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Abstract

We investigate the clipped Hebb rule for learn-
ing different multilayer networks of nonover-
lapping perceptrons with binary weights and
zero thresholds when the examples are gen-
erated according to the uniform distribution.
Using the central limit theorem and very sim-
ple counting arguments, we calculate exactly
its learning curves (i.e. the generalization rates
as a function of the number of training exam-
ples) in the limit of a large number of inputs.
We find that the learning curves converge ez-
ponentially rapidly to perfect generalization.
These results are very encouraging given the
simplicity of the learning rule. The analytic
expressions of the learning curves are in excel-
lent agreement with the numerical simulations,
even for moderate values of the number of in-
puts.
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1 Introduction

Neural networks with binary weights have attracted
much attention recently [1, 4, 6, 7, 13]. This was moti-
vated by both theoretical and practical reasons. First,
because the number of possible states in the weight
space of a binary network is finite, its properties may
differ drastically from these of a network with continu-
ous weights [4, 12]. Second, the hardware realization of
binary networks may prove simpler.

The generalization ability of neural networks with bi-
nary weights has been studied extensively using the sta-
tistical mechanics approach [4, 7, 12]. Although this
approach has yielded some impressive results, it has
its shortcomings. In particular, it neglects the com-
putational aspect of the learning process by assuming a
stochastic training algorithm, similar to a finite Monté
Carlo process, that leads at long times to a Gibbs dis-
tribution [12]. Unfortunately, stochastic training algo-
rithms generally require prohibitively long convergence
times. So, despite this intensive study, the fundamen-
tal question of whether or not there exist efficient algo-
rithms for learning this class of networks remains largely
unanswered. Since learning even single binary percep-
trons is intractable in the distribution free sense [10], we
are lead to consider the existence of learning algorithms
that work well under some reasonable distributions of
examples.

Perhaps the simplest algorithm that we can imagine for
learning binary networks is the clipped Hebb rule [6]
(also called the majority rule in [13]). This rule is local,
homogeneous, easy to implement, and simple enough
to be biologically plausible. Moreover, it observes each
training example only once. Recently, we investigated
the average case behavior of this rule when learning sin-
gle perceptrons with binary weights under the uniform
distribution [2]. We found that its learning curve, i.e.,
the average generalization as a function of the size of
the training set, converged exponentially to perfect gen-
eralization. These finding were confirmed by extensive
simulations.

In this paper, we take this investigation one step further
and look at the average behavior of the clipped Hebb
rule when learning networks of nonoverlapping binary



Figure 1: A multilayer network of nonoverlapping bi-
nary perceptrons. Note that each node has one and
only one outgoing connection. All weights in the net-
work are binary valued (£1). The hidden nodes and the
output node are binary valued perceptrons.

perceptrons. A network is nonoverlapping if each node,
including the inputs, has one and only one outgoing
connection (fig. 1). This is referred to, within the com-
putational learning community, as the p or the read-
once restriction. Such networks have been investigated,
recently, within the PAC learning framework [3, 5].

We derive the analytical expressions for the average gen-
eralization rate of the clipped Hebb rule, in the limit
of large number of inputs, when learning 1) a two-
layer network of nonoverlapping binary perceptrons and
2) a multilayer network of nonoverlapping binary per-
ceptrons. We find that the generalization rates still
converge exponentially rapidly to perfect generalization
with respect to the number of training examples. The
results of the numerical simulations are in very good
agreement with the theoretical predictions.

2 Definitions

Let X denote the set {—1,+1}". We are interested in
learning a target function f* that maps from the set
X (the input space) into {—1,+1}. We assume f* is
a layered network of nonoverlapping binary perceptrons
(fig. 1). For an input vector x € X, we take z; to be
the state of the input node ¢ of the network.

A useful property of nonoverlapping networks is that
one can assume, without loss of generality (w.l.o.g.),
that all the weights, except those coming directly from
the input nodes, are positive [5] . From now on, we
assume this is the case and concentrate only on learning
the input level weights.

