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• Where? In the wood product industry!	


• The wood is wet at first and must be dried before being cut and used 
for construction. 	


• The task is to put the wood in a dryer and make sure it is solid and 
it won’t deform. The resource is the dryer.	

	

• There are so many loads to be put in the dryer. So, we have as many 

tasks as the number of loads. 	
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• The earliest starting time of a task is when the truck arrives with 

the wood.	


• For each load, there is a deadline which is the time that the 
customer wants to have it ready. 	


• The processing time is the amount of time that the wood remains in 
the dryer to lose moisture and dry out.	
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•  We call the interval [ri, di) the allowed execution interval of 
task Ai.  
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•      The release time; 
•      The deadline; 
•  The number of colored cells = Processing time; 
•  Gray cells: Out of the allowed execution interval of the task. 
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•  We call the interval [ri, di) the allowed execution interval of 
task Ai.  
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•  A feasible schedule!	
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•  An alternative feasible schedule!	
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Ø Non-Preemptive Scheduling: 
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Ø Non-Preemptive Scheduling: 

A1 A3 A2 



Ø  Preemptive Scheduling: 

Interrupting A3 

A1 A3 A2 A3 



Ø  Preemptive Scheduling: 

Interrupting A3 Resuming A3 

A1 A3 A2 A3 
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• Let X = {X1,…,Xn} be a set of variables. A constraint C is a 
condition, imposed over a subset XC ⊆ X, which describes a relation 
between the elements of XC.  

 
• An instance of a CSP is described by the sets 
X = {X1,…,Xn}                D = {D(X1) ,…, D(Xn)} 
C = {C1,…,Cm}                 Xʹ′= {XC1 ,…,XCm} 
 
• An assignment of values to the variables, which satisfies all of the 

constraints of a CSP, is called a solution. A solution for the 
constraint C is called a support. 
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•  S={S1, S2, S3}	

•  S1 ∈ [1, 4], S2 ∈ [5,13], S3 ∈ [2,12] 	
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•  (Si + pi ≤ Sj)  ∨  (Sj + pj ≤ Si) (for i,j=1,2,3 & i≠j )	
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•  (1, 6, 12) is a support. 
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•  (Si + pi ≤ Sj)  ∨  (Sj + pj ≤ Si) (for i,j=1,2,3 & i≠j )	
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•  Let I = {A1,…,An} be a set of tasks with unknown starting times 
Si, and known processing time pi (1≤ i≤ n). 

•  Variables: X = {S1,…,Sn}; 
•  Domains: D(Si)=[ri , lsti]; 
•  Constraint: No more than one task executes at each time t. 

•  The constraint DISJUNCTIVE([S1,…,Sn]) is satisfied, if for all 
pairs of tasks (i ≠ j)	


 Si + pi  ≤ Sj  or  Sj + pj ≤ Si 	
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•  Initially, the domains of a CSP may include values which are not 
consistent with some constraints of the problem. 	


•  To reduce the search space, solvers use filtering algorithms 
associated to each constraint. 	


•  Filtering algorithms keep on excluding values of the domains that 
do not lead to a feasible solution, until it is not possible to prune 
the domains of variables further.	
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•  There is no chance to start task A3  at its release time, as A1 
would not execute. Thus, the values {2, 3} should be filtered from 
the domain of A3 . 
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•  There is no chance to start task A3  at its release time, as A1 
would not execute. Thus, the values {2, 3} should be filtered from 
the domain of A3 . 

•  The values {2, 3} are out of the allowed execution interval of A3.   
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• It is NP-Complete to determine whether there exists a solution to 

Disjunctive constraint.	


• It is NP-Hard to filter out all values that do not lead to a solution.	


• Nonetheless, there exist rules that detect in polynomial time some 
filtering of the domains of the tasks. 	


• Our goal is to improve some existing filtering algorithms for the 
Disjunctive constraint.	
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•  We aim to design filtering algorithms, which are faster than the 
previously known algorithms. 	


•  To achieve this goal, there are two major operations, to take advantage 
of:	


•  Sorting in linear time;	


•  Union-Find data structure.	


•  Since all the time points can be encoded with fewer than 32 bits, radix 
sort sorts them  in linear time.	




