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Abstract

We extend the PAC-Bayes theorem to the
sample-compression setting where each clas-
sifier is represented by two independent
sources of information: a compression set
which consists of a small subset of the train-
ing data, and a message string of the addi-
tional information needed to obtain a clas-
sifier. The new bound is obtained by us-
ing a prior over a data-independent set of
objects where each object gives a classifier
only when the training data is provided. The
new PAC-Bayes theorem states that a Gibbs
classifier defined on a posterior over sample-
compressed classifiers can have a smaller risk
bound than any such (deterministic) sample-
compressed classifier.

1. Introduction

The PAC-Bayes approach, initiated by McAllester
(1999), aims at providing PAC guarantees to
“Bayesian-like” learning algorithms. These algorithms
are specified in terms of a prior distribution P over a
space of classifiers that characterizes our prior belief
about good classifiers (before the observation of the
data) and a posterior distribution Q (over the same
space of classifiers) that takes into account the addi-
tional information provided by the training data. A
remarkable result that came out from this line of re-
search, known as the “PAC-Bayes theorem”, provides
a tight upper bound on the risk of a stochastic classifier
(defined on the posterior Q) called the Gibbs classifier .

This PAC-Bayes bound (see Theorem 1) depends both
on the empirical risk (i.e., training errors) of the Gibbs
classifier and on “how far” is the data-dependent pos-
terior Q from the data-independent prior P . Conse-
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quently, a Gibbs classifier with a posterior Q having all
its weight on a single classifier will have a larger risk
bound than another Gibbs classifier, making the same
amount of training errors, using a “broader” posterior
Q that gives weight to many classifiers. Hence, the
PAC-Bayes theorem quantifies the additional predic-
tive power that stochastic classifier selection has over
deterministic classifier selection.

A constraint currently imposed by the PAC-Bayes the-
orem is that the prior P must be defined without refer-
ence to the training data. Consequently, we cannot di-
rectly use the PAC-Bayes theorem to bound the risk of
sample-compression learning algorithms (Littlestone
& Warmuth, 1986; Floyd & Warmuth, 1995) because
the set of classifiers considered by these algorithms are
those that can be reconstructed from various subsets
of the training data. However, this is an important
class of learning algorithms since many well known
learning algorithms, such as the support vector ma-
chine (SVM) and the perceptron learning rule, can be
considered as sample-compression learning algorithms.
Moreover, some sample-compression algorithms (Mar-
chand & Shawe-Taylor, 2002) have achieved very good
performance in practice by deterministically choosing
the sparsest possible classifier: the one described by
the smallest possible subset of the training set. It
is therefore worthwhile to investigate if the stochas-
tic selection of sample-compressed classifiers provides
an additional predictive power over the deterministic
selection of a single sample-compressed classifier.

In this paper, we extend the PAC-Bayes theorem in
such a way that it applies now to both the usual data-
independent setting and the more general sample-
compression setting. In the sample-compression set-
ting, each classifier is represented by two independent
sources of information: a compression set which con-
sists of a small subset of the training data, and a mes-
sage string of the additional information needed to
obtain a classifier. In the limit where the compression
set vanishes, each classifier is identified only by a mes-
sage string and the new PAC-Bayes theorem reduces
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to the “usual” PAC-Bayes theorem of Seeger (2002)
and Langford (2005). However, new quantities appear
in the risk bound when classifiers are also described
by their compression sets. The new PAC-Bayes theo-
rem states that a stochastic Gibbs classifier defined on
a posterior over several sample-compressed classifiers
can have a smaller risk bound than any such single
(deterministic) sample-compressed classifier. Finally,
the new PAC-Bayes risk bound reduces to the usual
sample-compression risk bounds (Littlestone & War-
muth, 1986; Floyd & Warmuth, 1995; Langford, 2005)
in the limit where the posterior Q puts all its weight
on a single sample-compressed classifier.

