
Learning with the Set Covering Machine

Mario Marchand marchand@site.uottawa.ca
School of Information Technology and Engineering, University of Ottawa, Ottawa, Ont., Canada, K1N-6N5

John Shawe-Taylor john@dcs.rhbnc.ac.uk
Department of Computer Science, Royal Holloway, University of London, Egham, UK, TW20-0EX

Abstract
We generalize the classical algorithms of
Valiant and Haussler for learning conjunc-
tions and disjunctions of Boolean attributes
to the problem of learning these functions
over arbitrary sets of features; including fea-
tures that are constructed from the data.
The result is a general-purpose learning ma-
chine, suitable for practical learning tasks,
that we call the Set Covering Machine. We
present a version of the Set Covering Ma-
chine that uses generalized balls for its set of
data-dependent features and compare its per-
formance to the famous Support Vector Ma-
chine. By extending a technique pioneered by
Littlestone and Warmuth, we bound its gen-
eralization error as function of the amount of
data compression it achieves during training.

1. Motivation

We may attribute the effectiveness of Support Vector
Machines (Vapnik, 1998; Cristianini & Shawe-Taylor,
2000) to the fact that they combine two very good
ideas. First, they map the space of input vectors onto
a very high-dimensional feature space in such a way
that nonlinear decision functions on the input space
can be constructed by using only hyperplanes on the
feature space. Second, they construct the separating
hyperplane on the feature space which has the largest
possible margin. Theoretical results on margin classi-
fiers (Shawe-Taylor et al., 1998) imply that good gen-
eralization is expected whenever a large margin sepa-
rating hyperplane can be found. However, for a given
set of features, there might exists solutions that pro-
vide better generalization than the maximum margin
solution. In particular, if the function to learn hap-
pens to depend only on a very small subset of a large
set of given features, then it might be better to con-
struct a simple decision function that depends only on

a small subset of features than to find the maximum
margin hyperplane on the set of all features.

For a given set of (data-independent) features,
Valiant (1984) has proposed a very simple learning
algorithm for building a conjunction from positive
examples only (or building a disjunction from nega-
tive examples only). However, the obtained function
might contain a lot of features. To reduce their num-
ber, Haussler (1988) has proposed to use the classical
greedy set covering algorithm (see Kearns & Vazirani
(1994) for a clear exposition of these algorithms) on the
remaining examples that are not used by the Valiant
algorithm. It was shown by Haussler (1988) that good
generalization of this algorithm is expected whenever
there exists a small conjunction (or disjunction) of few
relevant (data-independent) features that makes zero
error with the training examples.

Because conjunctions and disjunctions are (just) sub-
sets of the set of linearly separable functions, we might
believe that the maximum margin solution will gen-
erally exhibit better generalization than a small con-
junction (or disjunction) obtained from the Valiant-
Haussler algorithm. To investigate this possibility we
have performed the following experiment. Each (train-
ing and testing) example is a boolean vector of 80 at-
tributes who’s class (or label) is determined according
to the conjunction x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5. Hence the
function to learn is a conjunction of 5 attributes out
of 80. Each positive example was generated by fixing
xi to 1 for i = 1 · · · 5 and by choosing a value for xi

in {0, 1} uniformly and independently for i = 6 · · · 80.
Each negative example was generated by first choosing
a value for xi in {0, 1} uniformly and independently for
i = 1 · · · 80 and accepting it only if at least one xi is set
to 0 for some i ∈ {1 · · · 5}. The accuracy of both the
maximum margin solution and the Valiant-Haussler
solution was measured with respect to a testing set of
10000 examples—half of which are positive examples.
The results are plotted on figure 1 for various training

0 200 400 600 800
0

100

200

300

400

500

Number of training examples

E
rr

or
s

on
 p

os
iti

ve

0 200 400 600 800
0

200

400

600

800

Number of training examples

E
rr

or
s

on
 n

eg
at

iv
e

(A) (B)

MM

MM

VH

VH

Figure 1. Comparison of the maximum margin solution (MM) with the Valiant-Haussler set covering greedy solution (VH)

sets sizes—each containing an equal amount of positive
and negative examples.

