Linear-Time Filtering Algorithms for the Disjunctive Constraint

Hamed Fahimi Claude-Guy Quimper Université Laval

<u>Claude-Guy.Quimper@ift.ulaval.ca</u> <u>hamed.fahimi.1@ulaval.ca</u>

July 2014

Consider a set of *n* tasks, with known parameters: The **release time**(r_i); The **deadline**(d_i); The **processing time**(p_i); and the unknown starting times [s_1, \ldots, s_n].

Consider a set of *n* tasks, with known parameters: The release time (r_i) ; The deadline (d_i) ; The processing time (p_i) ; and the unknown starting times $[s_1, ..., s_n]$.

Consider a set of *n* tasks, with known parameters: The **release time**(r_i); The **deadline**(d_i); The **processing time**(p_i); and the unknown starting times [s_1, \ldots, s_n].

Constraint:

DISJUNCTIVE($[s_1, \dots, s_n]$) $\Leftrightarrow s_i + p_i \le s_j$ or $s_j + p_j \le s_i$

Consider a set of *n* tasks, with known parameters: The **release time**(r_i); The **deadline**(d_i); The **processing time**(p_i); and the unknown starting times [s_1, \ldots, s_n].

Constraint:

DISJUNCTIVE($[s_1, \dots, s_n]$) $\Leftrightarrow s_i + p_i \le s_j$ or $s_j + p_j \le s_i$

• A feasible schedule!

- It is NP-Complete to determine whether there exists a solution to the Disjunctive constraint.
- It is NP-Hard to filter out all values that do not lead to a solution.
- Nonetheless, there exist rules that detect in polynomial time some filtering of the domains of the tasks.
- Our goal is to improve some of these existing filtering algorithms for this constraint.

Preliminary

• We aim at designing algorithms with linear complexity.

• To achieve this goal, we assume that sorting can be done with a linear time algorithm, say *radix sort*.

• If $lst_i < ect_i$ for a task, then the interval $[lst_i, ect_i)$ is called the *compulsory part* of *i*.

• If $lst_i < ect_i$ for a task, then the interval $[lst_i, ect_i)$ is called the *compulsory part* of *i*.

• If $lst_i < ect_i$ for a task, then the interval $[lst_i, ect_i)$ is called the *compulsory part* of *i*.

• If $lst_i < ect_i$ for a task, then the interval $[lst_i, ect_i)$ is called the *compulsory part* of *i*.

• If $lst_i < ect_i$ for a task, then the interval $[lst_i, ect_i)$ is called the *compulsory part* of *i*.

• Ouellet & Quimper presented an algorithm for Time-Tabling on a generalized case in O(*n*log(*n*)).

• We took advantage of Union-Find to achieve an algorithm that admits a linear time implementation for the Disjunctive case.

Time line

- This is a data structure that keeps track of when the resource is executing a task.
- It is initialized with an empty set of tasks $\Theta = \emptyset$.

• It is possible to add a task to Θ in constant time. The task will be scheduled at the earliest time as possible with preemption.

 It is possible to compute the earliest completion time of Θ in constant time at any time!

$\Theta\text{-}{\rm Tree}$ and Time line comparison

Operation	Θ -Tree (Vilím)	Time line
Adding a task to the schedule	O(log(<i>n</i>))	O (1)
Computing the earliest completion time	O(1)	O (1)
Removing a task from the schedule	$O(\log(n))$ steps	Not supported !

• Between each two consecutive time points, there is a capacity that denotes the amount of time that the resource is available through. The capacities are initially equal to the difference between the consecutive time points.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• We schedule the tasks, one by one. After scheduling, the free times will reduce.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• We schedule the tasks, one by one. After scheduling, the free times will reduce.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• Once a capacity equals null, the corresponding time points are merged by Union-Find.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• Once a capacity equals null, the corresponding time points are merged by Union-Find.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est _i	lct _i ,	p _i
5	8	2
1	10	6
4	15	6

• The earliest completion time is computed in constant time by 28-13 = 15.

