

1

2

3

4

5

	

• Where? In the wood product industry!	

• The wood is wet at first and must be dried before being cut and used
for construction. 	

• The task is to put the wood in a dryer and make sure it is solid and
it won’t deform. The resource is the dryer.	

	

• There are so many loads to be put in the dryer. So, we have as many

tasks as the number of loads. 	

6

	

• The earliest starting time of a task is when the truck arrives with

the wood.	

• For each load, there is a deadline which is the time that the
customer wants to have it ready. 	

• The processing time is the amount of time that the wood remains in
the dryer to lose moisture and dry out.	

1	

23	
1	

23	
1	

23	
1	

pA = 5	

23	
1	

pA = 5	

23	
1	

pA = 5	

21	

23	
1	

pA = 5	

sA	

21	

23	
1	

pA = 5	

sA	
 eA	

21	

23	
1	

pA = 5	

sA	
 eA	
rA	

21	

23	
1	

pA = 5	

sA	
 eA	
rA	
 dA 	

21	

23	
1	

rA	
 dA 	

21	

ectA	

6	

23	
1	

lstA	
rA	
 dA 	

21	
6	
 16	

23	
1	

lstA	
rA	
 dA 	
ectA	

pA = 5	

21	
6	
 16	

23	
1	

lstA	
rA	
 dA 	
ectA	

pA = 5	

21	
6	
 16	

•  We call the interval [ri, di) the allowed execution interval of
task Ai.

23	
1	

lstA	
rA	
 dA 	

•  The release time;
•  The deadline;
•  The number of colored cells = Processing time;
•  Gray cells: Out of the allowed execution interval of the task.

ectA	

pA = 5	

21	
6	
 16	

•  We call the interval [ri, di) the allowed execution interval of
task Ai.

A2
A3

A1

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

1	
 3	
 12	
 19	

•  A feasible schedule!	

6	
 10	

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

1	
 7	
5	
 18	
 20	
2	

18	
2	

•  An alternative feasible schedule!	

4	
 5	
 13	

Ø Non-Preemptive Scheduling:

26

Ø Non-Preemptive Scheduling:

A1 A3 A2

Ø  Preemptive Scheduling:

Interrupting A3

A1 A3 A2 A3

Ø  Preemptive Scheduling:

Interrupting A3 Resuming A3

A1 A3 A2 A3

30

• Let X = {X1,…,Xn} be a set of variables. A constraint C is a
condition, imposed over a subset XC ⊆ X, which describes a relation
between the elements of XC.

• An instance of a CSP is described by the sets
X = {X1,…,Xn} D = {D(X1) ,…, D(Xn)}
C = {C1,…,Cm} Xʹ′= {XC1 ,…,XCm}

• An assignment of values to the variables, which satisfies all of the

constraints of a CSP, is called a solution. A solution for the
constraint C is called a support.

31

A2
A3

A1

1	
 7	
5	
 18	
 20	
2	

A2
A3

A1

•  S={S1, S2, S3}	

•  S1 ∈ [1, 4], S2 ∈ [5,13], S3 ∈ [2,12] 	

1	
 7	
5	
 18	
 20	
2	

•  (Si + pi ≤ Sj) ∨ (Sj + pj ≤ Si) (for i,j=1,2,3 & i≠j)	

1	
 3	
 12	
 19	
6	
 10	

•  (1, 6, 12) is a support.

A2
A3

A1

•  S={S1, S2, S3}	

•  S1 ∈ [1, 4], S2 ∈ [5,13], S3 ∈ [2,12] 	

1	
 7	
5	
 18	
 20	
2	

•  (Si + pi ≤ Sj) ∨ (Sj + pj ≤ Si) (for i,j=1,2,3 & i≠j)	

35

•  Let I = {A1,…,An} be a set of tasks with unknown starting times
Si, and known processing time pi (1≤ i≤ n).

•  Variables: X = {S1,…,Sn};
•  Domains: D(Si)=[ri , lsti];
•  Constraint: No more than one task executes at each time t.

•  The constraint DISJUNCTIVE([S1,…,Sn]) is satisfied, if for all
pairs of tasks (i ≠ j)	

 Si + pi ≤ Sj or Sj + pj ≤ Si 	

36

•  Initially, the domains of a CSP may include values which are not
consistent with some constraints of the problem. 	

•  To reduce the search space, solvers use filtering algorithms
associated to each constraint. 	