2. Basic Definitions

We consider binary classification problems where the
input space X consists of an arbitrary subset of Rn

and the output space Y = {−1, +1}. An example
z def= (x, y) is an input-output pair where x ∈ X and
y ∈ Y.

Throughout the paper, we adopt the PAC setting
where each example z is drawn according to a fixed,
but unknown, probability distribution D on X × Y.
The risk R(f) of any classifier f is defined as the proba-
bility that it misclassifies an example drawn according
to D:

R(f) def= Pr
(x,y)∼D

(
f(x) 6= y

)

= E
(x,y)∼D

I(f(x) 6= y)

where I(a) = 1 if predicate a is true and 0 otherwise.
Given a training set S = 〈z1, . . . , zm〉 of m examples,
the empirical risk RS(f) on S, of any classifier f , is
defined according to:

RS(f) def=
1
m

m∑

i=1

I(f(xi) 6= yi)
def= E

(x,y)∼S
I(f(x) 6= y)

3. The PAC-Bayes Theorem in the
Data-Independent Setting

The PAC-Bayes theorem provides a tight upper bound
on the risk of a stochastic classifier called the Gibbs
classifier . Given an input example x, the label GQ(x)
assigned to x by the Gibbs classifier is defined by the
following process. We first choose a classifier h accord-
ing to the posterior distribution Q and then use h to
assign the label to x. The risk of GQ is defined as the
expected risk of classifiers drawn according to Q:

R(GQ) def= E
h∼Q

R(h) = E
h∼Q

E
(x,y)∼D

I(f(x) 6= y)

The PAC-Bayes theorem was first proposed
by McAllester (2003a). The version presented
here is due to Seeger (2002) and Langford (2005).

Theorem 1 Given any space H of classifiers. For
any data-independent prior distribution P over H:

Pr
S∼Dm

(∀Q : kl(RS(GQ)‖R(GQ)) ≤
1
m

[
KL(Q‖P ) + ln m+1

δ

]
)
≥ 1− δ

where KL(Q‖P ) is the Kullback-Leibler divergence be-
tween distributions Q and P :

KL(Q‖P ) def= E
h∼Q

ln
Q(h)
P (h)

and where kl(q‖p) is the Kullback-Leibler divergence
between the Bernoulli distributions with probability of
success q and probability of success p:

kl(q‖p) def= q ln
q

p
+ (1− q) ln

1− q

1− p

The bound given by the PAC-Bayes theorem for the
risk of Gibbs classifiers can be turned into a bound
for the risk of Bayes classifiers in the following way.
Given a posterior distribution Q, the Bayes classifier
BQ performs a majority vote (under measure Q) of
binary classifiers in H. Then BQ misclassifies an ex-
ample x iff at least half of the binary classifiers (under
measure Q) misclassifies x. It follows that the error
rate of GQ is at least half of the error rate of BQ.
Hence R(BQ) ≤ 2R(GQ).

Finally, for certain distributions Q, a bound for R(BQ)
can be turned into a bound for the risk of a single
classifier whenever there exists h∗Q ∈ H such that
h∗Q(x) = BQ(x) ∀x ∈ X . Such a classifier h∗Q is said
to be Bayes-equivalent under Q since it performs the
same classification as BQ. For example, a linear classi-
fier with weight vector w is Bayes-equivalent under any
distribution Q which is rotationally invariant around
w. By choosing a Gaussian (or a rectified Gaussian
tail) centered on w for Q and Gaussian centered at the
origin for P , Langford (2005), Langford and Shawe-
Taylor (2003), and McAllester (2003b) have been able
to derived tight risk bounds for the SVM from the
PAC-Bayes theorem in terms of the “margin errors”
achieved on the training data. These are the tightest
risk bounds currently known for SVMs.

