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The Monolithic Architecture (1/2)
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• Simple development process
- Lack of scalability
- High coupling

• Definition: A Monolith is a single unit of deployment. 
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The Monolithic Architecture (2/2)
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Overview of SoundCloud’s first architecture (2007) [1]:

Overview of SoundCloud’s last monolithic architecture (2012) [1]:

[1] Sean Treadway: https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture

https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture


The Microservices Architecture (1/2)

• Independent deployability
• Business Domain Driven
• Small microservices
• Modularity
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- Implementation complexity
- Deployment overhead
- Adapting to new workflows

• Horizontal Scalability
• Robustness
• Technology diversity
• Clear isolation
• Convient for cloud and devops



The Microservices Architecture (2/2)
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Overview of SoundCloud’s microservices’ 
architecture (2024) [2]:

[2] Stephen Sun: https://www.fullstackexpress.io/p/evolution-soundcloud-architecture-final

https://www.fullstackexpress.io/p/evolution-soundcloud-architecture-final


Migrating from the Monolith to Microservices: what is it?
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Monolith Microservices



Migrating from the Monolith to Microservices: Why?
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Why migrate from a monolith to microservices

• Scalability
• Development productivity
• Modernizing legacy application



Migrating from the Monolith to Microservices: How?

A. Initiation B. Planning C. Execution D. 
Monitoring
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Migrating from the Monolith to Microservices: Challenges

A. Initiation B. Planning C. Execution D. 
Monitoring

• Expensive
• Lengthy
• Lack of experience
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Migrating from the Monolith to Microservices: Who?
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Decomposition approaches: Definition
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A. Initiation B. Planning C. Execution D. 
Monitoring

1- Analysis 2- decomposition

A decomposition approach is a solution that partitions the components of a 
monolithic application (OOP classes, method, database tables, etc) into a set of 
potential microservices. 



Decomposition approaches: Advantages
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- Improve and evolve instead of refactoring

- Lower migration costs

- Ability to experiment before committing

- A starting point for traditional migration processes

- Unique perspective on the representation of the monolith



Decomposition approaches: Analysis (1/3)

Monolithic application

ClinicService Vet

PetType Owner

Pet Visit

Specialty VisitRepo

1- Analysis

Intermediate representation

13



Decomposition approaches: Analysis (2/3)

• Mono2micro [3]
• FoSCI [4]
• Process Mining Decomp [5]
• CoGCN [6] + Deeply [18]
• toMicroservices [17]

Execution traces + dynamic analysis

• SArF [8]
• Topic Modeling decomp [9]
• MVC decomp [10]

Source code + static analysis
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• CARGO [16]
• CHGNN [7]
• DataCentric [15]

Database + source 
code



Decomposition approaches: Analysis (3/3)

• MEM [13]

Commit history
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• Service Cutter [14]
• DataFlow Decomp [12]
• AKF decomp [19]

Design artifacts

• Code2Vec decomposition [11]

Feature extraction



Decomposition approaches: Decomposition (1/2)

Monolithic application

ClinicService Vet

PetType Owner

Pet Visit

Specialty VisitRepo 2- decomposition

Visit service Vet service

Owner service

Gateway service

ClinicService

Vet

Specialty
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Pet

Visit
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Decomposition
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Decomposition approaches: Decomposition (2/2)

• MEM [13]• Mono2micro  [3]• Service Cutter [14]• Topic Modeling [9]• SArF [8]• MVC decomp [10]• Code2Vec decomp [11]• DataFlow decomp [12]• FoSCI [4]

Clustering

• FoSCI [4]

Genetic 
Algorithms

•CHGNN [7]
•CO-GCN [6] + Deeply [18]

Graph Neural 
Networks



HierDecomp: Introduction

A Hierarchical DBSCAN Method for Extracting Microservices 
from Monolithic Applications

The International Conference on Evaluation and Assessment in Software Engineering 2022 (EASE2022)