For both solutions (or algorithms), the errors made on
the 5000 positive testing examples are reported sepa-
rately (on figure 1a) from the the errors made on the
5000 negative testing examples (on figure 1b). Each
point denotes the average over 20 different training
sets of the same size. We see that the VH solution is
substantially better than the MM solution on both the
positive and the negative testing examples. It is there-
fore worthwhile to explore the learning capabilities of
a general purpose learning machine, that we call the
Set Covering Machine (SCM), which uses the Valiant-
Haussler greedy algorithm as its main optimization
tool to construct a conjunction (or disjunction) of a
small number of relevant features.

2. The Set Covering Machine

The learning algorithms of Valiant and Haussler are
constructing a conjunction (or disjunction) on the
original set of input variables. Since the values of in-
put variables in many data sets are often non Boolean
and since conjunctions and disjunctions are quite lim-
ited sets of functions, these algorithms cannot be used
directly as general-purpose “practical” learning algo-
rithms.

To fix this problem we will extend the power of con-
junctions and disjunctions by using the same idea that
was used in Support Vector Machines to extend the
power of separating hyperplanes: we will map the
original input space into a high-dimensional feature
space and then construct simple conjunctions (or dis-

junctions) on that feature space. In this way, sim-
ple Boolean functions on the feature space may repre-
sent complex decision functions on the original input
space. Moreover, the original input space need not
be Boolean even if the high-dimensional feature space
must be Boolean in order to construct conjunctions
or disjunctions on that space. Finally, since the al-
gorithms of Valiant and Haussler manipulate features
directly, we will need to define the mapping that the
SCM will used. This is to be contrasted with Support
Vector Machines where the mapping need only to be
defined from the eigenvectors of a Mercer kernel.

Therefore, if x denotes an arbitrary n-dimensional vec-
tor of the input space. The SCM is a classifier that
first maps each x to a s-dimensional Boolean feature
vector h(x) = (h1(x), h2(x), · · · , hs(x)) where s may
be much larger than n and where each hi(x) is called
a (Boolean-valued) feature. The Boolean-valued label
(or class) computed by the SCM for an input vector x
is a conjunction (or disjunction) of some (relevant) fea-
tures hi(x) that was found by the algorithms of Valiant
and Haussler. If R denotes the set of features returned
by these algorithms, the output f(x) of the SCM is
given by:

f(x) =
{ ∨

i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction

Throughout the paper we write that a function (or a
feature) is consistent with an example if it correctly
classifies that example. Similarly, a function is said
to be consistent with a set of examples if it correctly
classifies all the examples in that set.

Given a set of m training examples, the learning algo-

rithm for the SCM must also be provided with a set
S of s Boolean valued features. There is no restric-
tion on the chosen set S except that there must exist
a conjunction (or disjunction) of features in S which
is consistent with all the training examples. We will
describe such a set of features in the next section. A
good set S is one for which there exist a small sub-
set of features whose conjunction (or disjunction) is
consistent with all the training examples.

The learning algorithm consists of two phases: the
Valiant step followed by the Haussler step. We de-
scribe each of these phases for the case of a conjunc-
tion. The disjunction case immediately follows by
symmetry.

The Valiant Step: Find the set C of all the features
in S which are consistent with all the positive training
examples.

This set C has the property that
∧

i∈C hi(x) is con-
sistent with all the m training examples. Indeed, by
construction, this conjunction is consistent with all the
positive training examples. Moreover, recall that, by
hypothesis, there must exist a subset E of S such that∧

i∈E hi(x) is consistent with all the m training ex-
amples. But since C is the set of features that are
consistent only with the positive training set, we have
that E ⊆ C. Thus ∧

i∈C hi(x) is consistent with all the
negative training examples as well.

However, |C| might be very large and, as we will see
below, the generalization error is expected to be small
only for a classifier that contains few relevant features.
Hence to reduce their number, first note that each
feature in C is consistent with all the positive train-
ing examples and some negative training examples.
Let Qi denote the set of negative training examples
that are consistent with feature hi. Since

∧
i∈C hi(x)

is consistent with the set N of all the negative train-
ing examples, the union

⋃
i∈C Qi must be equal to N .

