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Abstract—Automatic sign language recognition is an open
problem that has received a lot of attention recently, not
only because of its usefulness to signers, but also due to the
numerous applications a sign classifier can have. In this article,
we present a new feature extraction technique for hand pose
recognition using depth and intensity images captured from a
Microsoft KinectTMsensor. We applied our technique to American
Sign Language fingerspelling classification using a Deep Belief
Network, for which our feature extraction technique is tailored.
We evaluated our results on a multi-user data set with two
scenarios: one with all known users and one with an unseen
user. We achieved 99 % recall and precision on the first, and
77 % recall and 79 % precision on the second. Our method is
also capable of real-time sign classification and is adaptive to any
environment or lightning intensity.

Index Terms—Deep Learning; Depth Features; Hand Pose
Recognition; Fingerspelling;

I. INTRODUCTION

Automated recognition of hand signals has many applica-
tions in computer science. It might facilitate the interaction
between humans and computers in many situations, especially
for people with disabilities. One interesting area of focus is
the recognition of sign languages. This way of communication
is widely used among Deaf communities. Therefore, a system
capable of understanding it would be convenient for them,
just like automated speech recognition is useful to people
using spoken languages. Also, such a system could be the
base for numerous other applications and ways of interacting
with computers as an alternative to traditional input devices
such as mouse and keyboard.

However, sign languages usually include non-manual signs
such as facial expressions in addition to thousands of manual
gestures and poses. Additionally, some of these signs can be
sequential (like spoken languages) or parallel [1]. This large
variety of signs adds to the already complex task of finding a
body and hands in a dynamic environment.

For this reason, research at the moment focuses mostly on
specific, easier recognition tasks. One such interesting task
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is the recognition of American Sign Language (ASL) finger-
spelling, which is a way of spelling words for which the sign is
unknown or non existent in the ASL language. Although ASL
does not share much with the English language syntactically,
ASL fingerspelling uses the same 26 letter alphabet as written
English to manually spell out words. Fingerspelling constitutes
a significant portion of ASL exchanges, accounting for 12-
35 % of ASL communication [11]. Fingerspelling is performed
with a single hand and is composed of 24 static and two
dynamic hand poses, some of which appear very similar. The
two dynamic poses are J and Z, and simply involve drawing
the letter with either the little finger (J) or index finger (Z). The
task of classifying fingerspelling, even as a smaller subset of
ASL, is still very challenging due to the similarity between
poses (see Fig. 2). Also, the hand pose can vary greatly
between different users, due to different hand shapes and
sizes, knowledge of ASL, previous signs, arm orientation and
others. The data set we use (from [12]) is challenging in that
aspect, providing various orientations over five very different
users (Fig. 3). The system we propose is capable of on-the-fly
classification of the 24 static signs, using inputs provided by
a traditional intensity camera, in addition to a depth camera.

II. RELATED WORK

Hand pose recognition has already been the subject of much
work. We divide this work in three sections: work on hand pose
recognition using only regular intensity images, work using
only depth images, and work using a mixed intensity-depth
system.

a) Intensity Input Only: Ong and Bowden (2004) intro-
duced a tree structure of boosted cascades that can recognize a
hand and classify it in different shapes [10]. They achieved an
average error of 2.6 % on their test set. However, their method
is time-consuming and their classifier is built on automatically
chosen shapes. Instead of classifying images of signs which
are already categorized in a number of different categories,
they use an algorithm to automatically cluster their training
set in 300 clusters, each cluster containing similar images. If
this was applied to ASL, it would cluster signs such as M



Fig. 1: The American Manual Alphabet. Signs with a * are
pictured from the side. Reproduced from [15]

and N together due to their similarity, thus eliminating the
confusion problem. After this clustering, they trained their
cascade on each cluster. Such a method does not allow for
pre-determined hand shapes and, as such, is not well suited
for ASL fingerspelling. Fang et al. (2007) used a scale-space
feature detection system and achieved 98.8 % accuracy on six
easily distinguishable signs [4]. However, their accuracy drops
to 89 % when used on cluttered backgrounds. Liwicki and
Everingham (2009) attempted British Sign Language (BSL)
fingerspelling and achieved 84.1 % accuracy using a His-
togram of Oriented Gradients method [9]. However, their
method cannot be truly compared to ASL fingerspelling since
BSL is two-handed, which introduces more variation between
signs.

