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ABSTRACT 

Gaussian Process Latent Variable Models (GPLVMs) have been found to allow dramatic dimensionality 
reduction in character animations, often yielding two-dimensional or three-dimensional spaces from which the 
animation can be retrieved without perceptible alterations. Recently, many researchers have used this approach 
and improved on it for their purposes, thus creating a number of GPLVM-based approaches. The current paper 
introduces the main concepts behind GPLVMs and introduces its most widely known variants. Each approach is 
then compared based on various criteria pertaining to the task of dimensionality reduction in character 
animation. In the light of our experiments, no single approach is preferred over all others in all respects. 
Depending whether dimensionality reduction is used for compression purposes, to interpolate new natural 
looking poses or to synthesize entirely new motions, different approaches will be preferred. 
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1. INTRODUCTION 
Animating realistic human-like characters usually 
requires handling a large number of degrees of 
freedom (DOF). The skeleton we use in our own 
research is a good example, with 44 active DOFs 
(see Figure 1). Considering each of the d DOFs as a 
dimension, each possible pose of the character may 
be seen as a vector in a d-dimensional space. 

Such high-dimensional spaces are generally not 
useful in practice since they usually translate into an 
increased amount of work, both for the animator and 
for the computer, and require more storage space. 
Moreover, they do not provide any insight regarding 
what poses look natural or regarding how one should 
interpolate between two known poses (i.e. linear 
interpolations in these spaces rarely look natural). 

 

Figure 1. The DOFs for the human model used in 
our experiments 

For these reasons, among others, animators may well 
be interested in more compact and more informative 
representation spaces. By learning motion-specific 
models, one might use the correlation between values 
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at each DOF to reduce the number of effective DOFs 
while preserving the resulting animation almost 
intact. As will be shown later, GPLVM-based 
techniques are especially well suited for this task. 

In this paper, we present the GPLVM approach and 
its most widely known variants. We then compare 
their performances on keyframe animations extracted 
from motion capture experiments. For comparison 
purposes, we perform the same experiments with 
Principal Components Analysis (PCA). This paper is 
in line with our research work, which consists in 
animating virtual characters using forward dynamics 
under a physics simulation. To this end, GPLVMs 
are used to learn kinematic motion models and to 
interpolate new natural looking poses. 

2. RELATED WORK 
Principal Components Analysis (PCA), which is 
arguably the best known dimensionality reduction 
technique, finds its origins early in the 20th century. 
Pearson [Pea01a] and Hotelling [Hot33a] are 
generally credited as providing the earliest 
descriptions of PCA. (Source: [Jol02a]) 

The concept of using Gaussian processes for the 
purpose of dimensionality reduction, through 
Gaussian Process Latent Variable Models (GPLVM), 
has been introduced by Lawrence in 2003 [Law03a] 
and 2005 [Law05a]. The main idea behind the 
GPLVMs is to find a non-linear function that 
smoothly maps low-dimensional latent-space vectors 
to a high-dimensional observation-space. In 2006, 
Lawrence et al. improved on the GPLVM by 
proposing back-constraints which enforce the 
conservation of local distances from the observation-
space over to the latent-space [Law06a]. 

In 2004, Grochow et al. proposed the Scaled 
Gaussian Process Latent Variable Model (SGPLVM) 
[Gro04a]. This approach improves on the original 
GPLVM by learning a scaling factor for each 
observation-space dimension, thus expressing the 
process of learning a model in a normalized 
observation-space. Their work was also instrumental 
in highlighting the potential of GPLVM approaches 
in the field of realistic character animation. 

In 2005, Wang et al. presented the Gaussian Process 
Dynamical Model (GPDM) [Wan05a]. While 
GPLVMs may be used on any kind of multi-
dimensional data, GPDMs are specially designed to 
handle datasets exhibiting chronological relations 
between successive data points, such as keyframe 
animations. As with the SGPLVM, the GPDM 
approach uses scaling factors for each of the 
observation-space dimension. 

In 2006, Urtasun et al. proposed the Balanced 
GPDM (B-GPDM) [Urt06a]. This contribution is 
essentially a slight alteration to the objective function 
used during the learning of the model. This revised 
objective function amplifies the importance of 
smoothness of the latent-space in the final model. It 
was studied in more details by Wang et al. [Wan07a]. 

