La planification d'horaires de ligues sportives par programmation par contraintes

Gilles Pesant
gilles.pesant@polymtl.ca
École Polytechnique de Montréal, Canada

Séminaires du département d'informatique et de génie logiciel
Université Laval
8 mars 2013

Objectifs de cette présentation

- Meilleure compréhension de la planification d'horaires de ligues sportives
- C'est un domaine complexe avec une notion de qualité d'horaire difficile à exprimer
- La programmation par contraintes est très appropriée pour résoudre ce problème

Outline

(1) Sports Scheduling
(2) Constraint Programming
(3) TTPPV
(4) Brazilian Football
(5) Conclusion

Sports Scheduling

- plan a tournament between several teams (set of games between pairs of teams)
- decide when (round) and where (venue) each game is played
- at a given game one team plays home and the other, away

A schedule may be ...

- compact: each team plays at every round
- round robin: teams play each other a fixed nb of times single round robin (SRR); double round robin (DRR)
- mirrored: the second half of the schedule is a repetition of the first half, with the venues swapped

Traveling Tournament Problem (Major League Baseball)

TTP

- compact, double round robin schedule
- no more than three consecutive games at home or away
- minimize total distance traveled by all the teams

TTP with Predefined Venues (TTPPV)

- single round robin
- each pair of teams meet at predefined venue (SRR+SRR)
- instance is balanced if difference between number of home and away games is at most one for any given team

Example

TTPPV schedule for 6-team unbalanced instance

round	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
team 1:	$@ 2$	$@ 3$	6	$@ 5$	$@ 4$
team 2:	1	6	$@ 5$	$@ 4$	$@ 3$
team 3:	5	1	4	$@ 6$	2
team 4:	$@ 6$	$@ 5$	$@ 3$	2	1
team 5:	$@ 3$	4	2	1	$@ 6$
team 6:	4	$@ 2$	$@ 1$	3	5

- compact, single round robin
- no more than three consecutive games at home or away
- each pair of teams meet at predefined venue
- unbalanced instance

Example

TTPPV schedule for 6-team unbalanced instance

round	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
team 1:	$@ 2$	$@ 3$	6	$@ 5$	$@ 4$
team 2:	1	6	$@ 5$	$@ 4$	$@ 3$
team 3:	5	1	4	$@ 6$	2
team 4:	$@ 6$	$@ 5$	$@ 3$	2	1
team 5:	$@ 3$	4	2	1	$@ 6$
team 6:	4	$@ 2$	$@ 1$	3	5

- compact, single round robin
- no more than three consecutive games at home or away
- each pair of teams meet at predefined venue
- unbalanced instance

Example

TTPPV schedule for 6-team unbalanced instance

round	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
team 1:	$@ 2$	$@ 3$	6	$@ 5$	$@ 4$
team 2:	1	6	$@ 5$	$@ 4$	$@ 3$
team 3:	5	1	4	$@ 6$	2
team 4:	$@ 6$	$@ 5$	$@ 3$	2	1
team 5:	$@ 3$	4	2	1	$@ 6$
team 6:	4	$@ 2$	$@ 1$	3	5

- compact, single round robin
- no more than three consecutive games at home or away
- each pair of teams meet at predefined venue
- unbalanced instance

Example

TTPPV schedule for 6-team unbalanced instance

round	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
team 1:	$@ 2$	$@ 3$	6	$@ 5$	$@ 4$
team 2:	1	6	$@ 5$	$@ 4$	$@ 3$
team 3:	5	1	4	$@ 6$	2
team 4:	$@ 6$	$@ 5$	$@ 3$	2	1
team 5:	$@ 3$	4	2	1	$@ 6$
team 6:	4	$@ 2$	$@ 1$	3	5

- compact, single round robin
- no more than three consecutive games at home or away
- each pair of teams meet at predefined venue
- unbalanced instance

Example

TTPPV schedule for 6-team unbalanced instance

round	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$
team 1:	$@ 2$	$@ 3$	6	$@ 5$	$@ 4$
team 2:	1	6	$@ 5$	$@ 4$	$@ 3$
team 3:	5	1	4	$@ 6$	2
team 4:	$@ 6$	$@ 5$	$@ 3$	2	1
team 5:	$@ 3$	4	2	1	$@ 6$
team 6:	4	$@ 2$	$@ 1$	3	5

