Reflected in $\theta=0^{[3]}$	Reflected in $\theta=\pi/2$ (co-function identities) ^[4]	Reflected in $\theta=\pi$
$\sin(-\theta) = -\sin\theta$	$\sin(\frac{\pi}{2} - \theta) = +\cos\theta$	$\sin(\pi - \theta) = +\sin\theta$
$\cos(-\theta) = +\cos\theta$	$\cos(\frac{\pi}{2} - \theta) = +\sin\theta$	$\cos(\pi - \theta) = -\cos\theta$
$\tan(-\theta) = -\tan\theta$	$\tan(\frac{\pi}{2} - \theta) = +\cot\theta$	$\tan(\pi - \theta) = -\tan\theta$
$\csc(-\theta) = -\csc\theta$	$\csc(\frac{\pi}{2} - \theta) = +\sec\theta$	$\csc(\pi - \theta) = +\csc\theta$
$\sec(-\theta) = + \sec\theta$	$\sec(\frac{\pi}{2} - \theta) = +\csc\theta$	$\sec(\pi - \theta) = -\sec\theta$
$\cot(-\theta) = -\cot\theta$	$\cot(\frac{\pi}{2} - \theta) = +\tan\theta$	$\cot(\pi - \theta) = -\cot\theta$

Shift by π/2	Shift by π Period for tan and cot ^[5]	Shift by 2π Period for sin, cos, csc and $sec^{[\delta]}$		
$\sin(\theta + \frac{\pi}{2}) = +\cos\theta$	$\sin(\theta + \pi) = -\sin\theta$	$\sin(\theta + 2\pi) = +\sin\theta$		
$\cos(\theta + \frac{\pi}{2}) = -\sin\theta$	$\cos(\theta + \pi) = -\cos\theta$	$\cos(\theta + 2\pi) = +\cos\theta$		
$\tan(\theta + \frac{\pi}{2}) = -\cot\theta$	$\tan(\theta + \pi) = +\tan\theta$	$\tan(\theta + 2\pi) = +\tan\theta$		
$\csc(\theta + \frac{\pi}{2}) = +\sec\theta$	$\csc(\theta + \pi) = -\csc\theta$	$\csc(\theta + 2\pi) = +\csc\theta$		
$\sec(\theta + \frac{\pi}{2}) = -\csc\theta$	$\sec(\theta + \pi) = -\sec\theta$	$\sec(\theta + 2\pi) = +\sec\theta$		
$\cot(\theta + \frac{\pi}{2}) = -\tan\theta$	$\cot(\theta + \pi) = +\cot\theta$	$\cot(\theta + 2\pi) = +\cot\theta$		

Sine	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta^{\text{[7][6]}}$		
Cosine	$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta^{\text{\tiny [B][0]}}$		
Tangent	$ an(lpha\pmeta)=rac{ anlpha\pm aneta}{1\mp anlpha aneta}$ [S][10]		

$$\sin\frac{\theta}{2} = \operatorname{sgn}\left(2\pi - \theta + 4\pi \left\lfloor \frac{\theta}{4\pi} \right\rfloor\right) \sqrt{\frac{1 - \cos\theta}{2}} \cos\frac{\theta}{2} = \operatorname{sgn}\left(\pi + \theta + 4\pi \left\lfloor \frac{\pi - \theta}{4\pi} \right\rfloor\right) \sqrt{\frac{1 + \cos\theta}{2}}$$

$$\left(\operatorname{or} \sin^2\frac{\theta}{2} = \frac{1 - \cos\theta}{2}\right)$$

$$\left(\operatorname{or} \cos^2\frac{\theta}{2} = \frac{1 + \cos\theta}{2}\right)$$

cinématique directe robot 2D $x(t) = \int_{0}^{t} V(t) \cos(\theta(t)) dt$ $y(t) = \int_0^t V(t) \sin(\theta(t)) dt$ $\theta(t) = \int_0^t \omega(t) dt$

$R = \frac{l}{2} \frac{v_l + v_r}{v_r - v_l}, \ \omega = \frac{v_r - v_l}{l}, \ V = \frac{v_r + v_l}{2} \left| \tan \left(\frac{\theta}{2} + \frac{\pi}{4} \right) = \sec \theta + \tan \theta \right|$ l: distance entre roues $v_b v_r$: vitesse linéare des roues R: position ICC p/r milieu entre roues V : vitesse linéaire du robot

Conduite différentielle

$$\cot \theta = \frac{1}{\tan \theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

