

Université Laval���
	

	

	

Claude-Guy.Quimper@ift.ulaval.ca 	
	

hamed.fahimi.1@ulaval.ca	

	

	

	

	

July 2014

1

Consider a set of n tasks, with known parameters:
 The release time ; The deadline ; The processing time ;
 and the unknown starting times [s1,…,sn].

	

	

	

 	

(ri) (di) (pi)

Consider a set of n tasks, with known parameters:
 The release time ; The deadline ; The processing time ;
 and the unknown starting times [s1,…,sn].

	

	

	

 	

(ri) (di) (pi)

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

Consider a set of n tasks, with known parameters:
 The release time ; The deadline ; The processing time ;
 and the unknown starting times [s1,…,sn].

Constraint:

DISJUNCTIVE([s1,…,sn]) ⬄ si + pi ≤ sj or sj + pj ≤ si 	

	

	

	

 	

(ri) (di) (pi)

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

Consider a set of n tasks, with known parameters:
 The release time ; The deadline ; The processing time ;
 and the unknown starting times [s1,…,sn].

Constraint:

DISJUNCTIVE([s1,…,sn]) ⬄ si + pi ≤ sj or sj + pj ≤ si 	

	

	

	

 	

(ri) (di) (pi)

1	
 3	
 12	
 19	

•  A feasible schedule!	

6	
 10	

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

6

• It is NP-Complete to determine whether there exists a solution to the

Disjunctive constraint.	

• It is NP-Hard to filter out all values that do not lead to a solution.	

• Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks. 	

• Our goal is to improve some of these existing filtering algorithms for
this constraint.	

7

•  We aim at designing algorithms with linear complexity.	

•  To achieve this goal, we assume that sorting can be done with a linear
time algorithm, say radix sort.	

•  If lsti < ecti for a task, then the interval [lsti,ecti) is called the
compulsory part of i.

•  The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

•  If lsti < ecti for a task, then the interval [lsti,ecti) is called the
compulsory part of i.

•  The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

•  If lsti < ecti for a task, then the interval [lsti,ecti) is called the
compulsory part of i.

0 2 3 4 1

Compulsory part

•  The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

•  If lsti < ecti for a task, then the interval [lsti,ecti) is called the
compulsory part of i.

0 2 3 4 1

0 2 3 4 1

First filtering

Compulsory part

•  The Time-Tabling technique filters the domains which are in
conflict with the compulsory parts of the tasks.

•  If lsti < ecti for a task, then the interval [lsti,ecti) is called the
compulsory part of i.

0 2 3 4 1

0 2 3 4 1

First filtering

Second filtering

Compulsory part

13

• Ouellet & Quimper presented an algorithm for Time-Tabling on a
generalized case in O(nlog(n)).	

• We took advantage of Union-Find to achieve an algorithm that
admits a linear time implementation for the Disjunctive case.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Compulsory(A1)	
 Compulsory(A2)	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Compulsory(A1)	
 Compulsory(A2)	

Merged(Compulsory(A1), Compulsory(A2))

1	
 14	

•  The domain of A3 after filtering.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Compulsory(A1)	
 Compulsory(A2)	

Merged(Compulsory(A1), Compulsory(A2))

1	
 14	

15	

18

• This is a data structure that keeps track of when the resource is executing
a task. 	

• It is initialized with an empty set of tasks Θ = ∅.	

• It is possible to add a task to Θ in constant time. The task will be
scheduled at the earliest time as possible with preemption.	

• It is possible to compute the earliest completion time of Θ in constant
time at any time!	

19

Operation Θ-Tree () Time line

Adding a task to
the schedule	

O(log(n))	
 O(1)	

Computing the
earliest

completion time	

O(1)	

O(1)

Removing a task
from the schedule	

O(log(n)) steps

Not supported !
	

•  Between each two consecutive time points,
there is a capacity that denotes the amount of
time that the resource is available through. The
capacities are initially equal to the difference
between the consecutive time points. 	

1	
 4	
 5	

esti lcti, pi
5 8 2
1 10 6
4 15 6

28	

4	
 15	
5	
 8	
1	
 10	

 {1} → {4} → {5} → {28}
3	
 1	
 23	

•  We schedule the tasks, one by one. After
scheduling, the free times will reduce. 	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1} → {4} → {5} → {28}
3	
 1	
 21	

4	
 15	
5	
 8	
1	
 10	

•  We schedule the tasks, one by one. After
scheduling, the free times will reduce. 	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1} → {4} → {5} → {28}
0	
 0	
 19	

4	
 15	
5	
 8	
1	
 10	

•  Once a capacity equals null, the corresponding
time points are merged by Union-Find.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1} → {4} → {5} → {28}
0	
 0	
 19	

4	
 15	
5	
 8	
1	
 10	

•  Once a capacity equals null, the corresponding
time points are merged by Union-Find.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1,4,5} → {28}
19	

4	
 15	
5	
 8	
1	
 10	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1,4,5} → {28}
19	

4	
 15	
5	
 8	
1	
 10	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1,4,5} → {28}
13	

4	
 15	
5	
 8	
1	
 10	

15	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 6

 {1,4,5} → {28}
13	

•  The earliest completion time is computed in constant time by
28-13 = 15.	

4	
 15	
5	
 8	
1	
 10	

15	

28

8

A1

A2
1 2 4 10

29

8

A1

A2
1 2 4 10

•  Using the idea of a Θ-Tree, presented the following algorithm
for the overload check.

	

	

30

8

A1

A2
1 2 4 10

•  Using the idea of a Θ-Tree, presented the following algorithm
for the overload check.

	

•  We keep the same algorithm and only replace the Θ-Tree with time

line to achieve a linear time algorithm.	

	

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

lstj	

ecti	

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  A<<C, B<<C.

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  A<<C, B<<C.
•  Since {A , B } << C, the domain of C will be filtered to
 estC ≥ estA + pA + pB = 21.

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  A<<C, B<<C.
•  Since {A , B } << C, the domain of C will be filtered to
 estC ≥ estA + pA + pB = 21.
•  The domain of C after filtering.

•  introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).	

•  introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).	

•  This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.	

•  introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).	

•  This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.	

• The time line does not allow the removal of a task.	

•  introduced the idea of detectable precedences and presented
an algorithm in O(nlog(n)).	

•  This algorithm temporarily removes a task from the schedule,
computes the earliest completion time of the set, and reinserts the
task to the schedule.	

• The time line does not allow the removal of a task.	

•  We modified the algorithm so that no removal of a task is required.	

• In order to show the advantage of the state of the art algorithms, we ran
the experiments on job-shop and open-shop scheduling problems.	

• After 10 minutes of computations, the program halts	

• The problems are not solved to optimality. 	

	

• The number of backtracks that occur will be counted.	

	

• We compare two algorithms which explore the same tree in the same

order.	

• A larger portion of the search tree will be traversed within 10 minutes
with the faster algorithm.	

•  The results of three methods on open-shop and job-shop
benchmark problems with n jobs and m tasks per job. The numbers
indicate the ratio of the cumulative number of backtracks between
all instances of size nm after 10 minutes of computations.	

• Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.	

• We came up with three faster algorithms to filter the disjunctive constraint.	

Algorithm	
 Previous
complexity	

Now	

complexity	

	

Time-Tabling	
 O(nlog(n))

(Ouellet &
Quimper)	

O(n)	

(Fahimi &
Quimper)	

Overload check	
 O(nlog(n))	

	

O(n)	

(Fahimi &
Quimper)	

Detectable
precedences	

O(nlog(n))	

	

O(n)	

(Fahimi &
Quimper)	

44