We say that
⋃

i∈C Qi is a cover of N . Therefore, the
problem of finding the smallest subset of features in
C whose conjunction is consistent with N is identical
to the problem of finding the smallest collection V of
sets Qi for which

⋃
i∈V Qi is a cover of N . This is the

well known (and NP -complete) Set Cover Problem.
Hence, it is hard to find the set cover of the minimum
size but, fortunately, the well known set cover greedy
algorithm has a good worst-case bound. If z denotes
the smallest number of sets Qi that covers N , then the
set cover greedy algorithm will always find a cover of
at most z ln(|N |) + 1 sets (Chvatal, 1979; Kearns &
Vazirani, 1994). Note that this bound has no depen-
dence on the number of subsets (or features) in C and
has only a logarithmic dependence on |N |. We will

therefore use this algorithm to find a small number of
features in C that covers N (hence the name: SCM).

The set covering greedy algorithm is a very simple
algorithm: first choose the set Qi which covers the
largest number of elements in N , remove from N and
each Qj �=i the elements that are in Qi, then repeat this
process of finding the set Qk of largest cardinality and
updating N and each Qj �=k until there are no more
elements in N .

The Haussler Step: Recall that C is the set of fea-
tures returned by the Valiant step. Use the set covering
greedy algorithm to find a small subset R ⊆ C of fea-
tures that covers all the negative training examples.

The hypothesis returned by the SCM,
∧

i∈R hi(x) will
be consistent with all the training examples and will
contain a small set of features whenever there exists
a small set of features in the initial set S of chosen
features whose conjunction is consistent with all the
training examples.

The SCM can be set to construct a disjunction (in-
stead of a conjunction) with minimal changes. For the
Valiant step, we just find the set C of all the features
in S that are consistent with the training set of nega-
tive examples. By using the same arguments as above,
we find that

∨
i∈C hi(x) will be consistent with all the

training examples. For the Haussler step, we use the
greedy set covering algorithm to find a small subset
R ⊆ C of features that covers all the positive training
examples. Then, again, we find that

∨
i∈R hi(x) will

be consistent with all the training examples.

3. A Set Covering Machine using
generalized balls

The above description of the SCM applies for any cho-
sen set S of Boolean-valued features. The only restric-
tion on S is that there exists a conjunction (or disjunc-
tion) of some features in S which is consistent with all
the training examples. Let us examine a simple data-
dependent set of features which has this property.

For each training example xi with label yi ∈ {0, 1}
and (real-valued) radius ρ, we define a feature hi,ρ to
be the following ball centered on xi:

hi,ρ(x)
def= hρ(x,xi) =

{
yi if d(x,xi) ≤ ρ
yi otherwise

Where yi denotes the Boolean complement of yi and
d(x,xi) denotes the distance between these two points.
Since any metric can be used for d, we call hi,ρ a gen-
eralized ball . So far we have used only the L1, L2 and
L∞ metrics but it is certainly worthwhile to try to use

other metrics that actually incorporate some knowl-
edge about the learning task.

Hence, given a set M of m training examples, our
initial set of features consists, in principle, of S =⋃

i∈M
⋃

ρ∈[0,∞[hi,ρ. But obviously, for each training
example xi, we need only to consider the set of m − 1
distances {d(xi,xj)}j �=i. This reduces our initial set S
to O(m2) features. There always exist a conjunction
(or disjunction) of some features in that set S which
is consistent with all the training examples as long as
there does not exists two (contradictory) examples in
M having yi �= yj and xi = xj .

