
Improved CP-Based Lagrangian Relaxation Approach with
an Application to the TSP

Raphaël Boudreault and Claude-Guy Quimper
Université Laval, Québec, Canada

raphael.boudreault.1@ulaval.ca, claude-guy.quimper@ift.ulaval.ca

Abstract
CP-based Lagrangian relaxation (CP-LR) is an ef-
ficient optimization technique that combines cost-
based filtering with Lagrangian relaxation in a
constraint programming context. The state-of-the-
art filtering algorithms for the WEIGHTEDCIRCUIT
constraint that encodes the traveling salesman
problem (TSP) are based on this approach. In this
paper, we propose an improved CP-LR approach
that locally modifies the Lagrangian multipliers in
order to increase the number of filtered values. We
also introduce two new algorithms based on the lat-
ter to filter WEIGHTEDCIRCUIT. The experimental
results on TSP instances show that our algorithms
allow significant gains on the resolution time and
the size of the search space when compared to the
state-of-the-art implementation.

1 Introduction
In constraint programming (CP), an efficient way to per-
form domain filtering for an optimization problem is cost-
based filtering [Focacci et al., 1999]. Given a minimiza-
tion problem and an upper bound on the objective value, the
cost of a relaxed subproblem is used as lower bound. If as-
signing a variable to a value increases this lower bound be-
yond the upper bound, this assignment is inconsistent and
the value is filtered out from the variable domain. In lin-
ear programming, Lagrangian relaxation is a common tech-
nique to obtain lower bounds. Difficult constraints are moved
into the objective function while adding weights, called La-
grangian multipliers, that penalize the objective when these
constraints are violated. Maximizing the objective func-
tion over the multipliers provides better lower bounds. Dur-
ing this optimization process, one could apply cost-based
filtering to each of the resulting subproblems. From this
idea, CP-based Lagrangian relaxation (CP-LR) was intro-
duced [Sellmann and Fahle, 2001] and used to solve many
problems [Fahle and Sellmann, 2002; Sellmann and Fahle,
2003; Menana and Demassey, 2009; Bergman et al., 2015;
Cambazard and Fages, 2015]. In particular, the state-of-
the-art filtering algorithms for the WEIGHTEDCIRCUIT con-
straint that encodes the traveling salesman problem (TSP) are
based on a CP-LR approach [Benchimol et al., 2012].

We propose an improved CP-LR approach that adds a step
before applying the cost-based filtering. This step globally
increases the number of filtered values by locally modifying
the Lagrangian multipliers. It results in a stronger filtering
and a greater pruning of the search tree.

Section 2 presents the theory of cost-based filtering, La-
grangian relaxation, CP-LR, the TSP, and the WEIGHT-
EDCIRCUIT constraint. Section 3 describes our improved
CP-LR approach. Section 4 presents two new algorithms
based on this approach to filter the WEIGHTEDCIRCUIT con-
straint. Experiments on the TSP (Section 5) show a sig-
nificant gain on both the resolution time and the size of
the search space when compared to the state-of-the-art im-
plementation of WEIGHTEDCIRCUIT [Jussien et al., 2008;
Fages, 2014].

2 Background
2.1 Cost-Based Filtering
Consider the generic optimization problem min f(x), where
x = (x1, . . . , xn) subject to unspecified constraints. CP gen-
erally uses a branch-and-bound approach to explore, within
a search tree, the possible assignments for x. Say, at some
point of the search, the best solution found has an objective
value U and that we can compute a lower bound L by consid-
ering a relaxed version of the original problem. Cost-based
filtering [Focacci et al., 1999] consists in using the informa-
tion of the current relaxed subproblem to filter values from
the variable domains. If L > U , infeasibility is raised. Let
L[xi = µ] be the optimal objective value of the relaxed sub-
problem with the extra constraint xi = µ. If L[xi = µ] > U ,
then the value µ is filtered out from dom(xi). This method
requires an efficient algorithm to compute L[xi = µ]. In the
context of integer linear programming, reduced costs can be
used to filter specific values with a similar reasoning (reduced
cost fixing, see e.g. [Wolsey, 2020]).

2.2 Lagrangian Relaxation
Consider the following linear program formed of two con-
straint families, A : Ax ≤ b and B : Bx ≤ d, where
X ⊆ Rn is an arbitrary set:

Z = min{cTx : Ax ≤ b, Bx ≤ d,x ∈ X} (P)
Suppose A consists of difficult constraints. The Lagrangian
relaxation technique lets these constraints go in the objective

function while keeping a global view on the original prob-
lem. Introducing Lagrangian multipliers λi ≥ 0, the objec-
tive function is penalized when the constraints of A are vio-
lated, resulting in the following relaxed problem:

ZLR(λ) = min cTx+ λT (Ax− b)
s.t. Bx ≤ d,x ∈ X

(LR(λ))

Any λ ≥ 0 makesZLR(λ) a valid lower bound ofZ. In or-
der to get the tightest bound, the Lagrangian multiplier prob-
lem is to find λ that maximizes ZLR(λ) subject to λ ≥ 0.
Various methods exist in the literature to solve this prob-
lem including subgradient descent algorithms [Beasley, 1993;
Sellmann, 2004], where the choice of multipliers is guided by
the solution of (LR(λ)) until convergence.

2.3 CP-Based Lagrangian Relaxation
Assume we are given the linear program (P) and that an effi-
cient filtering algorithm PROP(B) is known for B. CP-based
Lagrangian relaxation (CP-LR) [Sellmann and Fahle, 2001;
Sellmann, 2004] consists of optimizing the Lagrangian mul-
tipliers for A while using PROP(B) for each subproblem
(LR(λ)) encountered during the gradient descent. Hence,
while maximizing the lower bound ZLR(λ) over λ, cost-
based filtering is applied on the corresponding substructureB.