•  Filtering algorithms keep on excluding values of the domains that
do not lead to a feasible solution, until it is not possible to prune
the domains of variables further.	

37

A2
A3

A1

•  There is no chance to start task A3 at its release time, as A1
would not execute. Thus, the values {2, 3} should be filtered from
the domain of A3 .

1	
 7	
5	
 18	
 20	
2	
 4	
3	

38

A2
A3

A1

•  There is no chance to start task A3 at its release time, as A1
would not execute. Thus, the values {2, 3} should be filtered from
the domain of A3 .

•  The values {2, 3} are out of the allowed execution interval of A3.

1	
 7	
5	
 18	
 20	
2	
 4	
3	

39

• It is NP-Complete to determine whether there exists a solution to

Disjunctive constraint.	

• It is NP-Hard to filter out all values that do not lead to a solution.	

• Nonetheless, there exist rules that detect in polynomial time some
filtering of the domains of the tasks. 	

• Our goal is to improve some existing filtering algorithms for the
Disjunctive constraint.	

40

41

•  We aim to design filtering algorithms, which are faster than the
previously known algorithms. 	

•  To achieve this goal, there are two major operations, to take advantage
of:	

•  Sorting in linear time;	

•  Union-Find data structure.	

•  Since all the time points can be encoded with fewer than 32 bits, radix
sort sorts them in linear time.	

Function	

(Gabow & Tarjan,

1983)	

Operation	
 Complexity	

Union-Find(n)	
 Initializes n disjoint
sets	

 {0}, {1},…, {n - 1}	

O(n)	

Function	

(Gabow & Tarjan,

1983)	

Operation	
 Complexity	

Union-Find(n)	
 Initializes n disjoint
sets	

 {0}, {1},…, {n - 1}	

O(n)	

Union(a, a+1)	
 Merges the set that
contains the element
a with the set that
contains the element
a+1	

O(1) 	

Function	

(Gabow & Tarjan,

1983)	

Operation	
 Complexity	

Union-Find(n)	
 Initializes n disjoint
sets	

 {0}, {1},…, {n - 1}	

O(n)	

Union(a, a+1)	
 Merges the set that
contains the element
a with the set that
contains the element
a+1	

O(1) 	

FindSmallest(a)	
 Returns the smallest
element of the set
that contains a	

O(1) 	

Function	

(Gabow & Tarjan,

1983)	

Operation	
 Complexity	

Union-Find(n)	
 Initializes n disjoint
sets	

 {0}, {1},…, {n - 1}	

O(n)	

Union(a, a+1)	
 Merges the set that
contains the element
a with the set that
contains the element
a+1	

O(1) 	

FindSmallest(a)	
 Returns the smallest
element of the set
that contains a	

O(1) 	

FindGreatest(a)	
 Returns the greatest
element of the set
that contains a	

O(1) 	

46

• A technique to filter the Disjunctive constraint.

• It consists of finding the necessary usage of the resource over a
time interval.

47

0 2 3 4 1

0 2 3 4 1

•  If lsti < ecti for a task i, then the interval [lsti,ecti) is called the
fixed part of i.

0 2 3 4 1

First filtering

0 2 3 4 1

Second filtering

52

• Ouellet & Quimper presented an algorithm for Time-Tabling on a
more general case in O(nlog(n)).	

• We took advantage of Union-Find to achieve a linear time
algorithm for Time-Tabling in the Disjunctive case.	

0	
 1	
 6	
 15	
 22	
19	

A2
A3

A1

2	

0	
 1	
 6	
 15	
 22	
19	

•  First, we list the fixed parts of the tasks which have fixed part.	

2	
 22	

A2
A3

A1

0	
 1	
 6	
 15	
 22	
19	

•  First, we list the fixed parts of the tasks which have fixed part.	

•  A1 and A2 have fixed parts.	

2	
 22	

A2
A3

A1

0	
 1	
 6	
 15	
 22	
19	

•  First, we list the fixed parts of the tasks which have fixed part.	

•  A1 and A2 have fixed parts.	

1	
 4	
 10	
 14	

Fixed(A1)	
 Fixed(A2)	

2	
 22	

A2
A3

A1

0	
 1	
 6	
 15	
 22	
19	

•  First, we list the fixed parts of the tasks which have fixed part.	

•  A1 and A2 have fixed parts.	

2	

•  We process the tasks in increasing order of processing times.	

