
The Decision List Machine

Marina Sokolova
SITE, University of Ottawa

Ottawa, Ont. Canada,K1N-6N5
sokolova@site.uottawa.ca

Mario Marchand
SITE, University of Ottawa

Ottawa, Ont. Canada,K1N-6N5
marchand@site.uottawa.ca

Nathalie Japkowicz
SITE, University of Ottawa

Ottawa, Ont. Canada,K1N-6N5
nat@site.uottawa.ca

John Shawe-Taylor
Royal Holloway, University of London

Egham, UK, TW20-0EX
jst@cs.rhul.ac.uk

Abstract

We introduce a new learning algorithm for decision lists to allow
features that are constructed from the data and to allow a trade-
off between accuracy and complexity. We bound its generalization
error in terms of the number of errors and the size of the classifier
it finds on the training data. We also compare its performance
on some natural data sets with the set covering machine and the
support vector machine.

1 Introduction

The set covering machine (SCM) has recently been proposed by Marchand and
Shawe-Taylor (2001, 2002) as an alternative to the support vector machine (SVM)
when the objective is to obtain a sparse classifier with good generalization. Given
a feature space, the SCM tries to find the smallest conjunction (or disjunction) of
features that gives a small training error. In contrast, the SVM tries to find the
maximum soft-margin separating hyperplane on all the features. Hence, the two
learning machines are fundamentally different in what they are trying to achieve on
the training data.

To investigate if it is worthwhile to consider larger classes of functions than just the
conjunctions and disjunctions that are used in the SCM, we focus here on the class
of decision lists introduced by Rivest (1987) because this class strictly includes both
conjunctions and disjunctions and is strictly included in the class of linear threshold
functions (Marchand and Golea, 1993). Hence, we denote by decision list machine
(DLM) any classifier which computes a decision list of Boolean-valued features,
including features that are possibly constructed from the data. In this paper, we
use the set of features introduced by Marchand and Shawe-Taylor (2001, 2002)
known as data-dependent balls. By extending the sample compression technique
of Littlestone and Warmuth (1986), we bound the generalization error of the DLM
with data-dependent balls in terms of the number of errors and the number of balls
it achieves on the training data. We also show that the DLM with balls can provide

better generalization than the SCM with this same set of features on some natural
data sets.

2 The Decision List Machine

Let x denote an arbitrary n-dimensional vector of the input space X which could be
arbitrary subsets of <n. We consider binary classification problems for which the
training set S = P ∪N consists of a set P of positive training examples and a set N
of negative training examples. We define a feature as an arbitrary Boolean-valued
function that maps X onto {0, 1}. Given any set H = {hi(x)}|H|i=1 of features hi(x)
and any training set S, the learning algorithm returns a small subset R ⊂ H of
features. Given that subset R, and an arbitrary input vector x, the output f(x) of
the Decision List Machine (DLM) is defined to be:

If (h1(x)) then b1

Else If (h2(x)) then b2

. . .

Else If (hr(x)) then br

Else br+1

where each bi ∈ 0, 1 defines the output of f(x) if and only if hi is the first feature
to be satisfied on x (i.e. the smallest i for which hi(x) = 1). The constant br+1

(where r = |R|) is known as the default value. Note that f computes a disjunction
of the his whenever bi = 1 for i = 1 . . . r and br+1 = 0. To compute a conjunction
of his, we simply place in f the negation of each hi with bi = 0 for i = 1 . . . r and
br+1 = 1. Note, however, that a DLM f that contains one or many alternations
(i.e. a pair (bi, bi+1) for which bi 6= bi+1 for i < r) cannot be represented as a (pure)
conjunction or disjunction of his (and their negations). Hence, the class of decision
lists strictly includes conjunctions and disjunctions.

