Improving filtering algorithms for the Disjunctive Constraint

Hamed Fahimi

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

\square PRELIMIINARIES
\square PROPAGATION OF DISJUNCTIVE CONSTRAINT

\square EXPERIMIENTAL RESULTS

CONCLUSION

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

\square PRELIMIINARIES
\square PROPAGATION OF DISJUNCTIVE CONSTRAINT

\square EXPERIMIENTAL RESULTS
\square
गरण inviramil Tvin mann
\square CONCLUSION
contantindint

What is Scheduling?

A hands-on application of scheduling!

- Where? In the wood product industry!
- The wood is wet at first and must be dried before being cut and used for construction.
- The task is to put the wood in a dryer and make sure it is solid and it won't deform. The resource is the dryer.
- There are so many loads to be put in the dryer. So, we have as many tasks as the number of loads.

A hands-on application of scheduling!

- The earliest starting time of a task is when the truck arrives with the wood.
- For each load, there is a deadline which is the time that the customer wants to have it ready.
- The processing time is the amount of time that the wood remains in the dryer to lose moisture and dry out.

Thustration of a task and its parameters

Mhustration of a task and its parameters

Mlustration of a task and its parameters

Mlustration of a task and its parameters

Mustration of a task and its parameters

Mustration of a task and its parameters

Mustration of a task and its parameters

Mlustration of a task and its parameters

Mlustration of a task and its parameters

Mhustration of a task and its parameters

Mhustration of a task and its parameters

Mhustration of a task and its parameters

Mllustration of a task and its parameters

Mhustration of a task and its parameters

Thustration of a task and its parameters

- We call the interval $\left[r_{i}, d_{\mathrm{i}}\right.$) the allowed execution interval of $\operatorname{task} \mathrm{A}_{\mathrm{i}}$.

Mllustration of a task and its parameters

- We call the interval $\left[r_{i}, d_{\mathrm{i}}\right.$) the allowed execution interval of task A_{i}.
- \rightarrow The release time;
- \leftarrow The deadline;
- The number of colored cells = Processing time;
- Gray cells: Out of the allowed execution interval of the task.

Disjunctive scheduling

Disjunctive scheduling

- A feasible schedule!

Disjunctive scheduling

- An alternative feasible schedule!

Scheduling classification with the tasks

$>$ Non-Preemptive Scheduling:

Scheduling classification with the tasks

$>$ Non-Preemptive Scheduling:

Scheduling classification with the tasks

$>$ Preemptive Scheduling:

Scheduling classification with the tasks

$>$ Preemptive Scheduling:

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

DPRELIMINARIES

\square PROPAGATION OF DISJUNCTIVE CONSTRAINT
\square EXPERIMENTAL RESULTS

\square CONCLUSION
ฉ ค T P N PルT T

Definition of Constraint Programming

- Let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be a set of variables. A constraint C is a condition, imposed over a subset $\mathrm{X}_{\mathrm{C}} \subseteq \mathrm{X}$, which describes a relation between the elements of X_{C}.
- An instance of a CSP is described by the sets
$\mathrm{X}=\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\} \quad \mathrm{D}=\left\{\mathrm{D}\left(\mathrm{X}_{1}\right), \ldots, \mathrm{D}\left(\mathrm{X}_{\mathrm{n}}\right)\right\}$
$\mathrm{C}=\left\{\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{m}}\right\} \quad \mathrm{X}^{\prime}=\left\{\mathrm{X}_{\mathrm{C} 1}, \ldots, \mathrm{X}_{\mathrm{Cm}}\right\}$
- An assignment of values to the variables, which satisfies all of the constraints of a CSP, is called a solution. A solution for the constraint C is called a support.