As shown by Sellmann [2004], suboptimal multipliers can
be more efficient for filtering than the multipliers that opti-
mize the bound. This justifies why the filtering should be
performed during the multipliers optimization process rather
than once at the end. While optimizing the bound is the main
objective, one could also want to maximize the quantity of
filtered values each time PROP(B) is called. Thus, it is a hint
that multipliers should play a greater role in the filtering step.

2.4 TSP and WEIGHTEDCIRCUIT

Let G = (V,E) be an undirected graph with nodes set
V := {1, . . . n}, edges set E ⊆ {{x, y} : x, y ∈ V, x 6= y}
and weight function w : E → Z. For an edge {i, j} ∈ E, we
write w(i, j) for its weight. The (symmetric) traveling sales-
man problem (TSP) consists in finding a Hamiltonian cycle in
G of minimum weight, i.e. a minimal path visiting all nodes
and returning to its starting point.

Let δ(i) := {e ∈ E : i ∈ e} be the set of edges adjacent
to node i. Introducing binary variables xe for e ∈ E, the TSP
can be modeled as an integer linear program [Applegate et
al., 2006]:

Z = min
∑
e∈E w(e)xe

s.t.
∑
e∈δ(i) xe = 2 ∀i ∈ V (1)∑
i,j∈N
i<j

x{i,j} ≤ |N | − 1 ∀N (V, |N | ≥ 3 (2)

xe ∈ {0, 1} ∀e ∈ E

Equations (1) are known as the degree constraints and require
that each node have exactly two adjacent edges. Inequali-
ties (2) are known as the subtour elimination constraints and
ensure the connectivity of the tour.

The 1-tree relaxation of Held and Karp [1970; 1971]
results from relaxing the degree constraints (1). Let

G′ = (V ′, E′) be the graph G from which an arbitrary node
labeled 1 is removed, i.e. with V ′ := V \ {1} and E′ :=
E \ δ(1). A 1-tree of G is a spanning tree of G′ to which we
add two distinct edges adjacent to node 1. The 1-tree relax-
ation consists in finding a 1-tree ofG of minimal weight. The
sum of the edges’ weights in the 1-tree is a lower bound of the
TSP. Introducing Lagrangian multipliers λ = (λ1, . . . , λn) ∈
Rn with λ1 = 0, this lower bound can be improved with
a Lagrangian relaxation of the degree constraints (1). Let
degA(i) := |{e ∈ A : i ∈ e}| be the degree of node i ∈ V in
a set of edges A. We obtain the following relaxed problem:

ZLR(λ) = min
∑
e∈T

w(e) +
∑
i∈V

λi(degT (i)− 2)

s.t. T is a 1-tree, where e ∈ T ⇔ (xe = 1)

xe ∈ {0, 1} ∀e ∈ E
Observe that the objective function can be rewritten as∑

{i,j}∈T

(w(i, j) + λi + λj)− 2
∑
i∈V

λi

Thus, ZLR(λ) can be found by computing a minimum span-
ning tree ofG′, denoted S, and adding the two minimal edges
adjacent to node 1, denoted m1 and m2, using the weight
function w̃(i, j) := w(i, j) + λi + λj , ∀{i, j} ∈ E.

In CP, given the binary variables x = (xe1 , . . . , xe|E|),
the weight function w, and an integer variable z, the
WEIGHTEDCIRCUIT(x, w, z) constraint [Benchimol et al.,
2012] is satisfied if the edges e ∈ E with xe = 1 form a
Hamiltonian cycle on the nodes V with total weight at most
z. The TSP is thus formulated as a minimization problem on
z subject to this constraint. Its filtering algorithms rely on the
identification of mandatory edges that must be part of any so-
lution and forbidden edges that cannot be part of any solution,
through the costs stemming from the 1-tree structure.

Let M be the set of mandatory edges and suppose that for-
bidden edges were removed fromE. Let λ be the Lagrangian
multipliers, T := S ∪{m1,m2} the minimum 1-tree and U a
known upper bound on the value of Z.

For an edge e ∈ E \ T , the support edge s ∈ T is the
edge that needs to be removed from T if e is forced into the
minimum 1-tree. If e is not adjacent to node 1, let Ce ⊆
S be the edges lying on the unique cycle in S ∪ {e}. The
non-mandatory edge s ∈ Ce \M with maximum weight is
the support edge of e. Else, e is adjacent to node 1 and the
support edge s is the one in {m1,m2} \M with the greatest
weight. The reduced cost of e, denoted c̄(e), is the increase
of the objective value when forcing e in T . Thus, we have
c̄(e) = w̃(e) − w̃(s) or ∞ if s does not exist. Cost-based
filtering implies that e ∈ E \ T is forbidden if ZLR(λ)[xe =
1] = ZLR(λ) + c̄(e) > U .

For an edge e ∈ T , the replacement edge r is the edge that
replaces e in the minimum 1-tree if e is removed. If e is not
adjacent to node 1, removing e from S divides the tree into
two components. We define Re ⊆ E′ \ S to be the cut-set of
G′ induced by the removal of edge e from S, i.e. the edges in
E′ adjacent to both components in S \ {e}. The replacement
edge r is the one with minimum weight in Re. Otherwise, e
is adjacent to node 1 and the replacement edge is the one in

δ(1) \ {m1,m2} with the smallest weight. The replacement
cost of e, denoted ĉ(e), is the increase of the objective value
when removing e from T . Thus, we have ĉ(e) = w̃(r)−w̃(e)
or∞ if r does not exist. Cost-based filtering implies that e ∈
T is mandatory if ZLR(λ)[xe = 0] = ZLR(λ) + ĉ(e) > U .

