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L’intelligence artificielle?

• Symbolique
• Ex: systèmes experts
• Ex: jeu d’échec

I.A. «Classique» : capacité
de raisonnement logique

Apprentissage: capacité 
d’apprendre, de s’adapter à 
son environnement

• Sub-symbolique
• «Connexionniste»
• S’inspire du cerveau: 

réseaux de neurones
• Algorithmes 
d’apprentissage 
automatique

Historiquement deux approches en IA:



Aux échecs
1770: «Le Turc mécanique»
automate joueur d’échec

1997: Garry Kasparov contre «Deep Blue» d’IBM

A gagné contre Napoléon Bonaparte 
et Benjamin Franklin

Un canular!

Ex: succès de l’IA classique



Inspiration: 
cerveau qui apprend

• 1011 neurones, 
    1014 synapses

• Complexe réseau de 
neurones interconnectés

Apprentissage automatique

• Apprentissage: 
modifier 
synapses



Réseau de neurones
artificiel



Modèle de neurone simplifié

entrée (observation)  x

x2 x3 x4 x5

w2
w3 w4

w5
b

1

neurone de type sigmoide

couche de neurones 
d’entrée

x1

fθ(x) = fw,b(x) = sigmoid( �w,x� + b)

sigmoid(x) =
1

1 + e−x
logistic

{
non-linéarité, fonction d’activation



I.A. apprenante:

 de la science-fiction... 

• 1983: dans WarGames, un 
ordinateur apprend en 
jouant contre lui-même à 
tic-tac-toe et “global 
thermonuclear war”. 
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à la réalité...

• 1995: TD-gammon, un réseau de 
neurones artificiel entraîné en 
jouant 200 000 parties de 
backgammon contre lui-même, 
joue à un niveau équivalent aux 
meilleurs joueurs mondiaux 
(Tesauro 1995).

Au Backgammon
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À Geopardy

• Février 2011: 
Watson, système 
d’IBM, bat les 
champions 
humains de 
Geopardy. 
Fondé sur l’apprentissage 
automatique à partir de 
données textuelles.
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réseaux de neurones art
ificiels

&

neurosciences computatio
nelles

Statistiques

Physique

Physique Statistique

Théorie de
l’information

Machine Learning
apprentissage 
automatique

Vision actuelle des disciplines
fondatrices

   Opimisation
+
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Exemple d’apprentissage
(supervisé)

six
deux!

Entrée X Sortie f(X) Cible Y
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Ex: régression (1D)

1
Étiquette

Entrée0

1. Collecter des données

2. Estimer la fonction
      Entrée ⟼ Étiquette
3. Utiliser cette fonction

    sur de nouvelles données



0.55

Ex: régression (1D)

1
Étiquette

Entrée0

1. Collecter des données

2. Estimer la fonction
      Entrée ⟼ Étiquette
3. Utiliser cette fonction

    sur de nouvelles données

0.75

0.25



Contrôle de capacité
et généralisation

14

Model SelectionModel Selection

Model Selection

capacité trop faible
➩sous-apprentissage

capacité trop élevée
➩sur-apprentissage

capacité optimale
➩bonne généralisation

la performance sur l’ensemble d’entraînement 
n’est pas un bon estimé de la  généralisation!
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2 3

Données d’apprentissage: 
Ensemble de n exemples

2 ou 3 ?

Point de test x

Apprendre n’est pas 
simplement 
mémoriser...

C’est être capable 
de généraliser!

Ex: reconnaissance 
d’écriture: classification 
de chiffres manuscrits



?

x 1

x2

Représentation des données
une image = un point dans un espace de haute dimension

ensemble de données 
= nuage de points



Niveau de représentation

Rétine

Aire V1

Aire V2

Aire V4

pixels

détecteurs de bords

détecteurs de formes 
primitives

abstractions visuelles 
de plus haut niveau



Part I

Manifold 
modeling 
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The curse of 
dimensionality
There are 1096329 possible 
200x200 RGB images.

19

high-dimensional data

are we doomed?





