Floating-point number parsing with perfect accuracy at a gigabyte per second

Daniel Lemire
professor, Université du Québec (TELUQ)
Montreal I+}

blog: https://lemire.me
twitter: @lemire
GitHub: https://github.com/lemire/

I work with Michael Eisel, lvan Smirnov, Nigel Tao, R. Oudompheng, Carl Verret and
others!

https://lemire.me/
https://twitter.com/lemire
https://github.com/lemire/

How fast is your disk?

PCle 4 disks: 5 GB/s reading speed (sequential)

Disk Speed Test Blackmagicdesign

20

‘\

SPEED TEST

START

Fact

Single-core processes are often CPU bound

How fast can you ingest data?

{ "type": "FeatureCollection",
"features": [
[[[-65.613616999999977,43.420273000000009] ,
[-65.619720000000029,43.418052999999986] ,
[-65.625,43.421379000000059],
[-65.636123999999882,43.449714999999969],
[-65.633056999999951,43.474709000000132],
[-65.611389000000031,43.513054000000068] ,
[-65.605835000000013,43.516105999999979],
[-65.598343,43.515830999999935],
[-65.566101000000003,43.508331000000055],

How fast can you parse numbers?

std::stringstream in(mystring);
while(in >> x) {

sum += X;
I3

return sum;

50 MB/s (Linux, GCC -0O3)

Source: https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-

a-string-in-c/

https://lemire.me/blog/2019/10/26/how-expensive-is-it-to-parse-numbers-from-a-string-in-c/

Some arithmetic

5 GB/s divided by 50 MB/s is 100.
Got 100 CPU cores?

Want to cause climate change all on your own?

How to go faster?

e Fewer instructions (simpler code)

e Fewer branches

How fast can you go?

AMD Rome (Zen 2). GNU GCC 10, -O3.

function bandwidth instructions ins/cycle
strtod (GCC 10) 200 MB/s 1100 3
ours 1.1 GB/s 280 4.2

17-digit mantissa, random in [0,1].

Floats are easy

o Standard in Java, Go, Python, Swift, JavaScript...
e |EEE standard well supported on all recent systems

e 64-bit floats can represent all integers up to 293 exactly.

Floats are hard

> 0.1 + 0.2 == 0.3
false

10

Generic rules regarding "exact" IEEE support

e Always round to nearest floating-point number (*,+,/)

e Resolve ties by rounding to nearest with an even decimal mantissa/significand.

11

Benefits

e Predictable outcomes.
e Debuggability.

o Cross-language compatibility (same results).

12

Challenges

e Machine A writes float a to string
e Machine B reads string gets float ’

e Machine C reads string gets float "

Doyouhavex = ' and z = "7

13

What is the problem?

Need to go from

(e.g., 123eD)

to

w X 107

m X 2P

14

Example

0.1 — 7205759403792793 x 2 °°
0.1710000000000000000555

0.2 — 7205759403792794 x 2°°
0.20000000000000001M1

0.3 — 5404319552844595 x 27°4
0.29999999999999998889/76975

15

Problems

Start with 32323232132321321111e124.

0'24as a float (not exact)

Lookup 1
Convert 32323232132321321111 to a float (not exact)
Compute (10%%) x (32323232132321321111)

Approximation X Approximation = Even worse approximation!

16

Insight

You can always represent floats exactly (binary64) using at most 17 digits.

Never to this:

3.141592653589793238462643383279502884197169399375105820974944592
3078164062862089986280348253421170679

17

WHAT THE NUMBER OF DIGITS IN YOUR COORDINATES MEANS

LAT/LON PRECISION

MEANING

28N 80°W

YOURE PROBABLY DOING SOMETHING
SPACE-RELATED

28.5°N 80.6'W

YOURE POINTING OUT A SPECIFIC CITY

2852°N, 80.68°W

YOU'RE POINTING OUT A NEIGHBORHOOD

23.523'N, 80.683°W

YOU'RE POINTING OUT A SPECIFIC
SUBURBAN CUL-DE-SAC

28.5234°N, 80.6830°\J

YOURE POINTING TO A PARTICULAR
CORNER OF A HOUSE

28.52345°N, 80.68307°W

YOURE POINTING 70 A SPECIFIC PERSON IN
A ROOM, BUT SINCE YOU DIDNT INCLUDE
DATUM INFORMATION, WE. CANT TELL WHO

28.523457I°N, .
8 3034 YOU'RE. POINTING TO WJALDO ON A PAGE
28.523457I82°N,])
20683004B5°\ HEY, CHECK OUT THIS SPECIFIC SAND GRAIN!
EITHER YOU'RE HANDING OUT RAW
28523457182318284N, | FLOATING POINT VARIABLES, OR YOU'VE
80.683074159265358°W | BULT A DATABASE To TRACK INDIVIDUAL

ATOMS. IN EITHER CASE, PLEASE STOR

credit: xkecd

18

We have 64-bit processors

So we can express all positive floats as
12345678901234567E+/-123 .

Orw x 1014
where mantissa w < 1017

But 1017 fits in a 64-bit word!