3 Improved CP-LR Approach
Consider the original problem (P) and its relaxation (LR(λ)).
During the optimization of the Lagrangian multipliers λ for
A, we look closer at the filtering step of PROP(B) on the
subproblem (LR(λ)). We know from Sellmann [2004] that
a worse lower bound could lead to more filtering and that this
phenomenon is not restricted to CP-LR. Given a variable and
a value for which we would like to perform cost-based fil-
tering, could we temporarily change the Lagrangian multipli-
ers so that this value is filtered? In this context, temporarily
would mean that we find multipliers to filter the value, but we
do not consider them in the general multiplier optimization
process. We propose the following general framework:

1. Find conditions on the multipliers so that the relaxed so-
lution x∗ = (x∗1 . . . x

∗
n) of (LR(λ)) remains optimal.

2. For each variable xi and value µ ∈ dom(xi) \ {x∗i },
check whether there exist new multipliers λ′ satisfying
the conditions from step 1 such that ZLR(λ′)[xi = µ] >
U . If so, filter µ from dom(xi).

The algorithms executing these steps are left unspecified
since the framework depends greatly on the nature of the
problem. For any propagator, this approach provides a natu-
ral extension: the original cost-based filtering algorithm cor-
responds to the case where we have λ′ = λ in step 2. Also,
note that it can be seen as a generalization of the dual picking
technique [Bajgiran et al., 2017].

Consider this integer program with the constraint 3x2 −
x3 ≤ 2 relaxed into the objective using a Lagrangian λ ≥ 0:

ZLR(λ) = min −2x1 − x2 − x3 + λ(3x2 − x3 − 2)

s.t. 3x1 + 2x2 − x3 ≤ 2, x1, x2, x3 ∈ {0, 1}

Suppose we know an efficient cost-based filtering algorithm
for this relaxed problem and that an upper bound on Z is −1.
Choosing λ = 0, we obtain ZLR(0) = −3, with the solu-
tion x∗ = (1, 0, 1). We compute ZLR(0)[x1 = 0] = −2,
ZLR(0)[x2 = 1] = −2 and ZLR(0)[x3 = 0] = −1 and no
value is filtered from these costs, even if the bound -3 is opti-
mal. With our improved approach, say we want to look more
closely to x3 = 0. Step 1, we note that the solution x∗ is
optimal for every multiplier λ ≥ 0. Step 2, looking at the
subproblem ZLR(λ′)[x3 = 0], we find that λ′ = 1

3 leads to
ZLR(1

3)[x3 = 0] = − 2
3 > −1. We infer that x3 6= 0.

4 Application to the TSP
Given Lagrangian multipliers λ, the state-of-the-art filtering
algorithms for the WEIGHTEDCIRCUIT constraint compute
a minimum 1-tree and the support/replacement edges of ev-
ery edge in the graph. A brute-force algorithm directly de-
rived from the definitions computes the reduced/replacement
costs as well as the sets Ce or Re for each edge e ∈ E in

overall time O(|V ||E|). We propose to apply the improved
framework of Section 3 supposing this pre-processing step
was done.

Let the relaxed solution x∗ correspond to the minimum 1-
tree T which gives the lower bound ZLR(λ). By definition
of the 1-tree relaxation, this solution is optimal if, and only
if, T is a minimum 1-tree of G. Thus, for each edge e ∈
E \M , the search for Lagrangian multipliers λ′ is subject to
the condition that T remains a minimum 1-tree of G.

Given an edge {i, j} ∈ E \ M , Lemma 1 specifies the
conditions on how to find λ′ that increases the value of
ZLR(λ)[x{i,j} = 0] or ZLR(λ)[x{i,j} = 1].

Lemma 1. Let {i, j} ∈ E \M be an edge of G. Suppose
{k, l} is the support (resp. replacement) edge of {i, j} and
λ′ := (λ1, . . . , λs+v, . . . , λn) where v ∈ R and s ∈ V \{1}.
If v is chosen such as under this modification T remains a
minimum 1-tree of G and {k, l} the support (resp. replace-
ment) edge of {i, j}, then

ZLR(λ′)[x{i,j} = 1] = ZLR(λ)[x{i,j} = 1]

+ v · (degT (s)− 2) + v ·
(
1{i,j}(s)− 1{k,l}(s)

)
(
ZLR(λ′)[x{i,j} = 0] = ZLR(λ)[x{i,j} = 0]

+ v · (degT (s)− 2) + v ·
(
1{k,l}(s)− 1{i,j}(s)

))
where 1A(x) = 1 iff x ∈ A is the indicator function.

