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Abstract

We provide a PAC-Bayesian bound for the expected loss of convex combinations
of classifiers under a wide class of loss functions (which includes the exponential
loss and the logistic loss). Our numerical experiments with Adaboost indicate that
the proposed upper bound, computed on the training set, behaves very similarly
as the true loss estimated on the testing set.

1 Intoduction

The PAC-Bayes approach [1, 2, 3, 4, 5] has been very effective at providing tight risk bounds for
large-margin classifiers such as the SVM [4, 6]. Within this approach, we consider a prior distribu-
tion P over a space of classifiers that characterizes our prior belief about good classifiers (before the
observation of the data) and a posterior distribution Q (over the same space of classifiers) that takes
into account the additional information provided by the training data. A remarkable result that came
out from this line of research, known as the “PAC-Bayes theorem”, provides a tight upper bound
on the risk of a stochastic classifier (defined on the posterior Q) called the Gibbs classifier. In the
context of binary classification, the Q-weighted majority vote classifier (related to this stochastic
classifier) labels any input instance with the label output by the stochastic classifier with probability
more than half. Since at least half of the Q measure of the classifiers err on an example incorrectly
classified by the majority vote, it follows that the error rate of the majority vote is at most twice the
error rate of the Gibbs classifier. Therefore, given enough training data, the PAC-Bayes theorem
will give a small risk bound on the majority vote classifier only when the risk of the Gibbs classifier
is small. While the Gibbs classifiers related to the large-margin SVM classifiers have indeed a low
risk [6, 4], this is clearly not the case for the majority vote classifiers produced by bagging [7] and
boosting [8] where the risk of the associated Gibbs classifier is normally close to 1/2. Consequently,
the PAC-Bayes theorem is currently not able to recognize the predictive power of the majority vote
in these circumstances.

In an attempt to progress towards a theory giving small risk bounds for low-risk majority votes
having a large risk for the associated Gibbs classifier, we provide here a risk bound for convex
combinations of classifiers under quite arbitrary loss functions, including those normally used for
boosting (like the exponential loss) and those that can give a tighter upper bound to the zero-one
loss of weighted majority vote classifiers (like the sigmoid loss). Our numerical experiments with
Adaboost [8] indicate that the proposed upper bound for the exponential loss and the sigmoid loss,
computed on the training set, behaves very similarly as the true loss estimated on the testing set.



2 Basic Definitions and Motivation

We consider binary classification problems where the input space X consists of an arbitrary subset
of Rn and the output space Y = {−1,+1}. An example is an input-output (x, y) pair where
x ∈ X and y ∈ Y . Throughout the paper, we adopt the PAC setting where each example (x, y)
is drawn according to a fixed, but unknown, probability distribution D on X × Y . We consider
learning algorithms that work in a fixed hypothesis space H of binary classifiers and produce a
convex combination fQ of binary classifiers taken from H. Each binary classifier h ∈ H contribute
to fQ with a weight Q(h) ≥ 0. For any input example x ∈ X , the real-valued output fQ(x) is given
by

fQ(x) =
∑

h∈H
Q(h)h(x) ,

where h(x) ∈ {−1, +1}, fQ(x) ∈ [−1,+1], and
∑

h∈HQ(h) = 1. Consequently, Q(h) will be
called the posterior distribution1.

Since fQ(x) is also the expected class label returned by a binary classifier randomly chosen accord-
ing to Q, the margin yfQ(x) of fQ on example (x, y) is related to the fraction WQ(x, y) of binary
classifiers that err on (x, y) under measure Q as follows. Let I(a) = 1 when predicate a is true and
I(a) = 0 otherwise. We then have:

WQ(x, y)− 1
2

= E
h∼Q

[
I(h(x) 6= y)− 1

2

]
= E

h∼Q
− yh(x)

2
= −1

2

∑

h∈H
Q(h)yh(x)

= −1
2
yfQ(x) .

