
Temporal Feature Selection for
Noisy Speech Recognition

Ludovic Trottier, Brahim Chaib-draa, and Philippe Giguère

Department of Computer Science and Software Engineering,
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Abstract. Automatic speech recognition systems rely on feature extrac-
tion techniques to improve their performance. Static features obtained
from each frame are usually enhanced with dynamical components us-
ing derivative operations (delta features). However, the susceptibility to
noise of the derivative impacts on the accuracy of the recognition in noisy
environments. We propose an alternative to the delta features by select-
ing coefficients from adjacent frames based on frequency. We noticed that
consecutive samples were highly correlated at low frequency and more
representative dynamics could be incorporated by looking farther away
in time. The strategy we developed to perform this frequency-based se-
lection was evaluated on the Aurora 2 continuous-digits and connected-
digits tasks using MFCC, PLPCC and LPCC standard features. The
results of our experimentations show that our strategy achieved an av-
erage relative improvement of 32.10% in accuracy, with most gains in
very noisy environments where the traditional delta features have low
recognition rates.

Keywords: automatic speech recognition, delta features, feature ex-
traction, noise robustness.

1 Introduction

Automatic speech recognition (ASR) is the transcription of spoken utterances
into text. A system that performs ASR tasks takes an audio signal as input
and classifies it into a series of words. In order to improve the performance of
the system, feature extraction approaches are applied on the signal to provide
reliable features. The three most frequently used features in ASR are the Mel
frequency cepstral coefficients (MFCC), the perceptual linear predictive cepstral
coefficients (PLPCC) and the linear predictive cepstral coefficients (LPCC) (see
[18] for a review). These filter bank analysis extraction methods use various
transformations, such as the Fourier transform, to convert a signal into a series
of static vectors called feature frames. The coefficients in a feature frame are
usually ordered from low-frequency to high-frequency and this observation will
play a central role in our approach.
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Classical feature extraction methods enhance each feature frame with dynam-
ical components by concatenating the first- and second-order derivatives. These
delta features were proposed as a way to improve the spectral dynamics of static
features [3]. Delta features improve the accuracy of the hidden Markov model
(HMM) [23] by reducing the impacts of the state conditional independence [4].
However, it is known from signal processing theories that the derivative of a
noisy signal amplifies the noise and reduces the quality of the extracted infor-
mation [14]. This can be especially harmful in real world situations where noise
affects the recognition, such as when driving a car [13].

We have proposed, in a preliminary approach, that the delta features could
be replaced with a mere concatenation of adjacent (in time) coefficients based
on frequency [19]. This approach will be referred to as Temporal Feature Se-
lection (TFS). The suggestion that dynamical features should be dependent on
frequency was motivated by the importance of modeling inter-frame dependen-
cies for speech utterances. Signal processing theories suggest that information
in a signal varies according to its frequency [14]. For example, implosive conso-
nant will result in fast, high-frequency features, while vowels will produce slow-
changing, lower-frequency features. It thus appears that dynamical features may
be enhanced by measuring the variation of the signal’s information with fre-
quency.

In this paper, we extend our TFS method with a learning framework. Our
framework uses the variance of the difference of adjacent feature frames as a way
to identify the positions where more reliable dynamical information resides. We
show experimentally that our dynamical features improve the accuracy over the
classical delta features on the Aurora 2 [15] continuous-digits and connected-
digits tasks.

The rest of the paper is organized as follows. Section 2 describes related
approaches, section 3 contains background information about feature extraction,
section 4 presents the TFS method, section 5 details the experimentations and
section 6 concludes this work.

2 Related Work

To overcome the delta features’ problem of susceptibility to noise, recent alter-
natives have been investigated. The delta-spectral cepstral coefficients (DSCC)
have been proposed in replacement of the delta features to add robustness to
additive noise [10]. Also, the discrete cosine transform (DCT) has been used
in a distributed fashion (DDCT) prior to the calculation of the delta features
[8]. Finally, a weighted sum combining the static and delta features have been
proposed in replacement of the usual concatenation [20]. The main drawback of
all these methods is that derivative operations are still part of their processing
pipeline thus making the features prone to be corrupted by noise.