- compact, single round robin
- no more than three consecutive games at home or away
- each pair of teams meet at predefined venue
- unbalanced instance

Constraint Programming (CP)

- problem described through formal model expressed using constraints from rich set of modeling primitives
- variables take their value from a finite set (domain)
- each type of constraint encapsulates its own specialized inference algorithm
- sophisticated inference to reduce search space
- combination of variable- and value-selection heuristics to guide exploration of search space

CP for Sports Scheduling

- instrumental in scheduling Major League Baseball in North America
- used in the past to schedule the National Football League in the US
- also applied to College Basketball

Back to the TTPPV...

Decision Variables

- n teams (and hence $n-1$ rounds)
- $o_{i j}$, opponent of team i in round j
- $h_{i j}=1$ iff team i plays at home in round j

round	$1^{\text {st }}$	\ldots	$j^{t h}$	\ldots	$(n-1)^{\text {th }}$
team $1:$					
\vdots					
team i:			$h_{i j} ; o_{i j}$		
\vdots					
team n:					

Decision Variables

- n teams (and hence $n-1$ rounds)
- $o_{i j}$, opponent of team i in round j
- $h_{i j}=1$ iff team i plays at home in round j

round	$1^{\text {st }}$	\ldots	$j^{\text {th }}$	\ldots	$(n-1)^{\text {th }}$
team $1:$					
\vdots					
team i:			$0 ; k$		
\vdots					
team n:					

Decision Variables

- n teams (and hence $n-1$ rounds)
- $o_{i j}$, opponent of team i in round j
- $h_{i j}=1$ iff team i plays at home in round j

round	$1^{\text {st }}$	\ldots	$j^{\text {th }}$	\ldots	$(n-1)^{\text {th }}$
team $1:$					
\vdots					
team i:			$@ k$		
\vdots					
team n:					

Basic Structure

$$
\begin{array}{rl}
o_{i j} \in\{1, \ldots, i-1, i+1, \ldots, n\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i j} \in\{0,1\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq j \leq n-1}\right) & 1 \leq i \leq n \\
o_{o_{i j}, j}=i & 1 \leq i \leq n, 1 \leq j \leq n-1
\end{array}
$$

Predefined Venues

$$
\begin{array}{rl}
o_{i j} \in\{1, \ldots, i-1, i+1, \ldots, n\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i j} \in\{0,1\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq j \leq n-1}\right) & 1 \leq i \leq n \\
o_{o i j}=i & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i j}=V\left[i, o_{i j}\right] & 1 \leq i \leq n, 1 \leq j \leq n-1
\end{array}
$$

Sports Scheduling

At most 3 consecutive home or away games

$$
\begin{array}{rl}
o_{i j} \in\{1, \ldots, i-1, i+1, \ldots, n\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i j} \in\{0,1\} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq j \leq n-1}\right) & 1 \leq i \leq n \\
o_{o_{i j}, j}=i & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i j}=V\left[i, o_{i j}\right] & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
\text { regular }\left(\left(h_{i j}\right)_{1 \leq j \leq n-1}, \mathcal{A}\right) & 1 \leq i \leq n
\end{array}
$$

Sports Scheduling

Adding travel costs

- $D: n \times n$ travel distance matrix
- vars $d_{i j}$: travel distance for team i to go play in round j

round	$1^{\text {st }}$	\ldots	$j^{\text {th }}$	\ldots	$(n-1)^{\text {th }}$
team $1:$					
\vdots					
team i:			$h_{i j} ; o_{i j} ; d_{i j}$		
\vdots					
team n:					