Of the work directly related to ASL fingerspelling, Isaacs
and Foo (2004) used a wavelet feature detector on regular
intensity images combined with a two layer Multilayer per-
ceptron (MLP) for the 24 static ASL letters [7]. They achieved
99.9 % accuracy, but make no mention of the number of users
and the existence of a training and testing set.

b) Depth Input Only: Uebersax et al. (2011) introduced
the use of depth images for ASL fingerspelling using a Time-
of-Flight (ToF) camera and an ANMM method for the 26

dynamic hand poses [13]. On a seven user data set containing
at least 50 images per user per letter, they achieved 76 %
average recognition rate.

c) Mixed Intensity-Depth Inputs: Van Den Berg (2011)
introduced the use of a mixed intensity and depth method
for hand-segmentation and gesture recognition [14]. They
reduced the dimensionality of the data using Average
Neighborhood Margin Maximization (ANMM), then used a
Nearest Neighborhood (NN) classifier. On 350 samples of six
very different signs, they achieved almost perfect accuracy,
but their signs very different from each other making it
an easy task. This great variation between signs make the
additional depth data superfluous, with accuracy varying by
less than 0.5 % between the results using depth data and the
results using only intensity data. Doliotis et al. (2011) used
a mixed depth and intensity classifier using a Kinect sensor
[3]. They applied their technique on the 10 digits of the Palm
Graffiti alphabet. These are 10 dynamic gestures defined by a
movement of the finger in the air. They used a 10 user data
set along with a Nearest Neighbor classification framework.
They achieve 95 % accuracy, but their signs are very different
from each other, and their technique only works for a small
number of classes. Pugeault and Bowden (2011) introduced a
classifier based on Gabor filters and trained using multi-class
random forests. They achieved 54 % recall and 75 % precision
on a data set of over 60000 examples recorded from five
different users [12]. They also used a mixed intensity-depth
camera (Kinect) similarly to Uebersax et al. Finally, Kim,
Livescu and Shakjnarovich (2012) use Scale-invariant feature
transform (SIFT) features, a mixed MLP - Hidden Markov
Model (HMM) classifier and a dictionary prior for the 26
letters in ASL fingerspelling [8]. They achieve a very low
letter error rate of 9 %, but they are helped by a prior on
letter probability distribution and a previous letter bigram
prior which boosts their accuracy. Their data set also only
contains images from two users, which is much easier to
learn than a data set containing more users.

Our system makes use of both intensity and depth images
captured from a Kinect sensor. We train our classifier on a
data set featuring five different users, some of whom making
the signs in a very specific manner. Our work differs from
previous attempts in many ways. First, we use the depth
images as a mask on the intensity images to segment the
hand from the background in order to achieve background
independence. Second, we introduce a new feature extraction
technique for the depth image. These new features capture
the most important differences between each sign and are
well tailored for Deep Belief Networks (DBN). Third, we
use a DBN for our classifier, which is a deep multi-layer
perceptron capable of learning interesting patterns in the data.
Research on DBNs is currently very active, as it is considered
a very promising technology. Finally, although the task of
ASL fingerspelling classification on data provided by multiple
users is challenging, our system achieves excellent results,
surpassing previous results for our most difficult scenario.



Fig. 2: These six gestures only vary by the position of the
thumb, making them the most frequently confused.

Fig. 3: Illustration of the difference between the five different
users for the same sign (Q).

III. HAND POSE CLASSIFICATION

In order to classify the different hand poses, we use two
different input methods: regular intensity images and depth
images. Depth images are matrices of the depth of the environ-
ment, where the value of each pixel corresponds to the depth
of that pixel relative to the camera. Thus, using both intensity
and depth, an accurate 3D perspective of an object can be
created. Using depth data is becoming more common due to
the increased number of 3D sensors available in the market.
For our experiment, we used a Microsoft Kinect sensor. This
device has a 640x480 image resolution for both intensity and
depth images, with a depth range between two and eight
meters.