Function	

(Gabow & Tarjan, 

1983)	


Operation	
 Complexity	


Union-Find(n)	
 Initializes n disjoint 
sets	

 {0}, {1},…, {n - 1}	


O(n)	




Function	

(Gabow & Tarjan, 

1983)	


Operation	
 Complexity	


Union-Find(n)	
 Initializes n disjoint 
sets	

 {0}, {1},…, {n - 1}	


O(n)	


Union(a, a+1)	
 Merges the set that 
contains the element 
a with the set that 
contains the element 
a+1	


O(1) 	




Function	

(Gabow & Tarjan, 

1983)	


Operation	
 Complexity	


Union-Find(n)	
 Initializes n disjoint 
sets	

 {0}, {1},…, {n - 1}	


O(n)	


Union(a, a+1)	
 Merges the set that 
contains the element 
a with the set that 
contains the element 
a+1	


O(1) 	


FindSmallest(a)	
 Returns the smallest 
element of the set 
that contains a	


O(1) 	




Function	

(Gabow & Tarjan, 

1983)	


Operation	
 Complexity	


Union-Find(n)	
 Initializes n disjoint 
sets	

 {0}, {1},…, {n - 1}	


O(n)	


Union(a, a+1)	
 Merges the set that 
contains the element 
a with the set that 
contains the element 
a+1	


O(1) 	


FindSmallest(a)	
 Returns the smallest 
element of the set 
that contains a	


O(1) 	


FindGreatest(a)	
 Returns the greatest 
element of the set 
that contains a	


O(1) 	
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• A technique to filter the Disjunctive constraint. 
  

• It consists of finding the necessary usage of the resource over a 
time interval. 
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0 2 3 4 1 



0 2 3 4 1 

•  If lsti < ecti for a task i, then the interval [lsti,ecti) is called the 
fixed part of i. 
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First filtering 



0 2 3 4 1 

Second filtering 
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• Ouellet & Quimper presented an algorithm for Time-Tabling on a 
more general case in O(nlog(n)).	


• We took advantage of Union-Find to achieve a linear time 
algorithm for Time-Tabling in the Disjunctive case.	
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•  First, we list the fixed parts of the tasks which have fixed part.	
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•  First, we list the fixed parts of the tasks which have fixed part.	


•  A1 and A2 have fixed parts.	
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•  First, we list the fixed parts of the tasks which have fixed part.	


•  A1 and A2 have fixed parts.	
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•  First, we list the fixed parts of the tasks which have fixed part.	


•  A1 and A2 have fixed parts.	


2	


•  We process the tasks in increasing order of processing times.	
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•  A3 cannot be scheduled at 2.	
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•  A3 does not fit in [5,9].	
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•  A3 cannot be scheduled at 10.	
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•  Hence, A3 jumps over two fixed parts.	


0	
 1	
 6	
 15	
 22	
19	
2	
 22	


A2 
A3 

A1 

4	
 10	
 14	
1	


Fixed(A1)	
 Fixed(A2)	




•  The domain of A3 after filtering.	
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•  Since the tasks are being processed in increasing order of  
processing times, the next tasks will not fit in [0,14], neither. At 
this point, Union-Find merges the fixed parts of A1 and A2 to one 
set in constant time! 	


0	
 1	
 6	
 15	
 22	
19	
2	
 22	


A2 
A3 

A1 

4	
 10	
 14	
1	


Merged(Fixed(A1), Fixed(A2)) 



• Jumping over a fixed part takes constant time.	


• Merging the fixed parts reduces the number of jumps.	


• That is how we achieve a linear time algorithm!	
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• Given a set of tasks, if we schedule them at their earliest starting time, 
with preemption, what will the completion time of the last task be?	
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• Given a set of tasks, if we schedule them at their earliest starting time, 
with preemption, what will the completion time of the last task be?	


•   This value is called the "Earliest  Completion Time" of a set of tasks.	
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• Given a set of tasks, if we schedule them at their earliest starting time, 
with preemption, what will the completion time of the last task be?	


•   This value is called the "Earliest  Completion Time" of a set of tasks.	


•            introduced a data structure called Θ-Tree that computes the 
earliest completion time of a set of task Θ.	
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• Given a set of tasks, if we schedule them at their earliest starting time, 
with preemption, what will the completion time of the last task be?	


•   This value is called the "Earliest  Completion Time" of a set of tasks.	


•            introduced a data structure called Θ-Tree that computes the 
earliest completion time of a set of task Θ.	


•  One can insert a task into Θ or remove a task from Θ and update the 
computation in O(log(n)) time.	
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• We introduced this idea to improve upon the Θ-tree.	

 	

• What does it do?	