Adding travel costs

- $D: n \times n$ travel distance matrix
- vars $d_{i j}$: travel distance for team i to go play in round j Individual travel distances depend on pairs of consecutive variables:

$$
\begin{array}{rr}
\left(h_{i j}=1 \wedge h_{i, j+1}=1\right) \Rightarrow d_{i, j+1}=0 & 1 \leq i \leq n, 1 \leq j<n-1 \\
\left(h_{i j}=1 \wedge h_{i, j+1}=0\right) \Rightarrow d_{i, j+1}=D\left[i, o_{i, j+1}\right] & 1 \leq i \leq n, 1 \leq j<n-1 \\
\left(h_{i j}=0 \wedge h_{i, j+1}=1\right) \Rightarrow d_{i, j+1}=D\left[o_{i j}, i\right] & 1 \leq i \leq n, 1 \leq j<n-1 \\
\left(h_{i j}=0 \wedge h_{i, j+1}=0\right) \Rightarrow d_{i, j+1}=D\left[o_{i j}, o_{i, j+1}\right] & 1 \leq i \leq n, 1 \leq j<n-1 \\
d_{i j} \in\{0\} \cup\{\min \{D\}, \ldots, \max \{D\}\} & 1 \leq i \leq n, 1 \leq j \leq n \\
z=\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} &
\end{array}
$$

At this point we have a complete model

Adding redundant constraints

In a round j, each team appears exactly once as an opponent:

$$
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq i \leq n}\right) \quad 1 \leq j \leq n-1
$$

Catching infeasible instances

- Need enough home (resp. away) games to separate long stretches of away (resp. home) games
- Necessary condition: at least $\left\lfloor\frac{n-1}{4}\right\rfloor$ of each are needed (Melo,Urrutia,Ribeiro, J. Scheduling, 2009)
Combine "3-home/3-away" constraint with counting number of home games:

$$
\text { cost_regular }\left(\left(h_{i j}\right)_{1 \leq j \leq n-1}, \mathcal{A}, \sum_{1 \leq k \leq n} V[i, k],[0,1]\right) \quad 1 \leq i \leq n
$$

Catching infeasible subinstances

- Consider 14-team individual schedule with 3 predefined home games
- Necessary condition satisfied: $\left\lfloor\frac{14-1}{4}\right\rfloor=3$
- New constraint more powerful because used dynamically:

(i)

H	A	A	A	H	A	A	A	H	A	A	A	H

(ii)

H	A	A	A	A	A	A	A	H	A	A	A	H

Both (i) and (ii) completed schedules are invalid

Symmetry breaking

Forbid the mirror image of a schedule, going from the last round to the first (travel distances are symmetric):

$$
o_{11}<o_{1, n-1}
$$

Some generic variable-selection heuristics

Branching on opponent variables

- lexico: Select variables in lexicographic order (row by row)
- random: Select variables randomly
- dom: Select the variable with the fewest alternatives

Dedicated value-selection heuristic

At this point, we have selected one team and the round; value selection determines the other team (and thus a game)

- dist: For that game (in both rows), compute lower bound on travel distances from previous round and to next round. Select the value with the smallest lower bound.

Benchmark Instances

- Existing TTP instances (Circle instances) to which a venue is added for each game (Melo,Urrutia,Ribeiro, J. Scheduling, 2009)
- Up to 20 teams; twenty instances (ten balanced; ten nonbalanced) of each size

20 teams; balanced

Brazilian Football League

- compact, mirrored double round robin schedule
- 20 teams
- many restrictions
- maximize gate attendance and TV audience

Decision Variables

- $n=20$ teams (and hence 38 rounds)
- o $o_{i j}$: opponent of team i in round j
- $h_{i j}=1$ iff team i plays at home in round j
- $r_{i k}$: first-half round in which team i plays against k
- $h_{i k}^{\prime}=1$ iff team i plays at home against k in first half
- $b_{i j}$: away break (0), home break (2), or no break (1) for team i in round j

Basic Structure

$$
\begin{array}{rl}
o_{i j} \in\{1, \ldots, i-1, i+1, \ldots, n\} & 1 \leq i \leq n, 1 \leq j \leq 2(n-1) \\
h_{i j} \in\{0,1\} & 1 \leq i \leq n, 1 \leq j \leq 2(n-1) \\
o_{o_{i j}, j}=i & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{o_{i j}, j} \neq h_{i j} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq j \leq n-1}\right) & 1 \leq i \leq n \\
\text { alldifferent }\left(\left(o_{i j}\right)_{1 \leq i \leq n}\right) & 1 \leq j \leq n-1
\end{array}
$$