Example (Disjunctive problem)

Example (Disjunctive problem)

- $S=\left\{S_{1}, S_{2}, S_{3}\right\}$
- $S_{1} \in[1,4], S_{2} \in[5,13], S_{3} \in[2,12]$
- $\left(\mathrm{S}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \leq \mathrm{S}_{\mathrm{j}}\right) \vee\left(\mathrm{S}_{\mathrm{j}}+\mathrm{p}_{\mathrm{j}} \leq \mathrm{S}_{\mathrm{i}}\right)($ for $\mathrm{i}, \mathrm{j}=1,2,3 \& \mathrm{i} \neq \mathrm{j})$

Example (Disjunctive problem)

$\mathrm{A}_{1} \mathrm{~A}_{2} \rightarrow \mathrm{~A}$
$\mathrm{~A}_{2}$
$\mathrm{~A}_{3}$

- $\mathrm{S}=\left\{\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right\}$
- $S_{1} \in[1,4], S_{2} \in[5,13], S_{3} \in[2,12]$
- $\left(\mathrm{S}_{\mathrm{i}}+\mathrm{p}_{\mathrm{i}} \leq \mathrm{S}_{\mathrm{j}}\right) \vee\left(\mathrm{S}_{\mathrm{j}}+\mathrm{p}_{\mathrm{j}} \leq \mathrm{S}_{\mathrm{i}}\right)($ for $\mathrm{i}, \mathrm{j}=1,2,3 \& \mathrm{i} \neq \mathrm{j})$

$\cdot(1,6,12)$ is a support.

Disjunctive Constraint

- Let $\mathrm{I}=\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}$ be a set of tasks with unknown starting times S_{i}, and known processing time $p_{i}(1 \leq i \leq n)$.
- Variables: $\mathrm{X}=\left\{\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}\right\}$;
- Domains: $\mathrm{D}\left(\mathrm{S}_{\mathrm{i}}\right)=\left[\mathrm{r}_{\mathrm{i}}\right.$, $\left.\mathrm{lst}_{\mathrm{i}}\right]$;
- Constraint: No more than one task executes at each time t .
- The constraint DISJUNCTIVE $\left(\left[S_{1}, \ldots, S_{n}\right]\right)$ is satisfied, if for all pairs of tasks ($\mathrm{i} \neq \mathrm{j}$)

$$
S_{i}+p_{i} \leq S_{j} \text { or } S_{j}+p_{j} \leq S_{i}
$$

Constraint filtering

- Initially, the domains of a CSP may include values which are not consistent with some constraints of the problem.
- To reduce the search space, solvers use filtering algorithms associated to each constraint.
- Filtering algorithms keep on excluding values of the domains that do not lead to a feasible solution, until it is not possible to prune the domains of variables further.

Example (Disjunctive comstraint)

- There is no chance to start task A_{3} at its release time, as A_{1} would not execute. Thus, the values $\{2,3\}$ should be filtered from the domain of A_{3}.

Example (Disjunctive comstraint)

- There is no chance to start task A_{3} at its release time, as A_{1} would not execute. Thus, the values $\{2,3\}$ should be filtered from the domain of A_{3}.
- The values $\{2,3\}$ are out of the allowed execution interval of A_{3}.

Disjunctive Constraint

- It is NP-Complete to determine whether there exists a solution to Disjunctive constraint.
- It is NP-Hard to filter out all values that do not lead to a solution.
- Nonetheless, there exist rules that detect in polynomial time some filtering of the domains of the tasks.
- Our goal is to improve some existing filtering algorithms for the Disjunctive constraint.

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

\square PRELIMIINARIES
\square PROPAGATTION OF DISJUNCTIVE CONSTRAINT

\square EXPERIMIENTAL RESULTS

\square CONCLUSION

Preliminaries

- We aim to design filtering algorithms, which are faster than the previously known algorithms.
- To achieve this goal, there are two major operations, to take advantage of:
- Sorting in linear time;
- Union-Find data structure.
- Since all the time points can be encoded with fewer than 32 bits, radix sort sorts them in linear time.

