Basics of Relation Algebra

Jules Desharnais

Département d'informatique et de génie logiciel Université Laval, Québec, Canada

Plan

1. Relations on a set
2. Relation algebra
3. Heterogeneous relation algebra
4. References

EATCS Monographs on Theoretical Computer Science

Gunther Schmidt Thomas Ströhlein
 Relations and Graphs

Discrete Mathematics
for Computer Scientists

C. Brink
W. Kahl
G. Schmidt (eds.)

Relational Methods
in Computer Science
Advances
in Computing Science

SpringerWienNewYork

STUDIES IN LOGIC AND
THE FOUNDATIONS OF MATHEMATICS VOLUME 150

ABRAMSKY / S. ARTEMOV / D.M. GABBAY / A. KECHRIS / A. PILLAY / R.A. SHORI Editors
\qquad -

Relation Algebras

R.D. MADDUX

1 Relations on a set

1. A relation on a set S is a subset of $S \times S$
2. The set of relations on S is $\mathcal{P}(S \times S)$
3. Notation: sRt $\Leftrightarrow(s, t) \in R, \quad V=S \times S$
4. Operations on relations

- Set-theoretical operations: $\cup, \cap,{ }^{-}, \emptyset, V$
- Relational operations
- Composition (relative product): $s Q ; R u \Leftrightarrow(\exists t: s Q t \wedge t R u)$
- Converse: $s R^{\sim} t \Leftrightarrow t R s$
- Identity relation: $s I t \Leftrightarrow s=t$

Representations of relations: sets of ordered pairs, graphs, matrices
Let $S \stackrel{\text { def }}{=}\{1,2,3\}$.

$$
Q \quad ; \quad R \quad Q ; R
$$

$\{(1,2),(2,2),(2,3)\} \quad ; \quad\{(1,2),(2,1),(2,3)\}=\{(1,1),(1,3),(2,1),(2,3)\}$

$=$

$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$
$=\quad\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$

Relations on a set satisfy many laws
Increasing priority: $(\cup, \cap), ;,{ }^{\smile}$

- $Q \cup R=R \cup Q$
- $P \cap(Q \cap R)=(P \cap Q) \cap R$
- $\overline{(Q \cup R)}=\bar{Q} \cap \bar{R}$
- $I ; R=R$
- $P ;(Q \cup R)=P ; Q \cup P ; R$
- $P ;(Q \cap R) \subseteq(P ; Q) ; R$
- $(Q ; R)^{\complement}=R^{\curvearrowleft} ; Q^{\hookrightarrow}$
- $R \neq \emptyset \Rightarrow V ; R ; V=V$

- $P ; Q \cap R \subseteq\left(P \cap R ; Q^{\hookrightarrow}\right) ;\left(Q \cap P^{\sim} ; R\right)$

2 Relation algebra

Relation algebra (RA): Aims at "characterizing" relations on a set by means of simple equational axioms. It is a structure

$$
\mathcal{A}=\left\langle A, \sqcup,{ }^{-}, ;,{ }^{\sim}, \mathbb{I}\right\rangle
$$

such that
(1) $Q \sqcup R=R \sqcup Q$
$\left.\begin{array}{l}\text { (2) } P \sqcup(Q \sqcup R)=(P \sqcup Q) \sqcup R \\ \text { (3) } \overline{\bar{Q}} \sqcup \bar{R} \sqcup \overline{\bar{Q}} \sqcup R=Q\end{array}\right\}$ Boolean algebra axioms

2 Relation algebra

Relation algebra (RA): Aims at "characterizing" relations on a set by means of simple equational axioms. It is a structure

$$
\mathcal{A}=\left\langle A, \sqcup,-{ }^{-},{ }^{\sim}, \mathbb{I}, \mathbb{I}\right\rangle
$$

such that
(1) $Q \sqcup R=R \sqcup Q$
(2) $P \sqcup(Q \sqcup R)=(P \sqcup Q) \sqcup R\}$
(3) $\overline{\bar{Q}} \sqcup \bar{R} \sqcup \overline{\bar{Q}} \sqcup R=Q \quad$)

Another axiomatisation of Boolean
algebra:
Add \sqcap, \Perp, π to the signature, replace
Huntington's axiom (3) by
$Q \sqcap R=R \sqcap Q$
$P \sqcap(Q \sqcap R)=(P \sqcap Q) \sqcap R$
$Q \sqcup(Q \sqcap R)=Q$
$Q \sqcap(Q \sqcup R)=Q$
$P \sqcup(Q \sqcap R)=(P \sqcup Q) \sqcap(P \sqcup R)$
$R \sqcup \Perp=R$
$R \sqcap \pi=R$
$R \sqcup \bar{R}=\pi$
$R \sqcap \bar{R}=\Perp$