The manifold 
hypothesis

Data density 
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lower dimensional 
manifold



The manifold 
hypothesis

Data density 
contentrates near a 
lower dimensional 
manifold



Can shift the curse 
from high d  to dM<< d

The manifold 
hypothesis

Data density 
contentrates near a 
lower dimensional 
manifold



Manifold follows naturally from
continuous underlying factors

(≈ intrinsic manifold coordinates)

21

Ex: pose parameters of a face  Ex: rotation, size of digits (+ line thickness, ...)

Image borrowed from University of  Dayton Vision Lab website.

Such continuous factors are 
(part of) a meaningful represetation!

d

file://localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png
file://localhost/Volumes/grieg.iro.umontreal.ca/Desktop/images/manifold.png


Modeling local tangent spaces

✤ Can be represented by 
patchwork of tangent spaces

✤ Yields local linear coordinate 
systems (chart -> atlas)

22

A non-linear manifold



Manifold Parzen windows
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(Vincent and Bengio, NIPS 2003)
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(Vincent and Bengio, NIPS 2003)
p̂(x) =

1

n

n�

i=1

N (x;xi, Ci)
x1 x2

Classical Parzen Windows 
density estimator
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- Probability mass allocated away 
from  manifold



Manifold Parzen windows
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(Vincent and Bengio, NIPS 2003)
p̂(x) =

1

n

n�

i=1

N (x;xi, Ci)
x1 x2

Classical Parzen Windows 
density estimator

- Archetypal «non-parametric»
kernel density estimator

- Isotropic Gaussian centered on 
each training point

- No sense of manifold direction

- Probability mass allocated away 
from  manifold

Manifold Parzen Windows
density estimator

- Oriented Gaussian «pancake» centered 
on each training point

- Uses low-rank parametrization of Ci, 
learned from nearest neighbors (local PCA)

- «Parametric» cousins:
Mixtures of Gaussian pancakes (Hinton et al. 95)
Mixtures of Factor Analysers (Gharamani + Hinton 96)

Mixtures of Probabilistic PCA (Tipping + Bishop 99)
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p̂(x) =
1

n

n�

i=1

N (x;xi,σ
2I)

isotropic

{

Isotropic Parzen:

Non-local manifold Parzen windows
(Bengio, Larochelle, Vincent, NIPS 2006)
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p̂(x) =
1

n

n�

i=1

N (x;xi,σ
2I)

isotropic

{

Isotropic Parzen:

p̂(x) =
1

n

n�

i=1

N (x;µ(xi), C(xi)){
dM high variance directions output by neural network

Non-local manifold Parzen:

trained to maximize likelihood of k nearest neighbors

(Bengio, Larochelle, Vincent, NIPS 2006)

p̂(x) =
1

n

n�

i=1

N (x;xi, Ci)

{

dM high variance directions from PCA on k nearest neighbors

Manifold Parzen:
(Vincent and Bengio, NIPS 2003)

Non-local manifold Parzen windows
(Bengio, Larochelle, Vincent, NIPS 2006)
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Algorithm sinus spiral
Non-Local MP 1.144 -1.346
Manifold Parzen 1.345 -0.914
Gauss Mix Full 1.567 -0.857
Parzen Windows 1.841 -0.487

Table 1: Average out-of-sample negative log-
likelihood on two toy problems, for Non-Local
Manifold Parzen, a Gaussian mixture with full
covariance, Manifold Parzen, and Parzen Win-
dows. The non-local algorithm dominates all
the others.

Algorithm Valid. Test
Non-Local MP -73.10 -76.03
Manifold Parzen 65.21 58.33
Parzen Windows 77.87 65.94

Table 2: Average Negative Log-Likelihood on
the digit rotation experiment, when testing on
a digit class (1’s) not used during training, for
Non-Local Manifold Parzen, Manifold Parzen,
and Parzen Windows. The non-local algorithm
is clearly superior.

across the whole training set.

Figure 2: Illustration of the learned densities (sinus on top, spiral on bottom) for four com-
pared models. From left to right: Non-Local Manifold Parzen, Gaussian mixture, Parzen
Windows, Manifold Parzen. Parzen Windows wastes probability mass in the spheres around
each point, while leaving many holes. Gaussian mixtures tend to choose too few compo-
nents to avoid overfitting. The Non-LocalManifold Parzen exploits global structure to yield
the best estimator.

