Towards a Regression using Tensors

Ming Hou

February 27, 2014

Ming Hou Towards a Regression using Tensors

Outline

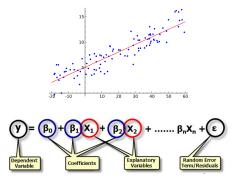
1 Background

- Linear Regression
- Tensorial Data Analysis
- 2 Tensor Basics
 - Definition
 - Tensor Operation
 - Tensor Decomposition
- 3 Generalized Linear Tensor Regression
 - Generalized Linear Tensor Regression Model
 - Attention Deficit Hyperactivity Disorder Data Analysis
- 4 Future Work Plan
 - Future Work Plan

Background

Tensor Basics Generalized Linear Tensor Regression Future Work Plan Linear Regression Tensorial Data Analysis

Classical Linear Regression



Predict

e.g. speed,road conditions, weather \Rightarrow traffic accidents rates

Identify the key predictors

e.g mental disease status \Rightarrow the regions of brain

Linear Regression Tensorial Data Analysis

Multi-Dimensional Array Data (Tensors)

• Neuroscience

- **EEG** data: (time × frequency × electrodes)
- fMRI data: (time × x axis × y axis × z axis)

• Vision

 image (video) data: (pixel × illumination × expression × viewpoints)

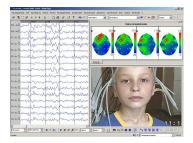
• Chemistry

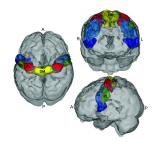
 fluorescence excitation-emission data: (samples × emission × excitation)

Linear Regression Tensorial Data Analysis

Brain Imaging Data Analysis

- Mental health disorders are difficult to diagnose and treat
- Physiology of brain is not well understood
- Neuroimaging can explain the brain physiology
- Several types of neuroimaging EEG MRI fMRI





Linear Regression Tensorial Data Analysis

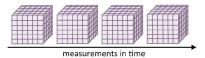
Brain Imaging Data Analysis using Regression

- Goal is to find association between brain images and clinical outcomes.
- Formulate as regression problem
 - clinical outcome as response
 - brain image (multi-dimensional array) as tensor predictor

Linear Regression Tensorial Data Analysis

Limitation of Classical Regression

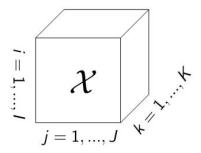
- Naive approach: turning an image array as vector predictor
 - e.g. a fMRI image: 4D array with size $256\times256\times256\times100$
 - yields a huge number of parameters (167 millions!)
 - ignores spatial and temporal correlation
- New method: treat each fMRI observation as one tensor predictor in regression model



One fMRI Observation from One Subject

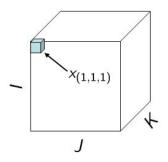
Definition Tensor Operation Tensor Decomposition

What is Tensor?



Definition Tensor Operation Tensor Decomposition

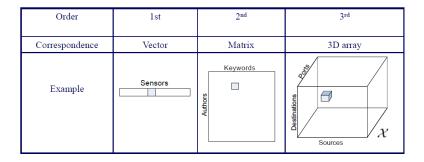
What is Tensor? con't



Definition Tensor Operation Tensor Decomposition

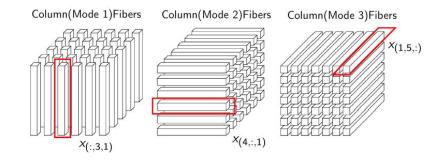
What is Tensor? con't

- A tensor is formally denoted as $\mathcal{X} \in \mathbb{R}^{I_1 imes I_2 imes \dots imes I_N}$
 - generalization of vector and matrix
 - represented as multi-dimensional array