Union-Find Data structure

Function (Gabow \& Tarjan, 1983)	Operation	Complexity
Union-Find (n)	Initializes n disjoint sets $\{0\},\{1\}, \ldots,\{n-1\}$	$O(n)$

Union-Find Data structure

Function (Gabow \& Tarjan, 1983)	Operation	Complexity
Union-Find (n)	Initializes n disjoint sets $\{0\},\{1\}, \ldots,\{n-1\}$	$O(n)$
Union $(a, a+1)$	Merges the set that contains the element a with the set that contains the element $a+1$	$O(1)$

Union-Find Data structure

Function (Gabow \& Tarjan, 1983)	Operation	Complexity
Union-Find (n)	Initializes n disjoint sets $\{0\},\{1\}, \ldots,\{n-1\}$	$O(n)$
Union $(a, a+1)$	Merges the set that contains the element a with the set that contains the element $a+1$	$O(1)$
FindSmallest (a)	Returns the smallest element of the set that contains a	$O(1)$

Union-Find Data structure

Function (Gabow \& Tarjan, 1983)	Operation	Complexity
Union-Find (n)	Initializes n disjoint sets $\{0\},\{1\}, \ldots,\{n-1\}$	$O(n)$
Union $(a, a+1)$	Merges the set that contains the element a with the set that contains the element $a+1$	$O(1)$
FindSmallest (a)	Returns the smallest element of the set that contains a	$O(1)$
FindGreatest (a)	Returns the greatest element of the set that contains a	$O(1)$

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

DPRELIMINARIES

\square PROPAGATION OF DISJUNCTIVE CONSTRAINT
\square EXPERIMENTAL RESULTS

\square CONCLUSION
ฉ ค T P N PルT T

Time-Tabling

- A technique to filter the Disjunctive constraint.
- It consists of finding the necessary usage of the resource over a time interval.

Time-Tabling

Time-Tabling

- If $1 s t_{i}<$ ect $_{\mathrm{i}}$ for a task i , then the interval $\left[1 \mathrm{st}_{\mathrm{i}}\right.$, ect $_{\mathrm{i}}$) is called the fixed part of i .

Time-Tabling

Time-Tabling

Time-Tabling

- Ouellet \& Quimper presented an algorithm for Time-Tabling on a more general case in $\mathrm{O}(n \log (n))$.
- We took advantage of Union-Find to achieve a linear time algorithm for Time-Tabling in the Disjunctive case.

The strategy of our Time-Tabling
algorithm

The strategy of our Time-Tabling algorithm

- First, we list the fixed parts of the tasks which have fixed part.

The strategy of our Time-Tabling algorithm

- First, we list the fixed parts of the tasks which have fixed part.
- A_{1} and A_{2} have fixed parts.

The strategy of our Time-Tabling
 algorithm

- First, we list the fixed parts of the tasks which have fixed part.
- A_{1} and A_{2} have fixed parts.

The strategy of our Time-Tabling
 algorithm

- First, we list the fixed parts of the tasks which have fixed part.
- A_{1} and A_{2} have fixed parts.

- We process the tasks in increasing order of processing times.

The strategy of our Time-Tabling
 algorithm

- A_{3} cannot be scheduled at 2 .

The strategy of our Time-Tabling
 algorithm

- A_{3} does not fit in $[5,9]$.

The strategy of our Time-Tabling
 algorithm

- A_{3} cannot be scheduled at 10 .

The strategy of our Time-Tabling
 algorithm

- Hence, A_{3} jumps over two fixed parts.

The strategy of our Time-Tabling
 algorithm

- The domain of A_{3} after filtering.

The strategy of our Time-Tabling
 algorithm

$\operatorname{Merged}\left(\operatorname{Fixed}\left(\mathrm{A}_{1}\right), \operatorname{Fixed}\left(\mathrm{A}_{2}\right)\right)$

- Since the tasks are being processed in increasing order of processing times, the next tasks will not fit in [0,14], neither. At this point, Union-Find merges the fixed parts of A_{1} and A_{2} to one set in constant time!

The strategy of our Time-Tabling algorithm

- Jumping over a fixed part takes constant time.
- Merging the fixed parts reduces the number of jumps.
- That is how we achieve a linear time algorithm!

Θ-Tree

- Given a set of tasks, if we schedule them at their earliest starting time, with preemption, what will the completion time of the last task be?