3. PROBLEM DEFINITION 
Consider a keyframe animation of m frames for a 
character with d DOFs. This animation may be seen 
as a d-by-m matrix Y, where each of the m columns 
represents a pose of the character and each of the d 
rows represents the trajectory taken by a given DOF 
over the course of the animation. The observation-
space for the poses of the character is d-dimensional. 
We wish to derive a transformation f such that  

 )(YfX = , (1) 

where X is the q-by-m matrix representing the m 
frames of the animation in the latent space, with q < 
d. Moreover, to be of any practical use, one must be 
able to reverse this transformation, at least 
approximately, through a transformation g defined by 

 )(' XgY = , (2) 

where Y’ is the reconstructed d-by-m animation 
matrix. The transformation g is required because 
poses in the latent space may not be applied directly 
to the character. It is important to note that, while the 
entire animation is generally needed in order to 
produce satisfying transformations f and g, these 
transformations can then be applied to single poses in 
the observation/latent-space and not necessarily on 
the whole animation. 

Evaluation Criteria 
Now, the problem definition is very large and allows 
for many different solutions, most of which would 
not produce interesting results. Thus, specific and 
measurable criteria need to be defined that will allow 
the evaluation of the quality of a given solution. 

The criteria we deem to be the most important are : 
• Dimensionality reduction potential: 

For values of q as small as possible, the 
distance between an observed pose y and its 
reconstruction y’=g(f(y)) must be small enough 
not to be noticeable by a human observer; 

• Learning/synthesis computing time: 
The transformation g should be as fast as 
possible since single poses should ideally be 
synthesized many times per second in order to 
allow for interactive applications. Another 
factor is the learning time for the 
transformations f and g; 



• Interpolation quality: 
A linear interpolation between two known 
poses in the latent space should translate to a 
natural-looking intermediate pose in the 
observation space; 

• Generalization potential: 
As animations with a high-density of keyframes 
are not always available, solutions generalizing 
quality transformations from few data points are 
of great interest; 

• Ease of visualization: 
The latent space should allow quick and easy 
visualization of an entire motion. In order to be 
shown on static media, the latent space should 
be 2-dimensional or 3-dimensional at most. A 
1-dimensional space is not interesting as it is 
not suited to represent generic cyclic motions as 
closed paths in the latent space;  

• Extrapolation quality: 
It should be possible to generate genuinely new 
motions from a model by sampling the latent 
space near known poses. Such extrapolated 
motions should look fluid and natural. 

4. APPROACHES 
This section briefly introduces the reader to each of 
the compared approaches. However, the reader is 
referred to the original papers describing each 
approach for a more thorough explanation. 

Principal Components Analysis 
Using mean-removed data Y, the PCA consists in 
finding the rotation matrix Rd,d that aligns the x1-axis 
of the d-dimensional space with the direction of 
greatest variance in the data, the x2-axis with the 
direction of second greatest variance and so on. 
Figure 2 illustrates this process on fictive 2-
dimensional data. This matrix R can be found 
analytically by finding the eigenvectors of Y. 

Variance along an axis gives a measure of the 
amount of information provided by that axis. In order 
to reduce the space dimensionality while maintaining 
enough information for accurate reconstruction, the 
axes associated with the least variances are removed 
from the transformed space. Only the q first rows of 
R are kept and to give a transformation matrix Tq,d. 
The transformation from d-dimensional observation 
space to the q-dimensional latent space is given by 

 Tyx = , (3) 

and the transformation back to observation space is 
given by the transpose of the transformation matrix 

 xTy t=' . (4) 

 

Figure 2. An illustration of PCA on 2D data 

GPLVM-based Approaches 
Gaussian processes are the function equivalent of 
Gaussian random variables. Both obey to a given 
probability density function, but a Gaussian random 
variable describes a single variable while a Gaussian 
process describes a whole function, which can be 
seen as an infinite number of variables. Gaussian 
random variables are defined by their mean value 
and their variance. In the same fashion, Gaussian 
processes (GPs) are defined by a mean function 

dq ℜ→ℜ:μ  and a covariance function dqk ℜ→ℜ: , 

thus describing a distribution over all functions 
dqg ℜ→ℜ: . 