22	

A2
A3

A1

1	
 4	
 10	
 14	

Fixed(A1)	
 Fixed(A2)	

•  A3 cannot be scheduled at 2.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

1	
 4	
 10	
 14	

Fixed(A1)	
 Fixed(A2)	

•  A3 does not fit in [5,9].	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Fixed(A1)	
 Fixed(A2)	

•  A3 cannot be scheduled at 10.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Fixed(A1)	
 Fixed(A2)	

•  Hence, A3 jumps over two fixed parts.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Fixed(A1)	
 Fixed(A2)	

•  The domain of A3 after filtering.	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Fixed(A1)	
 Fixed(A2)	

•  Since the tasks are being processed in increasing order of
processing times, the next tasks will not fit in [0,14], neither. At
this point, Union-Find merges the fixed parts of A1 and A2 to one
set in constant time! 	

0	
 1	
 6	
 15	
 22	
19	
2	
 22	

A2
A3

A1

4	
 10	
 14	
1	

Merged(Fixed(A1), Fixed(A2))

• Jumping over a fixed part takes constant time.	

• Merging the fixed parts reduces the number of jumps.	

• That is how we achieve a linear time algorithm!	

65

• Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?	

66

• Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?	

•  This value is called the "Earliest Completion Time" of a set of tasks.	

67

• Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?	

•  This value is called the "Earliest Completion Time" of a set of tasks.	

•  introduced a data structure called Θ-Tree that computes the
earliest completion time of a set of task Θ.	

68

• Given a set of tasks, if we schedule them at their earliest starting time,
with preemption, what will the completion time of the last task be?	

•  This value is called the "Earliest Completion Time" of a set of tasks.	

•  introduced a data structure called Θ-Tree that computes the
earliest completion time of a set of task Θ.	

•  One can insert a task into Θ or remove a task from Θ and update the
computation in O(log(n)) time.	

69

• We introduced this idea to improve upon the Θ-tree.	

 	

• What does it do?	

• This data structure is initialized with an empty set of tasks Θ = ∅.	

• It is possible to add, in constant time, a task to Θ. The task will be
scheduled at the earliest time as possible with preemption.	

• It is possible to compute the earliest completion time of Θ in constant
time, at any time.	

4	
 15	
5	
 8	
1	
 10	

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

•  The time line is a line with markers for
important dates. The important dates are the
release times of the tasks and one time point that
is late enough. 	

5	

 { } → { } → {5} → { }

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

•  The time line is a line with markers for
important dates. The important dates are the
release times of the tasks and one time point that
is late enough. 	

1	
 5	

 {1} → { } → {5} → { }

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

•  The time line is a line with markers for
important dates. The important dates are the
release times of the tasks and one time point that
is late enough. 	

1	
 4	
 5	

 {1} → {4} → {5} → { }

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

•  The time line is a line with markers for
important dates. The important dates are the
release times of the tasks and one time point that
is late enough. 	

1	
 4	
 5	

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

28	

 {1} → {4} → {5} → {28}

•  Between each two consecutive time points,
there is a capacity that denotes the amount of
time that the resource is available through.	

1	
 4	
 5	

esti lcti, pi
5 8 2
1 10 6
4 15 5

28	

4	
 15	
5	
 8	
1	
 10	

 {1} → {4} → {5} → {28}
3	
 1	
 23	

•  Initially, the capacities are equal to the
difference between the consecutive time points. 	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

4	
 15	
5	
 8	
1	
 10	

 {1} → {4} → {5} → {28}
3	
 1	
 23	

•  We schedule the tasks, one by one. After
scheduling, the free times will reduce. 	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1} → {4} → {5} → {28}
3	
 1	
 21	

4	
 15	
5	
 8	
1	
 10	

•  We schedule the tasks, one by one. After
scheduling, the free times will reduce. 	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1} → {4} → {5} → {28}
0	
 0	
 19	

4	
 15	
5	
 8	
1	
 10	

•  Once a capacity equals null, the corresponding
time points will be merged by Union-Find.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1} → {4} → {5} → {28}
0	
 0	
 19	

4	
 15	
5	
 8	
1	
 10	

•  Once a capacity equals null, the corresponding
time points will be merged by Union-Find.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1,4,5} → {28}
19	

4	
 15	
5	
 8	
1	
 10	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1,4,5} → {28}
19	

4	
 15	
5	
 8	
1	
 10	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1,4,5} → {28}
14	

4	
 15	
5	
 8	
1	
 10	

•  That allows to run a linear search over the time
line for periods that have free time. This search
will jump over the occupied regions in constant
time.	