From this definition, it seems natural to use the following greedy algorithm for
building a DLM from a training set. For a given set S′ = P ′ ∪ N ′ of examples
(where P ′ ⊆ P and N ′ ⊆ N) and a given set H of features, consider only the
features hi ∈ H which make no errors on either P ′ or N ′. If hi makes no error with
P ′, let Qi be the subset of examples of N ′ on which hi makes no errors. Otherwise,
if hi makes no error with N ′, let Qi be the subset of examples of P ′ on which hi

makes no errors. In both cases we say that hi is covering Qi. The greedy algorithm
starts with S′ = S and an empty DLM. Then it finds the hi with the largest |Qi|
and appends this hi to the DLM. It then removes Qi from S′ and repeat to find
the hk with the largest |Qk| until either P ′ or N ′ is empty. It finally assigns br+1

to the class label of the remaining non-empty set.

Following Rivest (1987), this greedy algorithm is assured to build a DLM that
makes no training errors whenever there exists a DLM on a set E ⊆ H of features
that makes zero training errors. However, this constraint is not really required in
practice since we do want to permit the user of a learning algorithm to control the
tradeoff between the accuracy achieved on the training data and the complexity
(here the size) of the classifier. Indeed, a small DLM which makes a few errors
on the training set might give better generalization than a larger DLM (with more
features) which makes zero training errors. One way to include this flexibility is to
early-stop the greedy algorithm when there remains a few more training examples
to be covered. But a further reduction in the size of the DLM can be accomplished

Algorithm BuildDLM(P,N, pp, pn, s,H)

Input: A set P of positive examples, a set N of negative examples, the penalty values
pp and pn , a stopping point s, and a set H = {hi(x)}|H|i=1 of Boolean-valued features.

Output: A decision list f consisting of a set R = {(hi, bi)}r
i=1 of features hi with

their corresponding output values bi, and a default value br+1.

Initialization: R = ∅, P ′ = P, N ′ = N

1. For each hi ∈ H, let Pi and Ni be respectively the subsets of P ′ and N ′
correctly classified by hi. For each hi compute Ui, where:

Ui
def= max {|Pi| − pn · |N ′ −Ni|, |Ni| − pp · |P ′ − Pi|}

2. Let hk be a feature with the largest value of Uk.
3. If (|Pk| − pn · |N ′ − Nk| ≥ |Nk| − pp · |P ′ − Pk|) then R = R ∪ {(hk, 1)},

P ′ = P ′ − Pk, N ′ = Nk.
4. If (|Pk| − pn · |N ′ −Nk| < |Nk| − pp · |P ′ − Pk|) then R = R ∪ {(¬hk, 0)},

N ′ = N ′ −Nk, P ′ = Pk.
5. Let r = |R|. If (r < s and P ′ 6= ∅ and N ′ 6= ∅) then go to step 1
6. Set br+1 = ¬br. Return f .

Figure 1: The learning algorithm for the Decision List Machine

by considering features hi that do make a few errors on P ′ (or N ′) if many more
examples Qi ∈ N ′ (or Qi ∈ P ′) can be covered.

Hence, to include this flexibility in choosing the proper tradeoff between complexity
and accuracy, we propose the following modification of the greedy algorithm. For
every feature hi, let us denote by Pi the subset of P ′ on which hi makes no errors
and by Ni the subset of N ′ on which hi makes no error. The above greedy algorithm
is considering only features for which we have either Pi = P ′ or Ni = N ′, but to
allow small deviation from these choices, we define the usefullness Ui of feature hi

by

Ui
def= max {|Pi| − pn · |N ′ −Ni|, |Ni| − pp · |P ′ − Pi|}

where pn denotes the penalty of making an error on a negative example whereas pp

denotes the penalty of making an error on a positive example.

Hence, each greedy step will be modified as follows. For a given set S′ = P ′ ∪N ′,
we will select the feature hi with the largest value of Ui and append this hi in the
DLM. If |Pi| − pn · |N ′ − Ni| ≥ |Ni| − pp · |P ′ − Pi|, we will then remove from S′
every example in Pi (since they are correctly classified by the current DLM) and
we will also remove from S′ every example in N ′ − Ni (since a DLM with this
feature is already misclassifying N ′ − Ni, and, consequently, the training error of
the DLM will not increase if later features err on examples in N ′ −Ni). Otherwise
if |Pi|−pn · |N ′−Ni| < |Ni|−pp · |P ′−Pi|, we will then remove from S′ examples in
Ni ∪ (P ′ − Pi). Hence, we recover the simple greedy algorithm when pp = pn = ∞.