Main contributions:
• A hierarchical decomposition suggestion for result explainability and user choice flexibility.
• Number of target microservices is inferred.
• Introduce a new evaluation approach for microservices decomposition.
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HierDecomp: Analysis
HierDecomp

Source code analysis

microservice 
extraction

Decomposition

Semantic analysis

Structural analysisSource code
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HierDecomp: Semantic Analysis

Decomposition

HierDecomp

Source code analysis

microservice 
extraction

Structural analysis

Semantic analysis
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HierDecomp: Structural Analysis

Decomposition

HierDecomp

Source code analysis

microservice 
extraction

Structural analysis

Semantic analysis

Abstract 
Syntax Trees Call graphs

Source code
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HierDecomp: epsilon-DBSCAN (1/2) 

Decomposition

Source code

HierDecomp
Source code 

analysis
microservice extraction

Structural 
analysis

Semantic
analysis
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HierDecomp : epsilon-DBSCAN (1/2)

Decomposition

HierDecomp
Source code 

analysis
microservice extraction

Structural 
analysis

Semantic
analysis

NxN
similarity

matrix
DBSCAN

ε-DBSCAN

Increment ε

Source code
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HyDec: introduction

Combining Static and Dynamic Analysis to Decompose 
Monolithic Application into Microservices

The 20th International Conference on Service-Oriented Computing 2022 (ICSOC2022)

Main contributions:
• A general approach to combine multiple analysis sources in order to generate hierarchical decompositions.
• Multiple combination approaches.
• A decomposition approach that improves the coverage while maintaining a performance similar to state-of-

the-art approaches.
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HyDec: Overview

Source code

Execution logs

Structural analysis

Semantic analysis

Dynamic analysis

? Microservices 
recommendation

+

+
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HyDec: Dynamic analysis

Execution logs
Duplicate removal

Execution traces

MxM call matrix

M=6 in example

Dynamix 
analysis result
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HyDec: Static similarity

NxV TFIDF
Matrix M Cosine similarity M

NxN semantic 
similarity

matrix

NxN interaction
Matrix M Call similarity M

NxN structural 
similarity

matrix

NxN static 
similarity

matrix

Weighted 
average +
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HyDec: Sequential epsilon-DBSCAN
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HyDec: Alternating epsilon-DBSCAN
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MSExtractor: Introduction

Improving microservices extraction using evolutionary search

The Journal of Information and Software Technology Volume 151

Main contributions:
• Formulating the microservices decomposition task as a search problem with an evolutionary algorithm.
• Using a multi-objective evolutionary algorithm in order to encapsulate the different aspects within a 

decomposition.
• Differentiating between interface and inner classes within a decomposition.
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MSExtractor: Clustering vs Optimization
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Microservice 5Microservice 1 Microservice 2 Microservice 3 Microservice 4

Search Space

Viable Decompositions

A potential decomposition



MSExtractor: Overview
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MSExtractor: Evolutionary algorithms
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Evolutionary 
Algorithms

Solution 
representation

Fitness function

Crossover 
operator

Mutation 
operator

Initial population



MSExtractor: Workflow
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Initialize 
Population

Measure fitness
Stop 

Criteria 
met

Decomposi
tions

Select ParentsCrossoverMutation

Population

Yes

No



MSExtractor: Solution representation
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ClinicService Vet PetType Owner Pet Visit Specialty VisitRepo

M4 M2 M3 M3 M3 M1 M2 M1

label-based integer encoding:

4 2 3 3 3 1 2 1

Initial population: random sampling



MSExtractor: MOEA
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Cohesion Coupling Granularity

Microservice 1

Microservice 2

Microservice 1
Microservice 1

Microservice 2

Class 1

Class 2

Microservice 3

Multi-Objective Evolutionary 
Algorithm (MOEA)



MSExtractor: Operators
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Crossover operator

