# Few-shot learning with KRR

Prudencio Tossou

Groupe de Recherche en Apprentissage Automatique Départment d'informatique et de génie logiciel Université Laval

April 6, 2018

Prudencio Tossou (UL)

Few-shot learning with KRR

April 6, 2018 1 / 25

**H N** 



- 2 Problem statement
- 3 Our approach: MetaKRR
- 4 Experiments
- 5 Future works and conclusion

э

(日) (同) (三) (三)

# The future of ML



Prudencio Tossou (UL)

Few-shot learning with KRR

April 6, 2018

э

3 / 25

イロト イポト イヨト イヨト

# What few learning is trying to do?

• By leveraging past learning experiences

• Through META-LEARNING

 The past gives a strong prior knowledge

 If one use it, things can be done more efficiently in the present



### Few-shot regression

• Recent works focus on classification and reinforcement learning

• Not much experiments with regression datasets

• Versus classification: harder to generalize from few examples

- Applications:
  - $\hookrightarrow$  drug discovery -> Drugs at lower costs
  - $\hookrightarrow$  recommender systems –> Deal with products with few ratings

★ 3 > < 3</p>



#### Problem statement

3 Our approach: MetaKRR

#### 4 Experiments



3

イロト イポト イヨト イヨト

# The objective



# In practice (1)

#### The meta-datasets

- Sample a distribution  $\mathcal{T}_i$  from  $\mathscr{F}$
- For each  $\mathcal{T}_i$  sample a  $\mathcal{D}_i$
- Split the resulting collection of datasets in 3 partitions:
  - $\hookrightarrow \mathscr{D}_{meta-train} \text{ for training}$  $\hookrightarrow \mathscr{D}_{meta-valid} \text{ for}$  $hyper-parameter selection}$  $\hookrightarrow \mathscr{D}_{meta-test} \text{ for unbiased}$  $evaluation of the meta-model}$



# In practice (2)

Episodic training

Initialize  $\Theta$ 

Loop

- Sample an  $\mathcal{D}_i$  from  $\mathscr{D}_{meta-train}$
- Sample  $\mathcal{D}_{train}$  and  $\mathcal{D}_{test}$  of k examples each from  $\mathcal{D}_i$
- Compute  $h := \mathcal{A}(\mathcal{D}_{train}, \Theta)$
- Estimate the loss of h on  $\mathcal{D}_{test}$

Update Θ

An episode A pair of  $\mathcal{D}_{train}$  and  $\mathcal{D}_{test}$  from a  $\mathcal{D}_i$ 







#### Our approach: MetaKRR

#### Experiments



3

(日) (周) (日) (日)

## The meta-model

#### Tandem combination

- Feature extractor  $\boldsymbol{\phi}: \mathcal{X} \to \mathcal{K}$  shared by all tasks
- Regression Algorithm  $\rightarrow h(\mathbf{x}) = \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}), \quad \mathbf{w} \in \mathcal{K}$

#### Feature extractor

Could be anything

- CNN for images
- LSTM for sequences
- FC for vectors, etc.

Parameters to be found during the episodic training

э

# The model (1)

The regression algorithm should aim for generalization (SRM) [4] Given  $\mathcal{D}_{train}$ ,

$$\mathbf{w}_{\mathcal{D}_{train}}^* = \operatorname*{argmin}_{\mathbf{w}} \sum_{(\mathbf{x}, y) \in \mathcal{D}_{train}} (\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}) - y)^2 + \lambda \, \|\mathbf{w}\|_2^2,$$

The optimal solution is given by KRR[3]

$$\mathbf{w}^* = \sum_{i=1}^k \alpha_i \boldsymbol{\phi}(\mathbf{x}_i), \quad \text{with} \quad \boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_k)^T = (K + \lambda I)^{-1} \mathbf{y},$$
$$K_{ij} = \boldsymbol{\phi}(\mathbf{x}_i) \cdot \boldsymbol{\phi}(\mathbf{x}_j), \quad \text{where} \quad i = 1 \dots k, j = 1 \dots k$$

э

The model (2)

### Advantages of KRR

- Closed form
- Few-shot -> solving the dual system is highly advantageous over the primal

#### Drawbacks

- Fine tuning regularizer and kernel hyper-parameters
- Cross-validation and validation set: costly and need more data

## Selection of regression hyper-parameters

#### Option 1: Episode dependant

 $\stackrel{\leftarrow}{\rightarrow} \text{FC network } g \text{ to predict the right values}$  $\stackrel{\leftarrow}{\rightarrow} \text{inputs} = \text{sufficient statistics of the training examples of } \mathcal{D}_{train} \\ \stackrel{\leftarrow}{\rightarrow} \text{statistics} = \text{mean, std, max, min of } \{y_1, y_2, \dots, y_k\} \text{ and} \\ \{\phi(\mathbf{x}_1), \phi(\mathbf{x}_2), \dots, \phi(\mathbf{x}_k)\} \\ \stackrel{\leftarrow}{\rightarrow} \text{ For example, for a given } \mathcal{D}_{train}, \text{ the KRR regularizer is given by:}$ 

 $\exp(HardTanh_{a,b}(g(\mathcal{D}_{train}))), \text{ with } HardTanh_{a,b}(x) = \begin{cases} a & \text{if } x < a \\ x & \text{if } a \le x \le b \\ b & \text{if } x > b \end{cases}$ 