The formal description of our learning algorithm is presented in Figure 1. The
penalty parameters pp and pn and the early stopping point s are the model-selection
parameters that give the user the ability to control the proper tradeoff between the
training accuracy and the size of the DLM. Their values could be determined either

by using k-fold cross-validation, or by computing our bound (see section 4) on
the generalization error. It therefore generalizes the learning algorithm of Rivest
(1987) by providing this complexity-accuracy tradeoff and by permitting the use of
any kind of Boolean-valued features, including those that are constructed from the
data. Finally let us mention that Dhagat and Hellerstein (1994) did propose an
algorithm for learning decision lists of few relevant attributes but this algorithm is
not practical in the sense that it provides no tolerance to noise and does not easily
accommodate parameters to provide a complexity-accuracy tradeoff.

3 Data-Dependent Balls

For each training example xi with label yi ∈ {0, 1} and (real-valued) radius ρ, we
define feature hi,ρ to be the following data-dependent ball centered on xi:

hi,ρ(x) def= hρ(x,xi) =
{

yi if d(x,xi) ≤ ρ
yi otherwise

where yi denotes the Boolean complement of yi and d(x,x′) denotes the distance
between x and x′. Note that any metric can be used for d. So far, we have used
only the L1, L2 and L∞ metrics but it is certainly worthwhile to try to use metrics
that actually incorporate some knowledge about the learning task. Moreover, we
could use metrics that are obtained from the definition of an inner product k(x,x′).

Given a set S of m training examples, our initial set of features consists, in principle,
of H =

⋃
i∈S

⋃
ρ∈[0,∞[hi,ρ. But obviously, for each training example xi, we need

only to consider the set of m− 1 distances {d(xi,xj)}j 6=i. This reduces our initial
set H to O(m2) features. In fact, from the description of the DLM in the previous
section, it follows that the ball with the largest usefulness belongs to one of the
following following types of balls: type Pi, Po, Ni, and No.

Balls of type Pi (positive inside) are balls having a positive example x for its center
and a radius given by ρ = d(x,x′)− ε for some negative example x′ (that we call a
border point) and very small positive number ε. Balls of type Po (positive outside)
have a negative example center x and a radius ρ = d(x,x′) + ε given by a negative
border x′. Balls of type Ni (negative inside) have a negative center x and a radius
ρ = d(x,x′) − ε given by a positive border x′. Balls of type No (negative outside)
have a positive center x and a radius ρ = d(x,x′) + ε given by a positive border x′.

This proposed set of features, constructed from the training data, provides to the
user full control for choosing the proper tradeoff between training accuracy and
function size.

4 Bound on the Generalization Error

Note that we cannot use the “standard” VC theory to bound the expected loss of
DLMs with data-dependent features because the VC dimension is a property of a
function class defined on some input domain without reference to the data. Hence,
we propose another approach.

Since our learning algorithm tries to build a DLM with the smallest number of data-
dependent balls, we seek a bound that depends on this number and, consequently,
on the number of examples that are used in the final classifier (the hypothesis).
We can thus think of our learning algorithm as compressing the training set into
a small subset of examples that we call the compression set . It was shown by Lit-
tlestone and Warmuth (1986) and Floyd and Warmuth (1995) that we can bound

the generalization error of the hypothesis f if we can always reconstruct f from
the compression set. Hence, the only requirement is the existence of such a recon-
struction function and its only purpose is to permit the exact identification of the
hypothesis from the compression set and, possibly, additional bits of information.
Not surprisingly, the bound on the generalization error increases rapidly in terms
of these additional bits of information. So we must make minimal usage of them.