Additionally, splicing followed by decorrelation and dimensionality reduction
has been used to enhance the inputs of deep neural networks (DNNs) [16]. Splic-
ing consists in concatenating all feature frames (with delta features) in a context
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window of size c around each frame [1]. Moreover, it was showed that deeper
layers allow more discriminative and invariant features to be learned [22]. While
we acknowledge that deep learning is a promising avenue for feature extraction
in ASR, we argue that better feature engineering methods could facilitate the
DNN learning process.

In the context of linear feature transformations, some have looked at dimen-
sionality reduction approaches such as Principal Component Analysis (PCA)
[9], Linear Discriminant Analysis (LDA) [2], Heteroscedastic LDA (HLDA) [11]
amd Heteroscedastic DA (HDA) [17]. These approaches are essential tools for
speech feature extraction, but we argue that they may be avoided by using a bet-
ter model for gathering the speech dynamics. Linear transformations of speech
features have also been applied for decorrelation, such as Maximum Likelihood
Linear Transform (MLLT) [7], Global Semi-tied Covariance (GSC) [6], and for
speaker adaptation, such as feature-space Maximum Likelihood Linear Regres-
sion (fMLLR) [12] and Constrained MLLR (CMLLR) [5]. However, these feature
selection techniques do not address the problem of modeling speech dynamics.

3 Background

In this section, we review in brief the steps for performing MFCC feature ex-
traction on speech signals. The overview of the method is presented in Fig. 1.
For additional details on this technique and other related approaches (such as
PLPCC and LPCC), see [18].

Pre-emphasis: A speech waveform entering the pipeline is first filtered with
a first order high pass filter. The goal of this transformation is to remove the
low-frequency parts of the speech, as they tend to have similar and redundant
adjacent values.

Windowing: The resulting signal is them divided into 20-40 milliseconds
frames. A length of 25 ms is typical in speech processing. Assuming the sig-
nal is sampled with a frequency of 8 kHz, the frame length corresponds to
0.025 ∗ 8000 = 200 samples. Usually, the frames are overlapping by 15 ms (120
samples at 8 kHz), which means that a frame is extracted at every 10 ms (80
samples at 8 kHz) in the signal.

Periodogram Estimate of Power Spectrum: To perform the periodogram
estimate of the power spectrum, the discrete Fourier transform (DFT) is applied
on each frame to transform the waveform into its frequency domain. DFT as-
sumes that each signal is periodic, which means that the beginning and the end
of each frame should be connected. For a randomly selected frame, this hypoth-
esis will not be respected and will lead to abrupt transitions. The discontinuities
at the edges will be reflected in the spectrum by the presence of spectral leak-
age. To get a better resolution, the Hamming windowing function is applied to
connect the edges in a smoother way. The length of the DFT is typically 512,
but only the first 257 coefficients are kept since the other 255 are redundant due
to the nature of the Fourier transform. Finally, the squared absolute value of the
DFT is applied which gives the periodogram estimate of power spectrum.



4 Temporal Feature Selection for Noisy Speech Recognition

Fig. 1. MFCC extraction.

Mel-scaled Filterbank: Each power spectral estimate is filtered using tri-
angular Mel-spaced filterbanks (see [21] for more details). The filterbanks are
described as 26 vectors of size 257 (assuming K = 512). Each vector contains
mostly zeros excepted at certain regions of the spectrum and thus act as band-
pass filters. Mapping the frequency to the Mel scale allows the features to match
more closely the non linear perception of pitch of the human auditory system. To
compute the filterbank energies, we can simply multiply the periodogram esti-
mates by each filterbank and sum the values. The 26 numbers give an indication
of the amount of energy in each filterbank.

DCT of log Filterbank Energies: Then, a type 2 discrete cosine transform
(DCT-II) is performed on the log filterbank energies to decorrelate the values.
The length of the DCT is usually 14 and the first coefficient is discarded. The
resulting 13 coefficient correspond to the static features.