• This data structure is initialized with an empty set of tasks Θ = ∅.	


• It is possible to add, in constant time, a task to Θ. The task will be 
scheduled at the earliest time as possible with preemption.	


• It is possible to compute  the earliest completion time of Θ in constant 
time, at any time.	
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•  The time line is a line with markers for     
important dates. The important dates are the 
release times of the tasks and one time point that 
is late enough. 	


5	


 { } → { } → {5} → { }  

esti  lcti,  pi 
5 8 2 
1 10  6 
4 15 5 

4	
 15	
5	
 8	
1	
 10	




•  The time line is a line with markers for   
important dates. The important dates are the 
release times of the tasks and one time point that 
is late enough. 	
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•  The time line is a line with markers for 
important dates. The important dates are the 
release times of the tasks and one time point that 
is late enough. 	
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•  The time line is a line with markers for 
important dates. The important dates are the 
release times of the tasks and one time point that 
is late enough. 	
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 {1} → {4} → {5} → {28}  



•  Between each two consecutive time points,   
there is a capacity that denotes the amount of 
time that the resource is available through.	
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 {1} → {4} → {5} → {28}  
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•  Initially, the capacities are equal to the  
difference between the consecutive time points. 	
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•  We schedule the tasks, one by one. After 
scheduling, the free times will reduce. 	
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•  We schedule the tasks, one by one. After 
scheduling, the free times will reduce. 	


1	
 4	
 5	
 28	


esti  lcti,  pi 
5 8 2 
1 10  6 
4 15 5 

 {1} → {4} → {5} → {28}  
0	
 0	
 19	


4	
 15	
5	
 8	
1	
 10	




•  Once a capacity equals null, the corresponding 
time points  will be merged by Union-Find.	
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•  Once a capacity equals null, the corresponding 
time points  will be merged by Union-Find.	
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•  That allows to run a linear search over the time 
line for periods that have free time. This search 
will jump over the occupied regions in constant 
time.	
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•  That allows to run a linear search over the time 
line for periods that have free time. This search 
will jump over the occupied regions in constant 
time.	
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•  That allows to run a linear search over the time 
line for periods that have free time. This search 
will jump over the occupied regions in constant 
time.	
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•  The earliest completion time will be computed in constant time 
by 28-14 = 14!	
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Operation Θ-Tree Time line  

Adding a task to 
the schedule	


O(log(n))	
 O(1)	


Computing the 
earliest 

completion time	


O(1)	

 

O(1)  

Removing a task 
from the schedule	


O(log(n)) steps 
 

Not supported ! 
	




•  Time line is therefore faster than a Θ–tree, but can only be used 
in the occasions where the removal of a task is not required.	


Operation Θ-Tree Time line  

Adding a task to 
the schedule	


O(log(n))	
 O(1)	


Computing the 
earliest 

completion time	


O(1)	

 

O(1)  

Removing a task 
from the schedule	


O(log(n)) steps 
 

Not supported ! 
	




Θ = {A1, A2} 
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Θ = {A1, A2} dΘ - rΘ = 10-1=9 < pΘ = 6+4 
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Θ = {A1, A2} dΘ - rΘ = 10-1=9 < pΘ = 6+4 

⇒ There is not a valid schedule for Ω.  
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• Overload Checking is not a filtering algorithm, as it does not 
propagate.	

	

• It triggers a backtrack if the test fails.	
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• Overload Checking is not a filtering algorithm, as it does not 
propagate.	

	

• It triggers a backtrack if the test fails.	
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•  We implement the overload check algorithm just as           does. The 
only difference is that we simply substitute the Θ-tree  with the time 
line.	


	

• Overload Check with implementing time line runs in linear time!	
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 {0} → {1} → {3} → {21}  
1 2 18 

1 0 7 10 3 9 

0 21 



 {0} → {1} → {3} → {21}  
1 0 17 

1 0 7 10 3 9 

1 3 7 10 0 21 
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 {0} → {1,3} → {21}  
1 17 

1 0 7 10 3 9 

1 3 7 10 0 21 

•  Earliest completion time of Θ = 21 -17= 4.	




 {0} → {1,3} → {21}  
1 13 

1 0 7 10 3 9 

1 3 7 10 0 21 

•  Earliest completion time of Θ = 21 -13= 8.	