1	
 4	
 5	
 28	

esti lcti, pi
5 8 2
1 10 6
4 15 5

 {1,4,5} → {28}
14	

•  The earliest completion time will be computed in constant time
by 28-14 = 14!	

4	
 15	
5	
 8	
1	
 10	

85

Operation Θ-Tree Time line

Adding a task to
the schedule	

O(log(n))	
 O(1)	

Computing the
earliest

completion time	

O(1)	

O(1)

Removing a task
from the schedule	

O(log(n)) steps

Not supported !
	

•  Time line is therefore faster than a Θ–tree, but can only be used
in the occasions where the removal of a task is not required.	

Operation Θ-Tree Time line

Adding a task to
the schedule	

O(log(n))	
 O(1)	

Computing the
earliest

completion time	

O(1)	

O(1)

Removing a task
from the schedule	

O(log(n)) steps

Not supported !
	

Θ = {A1, A2}

8

A1

A2
1 2 4 10

Θ = {A1, A2} dΘ - rΘ = 10-1=9 < pΘ = 6+4

8

A1

A2
1 2 4 10

Θ = {A1, A2} dΘ - rΘ = 10-1=9 < pΘ = 6+4

⇒ There is not a valid schedule for Ω.

8

A1

A2
1 2 4 10

90

• Overload Checking is not a filtering algorithm, as it does not
propagate.	

	

• It triggers a backtrack if the test fails.	

	

91

• Overload Checking is not a filtering algorithm, as it does not
propagate.	

	

• It triggers a backtrack if the test fails.	

	

92

•  We implement the overload check algorithm just as does. The
only difference is that we simply substitute the Θ-tree with the time
line.	

	

• Overload Check with implementing time line runs in linear time!	

	

1 0 7 10 3 9

1 3 7 10

 {0} → {1} → {3} → {21}
1 2 18

1 0 7 10 3 9

0 21

 {0} → {1} → {3} → {21}
1 0 17

1 0 7 10 3 9

1 3 7 10 0 21

10

 {0} → {1,3} → {21}
1 17

1 0 7 10 3 9

1 3 7 10 0 21

•  Earliest completion time of Θ = 21 -17= 4.	

 {0} → {1,3} → {21}
1 13

1 0 7 10 3 9

1 3 7 10 0 21

•  Earliest completion time of Θ = 21 -13= 8.	

 {0} → {1,3} → {21}
0 10

1 0 7 10 3 9

1 3 7 10 0 21

 {0,1,3} → {21}
10

•  Earliest completion time of Θ = 21 -10=11 > 10.	

1 0 7 10 3 9

1 3 7 10 0 21

 {0,1,3} → {21}
10

•  Earliest completion time of Θ = 21 -10=11 > 10.	

•  Overload check fails! Thus, no valid schedule exists.	

1 0 7 10 3 9

1 3 7 10 0 21

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

lstj	

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

lstj	

ecti	

• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is
called detectable.

•  introduced this idea and presented an algorithm in
O(nlog(n)), using the notion of Θ-tree.

lstj	

ecti	

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  A<<C, B<<C.

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  A<<C, B<<C.

•  Since {A , B } << C, the domain of C will be filtered to
 estC ≥ estA + pA + pB = 21.

0	
 25	

0	
 25	
 27	
1	

0	
 25	
 27	
1	
 14	
 35	

A

B

C

pA = 11

pB = 10

pC = 5

21	

•  The domain of C after filtering.

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  No task has a fixed part;	

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

•  Checking if lst1 < ect1 ? 	

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

•  Checking if lst1 < ect1 ? No!	

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst1 < ect2 ? 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst1 < ect2 ? No! 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst1 < ect3 ? 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst1 < ect3 ? Yes! 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst1 < ect3 ? Yes! 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

•  The red task will be scheduled on the time line.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  Checking if lst2 < ect3 ? No! 	

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by latest starting
times	

8

0 5 10 2 1

A2
A3

A1 • The tasks sorted
by earliest
completion
times 	

8

•  While iterating over the next task i, all the tasks k for which the
detectable precedence Ak << Ai exists, will be scheduled.	

0 5 2 8 1

•  The detectable precedence rule prunes the earliest starting time of	

 the green task up to the earliest completion time of the time line.	

0 19 2 20 9 12 30 13 14 15

•  The
tasks
sorted by
earliest
completio
n times 	

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  The yellow task has a fixed part;	

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect1 ? 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect1 ? No! 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect2 ? 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect2 ? No! 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect3 ? 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect3 ? Yes! 	