Θ-Tree

- Given a set of tasks, if we schedule them at their earliest starting time, with preemption, what will the completion time of the last task be?
- This value is called the "Earliest Completion Time" of a set of tasks.

Θ-Tree

- Given a set of tasks, if we schedule them at their earliest starting time, with preemption, what will the completion time of the last task be?
- This value is called the "Earliest Completion Time" of a set of tasks.
- Vilím introduced a data structure called Θ-Tree that computes the earliest completion time of a set of task Θ.

Θ-Tree

- Given a set of tasks, if we schedule them at their earliest starting time, with preemption, what will the completion time of the last task be?
- This value is called the "Earliest Completion Time" of a set of tasks.
- Vilím introduced a data structure called Θ-Tree that computes the earliest completion time of a set of task Θ.
- One can insert a task into Θ or remove a task from Θ and update the computation in $\mathrm{O}(\log (n))$ time.

Time line

- We introduced this idea to improve upon the Θ-tree.
- What does it do?
- This data structure is initialized with an empty set of tasks $\Theta=\varnothing$.
- It is possible to add, in constant time, a task to Θ. The task will be scheduled at the earliest time as possible with preemption.
- It is possible to compute the earliest completion time of Θ in constant time, at any time.

Time lime

Time line

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- The time line is a line with markers for important dates. The important dates are the release times of the tasks and one time point that is late enough.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline \square & \\
5
\end{array}
$$

$$
\} \rightarrow\} \rightarrow\{5\} \rightarrow\}
$$

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- The time line is a line with markers for important dates. The important dates are the release times of the tasks and one time point that is late enough.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \rightarrow\} \rightarrow\{5\} \rightarrow\}
$$

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- The time line is a line with markers for important dates. The important dates are the release times of the tasks and one time point that is late enough.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & & & & & & & \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

$$
\{1\} \rightarrow\{4\} \rightarrow\{5\} \rightarrow\}
$$

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- The time line is a line with markers for important dates. The important dates are the release times of the tasks and one time point that is late enough.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \rightarrow\{4\} \rightarrow\{5\} \rightarrow\{28\}
$$

Time line

- Between each two consecutive time points, there is a capacity that denotes the amount of time that the resource is available through.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \xrightarrow{3}\{4\} \xrightarrow{1}\{5\}^{23}\{28\}
$$

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow

- Initially, the capacities are equal to the difference between the consecutive time points.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \xrightarrow{3}\{4\} \xrightarrow{1}\{5\}^{23}\{28\}
$$

Time lime

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1855	8	10	15											

- We schedule the tasks, one by one. After scheduling, the free times will reduce.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \xrightarrow{3}\{4\} \xrightarrow{1}\{5\}^{21}\{28\}
$$

Time lime

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1855	8	10	15											

- We schedule the tasks, one by one. After scheduling, the free times will reduce.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \xrightarrow{0}\{4\} \xrightarrow{0}\{5\} \xrightarrow{19}\{28\}
$$

Time line

- Once a capacity equals null, the corresponding time points will be merged by Union-Find.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1\} \xrightarrow{0}\{4\} \xrightarrow{0}\{5\} \xrightarrow{19}\{28\}
$$

Time line

				\Rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
1	$4 \quad 5$	8	10	15										

- Once a capacity equals null, the corresponding time points will be merged by Union-Find.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1,4,5\} \xrightarrow{19}\{28\}
$$

Time lime

				\rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
185	5	8	10	15										

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1,4,5\} \xrightarrow{19}\{28\}
$$

Time lime

				\rightarrow			\leftarrow							
\Rightarrow									\leftarrow					
			\rightarrow											\leftarrow
185	5	8	10	15										

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1,4,5\} \xrightarrow{14}\{28\}
$$

Time lime

- That allows to run a linear search over the time line for periods that have free time. This search will jump over the occupied regions in constant time.

est $_{\mathrm{i}}$	lct $_{\mathrm{i}}$,	p_{i}
5	8	2
1	10	6
4	15	5

$$
\{1,4,5\} \xrightarrow{14}\{28\}
$$

- The earliest completion time will be computed in constant time by $28-14=14$!

