Efficient Propagators for Global Constraints

Claude-Guy Quimper

Supervisor: Alejandro López-Ortiz

Outline

- My first contact with constraint programming
- The all-different constraint
- The global cardinality constraint
- The inter-distance constraint
- Post-doctoral work

My first contact with constraint programming

- I took Peter's course in Constraint Programming
- The field requires efficient algorithms that are executed gazillions of times.
- Project: To implement Thiel and Mehlhorn's alldiff propagator.

Peter van Beek

- Scheduling: We want execution times to be all different.
- Encoding permutations.
- Sometimes, one simply wants things to be different!

нцццц

The All-Different Constraint

All-Different $(X_1, \ldots, X_n) \iff X_i \neq X_j$

Régin '94	Domaín	$O(n^{1.5}d)$

Régin '94	Domaín	$O(n^{1.5}d)$

1

Régin '94	Domaín	$O(n^{1.5}d)$
Leconte '96	Range	$O(n^2)$
Puget '98	Bounds	O(nlogn)
Mehlhorn & Thiel	Bounds	0(n)
López-Ortíz, Químper, Tromp, S Van Beek	Bounds	0(n)

Régin '94	Domaín	0(n ^{1.5} d)
Leconte '96	Range	$O(n^2)$
Puget '98	Bounds	O(nlogn)

HH

Régin '94	Domaín	0(n ^{1.5} d)
Leconte '96	Range	0(n ²)
Puget '98	Bounds	O(nlogn)
Mehlhorn & Thiel	Bounds	O(n)

1

Régin '94	Domaín	$O(n^{1.5}d)$
Leconte '96	Range	$O(n^2)$
Puget '98	Bounds	O(nlogn)
Mehlhorn & Thiel	Bounds	0(n)
López-Ortíz, Químper, Tromp, S Van Beek	Bounds	0(n)

 $dom(X_1) = [3, 4]$ $dom(X_2) = [3, 4]$ $dom(X_3) = [1, 3]$

 $dom(X_1) = [3, 4]$ $dom(X_2) = [3, 4]$ $dom(X_3) = [1, 3]$

A Hall interval is an interval of k values that contains the domains of k variables.

 $dom(X_1) = [3,4]$ $dom(X_2) = [3,4]$ Hall interval $dom(X_3) = [1,3]$

A Hall interval is an interval of k values that contains the domains of k variables.

 $dom(X_1) = [3,4]$ $dom(X_2) = [3,4]$ Hall interval $dom(X_3) = [1,2]$

A Hall interval is an interval of k values that contains the domains of k variables.

- $\operatorname{dom}(X_1) = [2,3]$
- $\operatorname{dom}(X_2) = [2,3]$
- $\operatorname{dom}(X_3) = [3,4]$
- $\operatorname{dom}(X_4) = [2, 6]$

- $dom(X_1) = [2,3]$
 - $\operatorname{dom}(X_2) = [2,3]$
 - $\operatorname{dom}(X_3) = [3,4]$
 - $\operatorname{dom}(X_4) = [2, 6]$

A Propagator for the **Bounds Consistency** $dom(X_1) = [2,3]$ $dom(X_2) = [2,3]$ $dom(X_3) = [3, 4]$ $dom(X_4) = [2, 6]$

A Propagator for the **Bounds Consistency** $dom(X_1) = [2,3]$ $dom(X_2) = [2,3]$ $dom(X_3) = [3, 4]$ $dom(X_4) = [2, 6]$

1 2 3 4 5 6

~

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
 - $dom(X_3) = [3, 4]$
 - $dom(X_4) = [2, 6]$

1 2 3 4 5 6 ~

1 2 3 4 5 6

~

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
 - $dom(X_3) = [3, 4]$
 - $dom(X_4) = [2, 6]$

1 2 3 4 5 6

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
 - $dom(X_3) = [3, 4]$
 - $dom(X_4) = [2, 6]$

6

1 2 3 4 5

Hall

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
 - $dom(X_3) = [3, 4]$
 - $dom(X_4) = [2, 6]$

- $\operatorname{dom}(X_1) = [2,3]$
- $\operatorname{dom}(X_2) = [2,3]$
- $dom(X_3) = [3,4]$
 - $\operatorname{dom}(X_4) = [2, 6]$

- $\operatorname{dom}(X_1) = [2,3]$
- $\operatorname{dom}(X_2) = [2,3]$
- $dom(X_3) = [3,4]$
 - $\operatorname{dom}(X_4) = [2, 6]$

6

1 2 3 4 5

Hall

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
- \longrightarrow dom $(X_3) = [4, 4]$
 - $dom(X_4) = [2, 6]$

- $dom(X_1) = [2,3]$
- $dom(X_2) = [2,3]$
- \longrightarrow dom $(X_3) = [4, 4]$
 - $dom(X_4) = [2, 6]$