We now describe our reconstruction function and the additional information that
it needs to assure, in all cases, the proper reconstruction of the hypothesis from a
compression set. Our proposed scheme works in all cases provided that the learning
algorithm returns a hypothesis that always correctly classifies the compression set
(but not necessarily all of the training set). Hence, we need to add this constraint
in BuildDLM for our bound to be valid but, in practice, we have not seen any
significant performance variation introduced by this constraint. We first describe
the simpler case where only balls of types Pi and Ni are permitted and, later,
describe the additional requirements that are introduced when we also permit balls
of types Po and No.

Given a compression set Λ (returned by the learning algorithm), we first partition it
into four disjoint subsets Cp, Cn, Bp, and Bn consisting of positive ball centers, neg-
ative ball centers, positive borders, and negative borders respectively. Each example
in Λ is specified only once. When only balls of type Pi and Ni are permitted, the
center of a ball cannot be the center of another ball since the center is removed from
the remaining examples to be covered when a ball is added to the DLM. But a center
can be the border of a previous ball in the DLM and a border can be the border of
more than one ball. Hence, points in Bp∪Bn are examples that are borders without
being the center of another ball. Because of the crucial importance of the ordering
of the features in a decision list, these sets do not provide enough information by
themselves to be able to reconstruct the hypothesis. To specify the ordering of each
ball center it is sufficient to provide log2(r) bits of additional information where the
number r of balls is given by r = cp +cn for cp = |Cp| and cn = |Cn|. To find the ra-
dius ρi for each center xi we start with C ′p = Cp, C

′
n = Cn, B′

p = Bp, B
′
n = Bn, and

do the following, sequentially from the first center to the last. If center xi ∈ C ′p, then
the radius is given by ρi = minxj∈C′n∪B′n d(xi,xj)− ε and we remove center xi from
C ′p and any other point from B′

p covered by this ball (to find the radius of the other
balls). If center xi ∈ C ′n, then the radius is given by ρi = minxj∈C′p∪B′p d(xi,xj)− ε

and we remove center xi from C ′n and any other point from B′
n covered by this

ball. The output bi for each ball hi is 1 if the center xi ∈ Cp and 0 otherwise.
This reconstructed decision list of balls will be the same as the hypothesis if and
only if the compression set is always correctly classified by the learning algorithm.
Once we can identify the hypothesis from the compression set, we can bound its
generalization error.

Theorem 1 Let S = P ∪ N be a training set of positive and negative examples
of size m = mp + mn. Let A be the learning algorithm BuildDLM that uses
data-dependent balls of type Pi and Ni for its set of features with the constraint
that the returned function A(S) always correctly classifies every example in the
compression set. Suppose that A(S) contains r balls, and makes kp training errors
on P , kn training errors on N (with k = kp + kn), and has a compression set
Λ = Cp ∪ Cn ∪ Bp ∪ Bn (as defined above) of size λ = cp + cn + bp + bn . With
probability 1− δ over all random training sets S of size m, the generalization error
er(A(S)) of A(S) is bounded by

er(A(S)) ≤ 1− exp
{ −1

m− λ− k

(
ln Bλ + ln(r!) + ln

1
δλ

)}

where δλ
def=

(
π2

6

)−6

· ((cp + 1)(cn + 1)(bp + 1)(bn + 1)(kp + 1)(kn + 1))−2 · δ and
where

Bλ
def=

(
mp

cp

)(
mp − cp

bp

)(
mn

cn

)(
mn − cn

bn

)(
mp − cp − bp

kp

)(
mn − cn − bn

kn

)

Proof Let X be the set of training sets of size m. Let us first bound the probability
Pm

def=P{S ∈ X : er(A(S)) ≥ ε | m(S) = m} given that m(S) is fixed to some value
m where mdef=(m, mp, mn, cp, cn, bp, bn, kp, kn). For this, denote by Ep the subset
of P on which A(S) makes an error and similarly for En. Let I be the message of
log2(r!) bits needed to specify the ordering of the balls (as described above). Now
define P ′m to be