Since E
(x,y)∼D

WQ(x, y) is the Gibbs error rate (by definition), we see that the expected margin is

just one minus twice the Gibbs error rate. In contrast, the error for the Q-weighted majority vote is
given by

E
(x,y)∼D

I

(
WQ(x, y) >

1
2

)
= E

(x,y)∼D
lim

β→∞
1
2

tanh (β [2WQ(x, y)− 1]) +
1
2

≤ E
(x,y)∼D

tanh (β [2WQ(x, y)− 1]) + 1 (∀β > 0)

≤ E
(x,y)∼D

exp (β [2WQ(x, y)− 1]) (∀β > 0) .

Hence, for large enough β, the sigmoid loss (or tanh loss) of fQ should be very close to the error
rate of the Q-weighted majority vote. Moreover, the error rate of the majority vote is always upper
bounded by twice that sigmoid loss for any β > 0. The sigmoid loss is, in turn, upper bounded by
the exponential loss (which is used, for example, in Adaboost [9]).

More generally, we will provide tight risk bounds for any loss function that can be expanded by a
Taylor series around WQ(x, y) = 1/2. Hence we consider any loss function ζQ(x, y) that can be
written as

ζQ(x, y) def=
1
2

+
1
2

∞∑

k=1

g(k) (2WQ(x, y)− 1)k (1)

=
1
2

+
1
2

∞∑

k=1

g(k)
(

E
h∼Q

− yh(x)
)k

, (2)

and our task is to provide tight bounds for the expected loss ζQ that depend on the empirical loss ζ̂Q

measured on a training sequence S = 〈(x1, y1), . . . , (xm, ym)〉 of m examples, where

ζQ
def= E

(x,y)∼D
ζQ(x, y) ; ζ̂Q

def=
1
m

m∑

i=1

ζQ(xi, yi) . (3)

Note that by upper bounding ζQ, we are taking into account all moments of WQ. In contrast, the
PAC-Bayes theorem [2, 3, 4, 5] currently only upper bounds the first moment E

(x,y)∼D
WQ(x, y).

1When H is a continuous set, Q(h) denotes a density and the summations over h are replaced by integrals.



3 A PAC-Bayes Risk Bound for Convex Combinations of Classifiers

The PAC-Bayes theorem [2, 3, 4, 5] is a statement about the expected zero-one loss of a Gibbs
classifier. Given any distribution over a space of classifiers, the Gibbs classifier labels any example
x ∈ X according to a classifier randomly drawn from that distribution. Hence, to obtain a PAC-
Bayesian bound for the expected general loss ζQ of a convex combination of classifiers, let us relate
ζQ to the zero-one loss of a Gibbs classifier. For this task, let us first write

E
(x,y)∼D

(
E

h∼Q
− yh(x)

)k

= E
h1∼Q

E
h2∼Q

· · · E
hk∼Q

E
(x,y)

(−y)kh1(x)h2(x) · · ·hk(x) .

Note that the product h1(x)h2(x) · · ·hk(x) defines another binary classifier that we denote as
h1−k(x). We now define the error rate R(h1−k) of h1−k as

R(h1−k) def= E
(x,y)∼D

I

(
(−y)kh1−k(x) = sgn(g(k))

)
(4)

=
1
2

+
1
2
· sgn(g(k)) E

(x,y)∼D
(−y)kh1−k(x) ,

where sgn(g) = +1 if g > 0 and −1 otherwise.

If we now use E
h1−k∼Qk

to denote E
h1∼Q

E
h2∼Q

· · · E
hk∼Q

, Equation 2 now becomes

ζQ =
1
2

+
1
2

∞∑

k=1

g(k) E
(x,y)∼D

(
E

h∼Q
− yh(x)

)k

=
1
2

+
1
2

∞∑

k=1

|g(k)| · sgn(g(k)) E
h1−k∼Qk

E
(x,y)∼D

(−y)kh1−k(x)

=
1
2

+
∞∑

k=1

|g(k)| E
h1−k∼Qk

(
R(h1−k)− 1

2

)
. (5)

Apart, from constant factors, Equation 5 relates ζQ the the zero-one loss of a new type of Gibbs
classifier. Indeed, if we define

c
def=

∞∑

k=1

|g(k)| , (6)

Equation 5 can be rewritten as

1
c

(
ζQ − 1

2

)
+

1
2

=
1
c

∞∑

k=1

|g(k)| E
h1−k∼Qk

R(h1−k) def= R(GQ) . (7)

The new type of Gibbs classifier is denoted above by GQ, where Q is a distribution over the product
classifiers h1−k with variable length k. More precisely, given an example x to be labelled by GQ,
we first choose at random a number k ∈ N+ according to the discrete probability distribution given
by |g(k)|/c and then we choose h1−k randomly according to Qk to classify x with h1−k(x). The
risk R(GQ) of this new Gibbs classifier is then given by Equation 7.