1 2 3 4 5 6 Hall
6

1 2 3 4 5

Hall

- $\operatorname{dom}(X_1) = [2,3]$
- $\operatorname{dom}(X_2) = [2,3]$
- $dom(X_3) = [4,4]$
 - $\operatorname{dom}(X_4) = [2, 6]$
- [4, 4][2, 6]

- $\operatorname{dom}(X_1) = [2,3]$
- $\operatorname{dom}(X_2) = [2,3]$
- $\operatorname{dom}(X_3) = [4,4]$
- $dom(X_4) = [2,6]$

 $dom(X_1) = [2,3]$

- $dom(X_2) = [2,3]$
- $\operatorname{dom}(X_3) = [4,4]$
- $\longrightarrow \operatorname{dom}(X_4) = [2,6]$

A Propagator for the **Bounds Consistency** $dom(X_1) = [2,3]$ $dom(X_2) = [2,3]$ $\operatorname{dom}(X_3) = [4,4]$ $\longrightarrow \operatorname{dom}(X_4) = [5,6]$ 2 3 4 5 1 6 ~ 1 ~ Hall

2 3 4 5

Hall

6

1

 $dom(X_1) = [2,3]$ $dom(X_2) = [2,3]$ $dom(X_3) = [4,4]$ $dom(X_4) = [5,6]$

Analysis of the Algorithm

version	Complexity	Note
Fírst version	$O(n^2 + m)$	6 línes of C code!

Analysis of the Algorithm

ЦЦ

Version	Complexity	Note
Fírst version	$O(n^2 + m)$	6 línes of C code!
uníon-find data structure	O(nlogn)	The fastest in practice

Analysis of the Algorithm

Version	Complexity	Note
Fírst version	$O(n^2 + m)$	6 línes of C code!
Union-find data structure	O(nlogn)	The fastest in practice
Balanced union-find data structure	$O(n \alpha(n))$	Slightly slower than the previous version

Analysis of the Algorithm

1

Version	Complexity	Note
Fírst version	$O(n^2 + m)$	6 línes of C code!
Union-find data structure	O(nlogn)	The fastest in practice
Balanced union-find data structure	$O(n \alpha(n))$	Slightly slower than the previous version
Gabow and Tarjan's data structure	0(n)	Slower and pages of code

- $GCC([X_1, \ldots, X_n], l, u) \iff \forall v \ l_v \le |\{i \mid X_i = v\}| \le u_v$
 - $\Box \quad A \text{ value } \vee \text{ must be taken at least } I_v \text{ times}$ and at most $u_v \text{ times}$.

- $GCC([X_1, \ldots, X_n], l, u) \iff \forall v \ l_v \le |\{i \mid X_i = v\}| \le u_v$
 - A value v must be taken at least l_v times and at most u_v times.
 - Scheduling: No more than 2 tasks can be executed at a given time.

- $GCC([X_1, \dots, X_n], l, u) \iff \forall v \ l_v \le |\{i \mid X_i = v\}| \le u_v$
 - $\Box \quad A \text{ value } \vee \text{ must be taken at least } I_v \text{ times}$ and at most $u_v \text{ times}$.
 - Scheduling: No more than 2 tasks can be executed at a given time.
 - Sequencing: We want to restrict the number of occurrences of an event in a sequence.

 $GCC([X_1, \ldots, X_n], l, u) \iff \forall v \ l_v \le |\{i \mid X_i = v\}| \le u_v$

IRégin '96] gives a propagator achieving domain consistency.

 $GCC([X_1, \ldots, X_n], l, u) \iff \forall v \ l_v \le |\{i \mid X_i = v\}| \le u_v$

IRégin '96] gives a propagator achieving domain consistency.

There were no propagators for bounds consistency.

Decomposing the GCC

Decomposing the GCC

The upper bound constraint (ubc)

Each value ís assigned to at most 2 variables.

Decomposing the GCC

Decomposing the GCC

All values must be assigned to at most 2 variables.

$$\begin{array}{cccc} X_1:\{1 & 2 & \} \\ X_2:\{1 & & \} \\ X_3:\{1 & 2 & \} \\ X_4:\{ & 2 & \} \\ X_5:\{1 & 2 & 3\} \end{array}$$

All values must be assigned to at most 2 variables.

All values must be assigned to at most 2 variables.

Upper capacity: $\lceil S \rceil = 2 + 2 = 4$

All values must be assigned to at most 2 variables.

Upper capacity: $\lceil S \rceil = 2 + 2 = 4$

All values must be assigned to at most 2 variables.

Upper capacity: $\lceil S \rceil = 2 + 2 = 4$

All values must be assigned to at most 2 variables.

