
On the Migration from a Monolithic System to a

Microservices Architecture:

A Study of Automated Decomposition Approaches

Khaled Sellami
19 April 2024

Faculty of Science and Engineering
Department of Computer Science and Software Engineering

The Monolithic Architecture (1/2)

2

• Simple development process
- Lack of scalability
- High coupling

• Definition: A Monolith is a single unit of deployment.

Monolith

DB

Single Process Monolith

Monolith

DB

Modular Monolith

Module 1 Module 3Module 2

The Monolithic Architecture (2/2)

3

Overview of SoundCloud’s first architecture (2007) [1]:

Overview of SoundCloud’s last monolithic architecture (2012) [1]:

[1] Sean Treadway: https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture

https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture

The Microservices Architecture (1/2)

• Independent deployability
• Business Domain Driven
• Small microservices
• Modularity

4

- Implementation complexity
- Deployment overhead
- Adapting to new workflows

• Horizontal Scalability
• Robustness
• Technology diversity
• Clear isolation
• Convient for cloud and devops

The Microservices Architecture (2/2)

5

Overview of SoundCloud’s microservices’
architecture (2024) [2]:

[2] Stephen Sun: https://www.fullstackexpress.io/p/evolution-soundcloud-architecture-final

https://www.fullstackexpress.io/p/evolution-soundcloud-architecture-final

Migrating from the Monolith to Microservices: what is it?

6

Monolith Microservices

Migrating from the Monolith to Microservices: Why?

7

Why migrate from a monolith to microservices

• Scalability
• Development productivity
• Modernizing legacy application

Migrating from the Monolith to Microservices: How?

A. Initiation B. Planning C. Execution D.
Monitoring

8

Migrating from the Monolith to Microservices: Challenges

A. Initiation B. Planning C. Execution D.
Monitoring

• Expensive
• Lengthy
• Lack of experience

9

Migrating from the Monolith to Microservices: Who?

10

Decomposition approaches: Definition

11

A. Initiation B. Planning C. Execution D.
Monitoring

1- Analysis 2- decomposition

A decomposition approach is a solution that partitions the components of a
monolithic application (OOP classes, method, database tables, etc) into a set of
potential microservices.

Decomposition approaches: Advantages

12

- Improve and evolve instead of refactoring

- Lower migration costs

- Ability to experiment before committing

- A starting point for traditional migration processes

- Unique perspective on the representation of the monolith

Decomposition approaches: Analysis (1/3)

Monolithic application

ClinicService Vet

PetType Owner

Pet Visit

Specialty VisitRepo

1- Analysis

Intermediate representation

13

Decomposition approaches: Analysis (2/3)

• Mono2micro [3]
• FoSCI [4]
• Process Mining Decomp [5]
• CoGCN [6] + Deeply [18]
• toMicroservices [17]

Execution traces + dynamic analysis

• SArF [8]
• Topic Modeling decomp [9]
• MVC decomp [10]

Source code + static analysis

14

• CARGO [16]
• CHGNN [7]
• DataCentric [15]

Database + source
code

Decomposition approaches: Analysis (3/3)

• MEM [13]

Commit history

15

• Service Cutter [14]
• DataFlow Decomp [12]
• AKF decomp [19]

Design artifacts

• Code2Vec decomposition [11]

Feature extraction

Decomposition approaches: Decomposition (1/2)

Monolithic application

ClinicService Vet

PetType Owner

Pet Visit

Specialty VisitRepo 2- decomposition

Visit service Vet service

Owner service

Gateway service

ClinicService

Vet

Specialty

PetType Owner

Pet

Visit

VisitRepo

Decomposition

16

Decomposition approaches: Decomposition (2/2)

• MEM [13]• Mono2micro [3]• Service Cutter [14]• Topic Modeling [9]• SArF [8]• MVC decomp [10]• Code2Vec decomp [11]• DataFlow decomp [12]• FoSCI [4]

Clustering

• FoSCI [4]

Genetic
Algorithms

•CHGNN [7]
•CO-GCN [6] + Deeply [18]

Graph Neural
Networks

HierDecomp: Introduction

A Hierarchical DBSCAN Method for Extracting Microservices
from Monolithic Applications

The International Conference on Evaluation and Assessment in Software Engineering 2022 (EASE2022)

Main contributions:
• A hierarchical decomposition suggestion for result explainability and user choice flexibility.
• Number of target microservices is inferred.
• Introduce a new evaluation approach for microservices decomposition.