We will present a tight PAC-Bayesien bound for R(GQ) which will automatically translate into a
bound for ζQ via Equation 7. This bound will depend on the empirical risk RS(GQ) which relates to

the the empirical loss ζ̂Q (measured on the training sequence S of m examples) through the equation

1
c

(
ζ̂Q − 1

2

)
+

1
2

=
1
c

∞∑

k=1

|g(k)| E
h1−k∼Qk

RS(h1−k) def= RS(GQ) , (8)

where

RS(h1−k) def=
1
m

m∑

i=1

I

(
(−yi)kh1−k(xi) = sgn(g(k))

)
.



Note that Equations 7 and 8 imply that

ζQ − ζ̂Q = c ·
[
R(GQ)−RS(GQ)

]
.

Hence, any looseness in the bound for R(GQ) will be amplified by the scaling factor c on the bound
for ζQ. Therefore, within this approach, the bound for ζQ can be tight only for small values of c.
Note however that loss functions having a small value of c are commonly used in practice. Indeed,
learning algorithms for feed-forward neural networks, and other approaches that construct a real-
valued function fQ(x) ∈ [−1,+1] from binary classification data, typically use a loss function of
the form |fQ(x)− y|r/2, for r ∈ {1, 2}. In these cases we have

1
2
|fQ(x)− y|r =

1
2

∣∣∣∣ E
h∼Q

yh(x)− 1
∣∣∣∣
r

= 2r−1 |WQ(x, y)|r ,

which gives c = 1 for r = 1, and c = 3 for r = 2.

Given a set H of classifiers, a prior distribution P on H, and a training sequence S of m examples,
the learner will output a posterior distribution Q onH which, in turn, gives a convex combination fQ

that suffers the expected loss ζQ. Although Equation 7 holds only for a distribution Q defined by the
absolute values of the Taylor coefficients g(k) and the product distribution Qk, the PAC-Bayesian
theorem will hold for any prior P and posterior Q defined on

H∗ def=
⋃

k∈N+

Hk , (9)

and for any zero-one valued loss function `(h(x), y)) defined ∀h ∈ H∗ and ∀(x, y) ∈ X × Y
(not just the one defined by Equation 4). This PAC-Bayesian theorem upper-bounds the value of
kl

(
RS(GQ)

∥∥R(GQ)
)
, where

kl(q‖p) def= q ln
q

p
+ (1− q) ln

1− q

1− p

denotes the Kullback-Leibler divergence between the Bernoulli distributions with probability of
success q and probability of success p. Note that an upper bound on kl

(
RS(GQ)

∥∥R(GQ)
)

provides
both and upper and a lower bound on R(GQ).

The upper bound on kl
(
RS(GQ)

∥∥R(GQ)
)

depends on the value of KL(Q‖P ), where

KL(Q‖P ) def= E
h∼Q

ln
Q(h)
P (h)

denotes the Kullback-Leibler divergence between distributions Q and P defined on H∗.

In our case, since we want a bound on R(GQ) that translates into a bound for ζQ, we need a Q that
satisfies Equation 7. To minimize the value of KL(Q‖P ), it is desirable to choose a prior P having
properties similar to those of Q. Namely, the probabilities assigned by P to the possible values of k
will also be given by |g(k)|/c. Moreover, we will restrict ourselves to the case where the k classifiers
from H are chosen independently, each according to the prior P on H (however, other choices for
P are clearly possible). In this case we have

KL(Q‖P ) =
1
c

∞∑

k=1

|g(k)| E
h1−k∼Qk

ln
|g(k)| ·Qk(h1−k)
|g(k)| · P k(h1−k)

=
1
c

∞∑

k=1

|g(k)| E
h1∼Q

. . . E
hk∼Q

k∑

i=1

ln
Q(hi)
P (hi)

=
1
c

∞∑

k=1

|g(k)| · k E
h∼Q

ln
Q(h)
P (h)

= k ·KL(Q‖P ) , (10)



where

k
def=

1
c

∞∑

k=1

|g(k)| · k . (11)

We then have the following theorem.