Gaussian processes can be used for the regression of 
a function on known data points in an arbitrary 
space. However, while traditional regression adjusts 
a single function on known data points, GP 
regression adjusts a distribution over a space of 
functions with respect to those data points. This is 
done by adjusting the parameters of the covariance 
function in order to maximize the likelihood of the 
observed data given the GP. This optimization favors 
the simplest GPs among all those explaining the 
observed data and thus follows Occam’s razor 
principle.1 

GPLVM-based approaches aim at constructing a q-
dimensional latent space for d-dimensional data by 
learning a Gaussian process on a training set of data 
points. The functions considered by the GPLVM 
represent the transformation from latent space to 
observation space, which are candidates for the g 
function from equation (2). 

GPLVMs represent the original implementation of 
this idea while other GPLVM-based approaches 

                                                           
1 For a complete introduction to Gaussian Processes, the 

reader is referred to the book Gaussian Processes for 
Machine Learning [Ras06a], which is freely available in 
electronic format at: www.gaussianprocess.org/gpml/ 



propose slight improvements. Contrary to PCA, all of 
these approaches allow non-linear transformations of 
the data. Removing the linearity constraint usually 
allows far better results. 

In the literature, the covariance function k is often 
chosen to be a Radial Basis Function (RBF) kernel 
for which the parameters have to be adjusted. 
However, any other positive definite Mercer kernel 
could be used. We will consider k to be a generic 
positive definite Mercer kernel. 

4.1.1 GPLVM  
In order to perform GP regression (i.e. adjusting the 
parameters of the kernel), we theoretically need to 
know both the observed data Y and the latent space 
data X. As X is not known a priori, an initial 
estimation is given using PCA (see equation (3)). 
Once X has been initialized, GP regressions and 
corrected estimations of X are performed iteratively 
until convergence has been achieved or until a 
maximum number of iterations has been reached. 

To perform the GP regression, the likelihood of the 
GP and X given Y has to be maximized with respect 
to the parameters of the kernel.2 This likelihood 
function is chosen so as to favor smooth mappings 
from latent space to observation space. To reassess 
the values of the vectors xi, they are chosen to 
maximize the likelihood of X given the GP and Y. 
GPLVMs were first introduced in [Law03a]. 

For large datasets (i.e. large values of m), one may 
reduce the computational complexity of these 
optimizations by performing the GP regression using 
only an active subset of X and Y, reassessing only the 
inactive subset of X and choosing a different active 
subset for the next iteration. With this approach, each 
xi may be optimized independently. 

4.1.2 GPLVM with back-constraints 
As presented so far, GPLVMs enforce the 
preservation of local proximities from latent to 
observation space. In other words, they insure that 
close poses in X are kept close in Y. This implies that 
GPLVMs preserve dissimilarities from observation 
to latent space. In other words, far apart poses in Y 
will be kept far apart in X. However, nothing so far 
prevents two similar poses in observation space to 
become two distant points in latent space, thus 
creating discontinuities in the latent space. 

In order to enforce the conservation of local 
proximities from observation to latent space, latent 
space data xi can be replaced by a function f that 
maps observation space data to latent space data: xi = 

                                                           
2 In practice, the negative log-likelihood is minimized. This 

corresponds to maximizing the likelihood but simplifies 
the computational complexity. 

f(yi). By optimizing over the parameters of f instead 
of directly optimizing the vectors xi, a smoother 
mapping from Y to X is obtained. In [Law06a], 
Lawrence et al. present two such mappings. The first 
is a multilayer perceptron, later referred to as the 
MLP back-constraint, and the second is a RBF kernel 
based mapping, later referred to as the KBR back-
constraint. 

4.1.3 SGPLVM 
Scaled GPLVMs introduce an important, yet simple, 
improvement over standard GPLVMs. This 
improvement consists in evaluating the effect of 
varying y along each observation space axis and 
scaling the values of Y accordingly, to obtain an even 
distribution of poses along all axes of the latent 
space. The different scales are initialized at unit 
value and are adjusted as parameters of the GP 
through a modified likelihood function. The 
likelihood of X given the GP and Y is also modified 
to consider these scales. SGPLVMs were introduced 
in [Gro04a]. 

4.1.4 GPDM 
Proposed in [Wan05a], Gaussian Process Dynamical 
Models are specially designed to handle dynamical 
processes, such as keyframe animations. They 
improve on SGPLVMs by the addition of a 
dynamical model to the latent variable model. This 
dynamical model also takes the form of a Gaussian 
process but, instead of providing a mapping from 
latent to observation space, it provides a mapping 
from latent points happening at time t-1 to latent 
points happening at time t. 