! Any other case reduces to this one by an analog to De
Morgan’s laws that allows us to push negation of weights
down to the input level.
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For nonoverlapping networks, each input node ¢ has one
and only one input level weight J;. We define J to
be the weight vector obtained from the collection of all
these input level weights. Then, each possible setting of
the weight vector J defines a mapping function f. We
denote by J* the weight vector associated with f*. We
call J* the target weight vector and the corresponding
network the target network. Each perceptron (hidden
unit) in the target network is referred to as a target
perceptron.

The training examples are input vectors {x'};=1._m,
generated according to the uniform distribution D on
X, and labeled according to the target function (net-
work) f*. An example is said to be positive (negative)
if f*(x)=+1(-1).

Knowing the target network architecture and using the
training examples, the goal of the learning algorithm is
to find a setting of J that approximate the most the
target function. The network corresponding to the J
found by the algorithm is called the hypothesis network.
Each perceptron in the hypothesis network is referred
to as an hypothesis perceptron.

Let o/ = f*(x!). The clipped Hebb rule, for the net-
work, can be simply written as

Ji:sgn(Zalxé) i=1,...,n (1)
=1

where sgn(a) = +1 if @ > 0 and —1 otherwise. Be-
cause the results of this paper are independent of J*,
we assume from now on that Jf =1fori=1,...,n.

We will denote by P(A) the probability that the event
A occurs, and by P(A | B) the conditional probability
that event A occurs given the fact that event B has been
observed. All probabilities are taken with respect to the
uniform distribution D on X.

3 Learning a Two-layer Network of
Nonoverlapping Binary Perceptrons

Let the target function f* be a two-layer network of
k nonoverlapping perceptrons with binary weights and
zero thresholds. That is,

k
fr=sen| > g
j=1

This is the so-called nonoverlapping Committee Ma-
chine [11]. We assume, w.l.0.g., that k is odd. Then, a
negative (positive) example is classified negative (posi-
tive) by at least (k 4 1)/2 target perceptrons.

We denote by Ir(x) the vector (g1(x),...,gx(x)). This
is called the internal representation of x. Obviously,
Ir(x) depends on the setting of J. We denote by Ir*(x)
the target internal representation, ¢.e., the one corre-
sponding to J*.



As usual, we let the number of training examples depend
on the number of weights, and we write m = an. We
are interested in the limit where n — oo and « is finite.

Let R; denote the overlap between the weight vectors
associated with the target perceptron g7 and the corre-
sponding hypothesis perceptron g;:
2ies, Ji i
R, = —/—M—— (2)
! 1551

where S; denotes the set of indices of variables con-
nected to g5 (j =1,...,k).

Let G, () denote the generalization rate of the hypothe-
sis perceptron g;, i.e.the probability that g; agrees with
the target perceptron g7 on a new random example x.
It is well known that, under the uniform distribution,
G () depends only on R; and is given by [9]

Gs(a) =1~ ~eos™ (R;) 3)

where the overbar denotes the average with respect to
all training sets of size an.

If we assume for simplicity that each perceptron is con-
nected to the same number of inputs n/k, then R; and
G; are the same for all the perceptrons. Let us put
R; = Rand G; = G.

Let y} = o'zl and ¥; = 377 y!. Eq. 1 can be written

now as

Ji = sgn <Z yi) = sgn(Y;) (4)
=1

Let us define ¢ such that

1
P(yé:—&-l):——i—i as n — o0.

2 n
where ¢ is independent of ¢ and [. Note here that %

reflects the correlation between the state of each input
node and the output node. This correlation is posi-
tive if J* = +1 and negative if J* = —1. The clipped
Hebb rule exploits this correlation to determine the sign
(value) of J;.