Theorem 1 For any set H of binary classifiers, any prior distribution P on H∗, and any δ ∈ (0, 1],
we have

Pr
S∼Dm

(
∀Q on H∗ : kl

(
RS(GQ)

∥∥R(GQ)
) ≤ 1

m

[
KL(Q‖P ) + ln

m + 1
δ

])
≥ 1− δ .

Proof The proof directly follows from the fact that we can apply the PAC-Bayes theorem of [4]
to priors and posteriors defined on the space H∗ of binary classifiers with any zero-one valued loss
function.

Note that Theorem 1 directly provides upper and lower bounds on ζQ when we use Equations 7
and 8 to relate R(GQ) and RS(GQ) to ζQ and ζ̂Q and when we use Equation 10 for KL(Q‖P ).
Consequently, we have the following theorem.

Theorem 2 Consider any loss function ζQ(x, y) defined by Equation 1. Let ζQ and ζ̂Q be, re-
spectively, the expected loss and its empirical estimate (on a sample of m examples) as defined by
Equation 3. Let c and k be defined by Equations 6 and 11 respectively. Then for any setH of binary
classifiers, any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q on H : kl

(
1
c

[
ζ̂Q − 1

2

]
+

1
2

∥∥∥∥∥
1
c

[
ζQ − 1

2

]
+

1
2

)

≤ 1
m

[
k ·KL(Q‖P ) + ln

m + 1
δ

])
≥ 1− δ .

4 Bound Behavior During Adaboost

We have decided to examine the behavior of the proposed bounds during Adaboost since
this learning algorithm generally produces a weighted majority vote having a large Gibbs risk
E (x,y)WQ(x, y) (i.e., small expected margin) and a small Var (x,y)WQ(x, y) (i.e., small variance
of the margin). Indeed, recall that one of our main motivations was to find a tight risk bound for the
majority vote precisely under these circumstances.

We have used the “symmetric” version of Adaboost [10, 9] where, at each boosting round t, the
weak learning algorithm produces a classifier ht with the smallest empirical error

εt =
m∑

i=1

Dt(i)I[ht(xi) 6= yi]

with respect to the boosting distribution Dt(i) on the indices i ∈ {1, . . . , m} of the training exam-
ples. After each boosting round t, this distribution is updated according to

Dt+1(i) =
1
Zt

Dt(i) exp(−yiαtht(xi)) ,

where Zt is the normalization constant required for Dt+1 to be a distribution, and where

αt =
1
2

ln
(

1− εt

εt

)
.

Since our task is not to obtain the majority vote with the smallest possible risk but to investigate
the tightness of the proposed bounds, we have used the standard “decision stumps” for the set H



of classifiers that can be chosen by the weak learner. Each decision stump is a threshold classifier
that depends on a single attribute: it outputs +y when the tested attribute exceeds the threshold
and predicts −y otherwise, where y ∈ {−1, +1}. For each decision stump h ∈ H, its boolean
complement is also in H. Hence, we have 2[k(i) − 1] possible decision stumps on an attribute i
having k(i) possible (discrete values). Hence, for data sets having n attributes, we have exactly
|H| = 2

∑n
i=1 2[k(i) − 1] classifiers. Data sets having continuous-valued attributes have been

discretized in our numerical experiments.

From Theorem 2 and Equation 10, the bound on ζQ depends on KL(Q‖P ). We have chosen a
uniform prior P (h) = 1/|H| ∀h ∈ H. We therefore have

KL(Q‖P ) =
∑

h∈H
Q(h) ln

Q(h)
P (h)

=
∑

h∈H
Q(h) ln Q(h) + ln |H| def= −H(Q) + ln |H| .

At boosting round t, Adaboost changes the distribution from Dt to Dt+1 by putting more weight on
the examples that are incorrectly classified by ht. This strategy is supported by the propose bound
on ζQ since it has the effect of increasing the entropy H(Q) as a function of t. Indeed, apart from
tiny fluctuations, the entropy was seen to be nondecreasing as a function of t in all of our boosting
experiments.