Θ-Tree and TimeLine comparison

Operation	Θ-Tree	Time line
Adding a task to the schedule	$\mathrm{O}(\log (n))$	$\mathrm{O}(1)$
Computing the earliest completion time	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Removing a task from the schedule	$\mathrm{O}(\log (n))$ steps	Not supported !

Θ-Tree and TimeLine comparison

Operation	Θ-Tree	Time line
Adding a task to the schedule	$\mathrm{O}(\log (n))$	$\mathrm{O}(1)$
Computing the earliest completion time	$\mathrm{O}(1)$	$\mathrm{O}(1)$
Removing a task from the schedule	$\mathrm{O}(\log (n))$ steps	Not supported!

- Time line is therefore faster than a Θ-tree, but can only be used in the occasions where the removal of a task is not required.

Overload Checking

$$
\Theta=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}\right\}
$$

Overload Checking

Overload Checking

Overload Checking

- Overload Checking is not a filtering algorithm, as it does not propagate.
- It triggers a backtrack if the test fails.

Overload Checking

- Overload Checking is not a filtering algorithm, as it does not propagate.
- It triggers a backtrack if the test fails.

```
\Theta := \emptyset;
for j\inT in non-decreasing order of lct }\mp@subsup{j}{j}{}\mathrm{ do begin
    \Theta:= \Theta\cup{j};
    if ect
        fail; {No solution exists }
    end;
```


The strategy of our Overload check algorithm

- We implement the overload check algorithm just as Vilím does. The only difference is that we simply substitute the Θ-tree with the time line.
- Overload Check with implementing time line runs in linear time!

Example

Example

$$
\{0\} \xrightarrow{1}\{1\} \xrightarrow{2}\{3\} \xrightarrow{18}\{21\}
$$

Example

$$
\{0\} \xrightarrow{1}\{1\} \xrightarrow{0}\{3\} \xrightarrow{17}\{21\}
$$

Example

$$
\{0\} \xrightarrow{1}\{1,3\} \xrightarrow{17}\{21\}
$$

- Earliest completion time of $\Theta=21-17=4$.

Example

- Earliest completion time of $\Theta=21-13=8$.

Example

Example

- Earliest completion time of $\Theta=21-10=11>10$.

Example

- Earliest completion time of $\Theta=21-10=11>10$.
- Overload check fails! Thus, no valid schedule exists.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{t}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{t}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{t}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

Detectable Precedences

- Let A_{i} and A_{j} be two tasks. If ect $\mathrm{i}_{\mathrm{i}}>$ lst $_{\mathrm{j}}$, the precedence $\mathrm{A}_{\mathrm{j}} \ll \mathrm{A}_{\mathrm{i}}$ is called detectable.

- Vilím introduced this idea and presented an algorithm in $\mathrm{O}(n \log (n))$, using the notion of Θ-tree.

Example

- Since $\{\mathrm{A}, \mathrm{B}\} \ll \mathrm{C}$, the domain of C will be filtered to est $_{\mathrm{C}} \geq$ est $_{\mathrm{A}}+\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}=21$.

- The domain of C after filtering.

Detectable Precedences

-The tasks sorted by earliest completion times

Detectable Precedences

- The tasks sorted by earliest completion times

- The tasks sorted A_{1} by latest starting times

Detectable Precedences

- The tasks sorted by earliest completion times

- The tasks sorted A_{1} by latest starting times

- No task has a fixed part;

Detectable Precedences

- The tasks sorted by earliest completion times

-The tasks sorted A_{1} by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .

Detectable Precedences

- The tasks sorted by earliest completion times

-The tasks sorted A_{1} by latest starting times

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{1}$?

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{1}$? No!

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if $1 s t_{1}<$ ect $_{2}$?

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{2}$? No!

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{3}$?

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{3}$? Yes!

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if lst $_{1}<$ ect $_{3}$? Yes!
- The red task will be scheduled on the time line.