The random variable Y; is simply the sum of an inde-
pendent and identically distributed, +1 random vari-
ables. Thus, according to the central limit theorem,
as n — 00, Y; will be distributed according to a nor-
mal distribution with mean p = QOmﬁ and variance

o = y/an. Hence,
_ ( ) 2 w/V20 2
Ji=PY;>0)—-PY;<0) = —/ e " dt
VT Jo

= erf(gv2a) (5)

where erf() denotes the error function. This yields,

R = erf(gv2a) (6)

To specify the value of ¢, assume that x; is connected to
perceptron g;. Then, from the definition of y;, we can
write
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Ply;=1)= P(oxz; = 1)
= P(ff(x)=1)
x [Plg; = 1f"(x) = 1) x P(z; = 1|gj = 1)
+ Plgj = -1 (%) =1) x P(z; = 1]g; = —1)]
+ P(ff(x)=-1
x [Pl = 11f*(0) = 1) x Ples = 1] g = 1)
+ Plgj = —1f"(x) = =1) x P(z; = —1[gj = —1)]

(7)

The different probabilities in the above equation can be
evaluated fairly easily. For example, P(z; =1 | gj = 1)
is is simply the probability that an input variable in g7 is
set to +1 given the fact that g7 has at least (n/k+1)/2
of its inputs set to +1. Under the uniform distribution,
this is given by

P(xi:1|g;-‘:1) =

= -+

Thus, after few manipulations, eq. 7 evaluates to

P(y¢:1):2( k’“lel )(H@I)

2k on/k

As n and n/k — oo, this reduces to

(') v

2k 2mn

) s o

2k V2

Deriving an expression for G (and the overall general-
ization of the hypothesis network) for an arbitrary k is
a difficult task. In the following, we concentrate on the
two limiting cases: the case k = 3 and the case of large
k. Note that the learning curves for an arbitrary & will
lay in between these corresponding to the two limiting
cases.

1
Plyi=1)= 5 +2

And hence

3.1 The Case of k=3

5
s

For k = 3, eq. 9 yields ¢ = %2

back in eqgs. 6 and 3, we get

Ezerf(

127r' Putting this value

) (10)

2

|5

2R



1 1 \/3 o
Gla)=1- —cos (erf (7\/;>>

Let us compare this result with the generalization rate
of the same rule when learning single perceptrons with
binary weight, which is given by [2]:

Gsingle () =1 — %cos_1 (erf <M)> (12)

Eq. 11 is equivalent to eq. 12, with an aeg = %oz. That
is to say, if we take the single perceptron as reference,
the effective fraction of training examples contributing
to the learning process now is around 3/4. This is due
to the decrease in the correlation between the states of
the input nodes and the output node. But nonetheless,
G(a) still converges exponentially to 1.

The overall generalization rate, denoted Gr(«), is the
probability that the hypothesis network will classify cor-
rectly a new positive (negative) example. This proba-
bility depends on the target internal representation of
the example tested, more precisely on how many target
perceptrons classify this example as positive/negative.
For a positive example x, we have two possibilities:

1) x is classified positive by 2 target perceptrons, say
by g7 and g3, and negative by the remaining target per-
ceptron, ¢g5. The hypothesis network can fail to classify
this example correctly only if

91(x) # g1 (x%),  92(%) # 92(x),  g3(x) = g5(x)
or  g1(x) # g1 (%), ga(x) = g2(x), g3(x) = g3(x)
or  g1(%) =91(%), 92(%) # g2(%), g3(x) = g3(x)

g3(x
or gj(x) ;égj(x) forj = 1,2,3
This can happen with a probability

G(a)[1 = G(a)] +2G(a)*[1 = G(a)] + [1 = G(a)]?

