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1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features

In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.

Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations

Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model

A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.

Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations

High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Contributions

1 Features
In place of derivatives, we used coefficients concatenation
based on the time and the frequency.
Motivations
Signal processing theories show that the rate at which
information changes in signals is proportional to frequency.

2 Model
A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.
Motivations
High-dimensional features.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Triangular Window (Contribution 1)

Original MFCC

Concatenation of derivatives

Our Features

Concatenation of coefficients on each side of a frame
according to the shape of the window.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Triangular Window (Contribution 1)

Original MFCC

Concatenation of derivatives

Our Features

Concatenation of coefficients on each side of a frame
according to the shape of the window.



Automatic Speech Recognition Modeling Inter-Frame Dependencies Experimentations

Motivations for Triangular Window

Variation of the intensity of different frequency components.

Long and continuous lines implies slow variation.

Short lines implies high variation.

Figure taken from [Heckmann et al., 2011]
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Our Model

HMM with a mixture of Matrix Normal densities. (MNMM-HMM)
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Learning MNMM-HMM (Contribution 2)

Matrix Normal Distribution

Let X and M be n × p dimensional matrices, U be n × n and V
be p × p. If X ∼MN (M,U,V ), then:

p(X |M,U,V ) =
exp
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where M is the mean, U is the among-row variance and V the
among-column variance.

Learning

Using the posterior probability computed by the well-known
Forward-Backward recursion, we can update the parameters
M, U and V .
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Aurora 2

Aurora 2 task is :

11 spoken digits : zero to nine with oh

Connected speech: any order, up to 7, possible pauses

Noisy : SNR between -5 and 20 dB

Train : 16,880 utterances

Test A : 28,028 utterances

Test B : 28,028 utterances

Test C : 14,014 utterances
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Our implementation shows that its helps simpler speech
recognizer.
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Taking into account the frequency of the coefficients, the
triangular window outperformed mere concatenation.

Adding more information degrades the performances of
rectangular.
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Conclusion

Contributions

1 In place of derivatives, we used coefficients concatenation
based on the time and the frequency.

2 A Hidden Markov Model with a Matrix Normal Mixture
Model as the emission density was designed.

Results

The concatenation of adjacent features might be a better idea
than the concatenation of derivatives.

Future Work

1 Feature representation model to learn the shape of the
window.

2 Triangular window directly on the waveform.
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