18

HierDecomp: Analysis
HierDecomp

Source code analysis

microservice
extraction

Decomposition

Semantic analysis

Structural analysisSource code

19

HierDecomp: Semantic Analysis

Decomposition

HierDecomp

Source code analysis

microservice
extraction

Structural analysis

Semantic analysis

• CartItem
• removeItemById
• isInStock

CamelCase
splitting

• cart
• item
• remove
• item
• by
• id
• is
• in
• stock

Stopword
filtering

• cart
• item
• remove
• item
• id
• stock

Stemming

• cart
• item
• remov
• item
• id
• stock

TF-IDF
vectorization

Source code

20

HierDecomp: Structural Analysis

Decomposition

HierDecomp

Source code analysis

microservice
extraction

Structural analysis

Semantic analysis

Abstract
Syntax Trees Call graphs

Source code

21

HierDecomp: epsilon-DBSCAN (1/2)

Decomposition

Source code

HierDecomp
Source code

analysis
microservice extraction

Structural
analysis

Semantic
analysis

22

HierDecomp : epsilon-DBSCAN (1/2)

Decomposition

HierDecomp
Source code

analysis
microservice extraction

Structural
analysis

Semantic
analysis

NxN
similarity

matrix
DBSCAN

ε-DBSCAN

Increment ε

Source code

23

HyDec: introduction

Combining Static and Dynamic Analysis to Decompose
Monolithic Application into Microservices

The 20th International Conference on Service-Oriented Computing 2022 (ICSOC2022)

Main contributions:
• A general approach to combine multiple analysis sources in order to generate hierarchical decompositions.
• Multiple combination approaches.
• A decomposition approach that improves the coverage while maintaining a performance similar to state-of-

the-art approaches.

24

HyDec: Overview

Source code

Execution logs

Structural analysis

Semantic analysis

Dynamic analysis

? Microservices
recommendation

+

+

25

HyDec: Dynamic analysis

Execution logs
Duplicate removal

Execution traces

MxM call matrix

M=6 in example

Dynamix
analysis result

26

HyDec: Static similarity

NxV TFIDF
Matrix M Cosine similarity M

NxN semantic
similarity

matrix

NxN interaction
Matrix M Call similarity M

NxN structural
similarity

matrix

NxN static
similarity

matrix

Weighted
average +

27

HyDec: Sequential epsilon-DBSCAN

28

MDynamic analysis MStatic analysis

Clustering (ε)

Clustering (εn)

...

Clustering (ε2)

Clustering (ε)

Clustering (ε2)

Clustering (εm)

...

Re
pr

es
en

ta
tio

n
bo

un
da

ry

HyDec: Alternating epsilon-DBSCAN

29

MDynamic analysis MStatic analysis

Clustering (ε)

Re
pr

es
en

ta
tio

n
bo

un
da

ry

Clustering (ε)

Clustering (ε2) Clustering (ε2)

... ...

Clustering (εm)Clustering (εn)

MSExtractor: Introduction

Improving microservices extraction using evolutionary search

The Journal of Information and Software Technology Volume 151

Main contributions:
• Formulating the microservices decomposition task as a search problem with an evolutionary algorithm.
• Using a multi-objective evolutionary algorithm in order to encapsulate the different aspects within a

decomposition.
• Differentiating between interface and inner classes within a decomposition.

30

MSExtractor: Clustering vs Optimization

31

Microservice 5Microservice 1 Microservice 2 Microservice 3 Microservice 4

Search Space

Viable Decompositions

A potential decomposition

MSExtractor: Overview

32

MSExtractor: Evolutionary algorithms

33

Evolutionary
Algorithms

Solution
representation

Fitness function

Crossover
operator

Mutation
operator

Initial population

MSExtractor: Workflow

34

Initialize
Population

Measure fitness
Stop

Criteria
met

Decomposi
tions

Select ParentsCrossoverMutation

Population

Yes

No

MSExtractor: Solution representation

35

ClinicService Vet PetType Owner Pet Visit Specialty VisitRepo

M4 M2 M3 M3 M3 M1 M2 M1

label-based integer encoding:

4 2 3 3 3 1 2 1

Initial population: random sampling

MSExtractor: MOEA

36

Cohesion Coupling Granularity

Microservice 1

Microservice 2

Microservice 1
Microservice 1

Microservice 2

Class 1

Class 2

Microservice 3

Multi-Objective Evolutionary
Algorithm (MOEA)

MSExtractor: Operators

37

Crossover operator

Mutation operator

RLDec: Introduction

Extracting Microservices from Monolithic Systems using Deep
Reinforcement Learning

In Review for The Empirical Software Engineering

Main contributions:
• Formulate the microservices decomposition problem as a reinforcement learning task.
• Improving the evaluation process by introducing novel metrics that can encapsulate multiple aspects

and that can compare with existing decompositions.