 {0} → {1,3} → {21}  
0 10 

1 0 7 10 3 9 

1 3 7 10 0 21 



 {0,1,3} → {21}  
10 

•  Earliest completion time of Θ = 21 -10=11 > 10.	
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1 3 7 10 0 21 



 {0,1,3} → {21}  
10 

•  Earliest completion time of Θ = 21 -10=11 > 10.	

•  Overload check fails! Thus, no valid schedule exists.	
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• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is 
called detectable. 
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• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is 
called detectable. 
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• Let Ai and Aj be two tasks. If ecti > lstj, the precedence Aj << Ai is 
called detectable. 

 

 
          
          

•            introduced this idea and presented an algorithm in 
O(nlog(n)), using the notion of Θ-tree. 
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•  A<<C, B<<C. 
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•  A<<C, B<<C. 
 
•  Since {A , B } << C, the domain of C will be filtered to  
   estC ≥ estA + pA + pB = 21. 
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•  The domain of C after filtering. 
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•  No task has a fixed part;	
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•  Simultaneously iterate over all the tasks i from the first table and 
on all the tasks k from the second table .	
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•  While iterating over the next task i, all the tasks k for which the 
detectable precedence Ak << Ai exists, will be scheduled.	




•  Checking if lst1 < ect1 ? 	
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•  Checking if lst1 < ect1 ?  No!	
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•  Checking if lst1 < ect2 ? 	


•  While iterating over the next task i, all the tasks k for which the 
detectable precedence Ak << Ai exists, will be scheduled.	
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•  While iterating over the next task i, all the tasks k for which the 
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0 5 2 8 1 

•   The detectable precedence rule prunes the earliest starting time of	

 the green task up to the earliest completion time of the time line.	
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• To compare the linear algorithm with their counterparts, we ran the 
experiments on job-shop and open-shop scheduling problems.	


• In these problems, n jobs consisting of a set of non-preemptive 
tasks, execute on m machines. Each task executes on a 
predetermined machine with a given processing time. 	

	

• In the job-shop problem, the tasks belonging to the same job 

execute in a predetermined order. In the open-shop problem, the 
number of tasks per job is fixed to m and the order in which the 
tasks of a job are processed is immaterial.	

	

• In both problems, the goal is to minimize the makespan, i.e. the 

time when the last task completes.	
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• We model the problems with one starting time variable Si;j for each task j of 
job i.	


• We post a DISJUNCTIVE constraint over all starting time variables of 
tasks running on the same machine.	


• For the job-shop scheduling problem, we add the precedence 
constraints Si,j + pi,j ≤ Si,j+1.	


• For the open-shop scheduling problem, we add a DISJUNCTIVE 
constraint among all tasks belonging to the same job.	


• For both problems, there is also a constraint posted to minimize the 
makespan.	
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• After 10 minutes of computations, the program halts.	

 	

	

• The problems are not solved to optimality. 	


• The number of backtracks that occur will be counted.	

	

	

• We compare two algorithms which explore the same tree in the 

same order.	




• A larger portion of the search tree will be traversed within 10 
minutes with the faster algorithm.	


• The bigger the portion of the search tree which has been explored, 
the more the number of backtracks, the faster the algorithm!	


• Normally, we should notice that our algorithms get faster as the 
number of tasks  increases.	

	

• This expectation was verified by running the experiments on two 

benchmark problems!	
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•  The results of three methods on open-shop benchmark problem 
with n jobs and m tasks per job. The numbers indicate the ratio of 
the cumulative number of backtracks between all instances of size 
nm after 10 minutes of computations.	






•  The results of three methods on job-shop benchmark problem with 
n jobs and m tasks per job. The numbers indicate the ratio of the 
cumulative number of backtracks between all instances of size nm 
after 10 minutes of computations.	
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• Thanks to the constant time operation of the Union-Find data structure, we 
designed a new data structure, called time line, to speed up filtering algorithms 
for the Disjunctive constraint.	




• Thanks to the constant time operation of the Union-Find data structure, we 
designed a new data structure, called time line, to speed up filtering algorithms 
for the Disjunctive constraint.	

• We came up with three faster algorithms to filter the disjunctive constraint.	


Algorithm	
 Previous 
complexity	


Now	

complexity	


	

Time-Tabling	
 O(nlog(n)) 

(Ouellet & 
Quimper)	


O(n)	

(Fahimi & 
Quimper )	


Overload check	
 O(nlog(n))	

	


O(n)	

(Fahimi & 
Quimper)	


Detectable 
precedences	


O(nlog(n))	

	


O(n)	

(Fahimi & 
Quimper)	
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