Proof. Suppose that {i, j} ∈ E \ T and that {k, l} is its sup-
port edge (the proof is similar for {i, j} ∈ T). Considering
λ′, let w̃′(e) be the new weight of edge e. Since T is still a
minimum 1-tree of G and {k, l} the support edge of {i, j},
ZLR(λ′)[x{i,j} = 1] = ZLR(λ′) + w̃′(i, j) − w̃′(k, l) by
definition of the reduced cost of {i, j}. We have

ZLR(λ′) =
∑
e∈T

w(e) +
∑
i∈V

λ′i(degT (i)− 2)

=
∑
e∈T

w(e) +
∑

i∈V \{s}

λi(degT (i)− 2)

+ (λs + v)(degT (s)− 2)

= ZLR(λ) + v(degT (s)− 2)

and w̃′(i, j)− w̃′(k, l)
= w(i, j) + λ′i + λ′j − w(k, l)− λ′k − λ′l
= w(i, j) + λi + λj − w(k, l)− λk − λl + v · c
= w̃(i, j)− w̃(k, l) + v · c

where c = 1{i,j}(s)− 1{k,l}(s) ∈ {−1, 0, 1}. Recalling that

ZLR(λ)[x{i,j} = 1] = ZLR(λ) + w̃(i, j)− w̃(k, l)

and putting it all together, the result follows.

Even though Lemma 1 imposes the condition that the sup-
port/replacement edge of {i, j} remains unchanged, which is
more than what is required by the step 1, it leads in the fol-
lowing to a SIMPLE algorithm (Section 4.1) and an α-SETS
algorithm (Section 4.2).

4.1 The SIMPLE Algorithm
Given the edge {i, j} ∈ E \M , the SIMPLE algorithm (Al-
gorithm 1) checks whether λi and λj can be both modified so
that dom(x{i,j}) is filtered. If {i, j} ∈ T , line 1 computes
the value ∆ corresponding to how much the bound and the
replacement cost of {i, j} needs to be increased in order to
declare the edge mandatory. For λi, line 2 calls MAXDE-
CREASE to compute a value v ≤ 0 such that λi + v is a
modification allowed by the hypotheses of Lemma 1 and that
can only increase ZLR(λ)[x{i,j} = 0]. Line 3 performs the
same process for λj . If SIMPLE is applied for {i, j} ∈ E \T ,
we aim at increasing the values of the multipliers λi and λj
so that {i, j} is identified as forbidden. Line 4 computes the
value ∆ of how much the bound and the reduced cost of {i, j}
need to be increased. For λi, line 5 calls MAXINCREASE to
compute a value v ≥ 0 such that λi + v is a modification
allowed by the hypotheses of Lemma 1 and that increases
ZLR(λ)[x{i,j} = 1]. Line 6 repeats the process for λj .

For {i, j} ∈ T and the multiplier λi, line D1 of func-
tion MAXDECREASE computes a value α ≥ 0 ensuring T
remains a minimum 1-tree under the modification λi − α.
Line D2 restricts this value not to exceed β to ensure that the
replacement edge of {i, j} remains unchanged. For {i, j} ∈
E \ T , the value α computed on line I1 of function MAX-
INCREASE ensures that T remains a minimum 1-tree while
the value β computed on line I2 restricts the support edge of
{i, j} to remain unchanged. Both functions run in O(|V |).

In the following, we show that for an edge {i, j} ∈ T , the
SIMPLE algorithm correctly computes new values for λi and
λj that can only increase ZLR(λ)[x{i,j} = 0]. The proof
is similar in the case of an edge {i, j} ∈ E \ T . For the
modification of λi, we first need the following lemma.

Lemma 2. Considering λ′ = (λ1, . . . , λi − α, . . . , λn) and
the corresponding new reduced costs c̄′(e) for e ∈ E \ T , we
have c̄′(e) ≥ 0 ∀e ∈ E \ T .

Proof. Consider e ∈ E \ T and let s, s′ ∈ T be respectively
the support edge of e before and after considering the multi-
pliers λ′. We have

c̄′(e) = w̃′(e)− w̃′(s′) ≥ w̃′(e)− w̃(s′) ≥ w̃′(e)− w̃(s)

because w̃′(x) ≤ w̃(x)∀x ∈ E and by definition of a support
edge, w̃(s′) ≤ w̃(s). Now, if e ∈ δ(i), we have

w̃′(e)− w̃(s) = (w̃(e)− α)− w̃(s) = c̄(e)− α ≥ 0

by definition of α in line D1. Else, e /∈ δ(i) and

w̃′(e)− w̃(s) = w̃(e)− w̃(s) = c̄(e) ≥ 0.

In every case, c̄′(e) ≥ 0.

By Lemma 2, the reduced costs remain positive, thus T re-
mains a minimum 1-tree under the modification of λi. For
every edge a adjacent to i in R{i,j}, a is a candidate to be
a replacement edge of {i, j}. If r is the current replace-
ment edge of {i, j}, the value computed by β guarantees
that w̃′(a) ≥ w̃′(r) with the multipliers λ′, i.e. that r re-
mains the replacement edge. Since v ≤ 0 and the conditions
i /∈ {1, k, l}∧degT (i) ≤ 2 hold, the conclusion follows from

Algorithm 1: SIMPLE(i, j)
if {i, j} ∈ T then
{k, l} ← GETREPLACEMENTEDGE(i, j)

1 ∆← U − (ZLR(λ) + w̃(k, l)− w̃(i, j))
if i /∈ {1, k, l} ∧ degT (i) ≤ 2 then // Decrease λi

2 v ← (−1)·MAXDECREASE(i, j)
∆← ∆− (v · (degT (i)− 2)− v)

if j /∈ {1, k, l} ∧ degT (j) ≤ 2 then // Decrease λj
3 v ← (−1)·MAXDECREASE(j, i)

∆← ∆− (v · (degT (j)− 2)− v)

if ∆ < 0 then dom(x{i,j})← dom(x{i,j}) \ {0}
else
{k, l} ← GETSUPPORTEDGE(i, j)

4 ∆← U − (ZLR(λ) + w̃(i, j)− w̃(k, l))
if i /∈ {1, k, l} ∧ degT (i) ≥ 2 then // Increase λi