Dynamic Features: As explain in section 1, the impacts of the state con-
ditional independence of the HMM can be reduced by gathering dynamical in-
formation. In most cases, the delta features are appended to the static features
by computing discrete derivatives (more details in section 4.2).

Standardization: Finally, we subtract each coefficient with its sample mean
and divide by its sample standard deviation. These statistics can be calculated
once for all utterances or individually for each utterance.

As shown in Fig. 3, the signal is transformed into a series of vectors, one for
each frame extracted during windowing. Each utterance has a different number
of frames, depending on its length and its sampling frequency. We now present
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our approach that is an alternative method to the computation of delta features
during the Dynamic Features step.

4 Temporal Feature Selection

4.1 Definition

Let Φ(n) =
(
φ

(n)
:,1 . . .φ

(n)
:,Tn

)
, n = 1 . . . N, be a D × Tn matrix of D-dimensional

static features. N is the total amount of utterances and Tn denotes the number of
frames extracted from utterance n. For example, Φ(n) could represent MFCC, as

presented in section 3. We denote the column vector φ
(n)
:,t as the feature frame

at position t. The classical method of computing the delta features uses the
following equations:

∆φ
(n)
:,t =

∑K
k=1 k

(
φ

(n)
:,t+k − φ

(n)
:,t−k

)
2
∑K

k=1 k
2

, (1)

∆∆φ
(n)
:,t =

∑K
k=1 k

(
∆φ

(n)
:,t+k −∆φ

(n)
:,t−k

)
2
∑K

k=1 k
2

, (2)

where K = 2 is a typical value for the summation. Although relevant dynamical
information can be extracted with Eq. 1 and 2, the use of subtractions makes ∆
and ∆∆ features susceptible to noise.

The TFS features are, in contrast, coefficients taken from adjacent feature
frames based on the frame position offsets z = [z1, . . . , zD]. We define them as:

τφ
(n)
i,t =

(
φ

(n)
i,t+zi

,φ
(n)
i,t−zi

)
, (3)

where zi is a strictly positive integer. The parametrization of z is essential to
extract robust dynamics. By imposing frequency dependency, τ will be consti-
tuted of coefficients φ that are dissimilar, but not too much. The intuition is
that too similar values do not increase the amount of information the feature
frames carry, but increase its dimensionality, and this makes the speech recog-
nition task harder. On the other hand, if the coefficients are too far apart, then
their temporal correlation is meaningless.

4.2 Learning the TFS Features

We now present the proposed framework to learn the frequency dependent offsets
z. The method first computes the sample variance of the difference of neighboring
feature frames. In other words, for each position t and utterance n, the difference

between the feature frame φ
(n)
:,t and its corresponding jth neighbor φ

(n)
:,t+j is

computed. The variance of these differences is then calculated for j ∈ {1 . . .M},
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Fig. 2. Variance of the difference between a frame and its neighbors for MFCC features
on the Aurora 2 [15] training dataset (best seen in colors). The coefficients are ordered
from low frequency (1) to high frequency (13) for visual convenience (the proposed
method does not require a specific ordering). The color refers to the variance of the
difference ΣM , where M was limited to 25 to reduce the computational burden.

where M = min{T1 . . . TN} − 1. We define the matrix containing those values
as:

ΣM =


Var

(
φ

(n)
1,t − φ

(n)
1,t+1

)
. . . Var

(
φ

(n)
1,t − φ

(n)
1,t+M

)
...

...