P ′m
def= P{S ∈ X : er(A(S)) ≥ ε | Cp = S1, Cn = S2, Bp = S3, Bn = S4

Ep = S5, En = S6, I = I0,m(S) = m}
for some fixed set of disjoint subsets {Si}6i=1 of S and some fixed information mes-
sage I0. Since Bλ is the number of different ways of choosing the different compres-
sion subsets and set of error points in a training set of fixed m, we have:

Pm ≤ (r!) ·Bλ · P ′m
where the first factor comes from the additional information that is needed to specify
the ordering of r balls. Note that the hypothesis f

def=A(S) is fixed in P ′m (because
the compression set is fixed and the required information bits are given). To bound
P ′m, we make the standard assumption that each example x is independently and
identically generated according to some fixed but unknown distribution. Let p
be the probability of obtaining a positive example, let α be the probability that
the fixed hypothesis f makes an error on a positive example, and let β be the
probability that f makes an error on a negative example. Let tp

def= cp + bp + kp and

let tn
def= cn + bn + kn. We then have:

P ′m = (1− α)mp−tp(1− β)m−tn−mp

(
m− tn − tp

mp − tp

)
pmp−tp(1− p)m−tn−mp

≤
m−tn∑

m′=tp

(1− α)m′−tp(1− β)m−tn−m′
(

m− tn − tp
m′ − tp

)
pm′−tp(1− p)m−tn−m′

= [(1− α)p + (1− β)(1− p)]m−tn−tp = (1− er(f))m−tn−tp

≤ (1− ε)m−tn−tp

Consequently:
Pm ≤ (r!) ·Bλ · (1− ε)m−tn−tp .

The theorem is obtained by bounding this last expression by the proposed value for
δλ(m) and solving for ε since, in that case, we satisfy the requirement that

P

{
S ∈ X : er(A(S)) ≥ ε

}
=

∑
m

PmP

{
S ∈ X : m(S) = m

}

≤
∑
m

δλ(m)P
{

S ∈ X : m(S) = m
}

≤
∑
m

δλ(m) = δ

where the sums are over all possible realizations of m for a fixed mp and mn.
With the proposed value for δλ(m), the last equality follows from the fact that

∑∞
i=1(1/i2) = π2/6.

The use of balls of type Po and No introduces a few more difficulties that are
taken into account by sending more bits to the reconstruction function. First, the
center of a ball of type Po and No can be used for more than one ball since the
covered examples are outside the ball. Hence, the number r of balls can now exceed
cp + cn = c. So, to specify r, we can send log2(λ) bits. Then, for each ball,
we can send log2 c bits to specify which center this ball is using and another bit
to specify if the examples covered are inside or outside the ball. Using the same
notation as before, the radius ρi of a center xi of a ball of type Po is given by
ρi = maxxj∈C′n∪B′n d(xi,xj)+ε, and for a center xi of a ball of type No, its radius is
given by ρi = maxxj∈C′p∪B′p d(xi,xj) + ε. With these modifications, the same proof
of Theorem 1 can be used to obtain the next theorem.

Theorem 2 Let A be the learning algorithm BuildDLM that uses data-dependent
balls of type Pi, Ni, Po, and No for its set of features. Consider all the definitions
used for Theorem 1 with c

def= cp +cn. With probability 1−δ over all random training
sets S of size m, we have

er(A(S)) ≤ 1− exp
{ −1

m− λ− k

(
ln Bλ + ln λ + r ln(2c) + ln

1
δλ

)}

Basically, our bound states that good generalization is expected when we can find a
small DLM that makes few training errors. In principle, we could use it as a guide
for choosing the model selection parameters s, pp, and pn since it depends only on
what the hypothesis has achieved on the training data.