38

RLDec: Overview

39

RLDec: The sequential approach

40

Rt=
modularity(St+1) At=1

1 1 3 3 7 7

label-based integer encoding
St=

Feature
Matrix

1 1 3 1 7 7St+1=

t

RLDec: The combined sequential approach

41

Rt= (SMQ(St+1)+
CMQ(St+1))/2 At=1

Semantic
Feature
Matrix

Structural
Feature
Matrix

1 1 3 3 7 7

label-based integer encoding
St=

RLDec: RQ2

42

How does our approach perform when compared with state-of-the-art decomposition baselines?

RLDec: RQ3 (1/2)

43

Is our approach able to recapture the components of microservices that were created by human experts?

Vet

VisitRepository

Visit

PetDetails

VetResource

ConfigServerApplication

Specialty

Pet

VetRepository

Vet Service

Visit Service

Config Server

Pet Service

Original microservices

Compare

Vet

VisitRepository

Visit

PetDetails

VetResource

ConfigServerApplication

Specialty

Pet

VetRepository

Microservice 1

Microservice 3

Outliers

Microservice 2

Decomposition

RLDec: RQ3 (2/2)

44

Is our approach able to recapture the components of microservices that were created by human experts?

Representation learning: Motivation

45

Decomposition step

Representation learning: Visualization

46

Representation learning: alternatives

47

Word Embedding model
(ex: word2vec)

Vector representation (a numeric
vector) (example: a 300 dim vector)

word (set of characters) (ex:
example)

Representation learning: code embeddings

48

Code2vec Vector representation (a numeric
vector) (example: a 300 dim vector)

Code snippet (list of AST
paths)

CodeBERT

List of contextual vector
representation for each token in the

input (example: a matrix of shape
50x300) and an aggregation vector

Code snippet represented as
(text sequence (ex:

docstring) + code sequence
(method core))

Representation learning: Large Language Models

49

Representation learning: Data Collection

50

- Curated list of microservices applications in various programming languages used in research

- A list of “special” applications that can be considered due to factors such as having a monolithic
version, the scale of the application and the structure of the repository

- Keyword query: [regex=“micro(|-)?services?(|-)(architecture|system|application)”]

- Collected 154 Java microservices applications and 91 C# microservices applications

Representation learning: Evaluation (1/2)

51

Evaluating the distribution of embeddings in the context Monolith to Microservices:

1. Generate the embeddings for each class or method in an application
2. Measure the similarity between each couple of classes/methods (for example cosine similarity)
3. Measure the binary cross entropy loss based on the actual decomposition.
4. Evaluate the models based on the mean score across all applications.

Model Name
SFR-Embedding-
Mistral

deepseek-
coder-6.7B-
instruct OpenAI Code2Vec CodeBERT

semantic-
analysis

structural-
analysis

Mean score 0.704 0.736 0.757 0.816 0.873 0.964 19.700

Representation learning: Evaluation (2/2)

52

Evaluating the distance between the generated decomposition and the actual decomposition:

1. Generate the embeddings for each class or method in an application
2. Generate a decomposition for each algorithm (k-means, hierarchical clustering, dbscan, etc)
3. Measure the MSFB score defined in the RLDec approach
4. Evaluate the models based on the mean score across all applications and algorithms.

Model Name
SFR-Embedding-
Mistral

deepseek-
coder-6.7B-
instruct OpenAI CodeBERT Code2Vec

semantic-
analysis

structural-
analysis

MSFB 0.300 0.290 0.283 0.250 0.247 0.187 0.182

The decomposition platform: Current challenges

53

- Increasing number of decomposition approaches

- Difficulty of reproducing existing approaches

- Varied number of evaluation metrics and their implementations

- Multiple benchmark monolithic applications

- Lack of visualization tools for decompositions

The decomposition platform: Objective

54

Objective: Share a standardized platform for applying and evaluating decomposition approaches and
visualizing decompositions

The decomposition platform: Architecture

55

Conclusion

56

References
[1] Sean Treadway: https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture

[2] Stephen Sun: https://www.fullstackexpress.io/p/evolution-soundcloud-architecture-final

[3] Anup K. Kalia, Jin Xiao, Rahul Krishna, Saurabh Sinha, Maja Vukovic, and Debasish Banerjee. Mono2micro: A practical and effective tool for decomposing monolithic java applications to microservices. pages 1214–1224. Association for
Computing Machinery, Inc, 8 2021. ISBN 9781450385626. doi: 10.1145/3468264.3473915. URL https://dl.acm.org/doi/10.1145/3468264.3473915.