Double-angle formulae [[]				
$\sin 2\theta = 2\sin\theta\cos\theta$	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$			
$=\frac{2\tan\theta}{}$	$=2\cos^2\theta-1$	240	12.0 1	
$1 + \tan^2 \theta$	$=1-2\sin^2\theta$	$\tan 2\theta = \frac{2\tan\theta}{1-\tan^2\theta}$	$\cot 2\theta = \frac{\cot^2 \theta - 1}{2 \cot \theta}$	
	$1 - \tan^2 \theta$	$1 - tan \theta$	2 0000	
	$=\frac{1}{1+\tan^2\theta}$			

Sine	Cosine	Other
$\sin^2\theta = \frac{1 - \cos 2\theta}{2}$		$\sin^2\theta\cos^2\theta = \frac{1-\cos 4\theta}{8}$
$\sin^3 \theta = \frac{3\sin\theta - \sin 3\theta}{4}$	$\cos^3 \theta = \frac{3\cos\theta + \cos 3\theta}{4}$	$\sin^3\theta\cos^3\theta = \frac{3\sin 2\theta - \sin 6\theta}{32}$

$$\cos^{2} \theta + \sin^{2} \theta = 1$$

$$1 + \tan^{2} \theta = \sec^{2} \theta$$

$$1 + \cot^{2} \theta = \csc^{2} \theta$$

$$\sin \theta \approx \theta, \cos \theta \approx 1 \text{ si } \theta \ll 1 \text{ rad}$$

 $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \frac{1-\tan(\theta/2)}{1+\tan(\theta/2)}$

 $\tan\frac{1}{2}\theta = \frac{\tan\theta}{1 + \sqrt{1 + \tan^2\theta}}$

for $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$\sin[\arccos(x)] = \sqrt{1 - x^2} \quad \tan[\arcsin(x)] = \frac{x}{\sqrt{1 - x^2}}$$

$$\sin[\arctan(x)] = \frac{x}{\sqrt{1 + x^2}} \quad \tan[\arccos(x)] = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos[\arctan(x)] = \frac{1}{\sqrt{1 + x^2}} \quad \cot[\arcsin(x)] = \frac{\sqrt{1 - x^2}}{x}$$

$$\cos[\arcsin(x)] = \sqrt{1 - x^2} \quad \cot[\arccos(x)] = \frac{x}{\sqrt{1 - x^2}}$$

half-angles formulae
$$\tan \frac{\theta}{2} = \csc \theta - \cot \theta$$

$$= \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}$$

$$= \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}$$

$$\tan \frac{\eta + \theta}{2} = \frac{\sin \eta + \sin \theta}{\cos \eta + \cos \theta}$$

$$= \frac{1 + \cos \theta}{\sin \theta}$$

$$\begin{split} \frac{\operatorname{Product-to-sum}^{[23]}}{\cos\theta\cos\varphi} &= \frac{\cos(\theta-\varphi)+\cos(\theta+\varphi)}{2} \\ \sin\theta\sin\varphi &= \frac{\cos(\theta-\varphi)-\cos(\theta+\varphi)}{2} \\ \sin\theta\cos\varphi &= \frac{\sin(\theta+\varphi)+\sin(\theta-\varphi)}{2} \\ \cos\theta\sin\varphi &= \frac{\sin(\theta+\varphi)-\sin(\theta-\varphi)}{2} \\ \tan\theta\tan\varphi &= \frac{\cos(\theta-\varphi)-\cos(\theta+\varphi)}{\cos(\theta-\varphi)+\cos(\theta+\varphi)} \\ \frac{\operatorname{Sum-to-product}^{[24]}}{\sin\theta\pm\sin\varphi} &= 2\sin\left(\frac{\theta\pm\varphi}{2}\right)\cos\left(\frac{\theta\mp\varphi}{2}\right) \end{split}$$

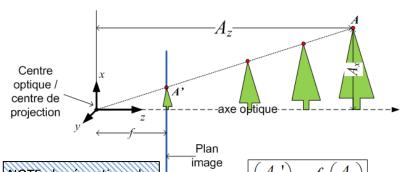
Sum-to-product^[24]

$$\sin \theta \pm \sin \varphi = 2 \sin \left(\frac{\theta \pm \varphi}{2}\right) \cos \left(\frac{\theta \mp \varphi}{2}\right)$$

$$\cos \theta + \cos \varphi = 2 \cos \left(\frac{\theta + \varphi}{2}\right) \cos \left(\frac{\theta - \varphi}{2}\right)$$

$$(\theta + \varphi) \qquad (\theta - \varphi)$$

$$\cos \theta - \cos \varphi = -2 \sin \left(\frac{\theta + \varphi}{2} \right) \sin \left(\frac{\theta - \varphi}{2} \right)$$