In fact, we can reduce the size of S to exactly m fea-
tures by exploiting the fact that the Haussler step is
going to be executed after the Valiant step. Indeed,
consider the conjunction case. Each feature in the set
C of features returned by the Valiant step must be con-
sistent with all the positive training examples. This
implies that a generalized ball centered on a positive
training example must have a radius large enough to
enclosed all the positive training examples. For one
such radius value, the set of negative training exam-
ples that are consistent with this ball defines the set
Qi of (negative) training examples that are covered
by that ball and that will be used by the Haussler
step. Hence, a larger radius that covers less negative
training examples will always be penalized by the set
covering greedy algorithm compared to a smaller ra-
dius that cover the same negative examples plus a few
extra more. Hence, for each ball centered on a positive
training example, only one radius value will be chosen
by the Haussler step: the smallest radius that includes
all the positive training examples. Similarly, for each
negative training example, we need only to consider
one radius value: the largest radius that excludes all
the positive training examples. The analysis for the
disjunction case gives a similar result: we need to con-
sider only one radius for each training example; the
radius of a ball centered on a positive training exam-
ple is the largest one which excludes all the negative
training examples and the radius of a ball centered on
a negative training example is smallest one which in-
cludes all the negative training examples. Hence, for
m training examples, we only need to consider exactly
m generalized balls in the initial set S of features.

4. Constructing smaller SCMs

The SCM that we have described so far always return
a function which is consistent with all the training ex-
amples (provided that we have no contradictory exam-
ples). However, in a noisy environment, the structural
risk minimization principle (Vapnik, 1998) tells us (for

our case) that a small conjunction which makes a few
errors on the training set might give better general-
ization than a larger conjunction (with more features)
which makes zero training error.

One way to include this flexibility into the SCM is to
stop the set covering greedy algorithm when there re-
mains a few more training examples to be covered. In
this case, the SCM will contain fewer features and will
make errors on those training examples that are not
covered. But these examples all belong to the same
class: negative for conjunctions, positive for disjunc-
tions. This might be desired for non-symmetric loss
functions but, in general, we do need to be able to
make errors on training examples of both classes. In
these situations, we propose to combine the early stop-
ping of the greedy algorithm with the following heuris-
tic.

First define P to be the subset of training examples for
which each feature returned by the Valiant step must
be consistent with. This is the set of positive training
examples for the conjunction case or the set of negative
training examples in the disjunction case. Similarly N
is defined to be the set of examples that needs to be
covered by the greedy set covering algorithm (this is
the set of negative examples for the conjunction case).
We want to allow a feature to make a few errors on
P provided that much more examples in N can be
covered by this feature. Hence, for a feature h, let us
denote by Qh the set of examples in N covered by fea-
ture h and by Rh the set of examples in P for which h
makes an error on. Given that each example in P mis-
classified by h should decrease by some fixed penalty
p the “usefulness” of feature h, we define the value Vh

of feature h to be the number |Qh| of examples in N
that h covers minus the number |Rh| of examples in P
misclassified by h times some penalty p:

Vh
def= |Qh| − p × |Rh|

Hence, the learning algorithm for the SCM is modified
as follows. The Valiant step is skipped: we consider all
the features in our initial set S, including the features
which make some errors on P. Each feature h ∈ S is
covering a subset Qh of N and makes an error on a
subset Rh of P. For the Haussler step, we modify the
set covering greedy algorithm in the following way. In-
stead of using the feature that covers the largest num-
ber of examples in N , we use the feature h that has
the highest value Vh. We removed from N and each
Qg �=h the elements that are in Qh and we removed from
each Rg �=h the elements that are in Rh. (We update
each such set Rg because a feature g that makes an
error on an example in P does not increase the error
of the machine if another feature h is already making

an error on that example.) We repeat this process of
finding the feature h of largest value Vh and updating
N and each Qg �=h, and each Rg �=h until only a few el-
ements remain in N (early stopping the greedy). The
best stopping point and the best value for the penalty
parameter p are determined by cross-validation.

5. Bounds on the generalization error

We now develop the necessary framework to enable es-
timates of the generalization performance of the SCM
that uses generalized balls for its set of features. We
follow the probably approximately correct (pac) frame-
work, which posits an underlying distribution gener-
ating the training data and defines the error of a hy-
pothesis h as the probability er(h) that a randomly
drawn test point is misclassified by h. In this frame-
work bounds on the generalization error are required
to hold with high probability, hence bounding the tail
of the distribution of possible errors.

