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Introduction

Task: Discovering structure in data

Motivation: Predictions, reproduce data, knowledge discovery, etc.

Approach: Bayesian learning considering all possible structures
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Infinite dimensional layers (IBP)
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Results on learning belief networks
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Belief networks
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Belief network

Structure of the belief network
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Belief network

Unit activations - weighted sum
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Belief network

Unit activations - Gaussian random variable
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Belief network

Unit activations - sigmoid transformation
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Belief network

Conditional activation probabilities
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Belief network

Conditional activation probabilities
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Learning the structure

Structure of the belief network
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Learning the structure

Structure as binary matrix
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Infinite dimensional layer

Structure of the belief network
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Infinite dimensional layer

From Indian buffet processes

The IBP(a, 8) metaphor consists in customers choosing various
dishes from an infinitely long buffet.
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Infinite dimensional layer

From Beta processes
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Directed acyclic graph with CIBP

The binary value Zi(f(’m) indicates whether an edge is leaving the k%"
nodes in layer m to connect to the i" nodes in layer s.
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Directed acyclic graph with CIBP
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Infinitely deep network

Directed acyclic graph with CIBP

m)

nodes in layer m to connect to the i" nodes in layer s.

The binary value Z(f(’ indicates whether an edge is leaving the k%"

i’

Zt &I

Patrick Dallaire (Laboratoire DAMAS) April 26, 2013 21 /36




Infinitely deep network

Directed acyclic graph with CIBP

m)

nodes in layer m to connect to the i" nodes in layer s.

74 H
> e

Zt &I

Patrick Dallaire (Laboratoire DAMAS) April 26, 2013 21 /36

The binary value Z(f(’ indicates whether an edge is leaving the k%"

i’




Infinitely deep network

Directed acyclic graph with CIBP

m)

nodes in layer m to connect to the i" nodes in layer s.

74 H
> e

Zt &I

Patrick Dallaire (Laboratoire DAMAS) April 26, 2013 21 /36

The binary value Z(f(’ indicates whether an edge is leaving the k%"

i’




Infinitely deep network

Beta process representation for CIBP

To generate sequence of binary matrices, we can recursively:

(m) -

o draw a measure B(™ where m,  is the popularity of dish 9( ),

e construct Z(m=1m) by sampling Z(m Lm) ~ BeP(B(™) for
the K(m=1) customers entering thls restaurant.
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Beta process representation for CIBP

To generate sequence of binary matrices, we can recursively:
o draw a measure B(™ where 7r,((m) is the popularity of dish 95('”).

e construct Z(m=1m) by sampling z(m=1m) _ BeP(B(™) for

iy

the K(m=1) customers entering this restaurant.

L L]
© 006066 00
Q@

’,‘1’ ® 6 6 O
©

Patrick Dallaire (Laboratoire DAMAS) April 26, 2013 22 /36

=)
© © ©




Infinitely deep network

Beta process representation for CIBP
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Extended CIBP

Extending the CIBP
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Extended CIBP

Triangular binary matrix representation

@ Layer exchangeability is ensured by crosses. 7(2)

@ Adjacency matrix is IBP subdiagonal by blocks.

@ Hierarchical BP allows jumping connections.
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Extended CIBP

Extended cascading Indian buffet process metaphor

Every customers are associated to an Indian buffet restaurant

o The K(m=1) customers from restaurant m — 1 enter restaurant m
and select dishes according to the usual IBP.

@ Next, the K (%) visitors from previous restaurants s < m — 1 enters
and select dishes according to probability:

5 ) i)

B+ K(s) B+ K(m) B +K(s)

where ngf’m) denote the number of times dish k has been selected by

preceding members of its visiting group s.
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Results

Patrick Dallaire (Laboratoi April 26, 2013 27 / 36




Experiments

Learn the generative process of the data
Produce fantasy data with posterior models

Measure the testset/fantasy divergence

Evaluate the structural complexity
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Dataset - Geyser
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Dataset - Ring
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Dataset - Pinwheel
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More datasets

@ lIris : 4 continuous dimensions

@ Abalone : 7 continuous + 2 discretes dimensions
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Results - Divergence

Table: Kullback-Leibler divergence estimations

Dataset CIBP eCIBP DPMoG KDE

Ring 0.049 +0.055 0.030+0.034 0.0514+0.029 0.085 + 0.034

Pinwheel 0.162+0.049 0.1614+0.041 0.154+0.080 0.216+£0.043

Geyser 0.078 £0.150 0.075+0.145 0.077 +£0.120 0.143 £0.099

Iris 0.207 +£0.333 0.177+0.280 0.231 +£0.269 0.305 + 0.227

Abalone  0.074+0.080 0.070+0.108 4.760+0.220 2.934+0.134
Y



Results - Structure complexity

Table: Total number of units

Dataset CIBP eCIBP

Ring 116 +4.1 93+3.2
Pinwheel 22.4 4+ 3.0 19.7+1.6
Geyser 9.14+43 8.7+39
Iris 142+ 4.4 103+34
Abalone 5424123 452+11.2
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Results - Structure complexity

Table: Total number of edges

Dataset CIBP eCIBP

Ring 203+8.4 206 +7.3
Pinwheel 1054 4+11.1 104.1+9.3
Geyser 131+99 131+95
Iris 28.4+11.4 20.5+7.2
Abalone 233.8+23.0 210.4+238

Patrick Dallaire (Laboratoire DAMAS) April 26, 2013 35/ 36



End
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