5 v ← MAXINCREASE(i, j)
∆← ∆− (v · (degT (i)− 2) + v)

if j /∈ {1, k, l} ∧ degT (j) ≥ 2 then // Increase λj
6 v ← MAXINCREASE(j, i)

∆← ∆− (v · (degT (j)− 2) + v)

if ∆ < 0 then dom(x{i,j})← dom(x{i,j}) \ {1}

Function MAXDECREASE(i, j)
D1 α← min{GETREDUCEDCOST(i, k) :

{i, k} ∈ E \ T} ∪ {∞}
if j 6= 1 then

r ← GETREPLACEMENTEDGE(i, j)
D2 β ← min{w̃(i, k)− w̃(r) : {i, k} ∈ R{i,j}} ∪ {∞}

α← min{α, β}
return α

Function MAXINCREASE(i, j)
I1 α← min{GETREPLACEMENTCOST(i, k) :

{i, k} ∈ T \M} ∪ {∞}
if j 6= 1 then

s← GETSUPPORTEDGE(i, j)
I2 β ← min{w̃(s)−w̃(i, k) : {i, k} ∈ C{i,j}\M}∪{∞}

α← min{α, β}
return α

Lemma 1. The same process is performed with λj without re-
computing the reduced costs. Indeed, the modification of λi
cannot decrease the reduced cost of edges adjacent to node j.

SIMPLE only considers specific cases of Lemma 1 and
some opportunities of increasing ZLR(λ)[x{i,j} = µ] are ig-
nored. This allows us to assure the previous properties are
true and keep the algorithm simple and efficient.

The values computed on lines D2 and I2 require the sets
Ce and Re. As an alternative that only uses the reduced costs
computed by a faster pre-processing [Benchimol et al., 2012],
we propose to replace the sets on lines D2 and I2 by

{w̃(i, k)− w̃(r) : {i, k} ∈ E \ T, w̃(i, k) ≥ w̃(r)} ∪ {∞},
{w̃(s)− w̃(i, k) : {i, k} ∈ T \M, w̃(s) ≥ w̃(i, k)} ∪ {∞}.

In the following, we refer to the choice of the original sets as

the complete policy and of these latter as the relaxed policy.
In both cases, the overall time complexity is in O(|V |).

4.2 The α-SETS Algorithm
Following step 1, we derive the conditions on the multipliers
in order for the 1-tree T = S ∪{m1,m2} to remain minimal.

λ′a + λ′b − λ′c − λ′d ≤ w(c, d)− w(a, b)

∀{a, b} ∈ S \M, ∀{c, d} ∈ R{a,b}
(A)

λ′b − λ′d ≤ w(1, d)− w(1, b)

∀{1, b} ∈ {m1,m2} \M, ∀{1, d} ∈ δ(1) \ {m1,m2}
(B)

The constraints (A) come from the cut property of minimum
spanning trees stating that the cost of an edge in the tree
{a, b} should not be greater than the cost of any edge {c, d}
in its cut-set R{a,b}. The constraints (B) ensure that m1 and
m2 are the two minimal edges adjacent to node 1. For an
edge {i, j} ∈ E \ M , Lemma 1 also requires that its sup-
port/replacement edge {k, l} ∈ E \M remains unchanged.
By definition, this can be formulated as

λ′k + λ′l − λ′a − λ′b ≤ w(a, b)− w(k, l)

∀{a, b} ∈ R{i,j}, if {i, j} ∈ S;
(C)

λ′l − λ′b ≤ w(1, b)− w(1, l)

∀{1, b} ∈ δ(1) \ {m1,m2}, if {1, j} ∈ {m1,m2};
(D)

λ′a + λ′b − λ′k − λ′l ≤ w(k, l)− w(a, b)

∀{a, b} ∈ C{i,j}, if {i, j} ∈ E′ \ S;
(E)

λ′b − λ′l ≤ w(1, l)− w(1, b)

∀{1, b} ∈ {m1,m2}, if {1, j} ∈ δ(1) \ {m1,m2}.
(F)

All of these constraints are linear and could be used to de-
rive a linear program that maximizes ZLR(λ′)[x{i,j} = µ].
However, given there are O(|V |4) constraints, even the best
linear solvers take too much time for the filtering to pay off.
Therefore, we solve an easier problem where constraints are
gradually added and multipliers are locally modified.

Given an edge {i, j} ∈ E \M and Lagrangian multipli-
ers λ, the α-SETS algorithm tries to find an α-set A ⊆ V
in the graph: a set of nodes that will have their correspond-
ing multiplier simultaneously modified and that will lead to
an increased ZLR(λ)[x{i,j} = µ] value. Each node u ∈ V is
labeled with a value σu ∈ {−1, 0,+1} initially set to 0, corre-
sponding to whether the multiplier λu will decrease (−1), in-
crease (+1), remain unchanged (0). For a variable α ≥ 0 and
each node u, we look for multipliers λ′u = λu +σu ·α. Start-
ing from an initial node, the algorithm computes incremen-
tally a set A of nodes and a set Ω of constraints taken from
(A) to (F). During any step in the process, the substitution of
λ′u by λu + σu · α ∀u ∈ V in each constraint ω ∈ Ω leads to
a system of linear inequalities that can be written in the form
cω · α ≤ mω , where the coefficient cω ∈ {−2,−1, 0, 1, 2}
and mω ≥ 0 are two known constants. Maximizing α un-
der these constraints, a value α∗ ≥ 0 is found. If α∗ = 0,
the algorithm looks for the restraining constraint and appends
one of its related nodes to A in order to loosen the inequal-
ity. Doing so, new constraints must be taken into account
and added to Ω. This process is repeated until α∗ > 0, lead-
ing to a valid α-set A and new multipliers λ′. The increased

value ZLR(λ′)[x{i,j} = µ] directly follows from the sum of
all the changes according to Lemma 1, without having to re-
compute a minimum 1-tree. If it is still insufficient to filter
dom(x{i,j}), the procedure can be re-executed with the mul-
tipliers λ := λ′ previously found and looks for another α-set.