Basic Structure (continued)

$$
\begin{array}{rl}
r_{i k} \in\{0, \ldots, n-1\} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime} \in\{0,1\} & 1 \leq i \leq n, 1 \leq k \leq n \\
b_{i j} \in\{0,1,2\} & 1 \leq i \leq n-1,1 \leq j \leq n-1 \\
r_{i j}=0 & 1 \leq i \leq n
\end{array}
$$

alldifferent $\left(\left(r_{i k}\right)_{1 \leq k \leq n}\right) \quad 1 \leq i \leq n$

$$
\begin{array}{rl}
r_{i k}=r_{k i} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime} \neq h_{k i}^{\prime} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime}=h_{i r_{i k}} & 1 \leq i \leq n, i<k \leq n \\
o_{i r_{i k}}=k & 1 \leq i \leq n, i<k \leq n \\
b_{i j}=h_{i j}+h_{i, j+1} & 1 \leq i \leq n-1,1 \leq j \leq n-1
\end{array}
$$

Basic Structure (continued)

$$
\begin{array}{rl}
r_{i k} \in\{0, \ldots, n-1\} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime} \in\{0,1\} & 1 \leq i \leq n, 1 \leq k \leq n \\
b_{i j} \in\{0,1,2\} & 1 \leq i \leq n-1,1 \leq j \leq n-1 \\
r_{i i}=0 & 1 \leq i \leq n
\end{array}
$$

alldifferent $\left(\left(r_{i k}\right)_{1 \leq k \leq n}\right)$
$1 \leq i \leq n$

$$
\begin{array}{rl}
r_{i k}=r_{k i} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime} \neq h_{k i}^{\prime} & 1 \leq i \leq n, 1 \leq k \leq n \\
h_{i k}^{\prime}=h_{i r_{i k}} & 1 \leq i \leq n, i<k \leq n \\
o_{i r_{i j}}=k & 1 \leq i \leq n, i<k \leq n \\
b_{i j}=h_{i j}+h_{i, j+1} & 1 \leq i \leq n-1,1 \leq j \leq n-1
\end{array}
$$

Mirrored Double Round Robin Structure

$$
\begin{array}{ll}
o_{i,(n-1)+j}=o_{i j} & 1 \leq i \leq n, 1 \leq j \leq n-1 \\
h_{i,(n-1)+j} \neq h_{i j} & 1 \leq i \leq n, 1 \leq j \leq n-1
\end{array}
$$

Particular groupings

Special types of games

- G12: games between the 12 best teams
- Classic: games between teams of the same city
- Regional: games between teams of the same state

Paired teams

- teams are paired: 1 with 2,3 with $4, \ldots$
- usually teams from the same city

Particular groupings

Special types of games

- G12: games between the 12 best teams
- Classic: games between teams of the same city
- Regional: games between teams of the same state

Paired teams

- teams are paired: 1 with 2,3 with $4, \ldots$
- usually teams from the same city

Public Safety

Opposite home/away pattern for paired teams

$$
h_{i j} \neq h_{i+1, j} \quad i \in\{1,3,5, \ldots, n-1\}, 1 \leq j \leq n-1
$$

At most 1 Classic game per city per round
alldifferent $\left(\left(r_{i k}\right)_{(i, k) \in \text { Classic }_{j}}\right) \quad j \in ">2$ team cities"

Revenues

Maximize classic games on double-weekend rounds

$$
\sum_{1 \leq i \leq n, j \in D W}\left(\left(i, o_{i j}\right) \in \text { Classic }\right) \geq 2 \times L B
$$

Number of G12 games in each round is between 2 and 4

$$
\begin{aligned}
& \operatorname{gcc}\left(\left(r_{i k}\right)_{(i, k) \in G 12},\left\langle g_{1}, \ldots, g_{n-1}\right\rangle\right) \\
& 2 \leq g_{j} \leq 4 \quad 1 \leq j \leq n-1
\end{aligned}
$$