4. A PAC-Bayes Theorem for the
Sample-Compression Setting

An algorithm A is said to be a sample-compression
learning algorithm if, given a training set S =
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〈z1, . . . , zm〉 of m examples, the classifier A(S) re-
turned by algorithm A is described entirely by two
complementary sources of information: a subset Si of
S, called the compression set , and a message string σ
which represents the additional information needed to
obtain a classifier from the compression set.

Given a training set S (considered as an m-tuple), the
compression set Si ⊆ S is defined by a vector i of
indices:

i def= (i1, i2, . . . , i|i|)
with : ij ∈ {1, . . . , m} ∀j
and : i1 < i2 < . . . < i|i|

where |i| denotes the number of indices present in i.
Hence, Si denotes the |i|-tuple of examples of S that
are pointed by the vector of indices i defined above.
We will use i to denote the vector of indices not present
in i. Hence, abusing slightly of the notation, we write
S = Si ∪ Si for any vector i ∈ I where I denotes the
set of the 2m possible realizations of i.

The fact that any classifier returned by algorithm A is
described by a compression set and a message string
implies that there exists a reconstruction function R,
associated to A, that outputs a classifierR(σ, Si) when
given an arbitrary compression set Si and a message
string σ chosen from the set M(i) of all distinct mes-
sages that can be supplied to R with the index vector
i. In other words, R is of the form:

R : (X × Y)|i| ×K −→ H
where H is a set of classifiers and where K is some
subset of I ×M for M = ∪i∈IM(i). Hence:

M(i) = {σ ∈M | (i, σ) ∈ K}.

The perceptron learning rule and the SVM are exam-
ples of learning algorithms where the final classifier can
be reconstructed solely from a compression set (Grae-
pel et al., 2000; Graepel et al., 2001). In contrast,
the reconstruction function for the set covering ma-
chine (Marchand & Shawe-Taylor, 2002) needs both a
compression set and a message string.

It is important to realize that the sample-compression
setting is strictly more general than the usual data-
independent setting where the space H of possible
classifiers (returned by learning algorithms) is defined
without reference to the training data. Indeed, we
recover this usual setting when each classifier is iden-
tified only by a message string σ. In that case, for each
σ ∈M, we have a classifier R(σ). Hence, in this limit,
we have a data-independent set H of classifiers given
by R and M such that: H = {R(σ) | σ ∈M}.

However, the validity of theorem 1 has been es-
tablished only in the usual data-independent setting
where the priors are defined without reference to the
training data S. We now derive a new PAC-Bayes
theorem for priors that are more natural for sample-
compression algorithms. These are priors defined over
K, the set of all the parameters needed by the recon-
struction function R, once a training set S is given.
The prior will therefore be written as:

P (i, σ) = PI(i)PM(σ|i) (1)

Definition 2 We will denote by PK the set of all dis-
tributions P on K that satisfy Equation (1).

For PM(σ|i), we could choose a uniform distribution
over M(i). However it should generally be better
to choose 1/2|σ| for some prefix-free code (Cover &
Thomas, 1991). More generally, the message string
could be a parameter chosen from a continuous set
M. In this case, PM(σ|i) specifies a probability den-
sity function.

For PI(i), there is no a priori information that can
help us to differentiate two index i, i′ ∈ I that have
same size. Hence we should choose:

PI(i) =
p(|i|)(

m
|i|

)

where p is any function satisfying
∑m

d=0 p(d) = 1.

To shorten the notation, we will denote the true
risk R (R(σ, Si)) of classifier R(σ, Si) simply by
R(σ, Si). Similarly, we will denote the empirical
risk RSi

(R(σ, Si)) of classifier R(σ, Si) simply by
RSi

(σ, Si). Recall that Si is the set of training ex-
amples which are not in the compression set Si. In-
deed, in the following, it will become obvious that the
bound on the risk of classifier R(σ, Si) depends only
on its empirical risk on Si.