Experiments on rotated digits. The next experiment is meant to show both qualitatively
and quantitatively the power of non-local learning, by using 9 classes of rotated digit images
(from 729 first examples of the USPS training set) to learn about the rotation manifold and
testing on the left-out class (digit 1), not used for training. Each training digit was rotated
by 0.1 and 0.2 radians and all these images were used as training data. We used NLMP
for training, and for testing we formed an augmented mixture with Gaussians centered not
only on the training examples, but also on the original unrotated 1 digits. We tested our
estimator on the rotated versions of each of the 1 digits. We compared this to Manifold
Parzen trained on the training data containing both the original and rotated images of the
training class digits and the unrotated 1 digits. The objective of the experiment was to see
if the model was able to infer the density correctly around the original unrotated images,
i.e., to predict a high probability for the rotated versions of these images. In table 2 we see
quantitatively that the non-local estimator predicts the rotated images much better.

As qualitative evidence, we used small steps in the principal direction predicted by Test-
centric NLMP to rotate an image of the digit 1. To make this task even more illustrative of
the generalization potential of non-local learning, we followed the tangent in the direction
opposite to the rotations of the training set. It can be seen in figure 3 that the rotated
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Mixture of k 
Gaussians

Parzen 
Windows

Manifold 
Parzen

Non-local 
Manifold 

Parzen

Use in Bayes classifier on USPS

Figure 3: From left to right: original image of a digit 1; rotated analytically by −0.2
radians; Rotation predicted using Non-Local MP; rotation predicted using MP. Rotations
are obtained by following the tangent vector in small steps.

digit obtained is quite similar to the same digit analytically rotated. For comparison, we
tried to apply the same rotation technique to that digit, but by using the principal direction,
computed byManifold Parzen, of its nearest neighbor’s Gaussian component in the training
set. This clearly did not work, and hence shows how crucial non-local learning is for this
task.

In this experiment, to make sure that NLMP focusses on the tangent plane of the rotation
manifold, we fixed the number of principal directions d = 1 and the number of nearest
neighbors k = 1, and also imposed µ(·) = 0. The same was done for Manifold Parzen.

Experiments on Classification by Density Estimation. The USPS data set was used
to perform a classification experiment. The original training set (7291) was split into a
training (first 6291) and validation set (last 1000), used to tune hyper-parameters. One
density estimator for each of the 10 digit classes is estimated. For comparison we also
show the results obtained with a Gaussian kernel Support Vector Machine (already used
in (Vincent and Bengio, 2003)). Non-localMP* refers to the variation described in (Bengio
and Larochelle, 2005), which attemps to train faster the components with larger variance.
The t-test statistic for the null hypothesis of no difference in the average classification
error on the test set of 2007 examples between Non-local MP and the strongest competitor
(Manifold Parzen) is shown in parenthesis. Figure 4 also shows some of the invariant
transformations learned by Non-local MP for this task.

Note that better SVM results (about 3% error) can be obtained using prior knowledge about
image invariances, e.g. with virtual support vectors (Decoste and Scholkopf, 2002). How-
ever, as far as we know the NLMP performance is the best on the original USPS dataset
among algorithms that do not use prior knowledge about images.

Algorithm Valid. Test Hyper-Parameters
SVM 1.2% 4.68% C = 100, σ = 8

Parzen Windows 1.8% 5.08% σ = 0.8
Manifold Parzen 0.9% 4.08% d = 11, k = 11, σ2

0 = 0.1
Non-local MP 0.6% 3.64% (-1.5218) d = 7, k = 10, kµ = 10,

σ2
0 = 0.05, nhid = 70

Non-local MP* 0.6% 3.54% (-1.9771) d = 7, k = 10, kµ = 4,
σ2

0 = 0.05, nhid = 30

Table 3: Classification error obtained on USPS with SVM, Parzen Windows and Local and
Non-Local Manifold Parzen Windows classifiers. The hyper-parameters shown are those
selected with the validation set.

7 Conclusion

We have proposed a non-parametric density estimator that, unlike its predecessors, is able
to generalize far from the training examples by capturing global structural features of the



What do most «manifold learning» 
approaches have in common ?
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•Manifold Parzen, LLE, Isomap, Laplacian eigenmaps, t-SNE, ...

•Parametric t-SNE, semi-supervised embedding, non-local manifold Parzen, ...