2) x is classified positive by all 3 target perceptrons.
The hypothesis network can fail to classify this example
correctly only if at least two of its perceptrons fail to do
so. This can happen with a probability

3G(a)[1 = G(a)* +[1 = G(o)

The same argument holds for negative examples. Tak-
ing into account the probability that an example is clas-
sified positive (negative) by r target perceptrons, we get

Grlo)=1 — 5GPl - G(a)] - S G - G(o)P
- -G (13)

The analytical expressions for R, G(a), and Gr(«) are
plotted in fig.2 along with the simulation results. Again,
the agreement is excellent. One can also see that G («)
tends exponentially to perfect generalization.

The argument of this section may be used in principle
to derive an expression for Gr(a) for any value of k.
However, it becomes too complicated to follow for k >
7. Thus, we will look simply at the other end of the
spectrum, i.e., large k.
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3.2 The Case of Large k

Here we are interested in the case where k — oo (but n
is still larger than & such that n/k — oo). In this case,
eq. 9 reduces to

2 1
O V2T \/271'.

Putting this value back in eqgs. 6 and 3, we get

R =erf (@@) (15)
Glo) =1~ ~cos™! (erf (@ﬁ))

Comparing this to the case of single binary perceptrons
(eq. 12), we see that a fraction 2/m (~ 0.63) of the
training examples contribute to the learning process,
and that G(a) still converges exponentially to 1.

(14)

To determine the overall generalization, let x be a ran-
dom input and let

k k
a=) gix) b= gjx)
j=1 j=1

For different inputs x, a and b are correlated Gaussian
variables with

a=>b=0 a2 = =k ab =

where p, the overlap between Ir*(x) and Ir(x), is given

kxp

by
S g (x)g5(x)
N k
By definition,
Gr(a) = P(ab > 0)

which, as for a single perceptron, depends only on the
average overlap p. Thus Gr(«) is again given by eq. 3

Grla)=1-— lcos_l(ﬁ)

™

We now evaluate 5 (remember that the overbar denotes
the average with respect to the training set). For that,

let
hj(x) :g;f(x)gj(x) ji=1,...k

Then,
P(hj(x) =+1) = G(o)
This yields

hj(X) = QG(Oé) -1

2 _
p = 2G(a)—1 = 1—=cos ' (R) (17)
T
So, the overall generalization is given by

Gr(a) = 17%00s71(2G(a)71) (18)

(1—%% 1@)) (19)
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Figure 2: Learning a two-layer network of 3 nonoverlapping binary perceptrons connected to the same number of
inputs. Shown are the average overlap R, the generalization rate of each perceptron GG, and the overall generalization
rate Gp. The points are the results of the simulations for n = 303. Each point denotes an average over 25 different
training samples. The error bars, shown only for one curve for clarity, denote the standard deviations.

It is interesting to see that, for large k, the generaliza-
tion rate of a majority of nonoverlapping perceptrons
behaves as that of a single perceptron, with a modified
overlap 1 — 2cos™1(R). Eq. 19 has been also derived in
[7, 11], using a different method.

The analytical expressions for G(«) and Gr(«) are plot-
ted in fig.3 along with the simulation results. There is
a noticeable deviation from the theoretical predictions;
the reason for this is that, in the simulations, k and
n/k are not sufficiently large. On the other hand, one
can see that as k and n/k become larger, the simula-
tions results tend towards the theoretical curves. One
can also see that Gr(«) tends exponentially to perfect
generalization.

Finally, the nonoverlapping Committee Machine with
binary weights has been studied extensively using the
statistical mechanics approach [7, 11]. This approach
assumes a stochastic training algorithm, similar to a fi-
nite Monté Carlo process, that leads at long times to a
Gibbs distribution of weights [12]. Under this assump-
tion, it is found that a phase transition to perfect gen-
eralization does occur at a critical value of a. Thus,
such training algorithms have a better sample complex-
ity than the clipped Hebb rule. However, the time
complexity of the clipped Hebb rule is only O(n x m),
whereas stochastic training algorithms generally require
prohibitively long convergence times.