This procedure searches for an α-set A where {k, l} ∈ E \
M is the support/replacement edge of {i, j}.

1. Initialize a set of constraints Ω with the constraints from
(C) to (F), depending on the nature of {i, j}.

2. Choose an initial node u ∈ {i, j, k, l} \ {1} and σu ∈
{−1,+1}. Following Lemma 1, this choice must satisfy
(a) {i, j} ∈ E \ T ⇒

σu ·
(
degT (u)− 2 + 1{i,j}(u)− 1{k,l}(u)

)
> 0;

(b) {i, j} ∈ T ⇒
σu ·

(
degT (u)− 2 + 1{k,l}(u)− 1{i,j}(u)

)
> 0.

If none of these 8 combinations works, no set A exists
and the algorithm halts without filtering dom(x{i,j}).

3. Append node u to the set A.
4. Add to Ω all the constraints not already considered of

type (A)-(B) where λ′u has coefficient σu.
5. For each constraint ω ∈ Ω, compute the values cω and
mω . Since ω is of the form λ′c+λ

′
d−λ′a−λ′b ≤ w(a, b)−

w(c, d), we have cω = σa + σb − σc − σd and mω =
w̃(a, b) − w̃(c, d). The maximal value α ≥ 0 can take,
subject to the constraints in Ω, is given by

α∗ ← min

{
mω

cω
: ω ∈ Ω ∧ cω > 0

}
.

6. If α∗ > 0, return the value α∗ and the set A is found.
7. If α∗ = 0, find the constraint ω̄ ∈ Ω that prevents ob-

taining a value α > 0. This constraint is of the form
cω̄ · α ≤ w̃(a, b)− w̃(c, d), where a, b, c, d ∈ V .

8. Choose a node u′ ∈ {a, b, c, d} \ {1} and σu′ ∈
{−1,+1} such that
(a) u′ /∈ P ∪ ({a, b} ∩ {c, d});
(b) (u′ ∈ {a, b} ∧ degT (u′) ≥ 2)⇒ σu′ = +1;
(c) (u′ ∈ {c, d} ∧ degT (u′) ≤ 2)⇒ σu′ = −1;
(d) u′ ∈ {i, j, k, l} ⇒ conditions of step 2.

If none of these 8 combinations works, backtrack and
reconsider the last choice. If no possibility remains,
no set A exists and the algorithm halts without filtering
dom(x{i,j}). Else, set u := u′ and go to step 3.

Since the procedure can be repeated as long as an α-setA is
found and dom(x{i,j}) is not filtered, a maximum number of
iterations can be added. Also, to avoid considering too many
constraints at the same time, a maximum cardinality Cm on
A can be imposed. Our implementation follows an iterative-
deepening search that gradually increases Cm. For an α-set
of C nodes, step 5 deals with C · O(|V ||E|) constraints. As
4 nodes are possible for each choice, it leads to a worst-case
time complexity in O(Cm|V ||E|4Cm).

This algorithm can be combined with the SIMPLE algo-
rithm and the complete policy: we call the latter first to ob-
tain new multipliers λ′, and if it was not enough to filter the

1

a

c

e

b

d

1

1

5

2

7

3

8

9

4

(a)

1

a

c

e

b

d

1

1

6

3

7

4

9
9

4

(b)

1

a

c

e

b

d

1

2

7

5

7

5

10
9

5

(c)

Figure 1: Example of Section 4.3. Bold edges form a minimum 1-
tree. Current penalized weights are indicated next to each edge.

considered edge, we use them as the initial multipliers for α-
SETS. We refer to this process as the HYBRID algorithm.

4.3 Example
On the graph of Figure 1a with ZLR(λ) = 19 and
U = 23, {a, b} is the support edge of {b, c} and
ZLR(λ)[x{b,c} = 1] = ZLR(λ) + w̃(b, c) − w̃(a, b) = 20.
We apply HYBRID on edge {b, c}. First, SIMPLE finds that λc
can be increased by 1, obtained from the minimum between
α = 1 (line I1) and β = 2 (line I2). This leads to the multi-
pliers λ′ on Figure 1b, but ZLR(λ′)[x{b,c} = 1] = 22 ≤ U .
Choosing again to increase node c by α ≥ 0, α-SETS finds
the constraint α ≤ w̃′(d, e) − w̃′(c, d) = 0. A valid choice
is to simultaneously increase node e by α, leading to the new
constraint α ≤ w̃′(d, e) − w̃′(c, e) = 1. Since α∗ > 0, the
multipliers λ′ are updated (Figure 1c) and ZLR(λ′)[x{b,c} =
1] = 24 > U . The edge {b, c} is thus forbidden.