?
Purely non-parametric:

Learn parametrized function:



Neighborhood-based training!

✤ Most explicitly use 
neighborhoods.

✤ Training with k-nearest 
neighbors, or pairs of points.

✤ Typically Euclidean neighbors

✤ But in high d, your nearest 
Euclidean neighbor can be 
very different from you...
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PART  II

On Auto-Encoders

their regularization,
and their link with manifolds.



Auto-Encoders (AE)

h = h(x)

h g

29

Encoder: Decoder:
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Regularized robust auto-encoders
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✤ Denoising Auto-Encoder (DAE) 
(Vincent, Larochelle, Bengio, Manzagol, ICML 2008)
uses stochastic input perturbations

✤ Contractive Auto-Encoder (CAE)
(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)
uses analytic penalty (penalizes input sensitivity)

✤ Both can learn over-complete representations (dh>d)
✤ Related to training Gaussian RBM via regularized score matching

Principle: reconstruction and representation 
should be robust to input perturbations  



h = h(x)

h g
Encoder: Decoder:

input
reconstruction r = g(h(x))

L(x, r)

reconstruction 
error

x

(hidden representation)

corrupted input

x̃
q(x̃|x)

~ ~ ~

features:

noise

Denoising auto-encoder (DAE)
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STACKED DENOISING AUTOENCODERS

stochastic gradient descent to perform 500000 weight updates with a fixed learning rate of 0.05. All
filters shown were from experiments with tied weights, but untied weights yielded similar results.

Figure 5 displays filters learnt by a regular under-complete autoencoder that used a bottleneck
of 50 hidden units, as well as those learnt by an over-complete autoencoder using 200 hidden units.
Filters obtained in the under-complete case look like very local blob detectors. No clear structure is
apparent in the filters learnt in the over-complete case.

Figure 5: Regular autoencoder trained on natural image patches. Left: some of the 12× 12 image
patches used for training. Middle: filters learnt by a regular under-complete autoencoder
(50 hidden units) using tied weights and L2 reconstruction error. Right: filters learnt by a
regular over-complete autoencoder (200 hidden units). The under-complete autoencoder
appears to learn rather uninteresting local blob detectors. Filters obtained in the over-
complete case have no recognizable structure, looking entirely random.

We then trained 200 hidden units over-complete noiseless autoencoders regularized with L2
weight decay, as well as 200 hidden units denoising autoencoders with isotropic Gaussian noise
(but no weight decay). Resulting filters are shown in Figure 6. Note that a denoising autoencoder
with a noise level of 0 is identical to a regular autoencoder. So, naturally, filters learnt by a denoising
autoencoder at small noise levels (not shown) look like those obtained with a regular autoencoder
previously shown in Figure 5. With a sufficiently large noise level however (!= 0.5), the denoising
autoencoder learns Gabor-like local oriented edge detectors (see Figure 6). This is similar to what
is learnt by sparse coding (Olshausen and Field, 1996, 1997), or ICA (Bell and Sejnowski, 1997)
and resembles simple cell receptive fields from the primary visual cortex first studied by Hubel and
Wiesel (1959). The L2 regularized autoencoder on the other hand learnt nothing interesting beyond
restoring some of the local blob detectors found in the under-complete case. Note that we did try a
wide range of values for the regularization hyperparameter,10 but were never able to get Gabor-like
filters. From this experiment, we see clearly that training with sufficiently large noise yields a
qualitatively very different outcome than training with a weight decay regularization, which
confirms experimentally that the two are not equivalent for a non-linear autoencoder, as discussed
earlier in Section 4.2.

Figure 7 shows some of the results obtained with the other two noise types considered, that is,
salt-and-pepper noise, and masking-noise. We experimented with 3 corruption levels ": 10%,25%,55%.
The filters shown were obtained using 100 hidden units, but similar filters were found with 50 or
200 hidden units. Salt-and-pepper noise yielded Gabor-like edge detectors, whereas masking noise

10. Attempted weight decays values were the following: # ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5,
1.0}.
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Figure 6: Weight decay vs. Gaussian noise. We show typical filters learnt from natural image
patches in the over-complete case (200 hidden units). Left: regular autoencoder with
weight decay. We tried a wide range of weight-decay values and learning rates: filters
never appeared to capture a more interesting structure than what is shown here. Note
that some local blob detectors are recovered compared to using no weight decay at all
(Figure 5 right). Right: a denoising autoencoder with additive Gaussian noise (! = 0.5)
learns Gabor-like local oriented edge detectors. Clearly the filters learnt are qualitatively
very different in the two cases.

yielded a mixture of edge detectors and grating filters. Clearly different corruption types and levels
can yield qualitatively different filters. But it is interesting to note that all three noise types we
experimented with were able to yield some potentially useful edge detectors.