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- Checking if $\mathrm{lst}_{2}<\mathrm{ect}_{3}$? No!

Detectable Precedences

- While iterating over the next task i, all the tasks k for which the detectable precedence $A_{k} \ll A_{i}$ exists, will be scheduled.
- The detectable precedence rule prunes the earliest starting time of the green task up to the earliest completion time of the time line.

Detectable Precedences (with fixed part)

- The tasks sorted by earliest completio n times

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

- The
tasks sorted by latest starting times

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

- The
tasks sorted by latest starting times

- The yellow task has a fixed part;

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

\boldsymbol{y}																		$\frac{1}{5}$							

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{1}<\mathrm{ect}_{1}$?

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if lst $_{1}<$ ect $_{1}$? No!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if lst $_{1}<$ ect $_{2}$?

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if stt $_{1}<\mathrm{ect}_{2}$? No!

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{1}<\mathrm{ect}_{3}$?

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

\rightarrow																	$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{1}<\mathrm{ect}_{3}$? Yes!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																	$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{1}<\mathrm{ect}_{3}$? Yes!
- The red task will be scheduled on the time line.

Detectable Precedences (with fixed part)

- The
tasks
sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{2}<\mathrm{ect}_{3}$?

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{2}<\mathrm{ect}_{3}$? Yes!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow															$\frac{1}{F}$							

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{2}<\mathrm{ect}_{3}$? Yes!
- The yellow task has a fixed part. We call it the blocking task. It will not be scheduled before being filtered.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{2}<$ ect $_{3}$? Yes!
- Filtering of the current task (green) will be postponed!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{3}<\mathrm{ect}_{3}$?

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{3}<\mathrm{ect}_{3}$? Yes!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{3}<\mathrm{ect}_{3}$? Yes!
- The blue task will be scheduled on the time line.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{4}<\mathrm{ect}_{3}$? No!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Processing of the green task is over! Note that it is not filtered yet, since there exists a blocking task which has not been scheduled yet.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- It will be filtered after the blocking task is processed.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{4}<\mathrm{ect}_{4}$?

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																	$\frac{1}{5}$			

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Checking if $\mathrm{lst}_{4}<\mathrm{ect}_{4}$? No!

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- The yellow task is the blocking task. It will be first filtered to the earliest completion time of time line.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

\rightarrow																$\frac{1}{5}$				

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- The yellow task is then scheduled on the time line.

Detectable Precedences (with fixed part)

- The
tasks sorted by earliest completio n times

- The tasks sorted by latest starting times

- Simultaneously iterate over all the tasks i from the first table and on all the tasks k from the second table .
- Now, the postponed task (green) is filtered to the earliest completion time of time line.

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

DPRELIMINARIES

\square PROPAGATION OF DISJUNCTIVE CONSTRAINT
\square EXPERIMENTAL RESULTS
nリ:
\square CONCLUSION

Problem definitions

- To compare the linear algorithm with their counterparts, we ran the experiments on job-shop and open-shop scheduling problems.
- In these problems, n jobs consisting of a set of non-preemptive tasks, execute on m machines. Each task executes on a predetermined machine with a given processing time.
- In the job-shop problem, the tasks belonging to the same job execute in a predetermined order. In the open-shop problem, the number of tasks per job is fixed to m and the order in which the tasks of a job are processed is immaterial.
- In both problems, the goal is to minimize the makespan, i.e. the time when the last task completes.

Modeling the problems

- We model the problems with one starting time variable $\mathrm{S}_{\mathrm{i}, \mathrm{j}}$ for each task j of job i.
- We post a DISJUNCTIVE constraint over all starting time variables of tasks running on the same machine.
- For the job-shop scheduling problem, we add the precedence constraints $\mathrm{S}_{\mathrm{i}, \mathrm{j}}+\mathrm{p}_{\mathrm{i}, \mathrm{j}} \leq \mathrm{S}_{\mathrm{i}, \mathrm{j}+1}$.
- For the open-shop scheduling problem, we add a DISJUNCTIVE constraint among all tasks belonging to the same job.
- For both problems, there is also a constraint posted to minimize the makespan.