5 Experiments
The algorithms were implemented1 in Java 14 using the
solver Choco 4.0.6 [Jussien et al., 2008] and its extension
Choco Graph 4.2.3 [Fages, 2014]. The experiments were per-
formed on a CentOS Linux 7 machine using an Intel Xeon
Silver 4110 CPU at 2.10 GHz and 32 GB of RAM. The TSP
was modeled using the WEIGHTEDCIRCUIT constraint al-
ready implemented in Choco Graph using the state-of-the-art
algorithms [Benchimol et al., 2012]. It uses a subgradient de-
scent algorithm to optimize the Lagrangian multipliers. We
kept the default parameters, but we did not restart the algo-
rithm when the lower bound of the 1-tree was increased. As
an initial upper bound on the objective variable, we gave the
bound provided by the LKH-2.0.9 heuristic [Helsgaun, 2000].
The search strategy was fixed to maxCost with the LCFirst
policy [Fages et al., 2016]. We chose the symmetric TSP in-
stances from the TSPLIB library [Reinelt, 1991] between 96
and 500 nodes that could be solved by Choco under 8 hours
and with at least 100 search nodes.

We compare the SIMPLE and HYBRID algorithms against
the one from Choco. Our algorithms were only called at the
very last iteration of the subgradient process. Furthermore,
for HYBRID, since α-SETS is slowed down by the number of
constraints, it was only called when |E| ≤ 2|V | with a limit
of 2 on the cardinality of the α-sets and a maximum of 10
iterations when trying to reach the fixed point.

1The code is available at http://www2.ift.ulaval.ca/∼quimper/
publications.php.

Instance Choco SIMPLE SIMPLE HYBRIDRelaxed Complete

N T N T N T N T

gr96 520 3.2 436 2.7 365 2.4 323 2.4
kroA100 1488 8.3 1066 5.9 1211 6.8 873 5.5
kroB100 2312 12.3 1838 8.9 2042 11.0 1462 7.9
kroC100 360 2.3 247 1.5 263 1.7 210 1.5
kroD100 128 1.1 132 1.0 127 1.0 114 0.9
kroE100 1915 9.8 1578 8.4 1532 8.8 1113 6.9
gr120 324 3.0 199 1.9 254 2.5 145 1.6
pr124 224 2.5 195 2.1 169 2.1 157 1.9
ch130 908 8.7 768 7.5 673 7.2 518 5.4
pr136 72574 561.4 78781 558.2 72224 503.0 66481 519.3
gr137 923 9.9 716 8.1 756 9.4 746 9.8
pr144 149 2.8 65 1.3 66 1.4 62 1.4
ch150 934 10.9 681 7.8 710 9.6 498 7.3
kroA150 5652 65.0 2461 26.8 2910 35.4 2329 27.4
kroB150 112078 1218.6 109715 1115.5 85765 925.6 67134 671.2
pr152 335 6.2 641 9.4 446 8.2 277 5.7
si175 38068 486.0 35755 436.1 38775 520.6 29915 387.3
rat195 18785 361.1 14905 290.3 13113 266.0 10281 215.9
d198 5702 101.4 7322 112.2 6695 109.0 6765 118.1
kroA200 1176978 15766.3 863416 12654.3 884545 12399.6 687347 9618.6
kroB200 46484 739.2 33405 555.6 32779 514.3 27392 430.0
gr202 1568 20.2 991 11.9 853 11.8 644 10.0
tsp225 125761 2426.2 72357 1416.6 74639 1546.7 51766 1174.0
gr229 458131 7367.2 303679 4568.1 268029 4559.1 215354 3272.8
pr264 123 8.8 130 8.9 114 10.0 88 8.6
a280 1605 30.7 2429 40.2 1832 33.7 2005 37.3
lin318 3794 115.1 2296 72.8 2409 81.7 1128 39.1
gr431 415036 20485.0 309152 17077.4 278439 15917.5 241454 15074.7

Mean 89031 1779.8 65906 1393.3 63276 1339.5 50592 1130.8

Table 1: Num. of search nodes (N) and solving time in seconds (T).

Table 1 shows considerable gains on the solving time and
the size of the search space for almost every instance. SIM-
PLE with the relaxed policy gain an average reduction of 15%
on the number of nodes and 18% on the solving time. The
solving time is reduced for 86% of the instances. Conclu-
sions are similar for the complete policy. However, the gains
between the two policies are in general not significant enough
to prefer the latter. The improvement is more prominent with
the HYBRID algorithm. On average, the number of nodes and
the solving time are respectively reduced by 36% and 30%
compared to Choco. The solving time is reduced for 93% of
the instances. It is in general the best method among all the
ones we tested (79% of the instances). In rare cases (a280,
d198), the number of nodes increases despite the potential
amount of additional filtering. This pathological situation is
a well-known fact in the context of CP-LR [Sellmann, 2004;
Isoart and Régin, 2020] and should be more investigated.

6 Conclusion

We introduced an improved approach for CP-LR prob-
lems that adds a new step in the filtering process to in-
crease the number of filtered values. We applied it on the
WEIGHTEDCIRCUIT constraint filtering by introducing two
new algorithms: SIMPLE and α-SETS. Experimental results
on TSP instances show they greatly improve the solving time
compared to the state-of-the-art implementation of Choco.
The recent work of Isoart and Régin on the TSP (k-cutset
[2019], SSSA [2020]) is a priori completely compatible with
our work and should be further investigated. Future research
also includes testing the approach in other CP-LR contexts.

http://www2.ift.ulaval.ca/~quimper/publications.php
http://www2.ift.ulaval.ca/~quimper/publications.php

References
[Applegate et al., 2006] David L. Applegate, Robert E.

Bixby, Vasek Chvátal, and William J. Cook. The Travel-
ing Salesman Problem: A Computational Study. Princeton
University Press, 2006.