If the original mapping from observation to latent 
space, obtained from PCA, preserves local 
proximities in most cases, the dynamical model will 
enforce the conservation of local proximities. 
Loosely speaking, if two consecutive poses are 
nearby in X, the dynamical model will favor a nearby 
position for the following pose. 

Depending on the number of previous values 
considered, the dynamical model may be defined to 
model the similarity between consecutive poses, the 
velocity, the acceleration or higher-order dynamical 
relations. In our experiments, it only considers the 
previous pose and therefore models the similarity 
between poses. 

The likelihood function of the GPDM is similar to 
that of the SGPLVM multiplied by the likelihood of 
the dynamical model.  

4.1.5 B-GPDM 
Since q is generally much smaller than d, the 
objective function of the GPDM, its negative log-
likelihood, gives less importance to the terms coming 



from the dynamical model. Balanced GPDMs further 
improve on the GPDM simply by adding a scaling 
factor to these terms. This translates into a smoother 
mapping from observation to latent space, as the 
preservation of local proximities is further enforced. 
B-GPDMs were proposed in [Urt06a]. 

5. PERFORMANCES 
This section presents the various experiments we 
performed on each technique. Lawrence’s Matlab 
code was used for the implementation of the 
GPLVM, including the MLP and KBR back 
constraints, and for the SGPLVM. Wang’s Matlab 
code was used for the GPDM and the B-GPDM. 

The experiments were performed on two motion 
capture animations. The first one, Walk, is an 
animation of many walk cycles with 63 actuated 
DOFs and 581 frames (or poses) at 120fps. The 
second one, Basketball, is an animation of a few 
dribbles followed by a free throw and cheering. It 
animates 51 actuated DOFs and has 209 frames at 
30fps. While using a greater number of test sets 
could have been interesting, from our experience the 
observations made on these animations can be 
generalized over to most natural human motions, 
cyclic or not. Moreover, using only two test 
animations allows for a more succinct presentation. 

In our experiments, the methods were tested as 
presented in this paper, not using method-specific 
heuristics. For instance, in [Gro04a] the SGPLVM 
uses feature vectors as yi, which include velocity and 
acceleration informations. Our experiments used 
only DOF values as the vectors yi. Also, we do not 
use the active set heuristic proposed in [Law03a]. 
Instead, we optimize the GP parameters with respect 
to all points in X and then optimize all points in X 
with respect to the GP. Thus, each technique is not 
evaluated at its best, but all techniques are compared 
on equal grounds.  

In all cases, the values of X were initialized by PCA 
and all GP models used RBF kernels, including the 
dynamical model of the GPDM and B-GPDM. The 
optimization of the negative log-likelihood functions 
was performed by the scaled conjugate gradient 
algorithm, as implemented in NETLAB, with a 
maximum of 200 iterations. 

The error of a model is given by the mean over all 
poses of the absolute difference between the angles 
from observed pose yi and reconstructed pose yi’. The 
error measure is given in degrees. One may notice 
that this error measure does not account for the 
different relative effects of the various DOFs on the 
overall pose. While this is a drawback, very low 
error values do correspond to seamless 
reconstructions to a human observer. 

Dimensionality Reduction Potential / 
Ease of Visualization 
To evaluate the dimensionality reduction potential of 
each approach, we varied q, the dimension of the 
latent space, and evaluated the error of the models 
obtained using this value for q. 

We empirically set a threshold � = 0.5° under which 
the reconstructed motion is virtually 
undistinguishable from the original motion for a 
human observer.3 A model with an error below this 
threshold is therefore considered to be a valid model. 
Furthermore, if the model achieves an error rate 
below � for q=3 or q=2, the model is said to respect 
the ease of visualization criterion. 

Figure 3 and 4 give the error rates obtained from 
each method for increasing values of q on the Walk 
sequence and the Basketball sequence respectively. 
Due both to its acyclic nature and to its lower 
sampling frequency (30fps), the Basketball sequence 
provides a greater challenge, which translates into 
greater mean errors to most techniques.  