Example of a Job-shop scheduling problem

Experiments

- After 10 minutes of computations, the program halts.
- The problems are not solved to optimality.
- The number of backtracks that occur will be counted.
- We compare two algorithms which explore the same tree in the same order.

Experiments

- A larger portion of the search tree will be traversed within 10 minutes with the faster algorithm.
- The bigger the portion of the search tree which has been explored, the more the number of backtracks, the faster the algorithm!
- Normally, we should notice that our algorithms get faster as the number of tasks increases.
- This expectation was verified by running the experiments on two benchmark problems!

Results for open shop problem

$n \times m$	OverloadCheck	Detectable Precedences	Time Tabling
4×4	0.96	1.00	1.00
5×5	1.03	1.12	1.75
7×7	1.02	1.16	2.09
10×10	1.06	1.33	2.14
15×15	1.03	1.39	2.15
20×20	1.06	1.56	2.17

Results for open shop problem

$n \times m$	OverloadCheck	Detectable Precedences	Time Tabling
4×4	0.96	1.00	1.00
5×5	1.03	1.12	1.75
7×7	1.02	1.16	2.09
10×10	1.06	1.33	2.14
15×15	1.03	1.39	2.15
20×20	1.06	1.56	2.17

- The results of three methods on open-shop benchmark problem with n jobs and m tasks per job. The numbers indicate the ratio of the cumulative number of backtracks between all instances of size nm after 10 minutes of computations.

Results for job shop problem

$n \times m$	OverloadCheck	Detectable Precedences	Time Tabling
10×5	1.07	1.27	2.11
15×5	1.02	1.35	2.27
20×5	1.00	1.55	2.12
10×10	1.01	1.25	2.18
15×10	1.26	1.42	1.97
20×10	1.00	1.47	2.14
30×10	1.08	1.56	2.36
50×10	1.05	1.48	3.18
15×15	0.95	1.48	2.16
20×15	1.04	1.61	2.13
20×20	1.09	1.46	1.71

Results for job shop problem

$n \times m$	OverloadCheck	Detectable Precedences	Time Tabling
10×5	1.07	1.27	2.11
15×5	1.02	1.35	2.27
20×5	1.00	1.55	2.12
10×10	1.01	1.25	2.18
15×10	1.26	1.42	1.97
20×10	1.00	1.47	2.14
30×10	1.08	1.56	2.36
50×10	1.05	1.48	3.18
15×15	0.95	1.48	2.16
20×15	1.04	1.61	2.13
20×20	1.09	1.46	1.71

- The results of three methods on job-shop benchmark problem with n jobs and m tasks per job. The numbers indicate the ratio of the cumulative number of backtracks between all instances of size nm after 10 minutes of computations.

OUTLINE

\square SCRIEDULING
7
\square CONSTRAINT PROGRAMIMIING

DPRELIMINARIES

\square PROPAGATION OF DISJUNCTIVE CONSTRAINT
\square EXPERIMENTAL RESULTS

\square CONCLUSION

Conclusion

- Thanks to the constant time operation of the Union-Find data structure, we designed a new data structure, called time line, to speed up filtering algorithms for the Disjunctive constraint.

Conclusion

- Thanks to the constant time operation of the Union-Find data structure, we designed a new data structure, called time line, to speed up filtering algorithms for the Disjunctive constraint.
- We came up with three faster algorithms to filter the disjunctive constraint.

Algorithm	Previous complexity	Now complexity
Time-Tabling	$\mathrm{O}(n \log (n))$ Quimper)	$\mathrm{O}(n)$ Quimper)
Overload check	$\mathrm{O}(n \log (n))$ Vilím	$\mathrm{O}(n)$ Quimper)
Detectable	$\mathrm{O}(n \log (n))$ precedences	$\mathrm{O}(n)$ Quimper)

$$
\left[\begin{array}{c}
\text { Thant } \\
\text { goul! } \\
\text { gos }
\end{array}\right]
$$