Our main theorem is a PAC-Bayes risk bound for
sample-compressed Gibbs classifiers. Therefore, we
consider learning algorithms that output a posterior
distribution Q ∈ PK after observing some training set
S. Hence, given a training set S and given a new
(testing) input example x, a sample-compressed Gibbs
classifier GQ chooses randomly (i, σ) according to Q to
obtain classifier R(σ, Si) which is then used to deter-
mine the class label of x.

Hence, given a training set S, the true risk R(GQ) of
GQ is defined by:

R(GQ) def= E
(i,σ)∼Q

R(σ, Si)
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and its empirical risk RS(GQ) is defined by:

RS(GQ) def= E
(i,σ)∼Q

RSi
(σ, Si)

Given a posterior Q, some expectations below will be
performed on another distribution defined by the fol-
lowing.

Definition 3 Given a distribution Q ∈ PK we will
denote by Q the distribution of PK defined as follows:

Q(i, σ) def=
Q(i, σ)

|i| E
(i,σ)∼Q

1
|i|

∀(i, σ) ∈ K

where |i| def= m− |i|.

To simplify some formulas, let us also define:

dQ
def= E

(i,σ)∼Q
|i| (2)

Then, it follows directly from the definitions that:

E
(i,σ)∼Q

1
|i| =

1
E

(i,σ)∼Q
|i| =

1
m− dQ

(3)

The next theorem constitutes our main result:

Theorem 4 For any reconstruction function

R : (X × Y)m ×K −→ H

and for any prior distribution P ∈ PK, we have:

Pr
S∼Dm



∀Q∈PK:

kl(RS(GQ)‖R(GQ)) ≤
1

m−dQ

[
KL(Q ‖P ) + ln m+1

δ

]


 ≥ 1−δ

This theorem is a generalization of Theorem 1 because
the latter correspond to the case where the probabil-
ity distribution Q has its weight only when |i| = 0,
and clearly in this case: 1

m−dQ
= 1

m and Q = Q. We
have also obtained, under some restrictions (see The-
orem 12), a risk bound that does not depend on the
transformed posterior Q.

However, it is important to note that Q(i, σ) is smaller
than Q(i, σ) for classifiersR(i, σ) having a compression
set size smaller than the Q-average. This, combined
with the the fact that KL(Q ‖P ) favors Q’s close to P ,
implies that there will be a specialization performed
by Q on classifiers having small compression set sizes.
As example, in the case where Q = P , it is easy to

see that Q will put more weight than P on “small”
classifiers. The specialization suggested by Theorem 4
is therefore stronger than what it would have been if
KL(Q‖P ) would have been in the risk bound instead
of KL(Q ‖P ). Thus, Theorem 4 reinforces Occam’s
principle of parsimony.

The rest of the section is devoted to the proof of The-
orem 4.

Definition 5 Let S ∈ (X × Y)m, D a distribution
on X ×Y, and (i, σ) ∈ K. We will denote by BS(i, σ),
the probability that the classifier R(σ, Si) of (true) risk
R(σ, Si) makes exactly |i|R(σ, Si) errors on S′

i
∼ D|i|.

Hence, equivalently:

BS(i, σ) def=
( |i|
|i|Rsi

(σ, Si)

)
(R(σ, Si))

|i|RS
i
(σ,Si)

(1−R(σ, Si))
|i|−|i|RS

i
(σ,Si)

Lemma 6 For any prior distribution P ∈ PK, we
have:

Pr
S∼Dm

(
E

(i,σ)∼P

1
BS(i, σ)

≤ m + 1
δ

)
≥ 1− δ

Proof First observe that:

E
S∼Dm

1
BS(i, σ)

= E
Si∼D|i|

E
Si∼D|i|

1
BS(i, σ)

= E
Si∼D|i|

|i|∑

k=0

Pr
Si∼D|i|

(|i|RSi
(σ, Si) = k

)

(|i|
k

)
(R(σ, Si))

k (1−R(σ, Si))
|i|−k

= E
Si∼D|i|

|i|∑

k=0

Pr
Si∼D|i|

(|i|RSi
(σ, Si) = k

)