54 12 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst1 < ect3 ? Yes! 	

•  The red task will be scheduled on the time line. 	

54 2

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst2 < ect3 ? 	

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst2 < ect3 ? Yes! 	

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst2 < ect3 ? Yes! 	

•  The yellow task has a fixed part. We call it the blocking task. It will not be

scheduled before being filtered.	

 	

BlockingTask

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst2 < ect3 ? Yes! 	

•  Filtering of the current task (green) will be postponed!	

BlockingTask

PostponedTask

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst3 < ect3 ? 	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst3 < ect3 ? Yes! 	

BlockingTask

PostponedTask

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst3 < ect3 ? Yes! 	

•  The blue task will be scheduled on the time line. 	

BlockingTask

PostponedTask

54 0

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst4 < ect3 ? No! 	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Processing of the green task is over! Note that it is not filtered yet,

since there exists a blocking task which has not been scheduled yet.	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  It will be filtered after the blocking task is processed.	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst4 < ect4 ? 	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Checking if lst4 < ect4 ? No! 	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  The yellow task is the blocking task. It will be first filtered to the

earliest completion time of time line. 	

BlockingTask

PostponedTask

0 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  The yellow task is then scheduled on the time line.	

PostponedTask

0 18 54

0 19 2 20 9 12 30 13 14 15

0 19 12 30 15 2 9 14 13 20

•  The
tasks
sorted by
earliest
completio
n times 	

•  The
tasks
sorted by
latest
starting
times 	

•  Simultaneously iterate over all the tasks i from the first table and
on all the tasks k from the second table .	

•  Now, the postponed task (green) is filtered to the earliest completion

time of time line.	

18

18

0 18 54

149

• To compare the linear algorithm with their counterparts, we ran the
experiments on job-shop and open-shop scheduling problems.	

• In these problems, n jobs consisting of a set of non-preemptive
tasks, execute on m machines. Each task executes on a
predetermined machine with a given processing time. 	

	

• In the job-shop problem, the tasks belonging to the same job

execute in a predetermined order. In the open-shop problem, the
number of tasks per job is fixed to m and the order in which the
tasks of a job are processed is immaterial.	

	

• In both problems, the goal is to minimize the makespan, i.e. the

time when the last task completes.	

151

• We model the problems with one starting time variable Si;j for each task j of
job i.	

• We post a DISJUNCTIVE constraint over all starting time variables of
tasks running on the same machine.	

• For the job-shop scheduling problem, we add the precedence
constraints Si,j + pi,j ≤ Si,j+1.	

• For the open-shop scheduling problem, we add a DISJUNCTIVE
constraint among all tasks belonging to the same job.	

• For both problems, there is also a constraint posted to minimize the
makespan.	

0 16

0 9

0 18

5

21

12

M0

M1

M2

• After 10 minutes of computations, the program halts.	

 	

	

• The problems are not solved to optimality. 	

• The number of backtracks that occur will be counted.	

	

	

• We compare two algorithms which explore the same tree in the

same order.	

• A larger portion of the search tree will be traversed within 10
minutes with the faster algorithm.	

• The bigger the portion of the search tree which has been explored,
the more the number of backtracks, the faster the algorithm!	

• Normally, we should notice that our algorithms get faster as the
number of tasks increases.	

	

• This expectation was verified by running the experiments on two

benchmark problems!	

155

156

•  The results of three methods on open-shop benchmark problem
with n jobs and m tasks per job. The numbers indicate the ratio of
the cumulative number of backtracks between all instances of size
nm after 10 minutes of computations.	

•  The results of three methods on job-shop benchmark problem with
n jobs and m tasks per job. The numbers indicate the ratio of the
cumulative number of backtracks between all instances of size nm
after 10 minutes of computations.	

159

160

• Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.	

• Thanks to the constant time operation of the Union-Find data structure, we
designed a new data structure, called time line, to speed up filtering algorithms
for the Disjunctive constraint.	

• We came up with three faster algorithms to filter the disjunctive constraint.	

Algorithm	
 Previous
complexity	

Now	

complexity	

	

Time-Tabling	
 O(nlog(n))

(Ouellet &
Quimper)	

O(n)	

(Fahimi &
Quimper)	

Overload check	
 O(nlog(n))	

	

O(n)	

(Fahimi &
Quimper)	

Detectable
precedences	

O(nlog(n))	

	

O(n)	

(Fahimi &
Quimper)	

162