We seek a bound sensitive to the hypothesis selected.
Bounds of this type are data-dependent in that they
depend on properties of the solution obtained, in our
case the number of features it uses. A general frame-
work for analyzing data-dependent structural risk min-
imization is given in Shawe-Taylor et. al. (1998), where
the so-called luckiness framework is introduced. The
assessment of the generalization of the SCM will re-
quire a data-dependent analysis since the features used
depend on the particular training examples. The anal-
ysis, however, can be made by extending an older re-
sult due to Littlestone and Warmuth (1986). See also
Floyd and Warmuth (1995).

Littlestone and Warmuth show that if we can re-
construct our hypothesis from a small subset of the
training examples – the so-called compression set –
then with high confidence the generalization can be
bounded in terms of the size of this set. Here we ex-
tend the Littlestone and Warmuth technique by using
a compression scheme that allows to specify a subset
of the compression set that can be treated separately
for the reconstruction of the hypothesis. We begin by
defining our expanded compression scheme.

Definition 5.1 Consider an input space X and set H
of Boolean valued functions on X. For a fixed integer
m, let

X = (X × {0, 1})m
be the set of training sets of size m with inputs from
X. Given a learning algorithm

A : X �−→ H,

which given a training set S ∈ X returns a hypothesis

in the set H, a compression scheme for A is a map

Λ : S �−→ Λ(S) = (Λ′(S),Λ′′(S)),

where Λ′(S) ⊂ Λ′′(S) ⊂ S

together with a reconstruction function

Φ : (S′, S′′) �−→ h ∈ H

such that for any set S ∈ X ,

A(S) = Φ(Λ(S))

Note that the definition implies that we can simply
define A(S) by the rule A(S) = Φ(Λ(S)), but it is
useful to distinguish the learning algorithm from the
reconstruction scheme.

Theorem 5.1 Let Λ be a compression scheme relative
to a reconstruction function Φ for a learning algorithm
A, with the property that the compression set is cor-
rectly classified by its reconstruction. For a training set
S of m examples, let d′ = |Λ′(S)|, and d′′ = |Λ′′(S)|.
Let k = erS(A(S)) be the number of examples of S
that are misclassified by the function A(S). Then with
probability 1 − δ over random training sets of size m,
the generalization error ε(A(S)) of the function A(S)
is bounded by

ε(A(S)) ≤ 1 − exp
{ −1

m − d′′ − k

(
ln

(
m

d′′

)

+ ln
(

d′′

d′

)
+ ln

(
m − d′′

k

)
+ ln

m2d′′

δ

)}

≤ 1
m − d′′ − k

{
d′′ ln

(em

d′′
)
+ d′ ln

(
ed′′

d′

)

+k ln
(

e(m − d′′)
k

)
+ ln

m2d′′

δ

}

provided that m > d′′ + k.

Proof. First consider a fixed set of integers, d′ <
d′′ < m, and k < m. We will use the notation
i = (i1, . . . , id) for a sequence of strictly increasing
indices, 0 < i1 < i2 < · · · < id ≤ m, where with |i|
we denote the length d of the sequence. We denote
with I the set of all such sequences. If the sequence
i′ contains all the indices in i, we write i ⊂ i′. For
S ∈ X , Si = ((xi1 , yi1), . . . , (xid

, yid
)). Finally, let

i(d) = (1, 2, . . . , d).