[Bajgiran et al., 2017] Omid Sanei Bajgiran, Andre A. Cire,
and Louis-Martin Rousseau. A First Look at Picking
Dual Variables for Maximizing Reduced Cost Fixing. In
Domenico Salvagnin and Michele Lombardi, editors, Inte-
gration of AI and OR Techniques in Constraint Program-
ming, Lecture Notes in Computer Science, pages 221–228,
Cham, 2017. Springer International Publishing.

[Beasley, 1993] John E. Beasley. Lagrangian relaxation. In
Modern Heuristic Techniques for Combinatorial Prob-
lems, pages 243–303. John Wiley & Sons, Inc., USA, May
1993.

[Benchimol et al., 2012] Pascal Benchimol, Willem-Jan van
Hoeve, Jean-Charles Régin, Louis-Martin Rousseau, and
Michel Rueher. Improved filtering for weighted circuit
constraints. Constraints, 17(3):205–233, July 2012.

[Bergman et al., 2015] David Bergman, Andre A. Cire, and
Willem-Jan van Hoeve. Improved Constraint Propaga-
tion via Lagrangian Decomposition. In Gilles Pesant, ed-
itor, Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science, pages 30–38, Cham,
2015. Springer International Publishing.

[Cambazard and Fages, 2015] Hadrien Cambazard and Jean-
Guillaume Fages. New filtering for AtMostNValue and its
weighted variant: A Lagrangian approach. Constraints,
20(3):362–380, July 2015.

[Fages et al., 2016] Jean-Guillaume Fages, Xavier Lorca,
and Louis-Martin Rousseau. The salesman and the tree:
The importance of search in CP. Constraints, 21(2):145–
162, April 2016.

[Fages, 2014] Jean-Guillaume Fages. Exploitation de struc-
tures de graphe en programmation par contraintes. PhD
thesis, Ecole des Mines de Nantes, October 2014.

[Fahle and Sellmann, 2002] Torsten Fahle and Meinolf Sell-
mann. Cost Based Filtering for the Constrained Knapsack
Problem. Annals of Operations Research, 115(1):73–93,
September 2002.

[Focacci et al., 1999] Filippo Focacci, Andrea Lodi, and
Michela Milano. Cost-Based Domain Filtering. In Joxan
Jaffar, editor, Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science, pages
189–203, Berlin, Heidelberg, 1999. Springer.

[Held and Karp, 1970] Michael Held and Richard M. Karp.
The Traveling-Salesman Problem and Minimum Spanning
Trees. Operations Research, 18(6):1138–1162, 1970.

[Held and Karp, 1971] Michael Held and Richard M. Karp.
The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1(1):6–25, De-
cember 1971.

[Helsgaun, 2000] Keld Helsgaun. An effective implemen-
tation of the Lin–Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126(1):106–
130, October 2000.

[Isoart and Régin, 2019] Nicolas Isoart and Jean-Charles
Régin. Integration of Structural Constraints into TSP Mod-
els. In Thomas Schiex and Simon de Givry, editors, Prin-
ciples and Practice of Constraint Programming, Lecture
Notes in Computer Science, pages 284–299. Springer In-
ternational Publishing, 2019.

[Isoart and Régin, 2020] Nicolas Isoart and Jean-Charles
Régin. Adaptive CP-Based Lagrangian Relaxation for
TSP Solving. In Emmanuel Hebrard and Nysret Musliu,
editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, Lecture Notes in
Computer Science, pages 300–316, Cham, 2020. Springer
International Publishing.

[Jussien et al., 2008] Narendra Jussien, Guillaume Rochart,
and Xavier Lorca. Choco: An Open Source Java Con-
straint Programming Library. In CPAIOR’08 Workshop on
Open-Source Software for Integer and Contraint Program-
ming (OSSICP’08), pages 1–10, Paris, France, 2008.

[Menana and Demassey, 2009] Julien Menana and Sophie
Demassey. Sequencing and Counting with the multicost-
regular Constraint. In Willem-Jan van Hoeve and John N.
Hooker, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization
Problems, Lecture Notes in Computer Science, pages 178–
192, Berlin, Heidelberg, 2009. Springer.

[Reinelt, 1991] Gerhard Reinelt. TSPLIB—A Traveling
Salesman Problem Library. ORSA Journal on Computing,
3(4):376–384, November 1991.

[Sellmann and Fahle, 2001] Meinolf Sellmann and Torsten
Fahle. CP-based Lagrangian Relaxation for a Multimedia
Application. In 3rd International Workshop on Integration
of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems (CP-AI-OR), pages
1–14, 2001.

[Sellmann and Fahle, 2003] Meinolf Sellmann and Torsten
Fahle. Constraint Programming Based Lagrangian Relax-
ation for the Automatic Recording Problem. Annals of Op-
erations Research, 118(1):17–33, February 2003.

[Sellmann, 2004] Meinolf Sellmann. Theoretical Founda-
tions of CP-Based Lagrangian Relaxation. In Mark Wal-
lace, editor, Principles and Practice of Constraint Pro-
gramming – CP 2004, Lecture Notes in Computer Science,
pages 634–647, Berlin, Heidelberg, 2004. Springer.

[Wolsey, 2020] Laurence Wolsey. Branch and Bound. In In-
teger Programming, chapter 7, pages 113–138. John Wiley
& Sons, Ltd, 2020.

	Introduction
	Background
	Cost-Based Filtering
	Lagrangian Relaxation
	CP-Based Lagrangian Relaxation
	TSP and WeightedCircuit

	Improved CP-LR Approach
	Application to the TSP
	The Simple Algorithm
	The -Sets Algorithm
	Example

	Experiments
	Conclusion