5.2 Feature Detectors Learnt from Handwritten Digits

We also trained denoising autoencoders on the 28× 28 gray-scale images of handwritten digits
from the MNIST data set. For this experiment, we used denoising autoencoders with tied weights,
cross-entropy reconstruction error, and zero-masking noise. The goal was to better understand the
qualitative effect of the noise level. So we trained several denoising autoencoders, all starting from
the same initial random point in weight space, but with different noise levels. Figure 8 shows some
of the resulting filters learnt and how they are affected as we increase the level of corruption. With
0% corruption, the majority of the filters appear totally random, with only a few that specialize as
little ink blob detectors. With increased noise levels, a much larger proportion of interesting (visibly
non random and with a clear structure) feature detectors are learnt. These include local oriented
stroke detectors and detectors of digit parts such as loops. It was to be expected that denoising a
more corrupted input requires detecting bigger, less local structures: the denoising auto-encoder
must rely on longer range statistical dependencies and pool evidence from a larger subset of pixels.
Interestingly, filters that start from the same initial random weight vector often look like they “grow”
from random, to local blob detector, to slightly bigger structure detectors such as a stroke detector,
as we use increased noise levels. By “grow” we mean that the slightly larger structure learnt at a
higher noise level often appears related to the smaller structure obtained at lower noise levels, in
that they share about the same position and orientation.
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(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:
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(a) SAE (b) SDAE

(c) DBN

Figure 15: Variability of the samples generated with 3-hidden-layer SAE, SDAE and DBN pre-
trained models. Each sub-figure is to be read row-wise: the leftmost pattern in each row
is a training set pattern. Following the sample generation depicted in Figure 14, it was
provided as input to the network and its top-layer representation was computed by de-
terministic bottom up encoding. Patterns to its right were then generated independently
given that top level representation. Clearly, SDAE trained networks, like DBNs, are able
to regenerate high quality samples from their high level representation, contrary to SAE.
SDAE and DBNs also appear to give rise to a similar level of variability in the bottom-up
generated patterns (DBN patterns tending to be somewhat fatter). Note how SDAE puts
back the missing hole in the loop of the regenerated 6, and sometimes straightens up
the upper stroke of the last 7, suggesting that it did indeed capture meaningful specific
characteristics. DBN and SDAE generated patterns can easily pass for samples from the
unknown input distribution being modeled, unlike patterns generated by SAE.
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(a) No corruption (b) 25% corruption (c) 50% corruption

(d) Neuron A (0%, 10%, 20%, 50% corruption) (e) Neuron B (0%, 10%, 20%, 50% corruption)

Figure 8: Filters learnt by denoising autoencoder on MNIST digits, using zero-masking noise. (a-c)
show some of the filters learnt by denoising autoencoders trained with various corruption
levels !. Filters at the same position in the three images are related only by the fact
that the autoencoders were started from the same random initialization point in parameter
space. (d) and (e) zoom in on the filters obtained for two of the neurons. As can be seen,
with no noise, many filters remain similarly uninteresting (undistinctive almost uniform
random grey patches). As we increase the noise level, denoising training forces the filters
to differentiate more, and capture more distinctive features. Higher noise levels tend to
induce less local filters, as expected. One can distinguish different kinds of filters, from
local blob detectors, to stroke detectors, and character parts detectors at the higher noise
levels.

was represented by 592 Mel Phon Coefficient (MPC) features. These are a simplified for-
mulation of the Mel-frequency cepstral coefficients (MFCCs) that were shown to yield better
classification performance (Bergstra, 2006).