Var
(
φ

(n)
D,t − φ

(n)
D,t+1

)
. . . Var

(
φ

(n)
D,t − φ

(n)
D,t+M

)
 , (4)

where the variances are taken over all positions t and utterances n. The variance
is then be computed as follows:

ΣM
i,j =

1

N+
j

N∑
n=1

Tn−j∑
t=1

(
φ

(n)
i,t − φ

(n)
i,t+j − µi,j

)2
, (5)

where µi,j corresponds to the mean of the difference:

µi,j =
1

N+
j

N∑
n=1

Tn−j∑
t=1

(
φ

(n)
i,t − φ

(n)
i,t+j

)
, (6)

and N+
j is the total number of frames:

N+
j =

N∑
n=1

Tn − j . (7)

The purpose of computing ΣM is to find the frame position offsets z. Using
the parameter Vthresh as a variance threshold, z is computed using the following
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Fig. 3. Pipeline of processing for TFS features. After computing the frame position
offsets z using Eq. 8, the features are concatenated and decorrelated with DCT-II.

equation:

zi = arg min
j

∣∣ΣM
i,j − Vthresh

∣∣ , (8)

where Vthresh is a hyper-parameter to choose. The frame position offsets z repre-
sented in Fig. 2 by the black dots are based on Eq. 8 for Vthresh = 1 and M = 25.
In this particular example, z = [8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2]. For i = 1, this im-
plies that τφ1,t = (φ1,t+8,φ1,t−8).

What can be seen from this figure is that z depends on frequency. High fre-
quency components have small offsets whereas low frequency components have
large offsets. As explained in section 1, more reliable dynamical informations
can be extracted from neighboring feature frames when frequency is taken into
account. The relevant dynamical information of high frequency coefficients can
only be extracted from nearly adjacent frames (z13 = 2). On the other hand, ad-
jacent low frequency coefficients share most of their information and more time
is needed to gather the relevant dynamics (z1 = 8). Therefore, by using the vari-
ance of neighboring feature frames, z now incorporate the wanted characteristic
of frequency dependency.

As in standard feature extraction, the features from each frame, φ
(n)
:,t and

τφ
(n)
:,t are concatenated into a single column vector as shown in Fig. 3. Each

resulting vector is then decorrelated with a type 2 DCT in order to accommodate
it to the independence hypothesis of the Gaussian Mixture Model Hidden Markov
Model (GMM-HMM) that was chosen as the inference method [4].

5 Experimental Results

5.1 Experimental Setup

The database that we used for our experiments is Aurora 2 [15] which contains a
vocabulary of 11 spoken digits (zero to nine with oh). The digits are connected,
thus they can be spoken in any order and in any amount (up to 7) with possible
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pauses between them. The training set contains 8,440 utterances, both test set
A and B have 28,028 and test C has 14,014 utterances. The utterances are noisy
and the signal-to-noise ratio (SNR) varies from -5 dB, 0 dB, . . . , 20 dB, Inf dB
(clean). Different kinds of noise are present such as train, airport, car, restaurant,
etc. On average, an utterance lasts approximately 2 seconds.

Using the HTK [21] framework provided with the Aurora 2 database, we
performed two experiments. In the first one, 18 states whole-word HMMs were
trained with a 3 components GMM (with diagonal covariance) as the state emis-
sion density. There was a total of 11 HMMs (one per class). In the second one,
the whole-word HMMs were replaced with 5 states phoneme HMMs. In other
words, using the CMU pronouncing dictionary, each digit was mapped to its
ARPAbet interpretation. There was a total of 19 HMMs (one per phoneme). In
our experimentations, we compared TFS (-T) to delta (-D) and double delta (-A)
dynamic features on MFCC, PLPCC and LPCC. For all these features, 13 coef-
ficients, including the energy (-E), excluding the 0th coefficient, were extracted
to be used as observations. For all experiments, a variance threshold Vthresh = 1
was used. The performance of each method was averaged over all test sets for
each noise level separately.

5.2 Experimental Results

The performances in word accuracy of our method are reported in Table 1 and 2
for whole-word and phoneme HMM respectively. In each table, the 7 noise levels
from the Aurora 2 database are ordered from clean signals (SNR Inf) to highly
noisy signals (SNR -5). The average over all noise levels is reported on the right.
The last column consists of the relative improvement of the method over the
reference model.

Based on these results, our approach achieved an averaged relative improve-
ment of 20.79% for whole-word HMM and 32.10% for phoneme HMM. Also, it
can be observed that TFS features increased the accuracy on all noisy tasks, but
did not improve the results for clean signals with whole-word HMM. Nonetheless,
these results support our initial intuition that using a pure derivative approach
leads to inferior performances.