[4] Wuxia Jin, Ting Liu, Yuanfang Cai, Rick Kazman, Ran Mo, and Qinghua Zheng. Service candidate identification from monolithic systems based on execution traces. IEEE Transactions on Software Engineering, 47:987–1007, 5 2021. ISSN
19393520. doi: 10.1109/TSE.2019.2910531. URL https://ieeexplore.ieee.org/document/8686152.

[5] Davide Taibi and Kari Systä. From monolithic systems to microservices: A decomposition framework based on process mining. pages 153–164. SciTePress, 2019. ISBN 9789897583650. doi: 10.5220/0007755901530164. URL
https://www.scitepress.org/Link.aspx?doi=10.5220/0007755901530164.

[6] Utkarsh Desai, Sambaran Bandyopadhyay, and Srikanth Tamilselvam. Graph neural network to dilute outliers for refactoring monolith application. In AAAI Conference on Artificial Intelligence, 2 2021. URL http://arxiv.org/abs/2102.03827.

[7] Alex Mathai, Sambaran Bandyopadhyay, Utkarsh Desai, and Srikanth Tamilselvam. Monolith to microservices: Representing application software through heterogeneous graph neural network. 2022. URL
https://arxiv.org/abs/2112.01317https://www.ijcai.org/proceedings/2022/542.

[8] Manabu Kamimura, Keisuke Yano, Tomomi Hatano, and Akihiko Matsuo. Extracting candidates of microservices from monolithic application code. volume 2018-December, pages 571–580. IEEE Computer Society, 7 2018. ISBN
9781728119700. doi: 10.1109/APSEC.2018.00072.

[9] Miguel Brito, Jácome Cunha, and João Saraiva. Identification of microservices from monolithic applications through topic modelling. 2021. doi: 10.1145/3412841.3442016.

[10] Luís Nunes, Nuno Santos, and António Rito Silva. From a monolith to a microservices architecture: An approach based on transactional contexts. volume 11681 LNCS, pages 37–52. Springer Verlag, 2019. ISBN 9783030299828. doi:
10.1007/978-3-030-29983-5_3.

[11] Omar Al-Debagy and Péter Martinek. A microservice decomposition method through using distributed representation of source code. Scalable Computing, 22:39–52, 2021. ISSN 18951767. doi: 10.12694:/scpe.v22i1.1836. URL
https://www.scpe.org/index.php/scpe/article/view/1836.

[12] Shanshan Li, He Zhang, Zijia Jia, Zheng Li, Cheng Zhang, Jiaqi Li, Qiuya Gao, Jidong Ge, and Zhihao Shan. A dataflow-driven approach to identifying microservices from monolithic applications. Journal of Systems and Software, 157:110380,
2019. ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.07.008. URL https://www.sciencedirect.com/science/article/pii/S0164121219301475.

[13] Genc Mazlami, Jurgen Cito, and Philipp Leitner. Extraction of microservices from monolithic software architectures. pages 524–531. Institute of Electrical and Electronics Engineers Inc., 9 2017. ISBN 9781538607527. doi:
10.1109/ICWS.2017.61. URL https://ieeexplore.ieee.org/document/8029803.

[14] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. Service cutter: A systematic approach to service decomposition. volume 9846 LNCS, 2016. doi: 10.1007/978-3-319-44482-6_12.

[15] Yamina Romani, Okba Tibermacine, and Chouki Tibermacine. 2022. Towards Migrating Legacy Software Systems to Microservice-based Architectures: a Data-Centric Process for Microservice Identification. In 2022 IEEE 19th International
Conference on Software Architecture Companion (ICSA-C). 15–19.

[16] Vikram Nitin, Shubhi Asthana, Baishakhi Ray, and Rahul Krishna. 2023. CARGO: AI-Guided Dependency Analysis for Migrating Monolithic Applications to Microservices Architecture. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering. Article 20, 12 pages.

[17] Wesley K. G. Assunção, Thelma Elita Colanzi, Luiz Carvalho, Juliana Alves Pereira, Alessandro Garcia, Maria Julia de Lima, and Carlos Lucena. 2021. A Multi-Criteria Strategy for Redesigning Legacy Features as Microservices: An Industrial Case
Study. In 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). 377–387.

[18] Rahul Yedida, Rahul Krishna, Anup Kalia, Tim Menzies, Jin Xiao, Maja Vukovic, Partitioning cloud-based microservices (via deep learning), 2021, arXiv preprint arXiv:2109.14569.

[19] Zhiding Li, Chenqi Shang, Jianjie Wu, Yuan Li, Microservice extraction based on knowledge graph from monolithic applications, Information and Software Technology, Volume 150, 2022, 106992, ISSN 0950-5849,
https://doi.org/10.1016/j.infsof.2022.106992.

https://developers.soundcloud.com/blog/evolution-of-soundclouds-architecture
https://www.scpe.org/index