 

Figure 3. Mean error against number of latent 
dimensions for the Walk sequence 

During our experiments, we observed that the MLP 
and the SGPLVM approaches were more prone to 
converge early to a local minimum corresponding to 
a model of poor quality. This explains why their 
mean error does not necessarily decrease as q 
increases. Moreover, as will be illustrated later, MLP 
naturally learns latent spaces where the poses are 
constrained along a handful of line segments. This 
explains why it generally obtains greater error rates 
than the other GPLVM-based approaches. 

In both cases, PCA is far above the threshold even 
for q=9. In fact, it did not reach the threshold until 

                                                           
3 As different DOFs affect the motion on different scales, 

two models with similar error values might provide 
different qualities of reconstruction. However, such a 
low error threshold insures a satisfactory reconstruction 
for all but the most erratic models. 
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values of q greater than 40. MLP aside, all GPLVM-
based techniques met the threshold � on the Walk 
sequence with only 2-dimensional or 3-dimensional 
latent spaces. On the Basketball sequence however, 
the B-GPDM reached the threshold only starting at a 
4-dimensional latent space. In both sequences, B-
GPDM clearly has slightly higher mean errors. This 
is the effect of the emphasis that is put on learning a 
smooth latent space, at the expense of a more precise 
fitting of the training poses.  

 

Figure 4. Mean error against number of latent 
dimensions for the Basketball sequence 

The GPLVM is also interesting. In both cases it 
performs better than most techniques that are, in fact, 
improvements over the GPLVM. This is due to the 
nature of this test, which does not penalize 
overfitting. Since the error is computed using the 
same poses that were used during the learning phase, 
overfitting these training poses may provide lower 
error rates. On the other hand, techniques that 
enforce a smoother latent space, such as B-GPDM, 
avoid overfitting and may obtain somewhat higher 
error rates. That said, if dimensionality reduction is 
performed only with the intention of reconstructing 
exactly the learned poses, GPLVM should be 
preferred over its alternatives. 

Learning / Synthesis Computing Time 
Using q=3, we evaluated the computing time 
required to learn the model (Figure 5) and to 
synthesize a pose given a point x in the latent space. 
These times were obtained on an Intel E6600 Core 2 
Duo processor running at 2.4GHz. The synthesis 
times are averages over 200 trials. 

As shown by Figure 5, the learning times for GPDM 
and B-GPDM appear to be significantly faster than 
that of the GPLVM, however this is simply due to 
more optimized Matlab code and not due to lower 
computational complexity. In fact, Lawrence’s 
implementation of the GPDM has roughly the same 
learning time as the GPLVM. Considering this, all 

GPLVM-based techniques require loosely the same 
amount of time to learn the model. This is expected 
as these techniques mainly differ from each other by 
the function being optimized during learning and not 
by the optimization mechanics. While these objective 
functions play a significant part in the total 
computing time, their evaluation takes roughly the 
same amount of time. Note that PCA is not shown in 
Figure 5, as its times were well below one second. 

 
Figure 5. Learning times on both sequences  

With the exception of PCA, which is significantly 
faster, pose synthesis times are also similar across all 
techniques. For GPLVM-based approaches, pose 
synthesis times varied between 19.0ms and 19.2ms 
for the Walk sequence and between 2.3ms and 2.5ms 
for the Basketball sequence. Once again, this is 
expected as the pose synthesis process is almost 
identical for all techniques. Using PCA, pose 
synthesis took less than 0.1ms on both sequences. 

These results clearly show that the main factor in the 
computing time, both for model learning and for pose 
synthesis, is the number of poses on which the model 
is learned. At 209 frames, the Basketball sequence 
allows significantly faster times than the Walk 
sequence at 581 frames. In time critical applications, 
this should be motivation enough to use the active set 
heuristic proposed in [Law03a] or to use only a 
subset of the frames when learning the model. 

Interpolation Quality / Generalization 
Potential 
For this portion of the experimentation, the frames 
from the motion capture animations were evenly 
down-sampled. The models were learned using this 
subset of the frames and then evaluated exclusively 
on the frames that were left aside, again with q=3. 
This allows the interpolation of poses for which we 
have a ground truth. Interpolation quality and 
extrapolation quality were not tested on PCA as its 
models for q=3 had too high error rates when we 
tested for dimensionality reduction potential.   

To assess the generalization quality of the models, all 
approaches were tested with different levels of 
down-sampling: using only every 2nd frame; every 4th 
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frame; every 8th frame; and so on. Better 
interpolation from fewer data points indicates better 
generalization potential. Figure 6 presents the results 
of these experimentations on the Walk sequence. The 
results for the Basketball sequence are not shown, 
but were similar in tendencies with much higher 
error rates. 