The variation of the word accuracy of TFS, with respect to Vthresh, is shown
in Fig. 4 for whole-word HMMs. The performance of the method is reported
for the 7 noise levels of the database. The crosses indicate the best result the
method achieved for each noise level. This figure demonstrates the behavior of
the performance of our approach with respect to the parametrization of z.

5.3 Discussion

The results of table 1 show that the proposed TFS method does not outperform
the delta features for clean utterances. This limitation is consistent with the in-
tuition given in section 1 that dynamical components extracted using derivatives
on clean utterances are not affected by amplified noise. However, this appears to
be the case only for whole-word HMMs. As suggested by the results of table 2,



Temporal Feature Selection for Noisy Speech Recognition 9

XXXXXXXXXFeatures
SNR (dB)

Inf 20 15 10 5 0 -5 Avg. R.I. (%)

(a) MFCC Based

MFCC-E-D-A 98.54 97.14 96.02 93.27 84.86 57.47 23.35 78.66 -

MFCC-E-T
z = [8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2] 97.64 97.46 96.68 94.39 88.03 71.31 38.93 83.49 22.63

(b) PLPCC Based

PLPCC-E-D-A 98.65 97.56 96.48 93.85 85.93 59.83 25.36 79.66 -

PLPCC-E-T
z = [8, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2] 97.40 97.36 96.60 94.52 88.43 71.98 40.23 83.79 20.30

(c) LPCC Based

LPCC-E-D-A 98.30 96.82 95.59 92.28 81.87 54.52 22.96 77.48 -

LPCC-E-T
z = [8, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2] 96.74 96.90 95.90 93.30 85.91 67.86 36.39 81.86 19.45

Table 1. Word accuracy (%) of TFS (-E-T) features on the Aurora 2 database using
whole-word HMMs. The results are averaged according to the noise level. The reference
models are suffixed with -E-D-A.

XXXXXXXXXFeatures
SNR (dB)

Inf 20 15 10 5 0 -5 Avg. R.I. (%)

(a) MFCC Based

MFCC-E-D-A 89.89 87.24 84.41 78.87 63.78 29.86 -5.82 61.17 -

MFCC-E-T
z = [8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2] 93.02 94.15 92.65 88.84 79.22 56.42 19.58 74.840 35.20

(b) PLPCC Based

PLPCC-E-D-A 88.99 87.92 84.78 78.97 64.18 32.96 -0.67 62.45 -

PLPCC-E-T
z = [8, 6, 5, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2] 92.98 94.29 92.89 89.38 79.76 56.86 18.79 74.99 33.40

(c) LPCC Based

LPCC-E-D-A 88.13 86.04 83.11 76.64 60.82 29.65 0.02 60.63 -

LPCC-E-T
z = [8, 6, 5, 5, 4, 4, 3, 3, 2, 2, 2, 2, 2] 91.09 93.26 91.24 86.98 76.45 50.90 10.79 71.53 27.69

Table 2. Word accuracy (%) of TFS (-E-T) features on the Aurora 2 database using
phoneme HMMs. The results are averaged according to the noise level. The reference
models are suffixed with -E-D-A.
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(a) Using MFCC features.
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(b) Using PLPCC features.
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(c) Using LPCC features.

Fig. 4. Variation of the performance of TFS as a function of Vthresh using whole-word
HMM. The crosses indicate the maximum word accuracy for each noise level.

the TFS method improves the word accuracy even in the absence of noise when
using phoneme HMMs. These non intuitive results may be related to the shorter
duration of phonemes in comparison to whole-words. By selecting very distanced
coefficients, TFS also incorporates information about adjacent phonemes and ap-
pears to simulate triphone modeling, where a HMM is define for every phoneme
triplets. This was not the case with whole-word HMMs because the state occu-
pancy of a phoneme HMM is usually much shorter.