All problems except tzanetakis had their data split into training set, validation set and test set.
We kept the same standard splits that were used in Larochelle et al. (2007). The training set is used
for both pretraining and fine tuning of the models. Classification performance on the validation set is
used for choosing the best configuration of hyperparameters (model selection). The corresponding
classification performance on the test set is then reported together with a 95% confidence interval.

For tzanetakis we used a slightly different procedure, since there was no predefined standard
split and fewer examples. We used 10-fold cross validation, where each fold consisted of 8000
training examples, 1000 test and 1000 validation examples. For each fold, hyperparameters were
chosen based on the performance on the validation set, and the retained model was used for com-
puting the corresponding test error. We report the average test error and standard deviation across
the 10 folds.

We were thus able to compare the classification performance of deep neural networks using
different unsupervised initialization strategies for their parameters:
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Denoising auto-encoder (DAE)

✤ DAE learns to «project back» corrupted input onto manifold.
✤ Representation h ≈ location on the manifold 
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(Vincent, Larochelle, Bengio, Manzagol, ICML 2008)
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Contractive Auto-Encoder (CAE)
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✤ Minimize 

✤ For training examples, encourages both:
➡ small reconstruction error
➡ representation insensitive to small variations around example

JCAE =
n�

x∈D

L(x, g(h(x)) + λ

����
∂h(x)

∂x

����
2

Reconstruction Contraction

∂hj

∂x
(x) = hj(x)(1− hj(x))Wj

With a sigmoid layer, penalty is easy and cheap to compute:

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)
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Learned tangent space

✤ CAE captures the structure of 
the manifold by defining an 
atlas of charts.
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SVD:

Top singular vectors are tangent 
directions to which h is most sensitive.

✤ Jacobian                             measures 
sensitivity of h locally around x

Jh(x) =
∂h

∂x
(x)
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SVD of Jh(x) =
∂h

∂x
(x)



(as e.g. in Manifold Parzen)
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}Input Point Tangents

Contractive Auto-Encoder

Not based on explicit neighbors or pairs of points!

(singular vectors of Jh(x) )
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How to exploit the learned tangents
✤ Simard et al, 1993 exploited tangents derived from prior-knowledge of 

image deformations we can use our learned tangents instead.

✤ Use them to define tangent distance to use 
in your favorite distance (k-NN) or kernel-based classifier...

✤ Use them with tangent propagation when fine-tuning a deep-net 
classifier to make class prediction insensitive to tangent directions.
(Manifold Tangent Classifier, Rifai et al. NIPS 2011) 0.81% on MNIST 

✤ Moving preferably along tangents 
allows efficient quality sampling 
(Rifai et al. ICML 2012)

-
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K-NN NN SVM DBN CAE DBM CNN MTC

3,09% 1,60% 1,40% 1,17% 1,04% 0,95% 0,95% 0,81%

Results: MNIST 
(standard split)

41

Models invariant to random feature permutation 
i.e. no domain knowledge, except LeNet 

LeNet
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PART  III

Ongoing work,
thoughts and speculation



Probability density modeling
of data that follows the manifold hypothesis

43

x
1

x
2

Example:
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x1

x2

when applied to a model 
of very high capacity 

?

What do these inductive principles yield

✤ Maximum likelihood
✤ Contrastive Divergence
✤ Score Matching

e-E(x)
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x1

x2

They tend to a Dirac comb!

➪ Dirac comb

e-E(x)

Common fitting procedures increase 
probability at training points 
lower it everywhere else...
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x1

x2

They tend to a Dirac comb!

The Porcupine effect!

➪ Dirac comb

e-E(x)

Common fitting procedures increase 
probability at training points 
lower it everywhere else...
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Ex: score matching
(Hyvärinen 2005)

JSM (θ) =
�

x∈D

�����
∂E

∂x
(x)

����
2

−
d�

i=1

∂2E

∂x2
i

(x)

�
Learn energy function by minimizing:
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Ex: score matching
(Hyvärinen 2005)

JSM (θ) =
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x∈D
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−
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∂2E

∂x2
i

(x)

�

First derivative encouraged to be small: ensures 
training points stay close to local minima of E
 

Encourage large positive 
curvature in all directions
 

E(x)

x x1

x2e-E(x)

sharply peaked 
density

�JE(x)�2 Tr(HE(x))
Laplacian

Learn energy function by minimizing:



Unseen porcupine ?