#### Option 2: Same for all episodes

- Associate a parameter to each Hp
- Find the right value during back propagation

Prudencio Tossou (UL)

Few-shot learning with KRR

April 6, 2018 14 / 25

# MetaKRR: the training with option 1

#### Pseudo-code

#### Initialize $\Theta$ of $\phi$ and $\Lambda$ of gLoop

- Sample an  $\mathcal{D}_i$  from  $\mathscr{D}_{meta-train}$
- Sample a  $\mathcal{D}_{train}$  and  $\mathcal{D}_{test}$  from  $\mathcal{D}_i$
- Transform all inputs with  $oldsymbol{\phi}$
- Compute  $\lambda_{train}$  with g
- Solve KRR to find **w**<sup>\*</sup>, thus *h*<sup>\*</sup>
- Compute the quadratic loss of h on  $\mathcal{D}_{test}$
- $\bullet\,$  Back-propagate the loss and update  $\Theta$  and  $\Lambda$

#### Other details

- Train for 20K episodes
- Use  $\mathcal{D}_{meta-valid}$  to select the best model Prudencio Tossou (UL) Few-shot learning with KRR

April 6, 2018 15 / 25



- 2 Problem statement
- 3 Our approach: MetaKRR

### 4 Experiments



3

(日) (同) (三) (三)

### Datasets

### MHC class II peptides

- Task: predict the binding energy of a peptide to a protein (MHC II complex).
- Collection of 14 datasets, one per protein
- Each dataset has from 500 to 5K examples
- Input = peptide (string)
- Output=energy to a MHC protein
- 14 few-shot regression tasks
- CNN feature extractor  $256 \times 3$

### Binding molecules

- Task: predict the binding affinity of small molecules to a protein
- Collection of 3741 regression task each related to a protein and an organism
- Input = molecule SMILES (string)
- Output = binding affinity
- Meta-train, meta-valid and meta-test contain 2104, 702 and 935 tasks
- CNN feature extractor 512 × 4

## Results on MHC class II peptides

|              | MetaKRR-g | MetaKRR-u | MAML[1] | MANN[2] | pretrain         |
|--------------|-----------|-----------|---------|---------|------------------|
| Test complex |           |           |         |         |                  |
| DRB1*0101    | 0.435     | 0.475     | 0.469   | 0.530   | 0.176            |
| DRB1*0301    | 0.512     | 0.501     | 0.405   | 0.522   | -0.177           |
| DRB1*0401    | 0.547     | 0.555     | 0.457   | 0.484   | 0.165            |
| DRB1*0404    | 0.573     | 0.608     | 0.470   | 0.617   | 0.105            |
| DRB1*0405    | 0.643     | 0.652     | 0.531   | 0.676   | 0.156            |
| DRB1*0701    | 0.694     | 0.694     | 0.613   | 0.673   | 0.199            |
| DRB1*0802    | 0.404     | 0.388     | 0.407   | 0.426   | 0.125            |
| DRB1*0901    | 0.509     | 0.535     | 0.389   | 0.565   | 0.159            |
| DRB1*1101    | 0.641     | 0.626     | 0.567   | 0.537   | -0.169           |
| DRB1*1302    | 0.471     | 0.477     | 0.401   | 0.465   | 0.116            |
| DRB1*1501    | 0.640     | 0.629     | 0.623   | 0.644   | 0.180            |
| DRB3*0101    | 0.318     | 0.356     | 0.294   | 0.313   | 0.071            |
| DRB4*0101    | 0.574     | 0.602     | 0.548   | 0.596   | 0.203            |
| DRB5*0101    | 0.660     | 0.624     | 0.559   | 0.669   | 0.221            |
| Average      | 0.544     | 0.552     | 0.481   | 0.551   | 0.109            |
|              |           |           |         |         | ⊧⊧ ≣ <i>•</i> )व |

Prudencio Tossou (UL)

April 6, 2018

18 / 25

## Results on BindingDB

#### MetaKRR versus MAML

MetaKRR versus MANN



э

A (10) A (10) A (10)

### Discussion



ta tiro lanal lasening account of Mats Crill's Firschie

• Hard to find the best initialization point.

• Easy to classify with but harder for regression

イロト イポト イヨト イヨト

3

20 / 25



- 2 Problem statement
- 3 Our approach: MetaKRR
- 4 Experiments
- 5 Future works and conclusion

3

(日) (周) (日) (日)

### Future works

- Select the right values with the network g within a grid of hyper-parameters
- Include in our experiments a recommender system dataset : Netflix challenge

3

・ 得 ト ・ ヨ ト ・ ヨ ト

# Conclusion

- We have introduced MetaKRR, a few-shot regression algorithm
- State of the art performances
- Three key ideas:
  - Leverage past experiences to find the most appropriate mapping function
  - Use the structural risk minimization to enforce generalization
  - Leverage past experiences to choose adequately the trade-off inside the SRM
- Not new ideas but they graciously combine together to give the MetaKRR

・ 戸 ト ・ ヨ ト ・ ヨ ト

## References

- C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. *arXiv preprint arXiv:1703.03400*, 2017.
- [2] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with memory-augmented neural networks. In *International conference on machine learning*, pages 1842–1850, 2016.
- [3] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual variables. 1998.
- [4] V. Vapnik. Principles of risk minimization for learning theory. In Advances in neural information processing systems, pages 831–838, 1992.

# Thanks for your attention



► ≣ ৩৭ে 18 25 / 25