Distribution normale

Règle de Bayes

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(A \mid B)}$

Fusion capteur

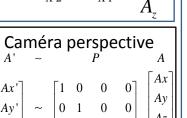
Règles des dérivées $\left| (\sqrt{x})' = \frac{1}{2\sqrt{x}} \right| (\cos(x))' = -\sin(x)$ $(\ln|x|)' = \frac{1}{}$

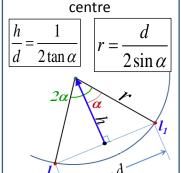
NOTE : les équations des filtres de Kalman et Kalman étendu sont données dans l'examen.

angle inscrit et angle au

Note : les parties hachurées ne concernent pas l'examen de mi session

disparité stéréo
$d = A'_{X2} - A'_{X1} = \frac{\int b}{A}$
A_{z}





	Each trigonometric function in terms of the other five.						
7	in terms of	$\sin \theta$	$\cos \theta$	an heta	$\csc \theta$	$\sec \theta$	$\cot \theta$
	$\sin \theta =$	$\sin \theta$	$\pm\sqrt{1-\cos^2\theta}$	$\pm \frac{\tan \theta}{\sqrt{1 + \tan^2 \theta}}$	$\frac{1}{\csc \theta}$	$\pm \frac{\sqrt{\sec^2 \theta - 1}}{\sec^2 \theta}$	$\pm \frac{1}{\sqrt{1 + \cot^2 \theta}}$
	205 A —	$\pm\sqrt{1-\sin^2\theta}$	$\cos \theta$	$\frac{1}{\sqrt{\csc^2\theta-1}}$ 1	$+ \cot \theta$		
	coso —	$\pm \sqrt{1-\sin \theta}$	coso	$\sqrt{1+\tan^2\theta}$	$-\frac{1}{\csc\theta}$	$\sec \theta$	$\sqrt{1+\cot^2\theta}$
	$\tan \theta =$	$\pm \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}}$	$\pm \frac{\sqrt{1-\cos^2\theta}}{\cos\theta}$	an heta	$\pm \frac{1}{\sqrt{\csc^2 \theta - 1}}$	$\pm\sqrt{\sec^2\theta-1}$	$\frac{1}{\cot \theta}$
	$\csc\theta =$	$\frac{1}{\sin \theta}$	$\pm \frac{1}{\sqrt{1 - \cos^2 \theta}}$	$\pm \frac{\sqrt{1 + \tan^2 \theta}}{\tan \theta}$	$\csc \theta$	$\pm \frac{\sec \theta}{\sqrt{\sec^2 \theta - 1}}$	$\pm\sqrt{1+\cot^2\theta}$
	$\sec \theta =$	$\pm \frac{1}{\sqrt{1-\sin^2\theta}}$	$\frac{1}{\cos \theta}$	$\pm\sqrt{1+\tan^2\theta}$	$\pm \frac{\csc \theta}{\sqrt{\csc^2 \theta - 1}}$	$\sec \theta$	$\pm \frac{\sqrt{1 + \cot^2 \theta}}{\cot \theta}$
	$\cot \theta =$	$\pm \frac{\sqrt{1-\sin^2\theta}}{\sin\theta}$	$\pm \frac{\cos \theta}{\sqrt{1 - \cos^2 \theta}}$	$\frac{1}{\tan \theta}$	$\pm\sqrt{\csc^2\theta-1}$	$\pm \frac{1}{\sqrt{\sec^2 \theta - 1}}$	$\cot \theta$

$$\begin{pmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_m(x_1, \dots, x_n) \end{pmatrix} \text{ est } J_F(P) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

Jacobienne de
$$\begin{pmatrix} f_1(x_1,\ldots,x_n) \\ \vdots \\ f_m(x_1,\ldots,x_n) \end{pmatrix} \text{ est } J_F(P) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \ldots & \frac{\partial f_m}{\partial x_1} \end{pmatrix}$$

 $\cot(c,t) = \frac{p(z|c)}{p(z|\overline{c})}\cot(c,t-1)$ cote(p) = p/(1-p) $p = \cot(1+\cot)$

Statistiques: $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) + 2ab Cov(X, Y).$