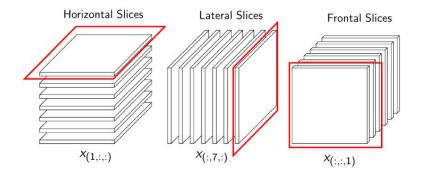
Definition Tensor Operation Tensor Decomposition

Fibers



Definition Tensor Operation Tensor Decomposition

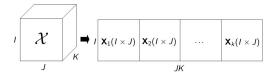
Slices



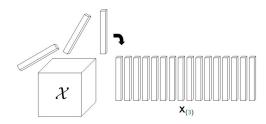
Definition Tensor Operation Tensor Decomposition

Matricization (Unfolding)

Convert a tensor to a matrix

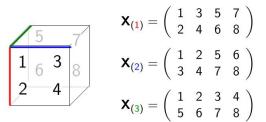


Tube fibers are rearranged into the columns of a matrix



Definition Tensor Operation Tensor Decomposition

Matricization (Unfolding) Example



Definition Tensor Operation Tensor Decomposition

The n-Mode Multiplication

Let $\mathcal{X} \in \mathbb{R}^{I \times J \times K}$, $\mathbf{B} \in \mathbb{R}^{M \times J}$, the 2-mode product of \mathcal{X} with \mathbf{B} is defined by

$$\mathcal{Y} = \mathcal{X} \times_2 \mathbf{B} \in \mathbb{R}^{I \times M \times K}$$

Elementwise

$$y_{imk} = \sum_{j} x_{ijk} b_{mj}$$

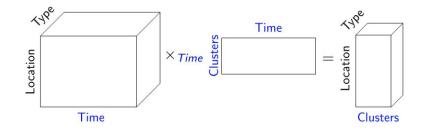
In matrix form

$$Y_{(2)} = BX_{(2)}$$

Multiply each row (mode-2) fiber by **B**

Definition Tensor Operation Tensor Decomposition

The n-Mode Multiplication Example



Definition Tensor Operation Tensor Decomposition

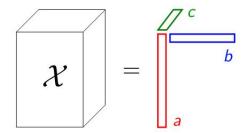
Rank-1 Tensor

3-way outer product

$$\mathcal{X} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c}$$

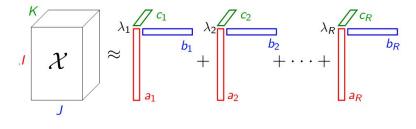
Elementwise

 $x_{ijk} = a_i b_j c_k$



Definition Tensor Operation Tensor Decomposition

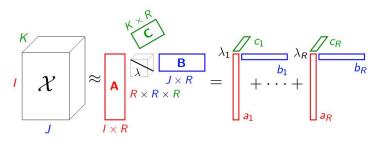
CANDECOMP/PARAFAC Decomposition



$$\mathcal{X} \approx \sum_{r=1}^{R} \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

Definition Tensor Operation Tensor Decomposition

CANDECOMP/PARAFAC Decomposition con't



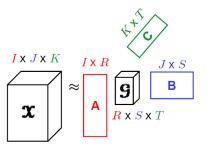
Define factor matrix $\mathbf{A} \in \mathbb{R}^{I \times R}$, $\mathbf{B} \in \mathbb{R}^{J \times R}$ and $\mathbf{C} \in \mathbb{R}^{K \times R}$

$$\mathcal{X} \approx \sum_{r=1}^{R} \lambda_r a_r \circ b_r \circ c_r \equiv [\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}]$$
$$x_{ijk} \approx \sum_{r=1}^{R} \lambda_r a_{ir} b_{jr} c_{kr}$$

Ming Hou Towards a Regression using Tensors

Definition Tensor Operation Tensor Decomposition

Tucker decomposition



Defined by factor matrix $\mathbf{A} \in \mathbb{R}^{I \times R}$, $\mathbf{B} \in \mathbb{R}^{J \times S}$ and $\mathbf{C} \in \mathbb{R}^{K \times T}$, and core tensor $\mathcal{G} \in \mathbb{R}^{R \times S \times T}$

$$\mathcal{X} \approx \mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C} \equiv [\mathcal{G}; \mathbf{A}, \mathbf{B}, \mathbf{C}]$$
$$x_{ijk} = \sum_{r=1}^R \sum_{r=1}^S \sum_{r=1}^T g_{rst} \mathbf{a}_{ir} \mathbf{b}_{js} \mathbf{c}_{kt}$$