4 Extension to Multilayer Networks of
Nonoverlapping Binary Perceptrons

Let f* be a layered network of nonoverlapping binary
perceptrons (fig. 1). Let H denote the number of hidden
layers and kp, the number of perceptrons in layer h (h =
1,...,H). Assume that the number of nodes in layer
h —1 is much greater than the number of nodes in layer
h. That is

n — oo
n/k; — oo
kh,l/kh—m)o h=2,...,H

Assume, for simplicity, that perceptrons in the same
layer are connected to the same number of nodes in the
previous layer. Let Gj(a) denotes the generalization
rate of a perceptron (hidden unit) in layer h.

Using the arguments of the previous section that led to
eq. 14, one can show that each hidden layer will con-
tribute a factor 2/v/27 to ¢q. Thus,

( 2 )H ! (20)
1 V2T V2
With this, eq. 15 reads now
5 H
R=erf ( —) a (21)
T T
G1(a) is still given by
1 —
Gi(a) =1— =cos *(R) (22)
7r
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Figure 3: Learning a two-layer network of k£ nonoverlapping binary perceptrons connected to the same number
of inputs. The case of large k. Shown are (a) the generalization rate of each perceptron G, and (b) the overall
generalization rate Gr. The points are the results of the simulations for the indicated values of (n,k). Each point
denotes an average over 25 different training samples. The error bars, shown only for one curve for clarity, denote

the standard deviations.

Applying the arguments that led to eq. 18 recursively,
that is from one layer to the next, we get

Gh(a)zl—%cos_l (2Gp—1(a)—1) h=2,... H.
(23)
Gr(a)=1- %COS_1 (2Gp(a) —1) (24)

Finally, we note that eq. 21 can be written as

R = erf(\/ et /) (25)

Qeff = | — [0
T

Compared to the single binary perceptron case, cig re-
flects the effective number of examples contributing to

where

the learning process. This effective number decreases as

(2/7)™. This may explain the observation made in [7]
that the critical value of a at which the phase-transition
(for consistent rules) occurs scales as (m/2)".

5 Conclusion

We have investigated the clipped Hebb rule for learn-
ing different networks of nonoverlapping binary percep-
trons under the uniform distribution. We have calcu-
lated exactly the learning curves of this rule in the limit
n — oo, where the average behavior becomes the typ-
ical one. Our results indicate that the clipped Hebb
rule does indeed learn this class of networks. Specif-
ically, the generalization rates converge exponentially



to perfect generalization as a function of the number
of training examples. The analytic expression of the
learning curves are in excellent agreement with the nu-
merical simulations. These results are very encouraging
given the simplicity of the learning rule. In particu-
lar, this shows that simple neural networks with binary
weights may be learnable under simple distributions of
examples.

We note here that the clipped Hebb rule produces hy-
potheses that are not necessarily consistent with all the
training examples, but that nonetheless have very good
generalization ability. These type of algorithms, called
“inconsistent algorithms” [8], are very important be-
cause, in many situations, there is no hypothesis consis-
tent with all the training examples. This may be due to
the intrinsic difficulty of the problem or to the examples
being noisy. The clipped Hebb rule in particular is very
robust with respect to classification noise [2].

An interesting question is how the clipped Hebb rule be-
haves under product distributions. To answer this, we
note that the clipped Hebb rule works by exploiting the
correlation between the state of each input variable x;
and the classification label (eq. 1). Under the uniform
distribution, this correlation is positive if J; = +1 and
negative if J; = —1. This is no more true for product
distributions: one can easily craft some malicious prod-
uct distributions where, for example, this correlation is
negative although J* = +1.

Finally, we note that throughout this paper, we have
assumed that the architecture is known in advance.
Whereas this is in line with most of the neural network
research, it is hardly justifiable in practice. it would
be very interesting to be able to calculate the learning
curve(s) of an algorithm that can find both the weight
values and the architecture of even the simplest net-
works such as unions of nonoverlapping perceptrons [3].
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