Pr
Si∼D|i|

(|i|RSi
(σ, Si) = k

)

= E
Si∼D|i|

m−|i|∑

k=0

1 = m− |i|+ 1

Then, for any distribution P ∈ PK (independent of S):

E
S∼Dm

E
(i,σ)∼P

1
BS(i, σ)

= E
(i,σ)∼P

E
S∼Dm

1
BS(i, σ)

≤ m + 1

By Markov’s inequality, we are done. 2
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Lemma 7 Given S ∈ (X × Y)m and any two distri-
butions P, Q ∈ PK, we have:

KL(Q‖P ) ≥

E
(i,σ)∼Q

ln
(

1
BS(i, σ)

)
− ln

(
E

(i,σ)∼P

1
BS(i, σ)

)

Proof Let P ′ ∈ PK, be the following distribution:

P ′(i, σ) =
1

BS(i,σ)P (i, σ)

E
(i′,σ′)∼P

(
1

BS(i′,σ′)

) ∀(i, σ) ∈ K

Since KL(Q‖P ′) ≥ 0, we have:
KL(Q‖P )

≥ KL(Q‖P )−KL(Q‖P ′)

= E
(i,σ)∼Q

ln
(

Q(i, σ)
P (i, σ)

)

− E
(i,σ)∼Q

ln




Q(i, σ) E
(i′,σ′)∼P

(
1

BS(i′,σ′)

)

P (i, σ) 1
BS(i,σ)




= E
(i,σ)∼Q

ln
(

1
BS(i, σ)

)
− ln

(
E

(i,σ)∼P

1
BS(i, σ)

)

2

Lemma 8 For any prior distribution P ∈ PK, we
have:

Pr
S∼Dm

(
∀Q∈PK:

E
(i,σ)∼Q

ln 1
BS(i,σ) ≤ KL(Q‖P )+ln m+1

δ

)
≥1−δ

Proof It follows from Lemma 6 that:

Pr
S∼Dm

(
ln

(
E

(i,σ)∼P

1
BS(i,σ)

)
≤ ln

(
m+1

δ

))
≥ 1− δ

This implies that:

Pr
S∼Dm




∀Q∈PK:

E
(i,σ)∼Q

ln 1
BS(i,σ) ≤ E

(i,σ)∼Q
ln 1

BS(i,σ)

− ln
(

E
(i,σ)∼P

1
BS(i,σ)

)
+ ln

(
m+1

δ

)


≥1−δ

By Lemma 7, we then obtain the result. 2

Lemma 9 For any f : K −→ R+, and for any Q,Q′ ∈
PK related by

Q′(i, σ) f(i, σ) =
1

E
(i,σ)∼Q

1
f(i,σ)

Q(i, σ) ,

we have:

E
(i,σ)∼Q′

(
f(i, σ) kl(RSi

(σ, Si)‖R(σ, Si))
)

≥ 1

E
(i,σ)∼Q

(
1

f(i,σ)

) kl(RS(GQ)‖R(GQ))

Note that, by Definition 3, we have Q′ = Q when
f(i, σ) = |i|.
We provide here a proof for the countable case. Be-
cause of the convexity of kl(·‖·), the lemma holds for
the uncountable case as well.

Proof By the log-sum inequality (Cover & Thomas,
1991) that we apply twice at line 4, we have:

E
(i,σ)∼Q′

(
f(i, σ) kl(RSi

(σ, Si)‖R(σ, Si))
)

= E
(i,σ)∼Q′

(
f(i, σ)

[
RSi

(σ, Si) ln
RSi

(σ, Si)
R(σ, Si)

+ (1−RSi
(σ, Si)) ln

1−RSi
(σ, Si)

1−R(σ, Si)

])

=
∑

(i,σ)

Q′(i, σ)f(i, σ)
[
RSi

(σ, Si) ln
RSi

(σ, Si)
R(σ, Si)