We bound the following probability

P

{
S ∈ X : |Λ′(S)| = d′, |Λ′′(S)| = d′′,

erS(A(S)) = k, er(A(S)) ≥ ε

}

= P

{
S ∈ X :

⋃
i′⊂i′′∈I:|i′|=d′,|i′′|=d′′

{

Λ(S) = (Si′ , Si′′), erS(A(S)) = k, er(A(S)) ≥ ε
}}

≤
∑

i′⊂i′′∈I:|i′|=d′,|i′′|=d′′
P

{
S ∈ X :

Λ(S) = (Si′ , Si′′), erS(A(S)) = k, er(A(S)) ≥ ε

}

=
(

m

d′′

)(
d′′

d′

)
P

{
S ∈ X : Λ(S) = (Si(d′), Si(d′′)),

erS(A(S)) = k, er(A(S)) ≥ ε

}

≤
(

m

d′′

)(
d′′

d′

)(
m − d′′

k

)

× (1 − er(A(S))m−d′′−ker(A(S))k

≤
(

m

d′′

)(
d′′

d′

)(
m − d′′

k

)
(1 − ε)m−d′′−k

≤
(em

d′′
)d′′ (

ed′′

d′

)d′ (
e(m − d′′)

k

)k

× exp(−ε(m − d′′ − k)),

where line 3 follows from line 2 by the union bound,
line 4 from line 3 by the invariance of the probabili-
ties to permutations of the data, and line 5 from the
probability that a function with error er(A(S)) makes
exactly k mistakes. We wish the sum of these proba-
bilities over different choices of k, d′ and d′′ to be less
than δ. The two bounds can therefore be obtained by
taking the last two expressions, setting them equal to
δ/(m2d′′), and solving for ε.

Let us now apply theorem 5.1 to the learning algorithm
for the SCM with generalized balls. To phrase the next
theorem in a form which applies to both conjunctions
and disjunctions we define a P-example to be a pos-
itive example in the conjunction case but a negative
example in the disjunction case. A N -example is just
the opposite.

Theorem 5.2 Suppose a SCM finds a solution using
R features, R+ of which are centered on P-examples,
with k training errors on a sample of size m > 2R+k.
Then with probability 1−δ over random draws of train-
ing sets, the generalization ε of the resulting classifier
can be bounded by

ε ≤ 1 − exp
{ −1

m − 2R − k

(
ln

(
m

2R

)
+ ln

(
2R

R+

)

+ ln
(

m − 2R

k

)
+ ln

2m2R

δ

)}

≤ 1
m − 2R − k

{
2R ln

(em

2R

)
+ R+ ln

(
2eR

R+

)

+k ln
(

e(m − 2R)
k

)
+ ln

2m2R

δ

}
.

Proof. The proof relies on showing that, for the
SCM learning algorithm A, there exists a compression
scheme Λ and a reconstruction function Φ that satisfy:

1. A(S) = Φ(Λ(S)), for all samples S, and

2. |Λ′′(S)| ≤ 2R, |Λ′(S)| = R+.

3. The reconstruction correctly classifies the com-
pression set.

The result will then follow from an application of The-
orem 5.1.

The solution A(S) involves R features centered on the
sample points xs1 , . . . ,xsR

(not necessarily in increas-
ing index order). Assume without loss of generality
that the first R+ in the list are P-examples. For each
feature, the radius of the generalized ball is determined
by a P-example – in the case of the center being a P-
example, it is the P-example point furthest from the
center, while in the case of a N -example center it is
the P-example point nearest to it. For the center xsi

,
we will denote the point that determines the radius of
its feature by xti

, for i = 1, . . . , R. The compression
scheme is now defined by

Λ′′(S) = {xsi ,xti
: i = 1, . . . , R} and

Λ′(S) = {xsi
: i = 1, . . . , R+}.

The sizes of these sets are bounded by the required
numbers. The reconstruction function Φ given a pair
(S′′, S′) creates features by taking all the N -examples
in S′′ as feature centers and setting the corresponding
ρ by the nearest P-example from S′′. Features with a
P-example center are created for each point in S′ with
the radius set to the minimum that contains all the
P-examples in S′′.

Suppose now that Λ(S) = (S′′, S′). It is clear that the
same centers are used in Φ(Λ(S)) as were used in A(S)
and that furthermore they have the same radii. Hence,
we have shown that A(S) = Φ(Λ(S)) as required.