19

Factorization

10 =5 x 2

20

Overall algorithm

e Parse decimal mantissa to a 64-bit word!
e Precompute 59 for all powers with up to 128-bit accuracy.
o Multiply!

e Figure out right power of two
Tricks:

e Deal with "subnormals”
e Handle excessively large numbers (infinity)

e Round-to-nearest, tie to even

21

Check whether we have 8 consecutive digits

bool is_made_of_eight_digits_fast(const char xchars) {
uint64 _t val;
memcpy(&val, chars, 8);
return (((val & OxFOFOFOFOFOFOFOFQ) |
(((val + 0x0606060606060606) & OXFOFOFOFOFOFOFQFQ) >> 4))
== @x3333333333333333);
I3

(Works with ASCII, harder if input is UTF-16 as in Java/C#)

22

Then construct the corresponding integer

Using only three multiplications (instead of 7):

uint32_t parse_eight_digits_unrolled(const char xchars) {
uinte4_t val;

memcpy(&val, chars, sizeof(uint64_t));

val = (val & OxOFOFOFOFOFQFQFOF) x 2561 >> 8;

val = (val & OxQ0OFFOOFFOOFFOOFF) x 6553601 >> 16;

return (val & OxQ0000FFFFOQOOFFFF) x 42949672960001 >> 32;

23

Positive powers

e Compute w X 57 where 57 is only approximate (128 bits)

e 99.99% of the time, you get provably accurate 55 bits

24

Negative powers

e Compilers replace division by constants with multiply and shift

C++ source #1 X o X ARM64 gcc 8.2 (Editor #1, Compiler #1) C++ X
A~ B +- v £ » C++ - ARM64 gec 8.2 ~ @& | -03
. < . > [
1 #include <stdint.h A O~ Y- B +~- /-~
2
1 di i d int):
3 uint32 t div(uint32 t x) { — 1v(unsigned int)
N B 2 1, 61681
4 return x / 17; mov Wi
5 } 3 movk wl, 0xf0f0, 1sl1l 16
6 4 umull x0, w0, wl
5 1sr x0, x0, 36
6 ret

credit: godbolt

Reading: Integer Division by Constants: Optimal Bounds, https://arxiv.org/abs/2012.12369

https://arxiv.org/abs/2012.12369

Negative powers

e Precompute 2b/5q (reciprocal, 128-bit precision)

e 99.99% of the time, you get provably accurate results

26

What about tie to even?

o Need absolutely exact mantissa computation, to infinite precision.

e But only happens for small decimal powers (q € [—4, 23]) where absolutely exact
results are practical.

27

What if you have more than 19 digits?

e Truncate the mantissa to 19 digits, map to w.

e Do the work for w x 109
e Do the work for (w + 1) x 109

o When get same results, you are done. (99% of the time)

28

Overall

o With 64-bit mantissa.
o With 128-bit powers of five.
e Can do exact computation 99.99% of the time.

e Fast, cheap, accurate.

29

Full product?

e 64-bit X 64-bit — 128-bit product
e GNUGCC: _ uint128_t.

e Microsoft Visual Studio: _umul128
e ARM intrinsic: __umulh

e Go: bits.Mul64

C#: Math.BigMul

Leading zeros

e How many consecutive leading zeros in 64-bit word?

GNU GCC: _ builtin_clz1l1l

Microsoft Visual Studio: _BitScanReverse64
e C++20: std::countl_zero

e Go: bits.LeadingZeros64

e C#: BitOperations.LeadingZeroCount

31

throughput (MiB/s)

https://github.com/lemire/fast_float

GNU GCC

LLVM clang

used by Apache Arrow, Yandex ClickHouse, Microsoft LightGBM

1,500

1,000

500

netlib d.-conv. strtod abseil this paper

32

https://github.com/lemire/fast_float

Go

Algorithm adapted to Go's standard library (ParseFloat) by Nigel Tao and others

Release notes (version 1.16): ParseFloat (...) improving performance by up to a factor
of 2.

Perfect rounding,.

Blog post by Tao: The Eisel-Lemire ParseNumberF64 Algorithm

33

https://nigeltao.github.io/blog/2020/eisel-lemire.html

Rust

function
from_str (standard)
lexical (popular lib.)

fast-float

speed
130 MB/s
370 MB/s
1200 MB/s

34

R

rcppfastfloat: https://github.com/eddelbuettel/rcppfastfloat

3x faster than standard library

35

https://github.com/eddelbuettel/rcppfastfloat

CH#

FastFloat.ParseDouble is 5x faster than standard library (Double.Parse)
https://github.com/CarlVerret/csFastFloat/

credit: Carl Verret, Egor Bogatov (Microsoft) and others

36

https://github.com/CarlVerret/csFastFloat/

Further reading

e Daniel Lemire, Number Parsing at a Gigabyte per Second, Software: Practice and
Experience (to appear) https://arxiv.org/abs/2101.11408

e Blog: https://lemire.me/blog/

37

https://arxiv.org/abs/2101.11408
https://lemire.me/blog/