+ (1−RSi
(σ, Si)) ln

1−RSi
(σ, Si)

1−R(σ, Si)

]

=
∑

(i,σ)

Q′(i, σ)f(i, σ)RSi
(σ, Si) ln

Q′(i, σ)f(i, σ)RSi
(σ, Si)

Q′(i, σ)f(i, σ)R(σ, Si)

+
∑

(i,σ)

Q′(i, σ)f(i, σ)(1−RSi
(σ, Si))

· ln
Q′(i, σ)f(i, σ)(1−RSi

(σ, Si))
Q′(i, σ)f(i, σ)(1−R(σ, Si))

≥

∑

(i,σ)

Q′(i, σ)f(i, σ)RSi
(σ, Si)




· ln
∑

(i,σ) Q′(i, σ)f(i, σ)RSi
(σ, Si)∑

(i,σ) Q′(i, σ)f(i, σ)R(σ, Si)

+


∑

(i,σ)

Q′(i, σ)f(i, σ)(1−RSi
(σ, Si))




· ln

∑
(i,σ) Q′(i, σ)f(i, σ)(1−RSi

(σ, Si))∑
(i,σ) Q′(i, σ)f(i, σ)(1−R(σ, Si))

(4)
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=


 1

E
(i,σ)∼Q

(
1

f(i,σ)

)
∑

(i,σ)

Q(i, σ)RSi
(σ, Si)




· ln
∑

(i,σ) Q(i, σ)RSi
(σ, Si)∑

(i,σ) Q(i, σ)R(σ, Si)

+


 1

E
(i,σ)∼Q

(
1

f(i,σ)

)
∑

(i,σ)

Q(i, σ)(1−RSi
(σ, Si))




· ln

∑
(i,σ) Q(i, σ)(1−RSi

(σ, Si))∑
(i,σ) Q(i, σ)(1−R(σ, Si))

=
1

E
(i,σ)∼Q

(
1

f(i,σ)

)
[
RS(GQ) ln

RS(GQ)
R(GQ)

+ (1−RS(GQ)) ln
1−RS(GQ)
1−R(GQ)

]

=
1

E
(i,σ)∼Q

(
1

f(i,σ)

) kl(RS(GQ)‖R(GQ))

2

Proof of Theorem 4: By the relative entropy Cher-
noff bound (see Langford (2005) for example):

k∑

j=0

(
n

j

)
pj(1− p)n−j ≤ exp

[
−n · kl

(
k

n

∥∥∥p

)]

for all k
n ≤ p. Since

(
n
j

)
=

(
n

n−j

)
and kl

(
k
n‖p

)
=

kl
(
1− k

n‖1− p
)
, the following inequality therefore

holds for every k ∈ {0, 1, . . . , n}:
(

n

k

)
pk(1− p)n−k ≤ exp

[
−n · kl

(
k

n

∥∥∥p

)]

In our setting this means that ∀(i, σ) ∈ K and ∀S ∈
(X × Y)m, we have:

BS(i, σ) ≤ exp
[
−|i| · kl

(
RSi

(σ, Si)
∥∥∥R(σ, Si)

)]

For any distribution Q ∈ PK, we therefore have:

E
(i,σ)∼Q

ln
(

1
BS(i, σ)

)

≥ E
(i,σ)∼Q

|i| · kl
(
RSi

(σ, Si)‖R(σ, Si)
)

(5)

Hence, Lemma 8 together with Lemma 9 [with
f(i, σ) def= |i| and, therefore, with Q′ = Q ] gives the
result. 2

In the next sections, we derive new PAC-Bayes bounds
by restricting the set of possible posteriors on K.

