Learning the structure of probabilistic graphical model with infinite directed acyclic graphs

Patrick Dallaire

Université Laval Département d'informatique et de génie logiciel

April 26, 2013

Introduction

Task: Discovering structure in data

Motivation: Predictions, reproduce data, knowledge discovery, etc.

Approach: Bayesian learning considering all possible structures

Outline of the talk

- The belief network
- Learning the structure
- Infinite dimensional layers (IBP)
- Infinitely deep networks (CIBP)
- Jumping-connections (eCIBP)
- Results on learning belief networks

3 / 36

Belief networks

Structure of the belief network

Unit activations - weighted sum

$$y_i^{(s)} = \gamma_i^{(s)} + \sum_{k} Z_{i,k}^{(s,m)} W_{i,k}^{(s,m)} u_k^{(m)}$$

Unit activations - Gaussian random variable

Unit activations - sigmoid transformation

Conditional activation probabilities

Conditional activation probabilities

Learning the structure

Structure of the belief network

Structure as binary matrix

Infinite dimensional layer

Structure of the belief network

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

• first customer samples $Poisson(\alpha)$ dishes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

• first customer samples $Poisson(\alpha)$ dishes

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples Poisson(α) dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples Poisson(α) dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples Poisson(α) dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples Poisson(α) dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples Poisson(α) dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples Poisson(α) dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

From Indian buffet processes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

dishes

From Indian buffet processes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples $Poisson(\alpha)$ dishes
- ith customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

dishes

From Indian buffet processes

The IBP(α, β) metaphor consists in customers choosing various dishes from an infinitely long buffet.

- first customer samples $Poisson(\alpha)$ dishes
- *i*th customer tries :
 - previously sampled dish k with probability $n_k/(\beta+i-1)$
 - adds Poisson $(\alpha\beta/(\beta+i-1))$ new dishes

dishes

From Beta processes

We can generate a $K^{(m-1)} \times \infty$ binary matrix $Z^{(m-1,m)}$ by

- sampling an infinite discrete measure $B^{(m)} \sim \mathrm{BP}(\beta, B_0^{(m)})$
- ullet draw samples from a Bernoulli process $Z_{i,\cdot}^{(m-1,m)}\sim {\sf BeP}(B^{(m)})$

From Beta processes

We can generate a $K^{(m-1)} \times \infty$ binary matrix $Z^{(m-1,m)}$ by

- sampling an infinite discrete measure $B^{(m)} \sim \mathsf{BP}(\beta, B_0^{(m)})$
- ullet draw samples from a Bernoulli process $Z_{i,\cdot}^{(m-1,m)} \sim \mathsf{BeP}(B^{(m)})$

From Beta processes

We can generate a $K^{(m-1)} \times \infty$ binary matrix $Z^{(m-1,m)}$ by

- sampling an infinite discrete measure $B^{(m)} \sim \mathsf{BP}(\beta, B_0^{(m)})$
- ullet draw samples from a Bernoulli process $Z_{i,\cdot}^{(m-1,m)}\sim {\sf BeP}(B^{(m)})$

Infinitely deep network

Structure of the belief network

Assume infinitely many layer $M o \infty$ and apply IBP recursively

• N customers enter the first restaurant and apply the IBP

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

- N customers enter the first restaurant and apply the IBP
- The $K^{(m)}$ unique dishes sampled in a restaurant corresponds to the number of customers entering the next

The binary value $Z_{i,k}^{(s,m)}$ indicates whether an edge is leaving the k^{th} nodes in layer m to connect to the i^{th} nodes in layer s.

3

. . .