It can be seen in Fig. 4 that the plots are approximatively convex. The up
and down hill-shaped curves support the idea introduced in sections 1 and 4 rel-
ative to informative coefficients. The amount of unrelated information added to
the frame will be greater than the amount of related information if the concate-
nated coefficients are too close, or too far, from each other. This phenomenon
is reflected in Fig. 4 with an increase in accuracy when Vthresh increases, up to
some point where it starts to decrease.

Another observation that is worth mentioning in Fig. 4 is the behavior of
the best accuracy with respect to the noise level. Apart from LPCC, where it is
less clearly identifiable, the maximum result tends to occur at greater Vthresh as
the noise increases. For example, the best word accuracy appears at Vthresh = 1
for the least noisy task and at Vthresh = 1.4 for the noisiest one. Since a greater
threshold produces a z that has greater time offsets, our approach seems to
act like a noise reduction method by smoothing the signal. Indeed, smoothing a
highly noisy signal requires gathering information at a far distance. In this sense,
our approach behaves similarly by selecting coefficients that are farther apart.
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In summary, our results suggest that frequency-based dynamical features re-
lying on the concatenation of adjacent coefficients helps improve the accuracy, es-
pecially for noisy utterances. The results on the Aurora 2 database show that the
proposed TFS features achieved a better average word accuracy than the delta
features. However, in the context of recognizing clean utterances with whole-word
HMMs, our method did not outperform the reference features. Nonetheless, TFS
appears to be a good choice for dynamical features since it performed the best
overall, can be learned rapidly from the data and is based on a single specified
parameter Vthresh.

6 Conclusion

A novel way of improving the dynamics of static speech features was proposed.
The issue that was addressed was the susceptibility to noise of derivative opera-
tions during the modeling of speech dynamics. The proposed Temporal Feature
Selection (TFS) features have shown to improve the robustness of the state
of the art delta features in various types of noise. The experimentations have
shown that the 3 most standard features, MFCC, PLPCC and LPCC, combined
with the TFS features achieved an averaged relative improvement of 20.79%
and 32.10% in accuracy for whole-word and phoneme HMMs on the Aurora 2
database.

For further study, we plan to evaluate our approach on the harder problem
of large vocabulary continuous speech recognition. Specifically, we will examine
to potential of TFS to replace triphone HMMs modeling. Finally, we intend to
use deep learning approaches to study the impacts of better feature engineering
on the learning process of DNNs.
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16. Rath, S.P., Povey, D., Veselỳ, K.: Improved feature processing for deep neural
networks. In: Proc. Interspeech (2013)

17. Saon, G., Padmanabhan, M., Gopinath, R., Chen, S.: Maximum likelihood dis-
criminant feature spaces. In: Acoustics, Speech, and Signal Processing, 2000.
ICASSP’00. Proceedings. 2000 IEEE International Conference on. vol. 2, pp.
II1129–II1132. IEEE (2000)

18. Shrawankar, U., Thakare, V.M.: Techniques for feature extraction in speech recog-
nition system: A comparative study. arXiv:1305.1145 (2013)

19. Trottier, L., Chaib-draa, B., Giguère, P.: Effects of frequency-based inter-frame
dependencies on automatic speech recognition. In: Canadian Conference on AI.
pp. 357–362 (2014)

20. Weng, Z., Li, L., Guo, D.: Speaker recognition using weighted dynamic MFCC
based on GMM. In: Anti-Counterfeiting Security and Identification in Communi-
cation (ASID), 2010 International Conference on. pp. 285–288. IEEE (2010)

21. Young, S.J., Evermann, G., Gales, M.J.F., Hain, T., Kershaw, D., Moore, G., Odell,
J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.C.: The HTK Book, version
3.4. Cambridge University Engineering Department, Cambridge, UK (2006)

22. Yu, D., Seltzer, M.L., Li, J., Huang, J.T., Seide, F.: Feature learning in deep neural
networks-studies on speech recognition tasks. arXiv:1301.3605 (2013)

23. Zheng, F., Zhang, G., Song, Z.: Comparison of different implementations of MFCC.
Journal of Computer Science and Technology 16(6), 582–589 (2001)