In this article, we will only focus on the task of classifying
the hand pose using hand images. Those images were obtained
by tracking the hands using readily available functions in
the OpenNI+NITE framework [12]. They have a size of
about 100x100 pixels and are framed around the hand, with
the background still present. From these images, we extract
features that are subsequently fed to a Deep Belief Network
(DBN), which classifies the hand pose as one of 24 possible
letters.

A. Feature Extraction

The value of the pixels in the depth image extracted from the
Kinect have a direct relation in mm to real world coordinates,
with one unit representing one millimeter. A pre-processing
step is done on the images before extracting the features.
First, the background of the depth image is eliminated using a
threshold t on the maximum hand depth. To do this, since the
hand is always the closest object to the camera in the extracted
frames, its depth d is computed by finding the smallest non-
zero value in the image (zero values are errors). Then, every
pixel with a distance greater than t+ d is set to 0. After this,
d− 1 is subtracted from the value of every non-zero pixel of
the depth image so that the closest pixel is always 1. This
creates depth independence between all images.

From this filtered depth image, a binary mask is created
and used directly on the intensity image, after compensating
for the different location of the camera by a scaling and a

Fig. 4: Drawing of the layers used to decompose the hand.
Each binary image Dl represents the parts of the hand to the
left of the layer.

translation. The mask takes value 0 for the background and
1 for the hand pixels (pixels having value greater than 0).
Since this is a binary mask, it only takes an element-wise
multiplication between the mask and the intensity image to
segment the hand from the background. After this, we resize
both depth and intensity images to 128x128 and center the
content using the bounding box technique.

After this pre-processing, features are extracted. On the
intensity side, the image is de-interlaced by keeping every
other line and resizing from 128x64 to 64x64. Artifacts of
interlacing can be seen in Fig. 3, in the form of phantom
horizontal edges. Then, the image’s intensity histogram is
equalized and all the pixels are normalized to a [0, 1] interval.
The result is a 64x64 image, which is unrolled as a 1x4096
vector fintensity.

For the depth image, a more thorough process is executed.
Let D be the pre-processed depth image. n new binary images
D1, D2, ..., Dn, having the same size as D, are created. Each
image represents a layer in the depth dimension (Fig. 4), with
the layers separated from each other by t/n cm. The pixels in
the layers are assigned values according to Eq. 1, where i is
a pixel and l, 1 ≤ l ≤ n is the layer.

Dl(i, l) =

1 if D(i) ≤ ((l − 1)×
t

n
) + 1

0 otherwise
(1)

Finally, each layer is centered using the bounding box
technique. Fig. 5 illustrates this process.

In our experiments, we found that using n = 6 binary
images and a maximum hand depth of t = 12 cm gave the
best features, so that the layers Dl are separated by 2 cm.
This distance is consistent with the approximate thickness of
a finger, and being able to differentiate finger position is key
in distinguishing one sign from another. Also, the fingers are



Fig. 5: Successive binary depth images for a hand doing the
“G” sign. D1 is the tip of the two forward-pointing fingers,
D2 and D3 add more fingers, D4 includes the hand except for
a part of the palm, and more parts of the palm can be seen on
D5 and D6. Here, we used n = 6 layers.

always located on the front part of the hand, well behind our
12 cm margin.

To generate the depth feature vector fdepth, each of the n
binary depth images is first resized to 32x32, unrolled into a
1x1024 vector and all of them are concatenated in a 1x6144
vector. Finally, the intensity image features fintensity and
depth image features fdepth are concatenated together into a
feature vector fcombined of size 1x10240.

B. Deep Belief Network

For our classifier, we used a DBN composed of three
Restricted Boltzmann Machines (RBM) and one additional
translation layer. DBNs are similar to MLPs, but they have
many more layers. The additional layers provide more learning
potential, yet they are much harder to train [6]. Nonetheless,
recent work has made training them possible and they have
a very promising future. Much of contemporary machine
learning research focuses on deep learning, including DBNs.