Overload Checking

Overload Checking

• Using the idea of a Θ -Tree, V_{ilim} presented the following algorithm for the overload check.

 $\Theta := \emptyset$; **for** $j \in T$ in non-decreasing order of lct_j **do begin** $\Theta := \Theta \cup \{j\}$; **if** $ect_{\Theta} > lct_j$ **then fail**; {No solution exists} 6 **end**;

Overload Checking

• Using the idea of a Θ -Tree, V_{ilim} presented the following algorithm for the overload check.

```
1 \Theta := \emptyset;

2 for j \in T in non-decreasing order of lct_j do begin

3 \Theta := \Theta \cup \{j\};

4 if ect_{\Theta} > lct_j then

5 fail; {No solution exists}

6 end;
```

• We keep the same algorithm and only replace the Θ -Tree with time line to achieve a linear time algorithm.

• Let A_i and A_j be two tasks. If ect_i > lst_j, the precedence $A_j << A_i$ is called *detectable*.

• Let A_i and A_j be two tasks. If ect_i > lst_j, the precedence $A_j << A_i$ is called *detectable*.

 $est_{C} \ge est_{A} + p_{A} + p_{B} = 21.$

- Since {A, B} << C, the domain of C will be filtered to $est_C \ge est_A + p_A + p_B = 21.$
- The domain of C after filtering.

• Vilím introduced the idea of detectable precedences and presented an algorithm in O(*n*log(*n*)).

- Vilím introduced the idea of detectable precedences and presented an algorithm in O(*n*log(*n*)).
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.

- Vilím introduced the idea of detectable precedences and presented an algorithm in O(*n*log(*n*)).
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.

• The time line does not allow the removal of a task.

- Vilím introduced the idea of detectable precedences and presented an algorithm in O(*n*log(*n*)).
- This algorithm temporarily removes a task from the schedule, computes the earliest completion time of the set, and reinserts the task to the schedule.

• The time line does not allow the removal of a task.

• We modified the algorithm so that no removal of a task is required.

Experiments

- In order to show the advantage of the state of the art algorithms, we ran the experiments on job-shop and open-shop scheduling problems.
- After 10 minutes of computations, the program halts
- The problems are not solved to optimality.
- The number of backtracks that occur will be counted.
- We compare two algorithms which explore the same tree in the same order.
- A larger portion of the search tree will be traversed within 10 minutes with the faster algorithm.

Tables of results

n imes m	OC	DP	TT
4×4	0.96	1.00	1.00
5×5	1.03	1.12	1.75
7×7	1.02	1.16	2.09
10×10	1.06	1.33	2.14
15×15	1.03	1.39	2.15
20 imes 20	1.06	1.56	2.17
p-value	0.25	8.28E-14	5.95E-14

n imes m	OC	DP	TT
10×5	1.07	1.27	2.11
15×5	1.02	1.35	2.27
20 imes 5	1.00	1.55	2.12
10×10	1.01	1.25	2.18
15×10	1.26	1.42	1.97
20 imes 10	1.00	1.47	2.14
30×10	1.08	1.56	2.36
50 imes 10	1.05	1.48	3.18
15×15	0.95	1.48	2.16
20×15	1.04	1.61	2.13
20 imes 20	1.09	1.46	1.71
p-value	0.17	1.41E-12	3.38E-20

• The results of three methods on open-shop and job-shop benchmark problems with *n* jobs and *m* tasks per job. The numbers indicate the ratio of the cumulative number of backtracks between all instances of size *nm* after 10 minutes of computations.

Conclusion

- Thanks to the constant time operation of the Union-Find data structure, we designed a new data structure, called time line, to speed up filtering algorithms for the Disjunctive constraint.
- We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm	Previous complexity	Now complexity
Time-Tabling	O(<i>n</i> log(<i>n</i>)) (Ouellet & Quimper)	O(<i>n</i>) (Fahimi & Quimper)
Overload check	O(nlog(n)) Vilím	O(<i>n</i>) (Fahimi & Quimper)
Detectable precedences	O(nlog(n)) Vilím	O(<i>n</i>) (Fahimi & Quimper)