5. Single Sample-compressed Classifiers

Let us examine the case when the (stochastic) sample-
compressed Gibbs classifier becomes a deterministic
classifier with a posterior having with all its weight
on a single (i, σ). In that case, Lemma 8 gives the
following risk bound for any prior P ∈ PK:

Pr
S∼Dm

(
∀(i,σ)∈K:

ln 1
BS(i,σ) ≤ ln

(
1

P (i,σ)

)
+ln m+1

δ

)
≥1−δ

If we now use the binomial distribution:

Bin
(

k

m
, r

)
def=

(
m

k

)
rk(1− r)m−k

to express BS(i, σ) as:

BS(i, σ) = Bin
(
RSi

(σ, Si), R(σ, Si)
)

and use the binomial inversion defined as:

Bin
(

k

m
, δ

)
def= sup

{
r : Bin

(
k

m
, r

)
≥ δ

}

the previous risk bound gives the following:

Theorem 10 For any reconstruction function

R : (X × Y)m ×K −→ H
and for any prior distribution P ∈ PK, we have:

Pr
S∼Dm

(
∀(i,σ)∈K:

R(σ, Si) ≤ Bin
(
RSi

(σ, Si),
P (i,σ)δ
(m+1)

)
)
≥1−δ

Let us now compare this risk bound with the tightest
currently known sample-compression risk bound. This
bound, due to Langford (2005), is currently restricted
to the case when no message string σ is used to identify
classifiers. If we generalize it to the case when message
strings are used, we get (in our notation):

Pr
S∼Dm

(
∀(i,σ)∈K:

R(σ, Si) ≤ BinT
(
RSi

(σ, Si), P (i, σ)δ
)
)
≥1−δ

Note that, instead of using the binomial inversion, the
bound of Langford (2005) uses the binomial tail inver-
sion defined by:

BinT
(

k

m
, δ

)
def= sup

{
r :

k∑

i=0

Bin
(

i

m
, r

)
≥ δ

}

We therefore have (for all values of m, k, δ):

Bin
(

k

m
, δ

)
≤ BinT

(
k

m
, δ

)
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When both m and δ are non zero, the equality is re-
alized only for k = 0. Hence, if we did not have the
denominator of (m + 1), our bound would be tighter
than the bound of Langford (2005).

Hence, for a single sample-compressed classifier, the
bound of Theorem 10 is “competitive” with the cur-
rently tightest sample-compression risk bound.

Let us now investigate, through some special cases, the
additional predictive power that can be obtained by
using a (randomized) sample-compressed Gibbs clas-
sifier instead of a deterministic one.

6. The Consistent Case

An interesting case is when we restrict ourselves to
posteriors having non zero weight only on consistent
classifiers (i.e., classifiers having zero empirical risk).
For these cases, we have:

kl(RS(GQ)‖R(GQ)) = ln
(

1
1−R(GQ)

)

Given a training set S, let us consider the version space
V(S) defined as:

V(S) def=
{
(i, σ) ∈ K | RSi

(σ, Si) = 0
}

Suppose that the posterior Q has non zero weight only
in some subset U ⊆ V(S). From Definition 3, it is clear
that Q has also non zero weight on the same subset U .

Denote by P (U) the weight assigned to U by the prior
P , and define PU and QU ∈ PK as:

PU (i, σ)def= P (i,σ)
P (U) and QU (i, σ)def= |i|PU (i,σ)

E
(i,σ)∼PU

|i|

for all (i, σ) ∈ U .

Then, from Definition 3 and Equation 3), it follows
that

QU = PU and KL(QU ‖P ) = ln
(

1
P (U)

)
.

Hence, in this case, Theorem 4 reduces to:

Corollary 11 For any reconstruction function

R : (X × Y)m ×K −→ H
and for any prior P ∈ PK, we have:

Pr
S∼Dm




∀U∈V(S):

R(GQU ) ≤1−exp


−

ln
(

m + 1
P (U)δ

)

m− dQU





≥1−δ

This bound exhibits a non trivial tradeoff between |U|
and dQU . The bound gets smaller as P (U) increases,
and larger as dQU increases. However, an increase in
|U| should normally be accompanied by an increase in
dQU and the minimum of the bound should generally
be reached for some non trivial value of |U|. Only on
rare occasions we expect the minimum to be reached
for the single classifier case of |U| = 1.