We have focused our attention on two different loss functions: the exponential loss and the sigmoid
loss.

4.1 Results for the Exponential Loss

The exponential loss EQ(x, y) is the obvious choice for boosting since, the typical analysis [8, 10, 9]
shows that the empirical estimate of the exponential loss is decreasing at each boosting round 2.
More precisely, we have chosen

EQ(x, y) def=
1
2

exp (β [2WQ(x, y)− 1]) . (12)

For this loss function, we have
c = eβ − 1

k =
β

1− e−β
.

Since c increases exponentially rapidly with β, so will the risk upper-bound for EQ. Hence, unfor-
tunately, we can obtain a tight upper-bound only for small values of β.

All the data sets used were obtained from the UCI repository. Each data set was randomly split
into two halves of the same size: one for the training set and the other for the testing set. Figure 1
illustrates the typical behavior for the exponential loss bound on the Mushroom and Sonar data sets
containing 8124 examples and 208 examples respectively.

We first note that, although the test error of the majority vote (generally) decreases as function of
the number T of boosting rounds, the risk of the Gibbs classifier, E (x,y)WQ(x, y) increases as a

function of T but its variance Var (x,y)WQ(x, y) decreases dramatically. Another striking feature
is the fact that the exponential loss bound curve, computed on the training set, is essentially parallel
to the true exponential loss curve computed on the testing set. This same parallelism was observed
for all the UCI data sets we have examined so far.3 Unfortunately, as we can see in Figure 2, the
risk bound increases rapidly as a function of β. Interestingly however, the risk bound curves remain
parallel to the true risk curves.

4.2 Results for the Sigmoid Loss

We have also investigated the sigmoid loss TQ(x, y) defined by

TQ(x, y) def=
1
2

+
1
2

tanh (β [2WQ(x, y)− 1]) . (13)

2In fact, this is true only for the positive linear combination produced by Adaboost. The empirical expo-
nential risk of the convex combination fQ is not always decreasing as we shall see.

3These include the following data sets: Wisconsin-breast, breast cancer, German credit, ionosphere, kr-vs-
kp, USvotes, mushroom, and sonar.
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Figure 1: Behavior of the exponential risk bound (EQ bound), the true exponential risk (EQ on test),
the Gibbs risk (E(WQ) on test), its variance (Var(WQ) on test), and the test error of the majority
vote (MV error on test) as of function of the boosting round T for the Mushroom (left) and the Sonar
(right) data sets. The risk bound and the true risk were computed for β = ln 2.
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Figure 2: Behavior of the true exponential risk (left) and the exponential risk bound (right) for
different values of β on the Mushroom data set.

Since the Taylor series expansion for tanh(x) about x = 0 converges only for |x| < π/2, we are
limited to β ≤ π/2. Under these circumstances, we have

c = tan(β)

k =
1

cos(β) sin(β)
.

Similarly as in Figure 1, we see on Figure 3 that the sigmoid loss bound curve, computed on the
training set, is essentially parallel to the true sigmoid loss curve computed on the testing set. More-
over, the bound appears to be as tight as the one for the exponential risk on Figure 1.

5 Conclusion

By trying to obtain a tight PAC-Bayesian risk bound for the majority vote, we have obtained a
PAC-Bayesian risk bound for any loss function ζQ that has a convergent Taylor expansion around
WQ = 1/2 (such as the exponential loss and the sigmoid loss). Unfortunately, the proposed risk
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Figure 3: Behavior of the sigmoid risk bound (TQ bound), the true sigmoid risk (TQ on test), the
Gibbs risk (E(WQ) on test), its variance (Var(WQ) on test), and the test error of the majority vote
(MV error on test) as of function of the boosting round T for the Mushroom (left) and the Sonar
(right) data sets. The risk bound and the true risk were computed for β = ln 2.

bound is tight only for small values of the scaling factor c involved in the relation between the
expected loss ζQ of a convex combination of binary classifiers and the zero-one loss of a related
Gibbs classifier GQ. However, it is quite encouraging to notice in our numerical experiments with
Adaboost that the proposed loss bound (for the exponential loss and the sigmoid loss), behaves very
similarly as the true loss.
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