✤ Porcupine corresponds to 
many 0d manifolds.

✤ We don’t usually see him 
because parametrized models 
are very constrained.

✤ He may be lurking for when we 
increase capacity...

47

Could we define a non-parametric prior 
preference towards >0-dimensional 
manifolds ?



A manifold inductive bias
for learning an Energy  function E

48

Can we bias the training criteria towards modeling a manifold structure?
Score matching Manifold bias
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A manifold inductive bias
for learning an Energy  function E
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Can we bias the training criteria towards modeling a manifold structure?

eigenspectrum
of HE (x)

Score matching

0 curvature direction

E(x)

λ ≈ (C, . . . , C� �� �
d−dM

, 0, . . . , 0� �� �
dM

)

✤ Instead encourage 
- near zero curvature 

in ≈dM directions
- target positive 

curvature C in 
remaining d-dM directions

✤ by encouraging 

Manifold bias
✤ Encourages large «curvature» 

of E in all directions:
✤ By maximizing Laplacian 

Tr(HE(x)) =
d�

i=1

λi

HE(x) =
∂2

E

∂x2
(x)

Isot
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Contractive autoencoder penalty Manifold bias
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Can we bias the training criteria towards modeling a manifold structure?

squared singular value 
spectrum of Jh (x)

Contractive autoencoder penalty Manifold bias
✤ Encourages insensitivity of 

representation in all directions:
✤ By penalizing Jacobian norm 

�Jh(x)�2F = Tr(JhJ
T
h ) =

d�

i=1

λi

Jh(x) =
∂h

∂x
(x)

✤ Instead encourage 
- representation sensitive to 
≈dM input directions

- insensitive to remaining d-dM 
directions

✤ by encouraging 

λ ≈ (1, . . . , 1� �� �
dM

, 0, . . . , 0� �� �
d−dM

)

Isot
rop

ic
Encourages 0 dim. 

«manifolds»



How to encourage this kind of spectrum
in practice

✤ Encourage J to be a partial isometry:
will ensure that singular values are close to either 1 or 0.

✤ Encourage sum of squared singular values to be close to target dM

50

JhJ
T
h Jh ≈ Jh

d�

i=1

λi = Tr(JhJ
T
h ) = �Jh(x)�2F ≈ dM

Manifold Autoencoder:

λ ≈ (1, . . . , 1� �� �
dM

, 0, . . . , 0� �� �
d−dM

)
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+ γ2�JhJT

h Jh − Jh�2F
or computationally more 
efficient stochastic probe: �JhJT
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{
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Preliminary proof of concept result

51

student:
Hani Almousli

target dM=100

sharp drop-off



Is this enough?

52

✤ Now instead of a Porcupine (dimension 0 peaks) 
we can get a Pangolin (dM  dimensional scales) !!!

✤ Not guaranteed to be oriented along manifold!
✤ How can this be fixed?

x1

x2e-E(x)

Ex: dM=1
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Additional requirement: smoothness

53

E�∼N (0,σ2)

�
�Jh(x)− Jh(�)�2

�

✤ Additional requirement: smoothness of Jh(x) or HE(x) 
✤ may be (partially?) induced by model parametrization
✤ can be added to criterion as in e.g.

Higher Order Contractive Autoencoders (CAE+H)
(Rifai, Mesnil, Vincent, Muller, Bengio, Dauphin, Glorot;  ECML 2011) 

Additional smoothness penalty



Efficient parametrization of huge 
tangent spaces patchwork
✤ Modeling tangent spaces of real world data 

may require a huge patchwork
✤ Ex: Combinatorial explosion of tangent spaces 

due to combinatorial possibilities of 
movements of objects in a scene

✤ Rather than a big mixture of PPCA or FA 
(like manifold Parzen) with indep. params.
Use a product of mixtures!

✤ These yield gigantic combinatorial mixture 
with shared parameters.

✤ => RBMs with low-rank Gaussian covariance 
parametrizations. 54

E(x)

x

ex: billiard



And then what?
Stitching together the patchwork

55

✤ Large representations = 
distributed representations of 
local tangent spaces.

✤ Having a good model of 
tangent spaces...

✤ How can we go beyond local 
coordinate systems?

✤ To synthesize more global 
continuous coordinates?
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Questions ?