Mutation operator



RLDec: Introduction

Extracting Microservices from Monolithic Systems using Deep 
Reinforcement Learning

In Review for The Empirical Software Engineering

Main contributions:
• Formulate the microservices decomposition problem as a reinforcement learning task.
• Improving the evaluation process by introducing novel metrics that can encapsulate multiple aspects 

and that can compare with existing decompositions.
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RLDec: Overview

39



RLDec: The sequential approach
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Rt= 
modularity(St+1) At=1

1 1 3 3 7 7

label-based integer encoding
St=

Feature 
Matrix

1 1 3 1 7 7St+1=

t



RLDec: The combined sequential approach
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Rt= (SMQ(St+1)+ 
CMQ(St+1))/2 At=1

Semantic 
Feature 
Matrix

Structural 
Feature 
Matrix

1 1 3 3 7 7

label-based integer encoding
St=



RLDec: RQ2
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How does our approach perform when compared with state-of-the-art decomposition baselines? 



RLDec: RQ3 (1/2)
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Is our approach able to recapture the components of microservices that were created by human experts? 
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RLDec: RQ3 (2/2)
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Is our approach able to recapture the components of microservices that were created by human experts? 



Representation learning: Motivation
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Decomposition step



Representation learning: Visualization
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Representation learning: alternatives
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Word Embedding model 
(ex: word2vec)

Vector representation (a numeric 
vector) (example: a 300 dim vector)

word (set of characters) (ex: 
example)



Representation learning: code embeddings
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Code2vec Vector representation (a numeric 
vector) (example: a 300 dim vector)

Code snippet (list of AST 
paths)

CodeBERT

List of contextual vector 
representation for each token in the 

input (example: a matrix of shape 
50x300) and an aggregation vector

Code snippet represented as 
(text sequence (ex: 

docstring) + code sequence 
(method core))



Representation learning: Large Language Models
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Representation learning: Data Collection
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- Curated list of microservices applications in various programming languages used in research

- A list of “special” applications that can be considered due to factors such as having a monolithic 
version, the scale of the application and the structure of the repository

- Keyword query: [regex=“micro( |-)?services?( |-)(architecture|system|application)”]

- Collected 154 Java microservices applications and 91 C# microservices  applications



Representation learning: Evaluation (1/2)
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Evaluating the distribution of embeddings in the context Monolith to Microservices:

1. Generate the embeddings for each class or method in an application
2. Measure the similarity between each couple of classes/methods (for example cosine similarity)
3. Measure the binary cross entropy loss based on the actual decomposition. 
4. Evaluate the models based on the mean score across all applications.

Model Name
SFR-Embedding-
Mistral

deepseek-
coder-6.7B-
instruct OpenAI Code2Vec CodeBERT

semantic-
analysis

structural-
analysis

Mean score 0.704 0.736 0.757 0.816 0.873 0.964 19.700



Representation learning: Evaluation (2/2)
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Evaluating the distance between the generated decomposition and the actual decomposition:

1. Generate the embeddings for each class or method in an application
2. Generate a decomposition for each algorithm (k-means, hierarchical clustering, dbscan, etc)
3. Measure the MSFB score defined in the RLDec approach
4. Evaluate the models based on the mean score across all applications and algorithms.

Model Name
SFR-Embedding-
Mistral

deepseek-
coder-6.7B-
instruct OpenAI CodeBERT Code2Vec

semantic-
analysis

structural-
analysis

MSFB 0.300 0.290 0.283 0.250 0.247 0.187 0.182



The decomposition platform: Current challenges
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- Increasing number of decomposition approaches

- Difficulty of reproducing existing approaches

- Varied number of evaluation metrics and their implementations

- Multiple benchmark monolithic applications

- Lack of visualization tools for decompositions



The decomposition platform: Objective
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Objective: Share a standardized platform for applying and evaluating decomposition approaches and 
visualizing decompositions



The decomposition platform: Architecture
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Conclusion
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