 

Figure 6. Mean error against decreasing training 
set size for q = 3 on the Walk sequence 

As Figure 6 shows, the GPLVM, KBR and GPDM 
all provide very good generalization and follow each 
other closely as the training set of poses gets smaller. 
With a training set composed of only 1/8th of the total 
frames, these three methods still remain under the 
threshold and provide seamless interpolations. As 
noted earlier, the SGPLVM and the MLP are prone 
to early convergence to a local minimum and this 
plagues these approaches in the quality of their 
interpolations as well. Finally, the B-GPDM follows 
the curve of the best approaches, but with a slightly 
higher mean error. Once again, this is due to the 
emphasis that is put on latent space smoothness 
during the learning phase. 

Extrapolation Quality 
We have not yet devised an objective measure for 
extrapolation quality. However, unlike interpolation, 
extrapolation depends directly on the conservation of 
distances by the latent space. That is, two nearby 
poses in observation space should be nearby in latent 
space and, likewise, two distant poses in observation 
space should be distant in latent space. Otherwise, 
moving a point in latent space with constant speed 
could represent a motion of varying speeds in 
observation space. Interpolation does not require 
these criteria as the new pose is expressed in terms of 
relative distance between known latent points. 

In order to evaluate the extrapolation quality of a 
given model, one may observe the sequence of poses 
in the latent space. Indeed, as the motions were 
sampled at a constant frequency, the faster portions 

of the motion should be represented by more distant 
points while the slower portions should be 
represented by closer points. Figure 7 presents the 
poses of the Walk sequence in 2-dimensional latent 
spaces obtained with each GPLVM-based approach. 

As shown by this figure, the B-GPLVM generally 
presents the smoothest path of all, closely followed 
by KBR, which exhibits only a handful of 
discontinuities in the sequence of poses. In both 
models, the slowest portions of the motion (i.e. the 
end of each leg swing) can be identified by the points 
that are closer together and the biggest changes in 
direction (i.e. when arms and legs decelerate and 
then start moving in the opposite directions) is 
clearly represented by the strongest curves in the 
path of the sequence. Finally, in both models, the 
cyclic nature of the motion is obvious. From this 
subjective analysis, one could expect to extrapolate 
natural looking motions from these models. 

In our experiments, GPLVM, SGPLVM and GPDM 
all obtain latent spaces of similar smoothness. With a 
fair share of discontinuities, they still exhibit the 
cyclic nature of the motion and provide a few hints 
about its different phases. Finally, MLP naturally 
converges to paths formed of connected line 
segments, which hardly convey the organic nature of 
the motion. Moreover, as the arrows of different 
length show, these paths are also plagued with 
jerkiness. 

6. CONCLUSIONS 
While all GPLVM-based approaches perform better 
than PCA, no approach is clearly better than all 
others in all respects. Depending on the task at hand, 
different choices should be made. For instance, if 
dimensionality reduction is used for compression 
purposes, GPLVM and GPDM will allow accurate 
reconstruction of the original poses as well as 
interpolation of natural looking poses. On the other 
hand, if a smoother latent space is necessary, to 
synthesize entirely new motions as in [Urt06a] for 
example, the B-GPDM should be preferred. 

From our experiments, the GPLVM with KBR back-
constraint seems to offers the best balance. It 
provides better fitting to the training poses than the 
B-GPDM and a smoother latent space than the 
GPLVM and GPDM.  

The authors insist on the fact that the approaches 
were tested on equal grounds, not using any method-
specific heuristic. The results should therefore be 
seen as relative performances. It should also be noted 
that these heuristics, like the feature vector proposed 
in [Gro04a] and the active set proposed in [Law03a], 
could be adapted to any GPLVM-based approach 
and possibly improve their performance. 
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Figure 7. 2-dimensional latent spaces obtained on the Walk sequence with: GPLVM (a), MLP (b), KBR 

(c), SGPLVM (d), GPDM (e) and B-GPDM (f) 

 

Finally, it may be argued that some pose synthesis 
times are too slow to allow interactive applications. 
This could easily be corrected by using an optimized 
C/C++ implementation of the approach and by using 
the active set heuristic. 
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