Ming Hou Towards a Regression using Tensors

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Generalized Linear Regression Model

The standard linear regression model $\mathbf{x} \in \mathbb{R}^{p}$, $y = \beta^{T} \mathbf{x} + \alpha + \varepsilon$, $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^{2})$ can be written

$$\mu = \beta^T \mathbf{x} + \alpha \quad \mathbf{y} \sim \mathcal{N}(\mu, \sigma^2)$$

where $\mu = \mathbb{E}(Y|\mathbf{x})$

A generalized linear regression model (GLM) extends this to

$$g(\mu) = \beta^T \mathbf{x} + \alpha \quad \mathbf{y} \sim \mathcal{EF}(\mu, \phi)$$

- *EF*(μ, φ) is any exponential family distribution (e.g. Normal, Poisson, Binomial)
- $g(\cdot)$ is any smooth monotonic link function
- $\beta^T \mathbf{x} + \alpha (= \eta)$ is the linear predictor

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Generalized Linear Regression Model con't

In classical **GLM** Y belongs to an exponential family with **PMF**

$$p(y| heta, \phi) = \exp\{rac{y heta - b(heta)}{a(\phi)} + c(y, \phi)\}$$

The **GLM** relates $\mathbf{x} \in \mathbb{R}^{p}$ to the mean $\mu = \mathbb{E}(Y|\mathbf{x})$ by

$$g(\mu) = \eta = \alpha + \beta^T \mathbf{x}$$

The **GLM** for the matrix predictor **X** given by

$$g(\mu) = \eta = \alpha + \gamma^T \mathbf{z} + \beta_1^T \mathbf{X} \beta_2$$

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Generalized Linear Regression Model for Tensor Predictor

The **GLM** with the systematic part for tensor predictor given by

$$g(\mu) = \eta = \alpha + \gamma^T \mathbf{z} + \langle \mathcal{B}, \mathcal{X} \rangle$$

- *D*-dimensional tensor predictor $\mathcal{X} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$
- *D*-dimensional coefficient tensor $\mathcal{B} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$
- \mathcal{B} has $\prod_{d=1}^{D} p_d$ parameters, which is ultrahigh dimensional and far exceeds sample size

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Generalized Linear CP Tensor Regression

- Univariate outcome Y belongs to exponential family
- Tensor covariate $\mathcal{X} \in \mathbb{R}^{p_1 \times \cdots \times p_D}$
- Assume coefficient tensor \mathcal{B} has a rank-R decomposition $[\mathbf{B}_1, ..., \mathbf{B}_D]$ where $\mathbf{B}_d \in \mathbb{R}^{p_d \times R}$

Generalized linear CP tensor regression model (Zhou et al. 2013) with the systematic part given by

$$g(\mu) = \eta = \alpha + \gamma^{T} \mathbf{z} + \langle \sum_{r=1}^{R} \beta_{1}^{(r)} \circ \cdots \circ \beta_{D}^{(r)}, \mathcal{X} \rangle$$
$$= \alpha + \gamma^{T} \mathbf{z} + \langle (\mathbf{B}_{D} \odot \cdots \odot \mathbf{B}_{1}) \mathbf{1}_{R}, \operatorname{vec}(\mathcal{X}) \rangle$$

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Generalized Linear CP Tensor Regression con't

Generalized linear CP tensor regression model given by

$$g(\mu) = \eta = \alpha + \gamma^{\mathsf{T}} \mathsf{z} + \langle (\mathsf{B}_D \odot \cdots \odot \mathsf{B}_1) \mathbf{1}_{\mathsf{R}}, \mathsf{vec}(\mathcal{X}) \rangle$$

