Effects of Frequency-Based Inter-frame Dependencies on Automatic Speech Recognition

Ludovic Trottier Brahim Chaib-draa Philippe Giguère

ludovic.trottier.1@ulaval.ca
{chaib,philippe.giguere}@ift.ulaval.ca

Laval University

May 8, 2014

Outline

Automatic Speech Recognition

2 Modeling Inter-Frame Dependencies

Outline

2 Modeling Inter-Frame Dependencies

3 Experimentations

Automatic Speech Recognition

・ロト・日本・日本・日本・日本・

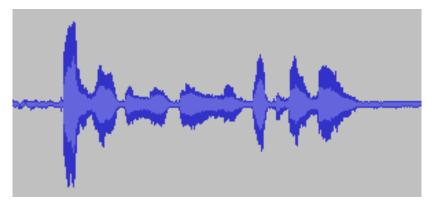
Automatic Speech Recognition

Automatic speech recognition tries to solve problems like :

Automatic Speech Recognition

Automatic speech recognition tries to solve problems like :

what is the person saying?



Answer :

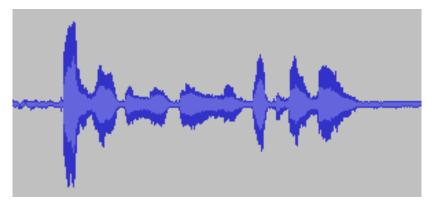
・ ロ ト ・ 同 ト ・ 回 ト ・

SQC

Automatic Speech Recognition

Automatic speech recognition tries to solve problems like :

what is the person saying?



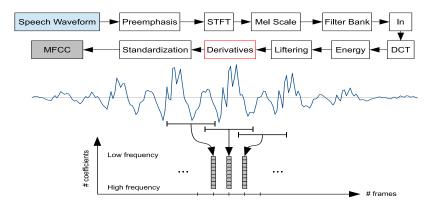
Answer : All work and no play makes Jack a dull boy

Features

<ロ> <0</p>

Features

MFCC : Mel-frequency cepstral coefficients

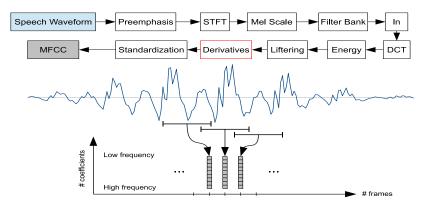


- コット (雪) (三) (三)

SQC

Features

MFCC : Mel-frequency cepstral coefficients



The differentiation of a noisy signal amplifies the noise. Can something else be used?

Contributions

・ロト・日本・日本・日本・日本・日本

Contributions

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency. **Motivations**

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

Motivations

Signal processing theories show that the rate at which information changes in signals is proportional to frequency.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

Motivations

Signal processing theories show that the rate at which information changes in signals is proportional to frequency.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

Motivations

Signal processing theories show that the rate at which information changes in signals is proportional to frequency.

2 Model

A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

Motivations

Signal processing theories show that the rate at which information changes in signals is proportional to frequency.

2 Model

A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed. **Motivations**

Contributions

Features

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

Motivations

Signal processing theories show that the rate at which information changes in signals is proportional to frequency.

2 Model

A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed. **Motivations**

High-dimensional features.

Triangular Window (Contribution 1)

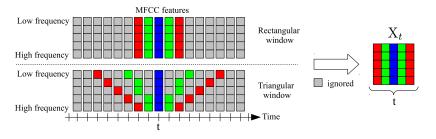
Triangular Window (Contribution 1)

Original MFCC

Concatenation of derivatives

Our Features

Concatenation of coefficients on each side of a frame according to the shape of the window.



Motivations for Triangular Window

Motivations for Triangular Window

Variation of the intensity of different frequency components.

Long and continuous lines implies slow variation.

Short lines implies high variation.

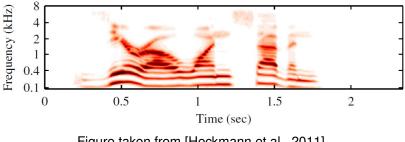


Figure taken from [Heckmann et al., 2011]

Outline

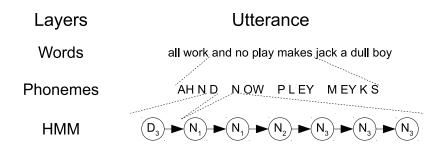
Automatic Speech Recognition

2 Modeling Inter-Frame Dependencies

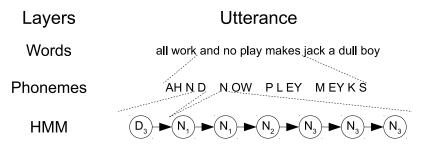
3 Experimentations

Phoneme Based Hidden Markov Model

Phoneme Based Hidden Markov Model



Phoneme Based Hidden Markov Model



Original Model

HMM with a mixture of Gaussian densities. (GMM-HMM)

Our Model

HMM with a mixture of Matrix Normal densities. (MNMM-HMM)

Learning MNMM-HMM (Contribution 2)

Learning MNMM-HMM (Contribution 2)

Matrix Normal Distribution

Let *X* and *M* be $n \times p$ dimensional matrices, *U* be $n \times n$ and *V* be $p \times p$. If $X \sim \mathcal{MN}(M, U, V)$, then:

Learning MNMM-HMM (Contribution 2)

Matrix Normal Distribution

Let *X* and *M* be $n \times p$ dimensional matrices, *U* be $n \times n$ and *V* be $p \times p$. If $X \sim \mathcal{MN}(M, U, V)$, then:

$$\rho(X|M, U, V) = \frac{\exp\left(-\frac{1}{2}\operatorname{Tr}\left[V^{-1}(X - M)^{\top}U^{-1}(X - M)\right]\right)}{(2\pi)^{\frac{n\rho}{2}}|V|^{\frac{n}{2}}|U|^{\frac{\rho}{2}}}, (1)$$

where M is the mean, U is the among-row variance and V the among-column variance.