Instead of using classical MLP learning algorithms such as
backpropagation, the hidden layers are first trained individu-
ally as RBMs. Starting with the data, the activations of each
layer are successively fed to the next RBM as training data.
When all layers are trained, they are all stacked as an MLP
and an additional translation layer is added to the top.

Each RBM layer is trained using Constrastive Divergence-
1 (CD-1), which is an unsupervised algorithm to make the
network learn patterns in the data. This algorithm is especially
well suited with binary units, which is the reason we extracted
binary features from the data via the depth images Dl. Other
types of inputs can be used, but they either require more units
or a much smaller learning rate, which makes the network

harder and slower to train [5].

IV. EXPERIMENTS

Before experimenting with our new feature extraction tech-
nique, we looked at other ways to extract features from the
depth and intensity images. As a baseline experiment, we
trained a DBN on the raw intensity and depth images. For
this experiment, the images were pre-processed as explained in
Sec. III-A. We kept the original size of the pictures (128x128),
then unrolled them into two 1x16384 vectors with which the
DBN was trained.

A second experiment was done using Gabor filters on the
processed images, using four different scales and orientations.
The parameters were fine-tuned by hand in order to extract
the key points of the images that would be useful in the
classification step. Due to the large size of the features
produced by our Gabor filters on 128x128 images, we had to
resize their output to 28x28 in order to make training possible.
This small size made the features very limited since much of
the information was lost during the resizing.

We also tried to apply bar filters to our depth and intensity
images in order to extract the main contours of the hands.
Three filters were used; one horizontal, one diagonal and one
vertical. This reduced number of filters (3 instead of 16 for
the Gabor filters) made it possible to keep their activations to
larger sizes. However, many details were still lost since most
of the hand contours are not precisely aligned to these three
orientations, and doing so made some signs more difficult to
distinguish by the classifier.

We tested our technique on the same data set as [12]. This
data set contains all 24 static letters of the fingerspelling
alphabet, signed by five different people. There are about 500
images of each letter for each person, resulting in over 60000
total examples. The images feature many different viewpoints,
as participants were asked to move their hands around while
doing each sign. Some of the images have the hands nearly
sideways, some others show the front, others are from a
higher or lower perspective. Images were captured using the
Microsoft Kinect sensor and the data set includes, for each
image, an intensity and a depth version. However, the pixels
in the intensity images do not map to the same location in the
depth images in this data set. To correct this, we had to scale
and translate the intensity images to match the depth images.

Two different approaches to generating the training and
testing data sets were tried in order to compare with previous
work reported in the literature. The first, Tallseen, was to split
the data set in a training set, a validation set and a test set. The
training set contained half of the examples, and the validation
and test sets each contained a quarter of the examples. The
split was done in such a way that all five people are equally
represented in all sets.

The other technique, Tunseen, consisted of using the images
of four people for the training and validation sets. Around five
thousands images (representing 1/10 of the dataset size) was
used for the validation set, while the rest was kept for training.
The images of the fifth person were shuffled and used as test



Fig. 6: Representation of the DBN we used. The feature vector
fcombined is the input, and the output indicates which of the
24 static letters has been identified.

set. Each of the five people were used as test sets against the
four remaining people and we averaged the results to avoid
any bias.

We found that a three layer network, using the new feature
extraction technique, worked best for this task, with respec-
tively 1500, 700 and 400 units on each layer (see Fig. 6).
We trained our network in three steps. Each hidden layer
was successively trained with CD-1 for 60 epochs, or until
convergence. We used both L1 and L2 weight decay to avoid
overfitting.

The second step was to train the translation (output) layer.
We trained this layer using regular backpropagation to translate
the activations of the different RBMs into a 24 dimension
softmax for each of the 24 letters. In this step, we only changed
the weights of this translation layer, in order to predict the
class from what the RBMs had already learned. Since this
layer was initialized randomly, modifying the weights of the
pre-learned layers would be counter-productive as it would
use the gradient of random weights as an error function to
the RBM layers. We did 200 epochs of backpropagation, and
used both L2 weight decay and early stopping. The validation
set was used to decide when to stop learning and to adjust
the learning metaparameters. Additionally, we added gaussian
noise in the inputs as explained in [2]. Our algorithm also
made use of momentum.