Therefore, the risk bound supports the theory that it is
generally preferable to randomize the predictions over
several (empirically good) sample-compressed classi-
fiers than to predict only with a single (empirically
good) sample-compressed classifier.

7. Bounded Compression Set Sizes

Another interesting case is when we restrict Q to have
a non zero weight only on classifiers having a compres-
sion set size |i| ≤ d for some d ∈ {0, 1, . . . , m}.
For these cases, let us define:

P |i|≤d
K

def= {Q ∈ PK | Q(i, σ) = 0 if |i| > d}

We then have the following theorem.

Theorem 12 For any reconstruction function

R : (X × Y)m ×K −→ H

and for any prior distribution P ∈ PK, we have:

Pr
S∼Dm



∀Q∈P|i|≤d

K :

kl(RS(GQ)‖R(GQ)) ≤
1

m−d

[
KL(Q‖P ) + ln m+1

δ

]


≥1−δ

Proof As in the proof of Theorem 4, for any distribu-
tion Q ∈ P |i|≤d

K , Equation 5 holds. Hence, by Lemma 9
[with Q′ = Q and f(i, σ) = 1 for all (i, σ)], and since
|i| ≥ m−d for any (i, σ) that has weight in Q, we have:

E
(i,σ)∼Q

ln
(

1
BS(i, σ)

)

≥ E
(i,σ)∼Q

|i| · kl
(
RSi

(σ, Si)‖R(σ, Si)
)

≥ E
(i,σ)∼Q

(m− d) · kl
(
RSi

(σ, Si)‖R(σ, Si)
)

≥ (m− d) · kl (RS(GQ)‖R(GQ))

Then, by Lemma 8, we are done. 2
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Again, KL(Q‖P ) is small when Q has all its weight
on a single (i0, σ0) and increases as we add to Q more
classifiers having |i| ≤ d. If we find a set U containing
several such classifiers, each having (roughly) the same
empirical risk RSi

(σ, Si), the risk bound for R(GQ)
with a posterior having non zero weight on all U , like

Q(i, σ) =
P (i, σ)∑

(i′,σ′)∈U P (i′, σ′)

for all (i, σ) ∈ U , will be smaller than the risk bound
for a posterior Q having all its weight on a single
(i0, σ0).

Therefore, for these cases, the risk bound supports
the theory that it is preferable to randomize the
predictions over several (empirically good) sample-
compressed classifiers than to predict only with a sin-
gle (empirically good) sample-compressed classifier.

8. Conclusion

We have derived a PAC-Bayes theorem for the
sample-compression setting where each classifier is
described by a compression subset of the training
data and a message string of additional informa-
tion. This theorem reduces to the PAC-Bayes theo-
rem of Seeger (2002) and Langford (2005) in the usual
data-independent setting when classifiers are repre-
sented only by data-independent message strings (or
parameters taken from a continuous set). For pos-
teriors having all their weights on a single sample-
compressed classifier, the general risk bound reduces
to a bound similar to the tight sample-compression
bound of Langford (2005). The PAC-Bayes risk bound
of Theorem 4 is, however, valid for sample-compressed
Gibbs classifiers with arbitrary posteriors. We have
shown, both in the consistent case and in the case
of posteriors on classifiers with bounded compression
set sizes, that a stochastic Gibbs classifier defined on
a posterior over several sample-compressed classifiers
can have a smaller risk bound than any such single
(deterministic) sample-compressed classifier.

Since the risk bounds derived in this paper are tight, it
is hoped that they will be effective at guiding learning
algorithms for choosing the optimal tradeoff between
the empirical risk, the sample compression set size, and
the “distance” between the prior and the posterior.
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