6. Results on natural data

We have compared the practical performance of the
SCM using the set of generalized balls with nearest-
neighbor classifier (NNC) and the Support Vector Ma-
chine (SVM) equipped with a Gaussian kernel (also

called the Radial Basis Function kernel) of variance
1/γ. We have used the SVM program that is dis-
tributed by the Royal Holloway University of London.
The data sets used and the results obtained for NNCs
and SVMs are reported on table 1. All these data sets
where obtained from the machine learning repository
at UCI, except the Glass data set which was obtained
from Rob Holte at the University of Ottawa. For each
data set, we have removed all examples that contained
attributes with unknown values (this has reduced sub-
stantially the “votes” data set) and we have removed
examples with contradictory labels (this occurred only
for a few examples in the Haberman data set). The
remaining number of examples for each data set is re-
ported in table 1. For all these data sets, we have
used the 10-fold cross validation error as an estimate
of the generalization error. The values reported are
expressed as the total number of errors (i.e. the sum
of errors over all testing sets). We have ensured that
each training set and each testing set, used in the 10-
fold cross validation process, was the same for each
learning machine (i.e. each machine was trained on
the same training sets and tested on the same testing
sets).

For the SVM, the values of the kernel parameter γ and
the soft margin parameter C are the ones that gave
the smallest 10-fold cross validation error among an
exhaustive scan of many values for these parameters.
We have also reported the average number of support
vectors (in the “size” columns) contained in machines
obtained from the 10 different training sets. Note that
SVMs performed significantly better than NNCs only
for the soft margin case (finite values of C).

The results for the SCM are reported in table 2. De-
spite the fact that we have observed that results with
the L1 metric are often better, we have only reported
here the results for the L2 metric. This was done to
obtain a fair comparison with SVMs because the ar-
gument of the Radial Basis Function kernel is given
by the L2 metric between two input vectors. The L2
metric was also used for NNCs.

We have reported separately the results for Consistent
SCMs, Truncated SCMs, and Inconsistent SCMs. A
Consistent SCM is a machined that was trained until
it made zero training errors. We see that these are the
largest machines (the size is expressed as the number of
generalized balls) and that they often have the largest
generalization error. A Truncated SCM is a machine
that was trained with an early stopping of the set cov-
ering greedy algorithm. Such a machine makes train-
ing errors only on the set N (negative examples for the
conjunction case). We see that this is often effective in

reducing both the machine size and its generalization
error. Finally, an Inconsistent SCM is a machine that
was permitted to make some training errors on the
set P (positive examples for the conjunction case) and
for which the set covering greedy algorithm was early
stopped. We have reported the optimal value of the
penalty parameter for such machines. We see that this
is often effective in reducing further both the machine
size and its generalization error. For Consistent SCMs
and Truncated SCMs, there is a substantial difference
in the generalization error of disjunctions and conjunc-
tions on some data sets (Pima, Haberman, Bupa). But
this difference is substantially reduced for Inconsistent
SCMs.

We see that the optimal generalization error that we
have obtained for SCMs was often very close to the
one obtained for SVMs. The performance of both ma-
chines was very similar on these data sets and both of
them were significantly better than the NNC (except
for the Glass and Votes data sets). However, the size
of SCMs is substantially smaller than SVMs.

We have also reported, in the “bound” columns of ta-
ble 2, the bound on the generalization error obtained
by computing the r.h.s. of the first inequality of the-
orem 5.2 (with δ = .05), for each of the 10 different
training sets involved in 10-fold cross validation, and
multiplying that bound with the size of each testing
sets. We see that, although the bound is not tight,
it is nevertheless non-trivial. This is to be contrasted
with the VC dimension bounds which cannot even be
applied for our case since the set of functions supported
by the SCM depends on the training data. It would
be interesting to investigate the extent to which our
bound can perform SCM model selection.