Upper capacity: $\lceil S \rceil = 2 + 2 = 4$

Hall Interval

An interval containing as many domains as its upper capacity. $\lceil S \rceil = |\{i \mid \operatorname{dom}(X_i) \subseteq S\}|$

A Propagator for the UBC

Símílar to the one for the all-dífferent
 Constraínt.

A Propagator for the UBC

- Símílar to the one for the all-dífferent
 Constraínt.
- values can have more than one bucket.

A Propagator for the UBC

- Símílar to the one for the all-dífferent
 Constraínt.
- Values can have more than one bucket.

All values must be assigned to at least 1 variable.

All values must be assigned to at least 1 variable.

 $X_{1}: \{1 \}$ $X_{2}: \{ 4 \}$ $X_{3}: \{1 \}$ $X_{4}: \{1 \}$ $X_{4}: \{1 \}$ $X_{5}: \{ 2 \}$ $S = \{2, 3\}$

All values must be assigned to at least 1 variable.

 $S = \{2, 3\}$ Lower capacity: $\lfloor S \rfloor = 1 + 1 = 2$

All values must be assigned to at least 1 variable.

 $X_{1}: \{1 \\ X_{2}: \{ \\ 4 \} \\ X_{3}: \{1 \\ 4 \} \\ X_{4}: \{1 \\ 2 \\ 3 \\ 4 \} \cap S \neq \emptyset \\ X_{5}: \{ 2 \\ 3 \\ 4 \} \cap S \neq \emptyset \\ S = \{2, 3\} \\ \text{Lower capacity: } \lfloor S \rfloor = 1 + 1 = 2$

All values must be assigned to at least 1 variable.

 $X_{1} : \{1 \} \\ X_{2} : \{ 4 \} \\ X_{3} : \{1 \} \\ X_{4} : \{ 2 \} \\ X_{5} : \{ 2 \} \cap S \neq \emptyset \\ S = \{2, 3\} \\ \text{Lower capacity: } \lfloor S \rfloor = 1 + 1 = 2$

All values must be assigned to at least 1 variable.

 $X_{1} : \{1 \} \\ X_{2} : \{ 4 \} \\ X_{3} : \{1 \} \\ X_{4} : \{2 \} \} \cap S \neq \emptyset \\ X_{5} : \{2 \} \cap S \neq \emptyset \\ S = \{2, 3\} \\ \text{Lower capacity: } \lfloor S \rfloor = 1 + 1 = 2$

Unstable Set

A set intersecting as many domains as its lower capacity. $|S| = |\{i \mid \operatorname{dom}(X_i) \cap S \neq \emptyset\}|$

A Propagator for the LBC

We adapted the algorithm for the All-different constraint

Detects <u>unstable sets</u> rather than <u>Hall intervals</u>.

□ Time complexity: O(n)

The Global Cardinality Constraint

The Global Cardinality Constraint

Theorem:

A value has a support in the GCC iff it has a support in the UBC and the LBC.

Proof:

Based on the relationship between Hall sets and unstable sets.

Note:

Holds for domaín, range, and bounds consistency

A Propagator for the GCC

A Propagator for the GCC

<u>Theorem</u>: This algorithm never loops! <u>Proof</u>: Based on the relationship between Hall sets and unstable sets.

Note:

Holds for domaín, range, and bounds consistency

Extended GCC

\Box EGCC($[X_1, \ldots, X_n], [C_1, \ldots, C_m]$) is satisfied when \lor is taken C_{\lor} times.

Extended GCC

\Box EGCC($[X_1, \ldots, X_n], [C_1, \ldots, C_m]$) is satisfied when v is taken C_v times.

Theorem

When domains are <u>sets</u>, testing the satisfiability of EGCC is NP-Hard.

Extended GCC

 \Box EGCC($[X_1, \ldots, X_n], [C_1, \ldots, C_m]$) is satisfied when v is taken C_v times.

Theorem

When domains are <u>sets</u>, testing the satisfiability of EGCC is NP-Hard.

Theorem

When domains are <u>intervals</u>, filtering EGCC takes linear time.

Katriel & Thiel

ALL-DIFFERENT $(X_1, \ldots, X_n) \iff X_i \neq X_j$

ALL-DIFFERENT $(X_1, \ldots, X_n) \iff X_i \neq X_j$

Variables could be sets, multi-sets, or tuples.

ALL-DIFFERENT $(X_1, \ldots, X_n) \iff X_i \neq X_j$

- Variables could be sets, multi-sets, or tuples.
- Sets, multi-set, and tuple variables often have large domains.

ALL-DIFFERENT $(X_1, \ldots, X_n) \iff X_i \neq X_j$

- Variables could be sets, multi-sets, or tuples.
- Sets, multi-set, and tuple variables often have large domains.

