so that no removal of a task is required.	




• In order to show the advantage of the state of the art algorithms, we ran 
the experiments on job-shop and open-shop scheduling problems.	


• After 10 minutes of computations, the program halts	


• The problems are not solved to optimality. 	

	

• The number of backtracks that occur will be counted.	

	

• We compare two algorithms which explore the same tree in the same 

order.	


• A larger portion of the search tree will be traversed within 10 minutes 
with the faster algorithm.	




•  The results of three methods on open-shop and job-shop 
benchmark problems with n jobs and m tasks per job. The numbers 
indicate the ratio of the cumulative number of backtracks between 
all instances of size nm after 10 minutes of computations.	




• Thanks to the constant time operation of the Union-Find data structure, we 
designed a new data structure, called time line, to speed up filtering algorithms 
for the Disjunctive constraint.	

• We came up with three faster algorithms to filter the disjunctive constraint.	


Algorithm	
 Previous 
complexity	


Now	

complexity	


	

Time-Tabling	
 O(nlog(n)) 

(Ouellet & 
Quimper)	


O(n)	

(Fahimi & 
Quimper )	


Overload check	
 O(nlog(n))	

	


O(n)	

(Fahimi & 
Quimper)	


Detectable 
precedences	


O(nlog(n))	

	


O(n)	

(Fahimi & 
Quimper)	
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