Learning MNMM-HMM (Contribution 2)

Matrix Normal Distribution

Let *X* and *M* be $n \times p$ dimensional matrices, *U* be $n \times n$ and *V* be $p \times p$. If $X \sim \mathcal{MN}(M, U, V)$, then:

$$p(X|M, U, V) = \frac{\exp\left(-\frac{1}{2}\operatorname{Tr}\left[V^{-1}(X - M)^{\top}U^{-1}(X - M)\right]\right)}{(2\pi)^{\frac{np}{2}}|V|^{\frac{n}{2}}|U|^{\frac{p}{2}}}, (1)$$

where M is the mean, U is the among-row variance and V the among-column variance.

Learning

Using the posterior probability computed by the well-known Forward-Backward recursion, we can update the parameters M, U and V.

Outline

2 Modeling Inter-Frame Dependencies

3 Experimentations

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Aurora 2

Aurora 2

Aurora 2 task is :

Aurora 2

Aurora 2 task is :

• 11 spoken digits : zero to nine with oh

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Aurora 2

Aurora 2 task is :

- 11 spoken digits : *zero* to *nine* with *oh*
- Connected speech: any order, up to 7, possible pauses

Aurora 2

- 11 spoken digits : *zero* to *nine* with *oh*
- Connected speech: any order, up to 7, possible pauses
- Noisy : SNR between -5 and 20 dB

Aurora 2

- 11 spoken digits : *zero* to *nine* with *oh*
- Connected speech: any order, up to 7, possible pauses
- Noisy : SNR between -5 and 20 dB
- Train : 16,880 utterances

Aurora 2

- 11 spoken digits : *zero* to *nine* with *oh*
- Connected speech: any order, up to 7, possible pauses
- Noisy : SNR between -5 and 20 dB
- Train : 16,880 utterances
- Test A : 28,028 utterances

Aurora 2

- 11 spoken digits : zero to nine with oh
- Connected speech: any order, up to 7, possible pauses
- Noisy : SNR between -5 and 20 dB
- Train : 16,880 utterances
- Test A : 28,028 utterances
- Test B : 28,028 utterances

Aurora 2

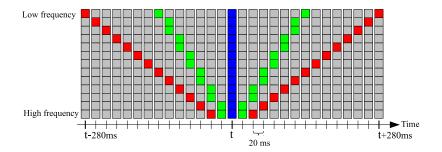
- 11 spoken digits : zero to nine with oh
- Connected speech: any order, up to 7, possible pauses
- Noisy : SNR between -5 and 20 dB
- Train : 16,880 utterances
- Test A : 28,028 utterances
- Test B : 28,028 utterances
- Test C : 14,014 utterances

Triangular Window

Triangular Window

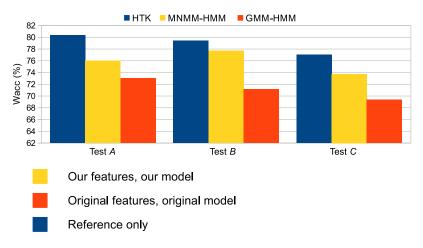
We tested multiple configurations for the triangular window.

This is the shape of the best triangular window we found.



Triangular Window (cont.)

Triangular Window (cont.)



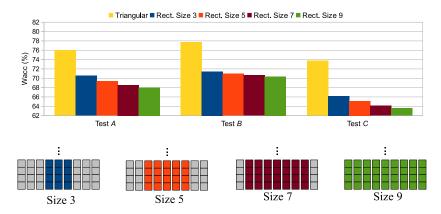
Our implementation shows that its helps simpler speech recognizer.

Experimentations

Rectangular VS Triangular

Dac

Rectangular VS Triangular



Taking into account the frequency of the coefficients, the triangular window outperformed mere concatenation.

Adding more information degrades the performances of rectangular.

Contributions

<ロ> <0</p>

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Conclusion

Contributions

In place of derivatives, we used coefficients concatenation based on the time and the frequency.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

<ロト < 回 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Results

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Results

The concatenation of adjacent features might be a better idea than the concatenation of derivatives.

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Results

The concatenation of adjacent features might be a better idea than the concatenation of derivatives.

Future Work

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Results

The concatenation of adjacent features might be a better idea than the concatenation of derivatives.

Future Work

 Feature representation model to learn the shape of the window.

Contributions

- In place of derivatives, we used coefficients concatenation based on the time and the frequency.
- 2 A Hidden Markov Model with a Matrix Normal Mixture Model as the emission density was designed.

Results

The concatenation of adjacent features might be a better idea than the concatenation of derivatives.

Future Work

- Feature representation model to learn the shape of the window.
- 2 Triangular window directly on the waveform.