The last step was a fine backpropagation step, using the
whole network this time, but with a much lower learning rate.
We also made use of the same metaparameters as the last step,
reducing some values to compensate for the lower learning
rate.

V. RESULTS

We evaluated our results with precision and recall mea-
sures, computed for each letter. We compared both testing
approaches with the results of Pugeault & Bowden [12] as they
use the same data set. A detailed comparison of our results is
presented in Fig. 8 for the precision measure and Fig. 9 for

Fig. 7: Comparison of the recall and precision for the different
types of features used in the Tunseen method.

the recall measure.
We first evaluated our three initial attempts at feature

extraction using the Tunseen method. For the raw intensity and
depth vectors, we obtained 68 % recall and 73 % precision. For
the Gabor filters, we obtained 64 % recall and 69 % precision,
and for the bar filters, 67 % recall and 71 % precision. These
results were obtained with the same DBN as our other results.
We can see than the DBN was able to learn some interesting
features from the raw images, which gave better results than
the Gabor and bar filters.

We then compared those results with the layer-based feature
extraction combined with the intensity image feature extraction
we described in Sec. III-A. As the figures show, we obtain
99 % recall and precision for the Tallseen testing approach, in
comparison to 53 % recall and 75 % precision for Pugeault &
Bowden who use the same Tallseen approach [12]. Thus, we
believe that our feature extraction technique gave us useful
features and that our deep neural network learned a good
internal representation of the signs.

For the other testing approach Tunseen, which is harder
than Tallseen since a new user is presented to the network,
we achieve 77 % recall and 79 % precision. This is lower
than our results for Tallseen, but is to be expected since many
signs are very similar and that different signers have different
ways of making the signs as explained in Sec. I. This is a
more realistic test, for the cases where a recognition system is
trained beforehand, but used in a system with different users.
We can also see that those results are higher than all of the
previous tests we did with the Gabor, raw images and bar
filters (Fig. 7).

The most confused letters are E (15 % recall) with S, Q
(23 % recall) with P, K (49 % recall) with V and N (50 %
recall) with T. All of these signs differ very little from each
other, making it difficult for a learning algorithm to determine
which letter the sign really was with a new, unseen user.
Note that the use of bigram, prior distribution on words and
dictionary would alleviate these issues (as used by [8]), but



Fig. 8: Comparison of the precision for all letters between
our two testing methods and [12]. Pugeault & Bowden use
Tallseen.

Fig. 9: Comparison of the recall for all letters between our two
testing methods and [12]. Pugeault & Bowden use Tallseen.

would not be able to correct for things such as passwords or
letter-based codes.

However, our system was able to distinguish with good
accuracy the letters M and N (83 % and 69 % recall re-
spectively), with little confusion (under 10 % between them).
Those signs are very hard to distinguish from each other using
only the intensity data (see Fig. 2), but this task becomes easier
using the depth data. This shows that the layer-based feature
extraction technique provides non-negligible information for
classifying hand signs in 3D.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel way to extract features from
depth images along with a way to segment the hand on
intensity images using depth images. We have combined this
technique with a Deep Belief Network for the task of ASL
fingerspelling classification. We demonstrated the value of
these new features by comparing them against more classical
features (raw images, Gabor and bar-like). We obtained excel-
lent results on two different scenarios, including one with a
new unseen user.

However, some restrictions remain. Our system is only capa-
ble of classifying static gestures. However, ASL fingerspelling
is not only static, but also includes two dynamic gestures.
Many other applications could also benefit from this extended

capability. Work could also be done to allow the usage of
both hands instead of one, which could make comparison
possible on other approaches for different sign languages, such
as British Sign Language that is two handed.

Also, our system is limited by the staticity of the dataset
we used. In a practical fingerspelling environment, users make
signs one after the other. Thus, they have to change the
position of their fingers and hand from one sign to the other,
keeping the final shape only for a very brief moment. In
comparison, our system takes as input an image of a sign,
taken when the hand is movementless for the duration of the
pose. This is easier since all the transition phase is already
filtered out. However, this could be corrected by forcing the
user to keep the pose for a few seconds, and detecting those
static movements in our algorithm.
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