- draw a measure $B^{(m)}$ where $\pi_{\nu}^{(m)}$ is the popularity of dish $\theta_{\nu}^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z_{i,\cdot}^{(m-1,m)} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- (3) (4)
- (5)

- (3)
- (5)

To generate sequence of binary matrices, we can recursively:

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

1 2 3

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z_{i,\cdot}^{(m-1,m)} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

- draw a measure $B^{(m)}$ where $\pi_k^{(m)}$ is the popularity of dish $\theta_k^{(m)}$.
- construct $Z^{(m-1,m)}$ by sampling $Z^{(m-1,m)}_{i,\cdot} \sim \text{BeP}(B^{(m)})$ for the $K^{(m-1)}$ customers entering this restaurant.

Extending the CIBP

Structure of the belief network

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

- Layer exchangeability is ensured by crosses.
- Adjacency matrix is IBP subdiagonal by blocks.
- Hierarchical BP allows jumping connections.

Extended cascading Indian buffet process metaphor

Every customers are associated to an Indian buffet restaurant

- The $K^{(m-1)}$ customers from restaurant m-1 enter restaurant m and select dishes according to the usual IBP.
- Next, the $K^{(s)}$ visitors from previous restaurants s < m-1 enters and select dishes according to probability:

$$\frac{\beta'}{\beta' + K(s)} \frac{n_k^{(m)}}{\beta + K(m)} + \frac{n_k^{(s,m)}}{\beta' + K(s)}$$

where $n_k^{(s,m)}$ denote the number of times dish k has been selected by preceding members of its visiting group s.

Results

Experiments

- Learn the generative process of the data
- Produce fantasy data with posterior models
- Measure the testset/fantasy divergence
- Evaluate the structural complexity

Dataset - Geyser

Dataset - Ring

Dataset - Pinwheel

More datasets

- Iris: 4 continuous dimensions
- Abalone : 7 continuous + 2 discretes dimensions

Results - Divergence

Table: Kullback-Leibler divergence estimations

Dataset	CIBP	eCIBP	DPMoG	KDE
Ring	0.049 ± 0.055	$\textbf{0.030} \pm \textbf{0.034}$	$\textbf{0.051} \pm \textbf{0.029}$	0.085 ± 0.034
Pinwheel	0.162 ± 0.049	0.161 ± 0.041	$\textbf{0.154} \pm \textbf{0.080}$	$\boldsymbol{0.216 \pm 0.043}$
Geyser	0.078 ± 0.150	$\textbf{0.075} \pm \textbf{0.145}$	0.077 ± 0.120	$\boldsymbol{0.143 \pm 0.099}$
Iris	$\boldsymbol{0.207 \pm 0.333}$	$\textbf{0.177} \pm \textbf{0.280}$	$\textbf{0.231} \pm \textbf{0.269}$	0.305 ± 0.227
Abalone	0.074 ± 0.080	$\boldsymbol{0.070 \pm 0.108}$	4.760 ± 0.220	$\boldsymbol{2.934 \pm 0.134}$

Results - Structure complexity

Table: Total number of units

Dataset	CIBP	eCIBP
Ring	11.6 ± 4.1	$\textbf{9.3} \pm \textbf{3.2}$
Pinwheel	22.4 ± 3.0	$\textbf{19.7} \pm \textbf{1.6}$
Geyser	9.1 ± 4.3	$\textbf{8.7} \pm \textbf{3.9}$
Iris	14.2 ± 4.4	$\textbf{10.3} \pm \textbf{3.4}$
Abalone	54.2 ± 12.3	$\textbf{45.2} \pm \textbf{11.2}$

Results - Structure complexity

Table: Total number of edges

Dataset	CIBP	eCIBP
Ring Pinwheel Geyser Iris Abalone	$egin{array}{c} {\bf 20.3 \pm 8.4} \\ {\bf 105.4 \pm 11.1} \\ {\bf 13.1 \pm 9.9} \\ {\bf 28.4 \pm 11.4} \\ {\bf 233.8 \pm 23.0} \\ \end{array}$	20.6 ± 7.3 104.1 ± 9.3 13.1 ± 9.5 20.5 ± 7.2 210.4 ± 23.8

End