7. Conclusion

Our theoretical and experimental results indicate that
the SCM is a good candidate for practical machine
learning tasks. We could try to extend the SCM by
considering strictly larger classes of functions like deci-
sion lists of few relevant attributes (Dhagat & Heller-
stein, 1994) or even linear threshold functions of few
relevant attributes (Littlestone, 1988). However, con-
junctions and disjunctions might give us all the power
we need if the set of chosen features is sufficiently rich.
So far, the SCM was tested only for generalized balls.
The fact that our bounds on the generalization er-
ror only depends on the amount of data compression
achieved by the learning algorithm (and the existence
of a reconstruction function) suggests that it is worth-
while to consider larger sets of features if the size of
the Set Covering Machine can be significantly reduced

Table 1. Data sets, NNC results, and SVM results.
Data Set Number of examples NNC SVM (C = ∞) SVM (finite C)

positive negative error γ size error γ C size error
BreastWisc 239 444 29 0.07 219.7 27 0.005 2 57.7 19
Votes 18 34 7 0.05 16.6 5 0.05 15 18.2 3
Pima 269 499 247 0.004 543.7 243 0.002 1 526.2 203
Haberman 219 75 107 0.02 92.5 111 0.01 0.6 146.4 71
Bupa 145 200 124 0.02 290.4 121 0.002 0.2 265.9 107
Glass 87 76 36 0.2 47.2 42 0.8 2 91.8 34
Credit 296 357 214 0.001 406.9 205 0.0006 32 423.2 190

Table 2. SCM results for conjunctions (c) and disjunctions (d).
Data Set Type Consistent SCM Truncated SCM Inconsistent SCM

size error bound size error bound penalty size error bound
BreastWisc c 13.9 26 216 1 23 150 1.8 2 15 109

d 16.8 34 236 10 34 189 0.5 1 17 117
Votes c 3.7 7 33 1 6 25 1.2 1 6 25

d 3.2 7 32 3 7 30 0.9 1 6 25
Pima c 147.2 262 763 153 262 763 1.1 3 189 657

d 124.8 230 751 20 208 672 4.1 16 204 670
Haberman c 45.5 104 280 1 76 244 1.4 1 71 232

d 46.6 128 283 39 127 273 1.4 12 71 251
Bupa c 80.6 144 344 58 142 341 1.7 20 122 317

d 68.8 131 342 46 118 332 2.8 9 106 307
Glass c 19 45 141 7 40 119 0.85 4 33 113

d 15.9 36 131 11 36 114 3.8 16 36 126
Credit c 137.4 255 651 121 253 648 0.8 4 197 600

d 123.5 225 647 79 217 628 1.2 4 194 590

by using these additional features.

References

Chvatal V. (1979) A Greedy Heuristic for the Set Cov-
ering Problem. Mathematics of Operations Research
Vol. 4 (pp. 233–235).

Cristianini N., & Shawe-Taylor J. (2000). An Introduc-
tion to Support Vector Machines, Cambridge Uni-
versity Press.

Dhagat A., & Hellerstein L. (1994). PAC Learning
with Irrelevant Attributes. Proceedings of the 35th
IEEE Conference on the Foundations of Computer
Science (FOCS) (pp. 64–74).

Floyd S., & Warmuth M (1995). Sample compres-
sion, learnability, and the Vapnik-Chervonenkis di-
mension. Machine Learning Vol. 21, (pp. 269–304).

Haussler D. (1988). Quantifying Inductive Bias: AI
Learning Algorithms and Valiant’s Learning Frame-
work. Artificial Intelligence Vol. 36, (pp. 177–221).

Kearns M.J., & Vazirani U.V. (1994). An Introduction
to Computational Learning Theory . Cambridge:
MIT Press.

Littlestone N. (1988). Learning quickly when irrele-
vant attributes abound: A new linear threshold al-
gorithm. Machine Learning Vol. 2, (pp. 285–318).

Littlestone N. & Warmuth M. (1986). Relating Data
Compression and Learnability. Technical report,
University of California Santa Cruz.

Shawe-Taylor J., Bartlett P., Williamson R., & An-
thony M. (1998). Structural Risk Minimization over
Data-Dependent Hierarchies. IEEE Transactions
on Information Theory Vol. 44, (pp. 1926-1940).

Valiant L.G. (1984). A Theory of the Learnable.
Comm. ACM Vol. 27, (pp. 1134–1142).

Vapnik V.N. (1998). Statistical Learning Theory , New
York: Wiley.

