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My first contact with 
constraint programming

I took Peter’s course in 
Constraint Programming

The field requires efficient 
algorithms that are executed 
gazillions of times.

Project: To implement Thiel 
and Mehlhorn’s alldiff 
propagator.

Peter van Beek



The All-Different Constraint

All-Different(X1, . . . , Xn) ⇐⇒ Xi #= Xj

Scheduling: We want execution times to 
be all different.

Encoding permutations.

Sometimes, one simply wants things to 
be different!
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HallHall

dom(X1) = [2, 3]
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A Propagator for the
Bounds Consistency

1     2     3     4     5     6

! ! ! ! ! !! ! ! !

HallHall

dom(X1) = [2, 3]
dom(X2) = [2, 3]
dom(X3) = [4, 4]
dom(X4) = [5, 6]
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Analysis of the Algorithm

Version Complexity Note

First version O(n2 + m) 6 lines of C code!

Union-find
data structure

O(n log n) The fastest in 
practice

Balanced union-find
data structure

O(n !(n)) Slightly slower than 
the previous version

Gabow and Tarjan’s
data structure

O(n) Slower and pages
of code
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The Global Cardinality Constraint

A value v must be taken at least lv times 
and at most uv times.

Scheduling: No more than 2 tasks can be 
executed at a given time.

Sequencing: We want to restrict the 
number of occurrences of an event in a 
sequence. 
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The Global Cardinality Constraint

[Régin ’96] gives a propagator 
achieving domain consistency.

There were no propagators for bounds 
consistency.

GCC([X1, . . . , Xn], l, u) ⇐⇒ ∀v lv ≤ |{i | Xi = v}| ≤ uv
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The Upper Bound Constraint
All values must be assigned to at most 2 variables.

}

S = {1, 2}

Hall Interval

An interval containing 
as many domains as its 
upper capacity.

Upper capacity: !S" = 2 + 2 = 4

!S" = |{i | dom(Xi) ⊆ S}|

X1 : {1 2 } ⊆ S
X2 : {1 } ⊆ S
X3 : {1 2 } ⊆ S
X4 : { 2 } ⊆ S
X5 : { 3}
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X1 : {1 }
X2 : { 4}
X3 : {1 4}
X4 : { 2 3 }∩S "= ∅
X5 : { 2 3 }∩S "= ∅

All values must be assigned to at least 1 variable.

The Lower Bound Constraint

S = {2, 3}
Lower capacity: !S" = 1 + 1 = 2



X1 : {1 }
X2 : { 4}
X3 : {1 4}
X4 : { 2 3 }∩S "= ∅
X5 : { 2 3 }∩S "= ∅

All values must be assigned to at least 1 variable.

The Lower Bound Constraint

S = {2, 3}
Lower capacity: !S" = 1 + 1 = 2

Unstable Set

A set intersecting as 
many domains as its 
lower capacity.

!S" = |{i | dom(Xi) ∩ S $= ∅}|



A Propagator for the LBC

We adapted the algorithm for the
All-different constraint

Detects unstable sets rather than
Hall intervals.

Time complexity: O(n)
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LBC

The Global Cardinality Constraint

UBC

GCC X = 4

X = 4
X = 4

Theorem:
A value has a support in the 
GCC iff it has a support in 
the UBC and the LBC.

Proof:
Based on the relationship 
between Hall sets and 
unstable sets.

Note:
Holds for domain, range, 
and bounds consistency
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A Propagator for the GCC
Theorem:
This algorithm never loops!

Proof:
Based on the relationship 
between Hall sets and 
unstable sets.

Note:
Holds for domain, range, 
and bounds consistency

Filter the 
UBC

Filter the
LBC

Is the UBC 
Still 

Consistent?

Yes

No
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Extended GCC
                                                   is satisfied 
when v is taken Cv times.

Theorem

When domains are sets, 
testing the satisfiability 
of EGCC is NP-Hard.

Theorem

When domains are 
intervals, filtering 
EGCC takes linear time.

Katriel & Thiel

EGCC([X1, . . . , Xn], [C1, . . . , Cm])
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Beyond Integer Domains

Variables could be sets, multi-sets, or tuples.

Sets, multi-set, and tuple variables often have 
large domains.

 

We adapted the propagator to obtain a polynomial 
complexity: 

All-Different(X1, . . . , Xn) ⇐⇒ Xi #= Xj

{} ⊆ X ⊆ {1, . . . , u}⇒ |X| = 2u

O(n2.5 + n2u)



The Inter-Distance Constraint

There must be a gap of p between each variable.

Inter-Distance([X1, . . . , Xn], p) ⇐⇒ |Xi −Xj | ≥ p



The Inter-Distance Constraint

There must be a gap of p between each variable.

When p = 1, we obtain the All-Different 
Constraint.

Inter-Distance([X1, . . . , Xn], p) ⇐⇒ |Xi −Xj | ≥ p
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There must be a gap of p between each variable.

When p = 1, we obtain the All-Different 
Constraint.
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The Inter-Distance Constraint

There must be a gap of p between each variable.

When p = 1, we obtain the All-Different 
Constraint.

Scheduling: Execution times must be p units 
of time apart.

Radio frequency allocation problem.

Inter-Distance([X1, . . . , Xn], p) ⇐⇒ |Xi −Xj | ≥ p
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The Inter-Distance Constraint

[Régin ’97] introduces the global 
minimum distance constraint.

[Artiouchine & Baptiste ’05]

prove the constraint is NP-Hard when 
variables are sets.

achieve bounds consistency in cubic 
time.
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1   2   3   4   5   6   7   8   9

No block can have its left end inside a red zone.

Place two blocks of size 4 on the axis without 
overlapping them.

Block Placement
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0   1   2   3  4

If you place n blue blocks of size one 
inside a box of size n, you obtain a red 
zone of n elements.

This is a Hall interval!

Parenthesis
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Place the 3 blocks on the axis such that the blue 
blocks are in the box.

The green box cannot have its left end inside a 
red zone

Block Placement
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Number of Adjustment Intervals

O(n2)×O(n) = O(n3)

Number of
intervals [l, u]

Number of red zones
produced per interval

Total number of
red zones

Complexity of
Artiouchine & Baptiste’s 

propagator
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Dominance

Theorem

Only O(n2) red zones needs 
to be computed to achieve 
bounds consistency.
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Propagator

Uses a special data structure to store the 
adjustment intervals

Time complexity: O(n2)



Summary

Bounds consistency for the
All-Different Constraint.



Summary

Bounds consistency for the
All-Different Constraint.

Generalization of Hall’s marriage 
theorem for the GCC.



Summary

Bounds consistency for the
All-Different Constraint.

Generalization of Hall’s marriage 
theorem for the GCC.

Extension to non-integer domains



Summary

Bounds consistency for the
All-Different Constraint.

Generalization of Hall’s marriage 
theorem for the GCC.

Extension to non-integer domains

Quadratic propagator for the
Inter-Distance.
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