• substantial reduction in dimensionality to the scale of $R \times \sum_{d=1}^{D} p_d$

e.g For a 128-by-128-by-128 **MRI** image, the dimensionality reduce from **2,097,157** to **1157** using rank-3 decomposition

• Zhou et al.(2013) showed that this low rank tensor model could provide a sound recovery of many low rank signals

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Estimation

Given *n* iid data $\{(y_i, \mathcal{X}_i, \mathbf{z}_i), i = 1, ..., n\}$ the log-likelihood

$$\ell(\alpha, \gamma, \mathbf{B}_1, ..., \mathbf{B}_D) = \sum_{i=1}^n \frac{y_i \theta - b(\theta)}{a(\phi)} + \sum_{i=1}^n c(y_i, \phi)$$

find the parameters $(\alpha, \gamma, \mathbf{B}_1, ..., \mathbf{B}_D)$ that maximizes this function

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Estimation con't

Generalized linear CP tensor regression model given by

$$g(\mu) = \eta = \alpha + \gamma^T \mathbf{z} + \langle (\mathbf{B}_D \odot \cdots \odot \mathbf{B}_1) \mathbf{1}_R, \mathsf{vec}(\mathcal{X}) \rangle$$

A key observation is although $g(\mu)$ is not linear in $(\mathbf{B}_1, ..., \mathbf{B}_D)$ jointly, it is linear in each \mathbf{B}_d separately

When updating $\mathbf{B}_d \in \mathbb{R}^{p_d \times R}$, the inner product part can be written as

$$< \mathsf{B}_{d}, \mathsf{X}_{(d)}(\mathsf{B}_{D} \odot \cdots \odot \mathsf{B}_{d+1} \odot \mathsf{B}_{d-1} \odot \cdots \odot \mathsf{B}_{1}) >$$

this yields the **block relaxation algorithm**, which converges to a stationary point

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

Sparsity Regularization

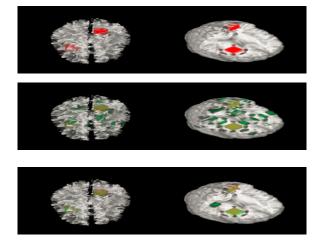
Maximize a regularized log-likelihood function

$$\ell(\alpha, \gamma, \mathbf{B}_1, ..., \mathbf{B}_D) - \sum_{d=1}^D \sum_{r=1}^R \sum_{i=1}^{p_d} P_{\lambda}(|\beta_{di}^{(r)}|, \rho)$$

- scalar penalty function $P_{\lambda}(|eta|,
 ho)$
- power family $P_{\lambda}(|x|, \rho) = \rho |\beta|^{\lambda}$, $\lambda \in (0, 2]$
- in particular lasso ($\lambda = 1$)

Generalized Linear Tensor Regression Model Attention Deficit Hyperactivity Disorder Data Analysis

ADHD-200 Data Results



[taken from (Zhou et al. 2013)]

Ming Hou Towards a Regression using Tensors

Future Work Plan

- Extending the linear CP/Tucker tensor regression model to the linear $\mathcal{H}\text{-}\mathsf{Tucker}$ tensor regression model
 - like CP model, the number of parameters is free from exponential dependence on *D*
 - preserve the flexibility of Tucker model
- Comparing the performance of different tensor regression models (Tucker, *H*-Tucker) when applying different regularization approaches (sparsity regularization, trace norm regularization)

Future Work Plan

Future Work Plan con't

- Finding the appropriate model and algorithm to address the multi-block tensor regression problems
- Combing the kernel concept and partial least squares (PLS) techniques to deal with tensor (multi-block tensor) regression problem
- Applying tensor regression approaches listed above to the applications such as neuroimaing data analysis, brain signal data analysis to test if the improved performance can be achieved