Attractiveness

No regional (or classic) games in first 3 rounds

$$
r_{i k} \notin\{1,2,3\} \quad(i, k) \in \text { Regional }
$$

No G12 RdJ-SP game in same round as Classic RdJ or SP game

$$
r_{i k} \neq r_{i^{\prime} k^{\prime}} \quad(i, k) \in \text { Classic RdJ or SP, }\left(i^{\prime}, k^{\prime}\right) \in \text { G12 RdJ-SP }
$$

Fairness

First team of a pair plays home in first round and away in last round

$$
h_{i 1}=1 \wedge h_{i, n-1}=0 \quad i \in\{1,3,5, \ldots, n-1\}
$$

Fairness

No breaks in first 4 or last 2 rounds

$$
\begin{aligned}
b_{i 1} & =1 & & 1 \leq i \leq n \\
b_{i 2} & =1 & & 1 \leq i \leq n \\
b_{i 3} & =1 & & 1 \leq i \leq n \\
b_{i, n-2} & =1 & & 1 \leq i \leq n
\end{aligned}
$$

No regional games in last 4 rounds

$$
r_{i k} \notin\{n-4, n-3, n-2, n-1\} \quad(i, k) \in \text { Regional }
$$

Fairness

Each team has x home breaks and y away breaks; x and y should be small

$$
\begin{gathered}
\operatorname{gcc}\left(\left(b_{i j}\right)_{1 \leq j \leq n-1},\langle b A, \star, b H\rangle\right) \quad 1 \leq i \leq n \\
b A \leq \operatorname{maxbA} \\
b H \leq \max b H
\end{gathered}
$$

Fairness

At most 4 consecutive games in SP state, for any SP state team
See below
At most 3 consecutive games in SP state, for any non SP state team
See below
At most 5 consecutive games against G12 teams, for any team

$$
\text { regular }\left(\ldots\left(o_{i j}\right)_{1 \leq j \leq 2(n-1)} \ldots, \mathcal{A}\right) \quad 1 \leq i \leq n
$$

Fairness

No consecutive Classic games for any team

$$
\operatorname{allMinDistance}\left(\left(r_{i k}\right)_{(i, k) \in \text { Classic }_{i}}, 2\right) \quad 1 \leq i \leq n
$$

Fairness

Perfect matching of paired teams

$$
\begin{aligned}
\text { regular }\left(\left\langle h_{i k}^{\prime}, h_{i+1, k}^{\prime}, h_{i+1, k+1}^{\prime}, h_{i, k+1}^{\prime}\right\rangle, \mathcal{A}\right) & i \in\{1,3,5, \ldots, n-3\}, \\
& k \in\{i+2, i+4, \ldots, n-1
\end{aligned}
$$

More sophisticated generic variable-selection heuristics

Can branch on opponent, home, round, and homeAway variables

- IBS: Select variable to maximize impact of that choice on size of search space; select value to minimize that impact
- maxSD: Select variable-value to (try to) maximize the proportion of solutions being preserved

Benchmark Instance

The 2010 season of the 1st division of the Brazilian Professional Football League;
a particularly difficult year to schedule

Results so far

- maxSD performs much better than the other heuristics
- solved easily (a few seconds) . . . without perfect matching constraints:

$$
\operatorname{regular}\left(\left\langle h_{i k}^{\prime}, h_{i+1, k}^{\prime}, h_{i+1, k+1}^{\prime}, h_{i, k+1}^{\prime}\right\rangle, \mathcal{A}\right)
$$

- solved easily (a few seconds) ... without no regional games at beginning or end constraints:

$$
r_{i k} \notin\{1,2,3, n-4, n-3, n-2, n-1\}
$$

- with all constraints: nothing after several hours...
- The League uses an IP approach, generating solutions in a few minutes

Objectifs de cette présentation

- Meilleure compréhension de la planification d'horaires de ligues sportives
- C'est un domaine complexe avec une notion de qualité d'horaire difficile à exprimer
- La programmation par contraintes est très appropriée pour résoudre ce problème