 $\Box \{\} \subseteq X \subseteq \{1, \dots, u\} \Rightarrow |X| = 2^u$

ALL-DIFFERENT $(X_1, \ldots, X_n) \iff X_i \neq X_j$

- Variables could be sets, multi-sets, or tuples.
- Sets, multi-set, and tuple variables often have large domains.
- $\Box \{\} \subseteq X \subseteq \{1, \dots, u\} \Rightarrow |X| = 2^u$
- \square We adapted the propagator to obtain a polynomial complexity: $O(n^{2.5}+n^2u)$

INTER-DISTANCE $([X_1, \ldots, X_n], p) \iff |X_i - X_j| \ge p$

□ There must be a gap of p between each variable.

INTER-DISTANCE($[X_1, \ldots, X_n], p$) $\iff |X_i - X_j| \ge p$

There must be a gap of p between each variable.
 When p = 1, we obtain the All-Different
 Constraint.

INTER-DISTANCE $([X_1, \ldots, X_n], p) \iff |X_i - X_j| \ge p$

- □ There must be a gap of p between each variable.
- \Box When p = 1, we obtain the All-Different Constraint.
- Scheduling: Execution times must be punits of time apart.

INTER-DISTANCE $([X_1, \ldots, X_n], p) \iff |X_i - X_j| \ge p$

- □ There must be a gap of p between each variable.
- \Box When p = 1, we obtain the All-Different Constraint.
- Scheduling: Execution times must be punits of time apart.

Radio frequency allocation problem.

IRégin '97I introduces the global minimum distance constraint.

- IRégin '97I introduces the global minimum distance constraint.
- □ [Artionchine & Baptiste '05]

- IRégin '97I introduces the global minimum distance constraint.
- □ [Artionchine & Baptiste '05]
 - prove the constraint is NP-Hard when variables are sets.

- IRégin '971 introduces the global
 minimum distance constraint.
- □ [Artionchine & Baptiste '05]
 - prove the constraint is NP-Hard when variables are sets.
 - achieve bounds consistency in cubic time.

Place two blocks of size 4 on the axis without overlapping them.

Place two blocks of size 4 on the axis without overlapping them.

No block can have its left end inside a red zone.

Internal Adjustment Intervals

Artiouchine & Baptiste '05

Place the 3 blocks on the axis such that the blue blocks are in the box.

Place the 3 blocks on the axis such that the blue blocks are in the box.

Place the 3 blocks on the axis such that the blue blocks are in the box.

Place the 3 blocks on the axis such that the blue blocks are in the box.

The green box cannot have its left end inside a red zone.

Parenthesis

If you place n blue blocks of size one inside a box of size n, you obtain a red zone of n elements.

□ This is a Hall interval!

Place the 3 blocks on the axis such that the blue blocks are in the box.

The green box cannot have its left end inside a red zone
Artiouchine & Baptiste '05

0 1 2 3 4 5 6 7 8 9 10 11 12

 $O(n^2) \times O(n) = O(n^3)$

$O(n^2) \times O(n) = O(n^3)$

Number of intervals [l, u]

 $O(n^2) \times O(n) = O(n^3)$

Number of red zones produced per ínterval

Number of intervals [l, u]

, $O(n^2) \times O(n) = O(n^3)$

Number of red zones produced per ínterval

Number of intervals [l, u]

Total number of red zones

Number of Adjustment Intervals Complexity of Number of red zones Artiouchine & Baptiste's produced per interval propagator , $O(n^2) \times O(n) = O(n^3)$ Number of intervals [l, u] Total number of red zones

Dominance 0 1 2 3 4 5 6 7 8 9 10 11 12

и

Dominance

0 1 2 3 4 5 6 7 8 9 10 11 12 l

Dominance 0 1 2 3 4 5 6 7 8 9 10 11 12

Dominance 0 1 2 3 4 5 6 7 8 9 10 11 12

Dominance

Dominance

Theorem

Only O(n²) red zones needs to be computed to achieve bounds consistency.

Propagator

Uses a special data structure to store the adjustment intervals

Propagator

- Uses a special data structure to store the adjustment intervals
- \Box Time complexity: $O(n^2)$

Bounds consistency for the
All-Different Constraint.

- Bounds consistency for the All-Different Constraint.
- Generalization of Hall's marriage theorem for the GCC.

- Bounds consistency for the All-Different Constraint.
- Generalization of Hall's marriage theorem for the GCC.
- D Extension to non-integer domains

- Bounds consistency for the All-Different Constraint.
- Generalization of Hall's marriage theorem for the GCC.
- Extension to non-integer domains
- Quadratic propagator for the Inter-Distance.

Life after the PhD

Life after the PhD

Microsoft® Research

Life after the PhD

Microsoft[®] **Research**

Life after the PhD

Special Thanks to a Special Supervisor

Alex López-Ortiz

Special Thanks to Special Collaborators

Peter van Beek

Toby Walsh

Thanks to my Thesis Committee

Thanks to the ACP