5 Empirical Results on Natural data

We have compared the practical performance of the DLM with the support vector
machine (SVM) equipped with a Radial Basis Function kernel of variance 1/γ. The
data sets used and the results obtained are reported in Table 1. All these data
sets where obtained from the machine learning repository at UCI. For each data
set, we have removed all examples that contained attributes with unknown values
(this has reduced substantially the “votes” data set) and we have removed examples
with contradictory labels (this occurred only for a few examples in the Haberman
data set). The remaining number of examples for each data set is reported in
Table 1. No other preprocessing of the data (such as scaling) was performed. For
all these data sets, we have used the 10-fold cross validation error as an estimate
of the generalization error. The values reported are expressed as the total number
of errors (i.e. the sum of errors over all testing sets). We have ensured that each
training set and each testing set, used in the 10-fold cross validation process, was
the same for each learning machine (i.e. each machine was trained on the same
training sets and tested on the same testing sets).

The results reported for the SVM are only those obtained for the best values of the
kernel parameter γ and the soft margin parameter C found among an exhaustive
list of many values. The values of these parameters are reported in Marchand and
Shawe-Taylor (2002). The “size” column refers to the average number of support
vectors contained in SVM machines obtained from the 10 different training sets of
10-fold cross-validation.

We have reported the results for the SCM (Marchand and Shawe-Taylor, 2002) and
the DLM when both machines are equipped with data-dependent balls under the
L2 metric. For the SCM, the T column refers to type of the best machine found

Data Set SVM SCM with balls DLM with balls
Name #exs size errors T p s errors T pp pn s errors

BreastW 683 58 19 c 1.8 2 15 c 2.1 1 2 14
Votes 52 18 3 d 0.9 1 6 s 0.1 0.3 1 3
Pima 768 526 203 c 1.1 3 189 c 1.5 1.5 6 189
Haberman 294 146 71 c 1.4 1 71 s 2 3 7 65
Bupa 345 266 107 d 2.8 9 106 c 2 2 4 108
Glass 214 125 34 d ∞ 2 36 c 4.8 ∞ 12 28
Credit 653 423 190 d 1.2 4 194 c 1 ∞ 11 197

Table 1: Data sets and results for SVMs, SCMs, and DLMs.

(c for conjunction, and d for disjunction), the p column refers the best value found
for the penalty parameter, and the s column refers the the best stopping point in
terms of the number of balls. The same definitions applies also for DLMs except
that two different penalty values (pp and pn) are used. In the T column of the DLM
results, we have specified by s (simple) when the DLM was trained by using only
balls of type Pi and Ni and by c (complex) when the four possible types of balls
where used (see section 3). Again, only the values that gave the smallest 10-fold
cross-validation error are reported.

The most striking feature in Table 1 is the level of sparsity achieved by the SCM and
the DLM in comparison with the SVM. This difference is huge. The other important
feature is that DLMs often provide slightly better generalization than SCMs and
SVMs. Hence, DLMs can provide a good alternative to SCMs and SVMs.

Acknowledgments

Work supported by NSERC grant OGP0122405 and, in part, by the EU under the
NeuroCOLT2 Working Group, No EP 27150.

References

Aditi Dhagat and Lisa Hellerstein. PAC learning with irrelevant attributes. In
Proc. of the 35rd Annual Symposium on Foundations of Computer Science, pages
64–74. IEEE Computer Society Press, Los Alamitos, CA, 1994.

Sally Floyd and Manfred Warmuth. Sample compression, learnability, and the
Vapnik-Chervonenkis dimension. Machine Learning, 21(3):269–304, 1995.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Tech-
nical report, University of California Santa Cruz, 1986.

Mario Marchand and Mostefa Golea. On learning simple neural concepts: from
halfspace intersections to neural decision lists. Network: Computation in Neural
Systems, 4:67–85, 1993.

Mario Marchand and John Shawe-Taylor. Learning with the set covering machine.
Proceedings of the Eighteenth International Conference on Machine Learning
(ICML 2001), pages 345–352, 2001.

Mario Marchand and John Shawe-Taylor. The set covering machine. Journal of
Machine Learning Reasearch (to appear), 2002.

Ronald L. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1987.