2 Relation algebra

Relation algebra (RA): Aims at "characterizing" relations on a set by means of simple equational axioms. It is a structure

$$
\mathcal{A}=\left\langle A, \sqcup,{ }^{-}, ;,{ }^{\smile}, \mathbb{I}\right\rangle
$$

such that
(1) $Q \sqcup R=R \sqcup Q$
$\left.\begin{array}{l}\text { (2) } P \sqcup(Q \sqcup R)=(P \sqcup Q) \sqcup R \\ \text { (3) } \overline{\bar{Q}} \sqcup \bar{R} \sqcup \overline{\bar{Q}} \sqcup R=Q\end{array}\right\}$ Boolean algebra axioms
(4) $P ;(Q ; R)=(P ; Q) ; R$
(5) $(P \sqcup Q) ; R=P ; R \sqcup Q ; R$
(6) $R ; \mathbb{I}=R$
(7) $R^{\hookrightarrow}=R$
(8) $(Q \sqcup R)^{\llcorner }=Q^{\hookrightarrow} \sqcup R^{\hookrightarrow}$
(9) $(Q ; R)^{\llcorner }=R^{\complement} ; Q^{\hookrightarrow}$
(10) $Q^{\sim} ; \overline{Q ; R} \sqcup \bar{R}=\bar{R}$

2 Relation algebra

Relation algebra (RA): Aims at "characterizing" relations on a set by means of simple equational axioms. It is a structure

$$
\mathcal{A}=\left\langle A, \sqcup,-{ }^{-}, 弓, \check{\sim}, \mathbb{I}\right\rangle
$$

such that
$\left.\begin{array}{l}\text { (1) } Q \sqcup R=R \sqcup Q \\ \text { (2) } P \sqcup(Q \sqcup R)=(P \sqcup Q) \sqcup R \\ \text { (3) } \overline{\bar{Q}} \sqcup \bar{R} \sqcup \overline{\bar{Q}} \sqcup R=Q\end{array}\right\}$
(4) $P ;(Q ; R)=(P ; Q) ; R$
(5) $(P \sqcup Q) ; R=P ; R \sqcup Q ; R$
(6) $R ; \mathbb{I}=R$
(7) $R^{\sim}=R$
(8) $(Q \sqcup R)^{\breve{\prime}}=Q^{\hookrightarrow} \sqcup R^{\hookrightarrow}$
(9) $(Q ; R)^{\breve{ }}=R^{\breve{ }} ; Q^{\hookrightarrow}$
(10) $Q^{\sim} ; \overline{Q ; R} \sqcup \bar{R}=\bar{R}$

Boolean algebra axioms
Ordering \sqsubseteq
Define

$$
Q \sqsubseteq R \Leftrightarrow Q \sqcup R=R
$$

Then (10) can be written

$$
Q^{\sim} ; \overline{Q ; R} \sqsubseteq \bar{R} .
$$

2 Relation algebra

Relation algebra (RA): Aims at "characterizing" relations on a set by means of simple equational axioms. It is a structure

$$
\mathcal{A}=\left\langle A, \sqcup,{ }^{-}, ;,{ }^{\smile}, \mathbb{I}\right\rangle
$$

such that
(1) $Q \sqcup R=R \sqcup Q$
$\left.\begin{array}{l}\text { (2) } P \sqcup(Q \sqcup R)=(P \sqcup Q) \sqcup R \\ \text { (3) } \overline{\bar{Q}} \sqcup \bar{R} \sqcup \overline{\bar{Q}} \sqcup R=Q\end{array}\right\}$
Boolean algebra axioms
Derived operators \sqcap, \Perp, π
(4) $P ;(Q ; R)=(P ; Q) ; R$
(5) $(P \sqcup Q) ; R=P ; R \sqcup Q ; R$
(6) $R ; \mathbb{I}=R$
(7) $R^{\sim}=R$
(8) $(Q \sqcup R)^{\llcorner }=Q^{\hookrightarrow} \sqcup R^{\hookrightarrow}$
(9) $(Q ; R)^{\llcorner }=R^{\complement} ; Q^{\complement}$
(10) $Q^{\sim} ; \overline{Q ; R} \sqcup \bar{R}=\bar{R}$

$$
\begin{aligned}
Q \sqcap R & =\overline{\bar{Q} \sqcup \bar{R}} \\
\Perp & =\overline{\mathbb{I}} \sqcap \mathbb{I} \\
\mathbb{I} & =\overline{\mathbb{I}} \sqcup \mathbb{I}
\end{aligned}
$$

Laws that can be proved from the axioms

Relation algebra	Corresponding laws, relations on sets
$P \sqcap(Q \sqcap R)=(P \sqcap Q) \sqcap R$	$P \cap(Q \cap R)=(P \cap Q) \cap R$
$\overline{(Q \sqcup R)}=\bar{Q} \sqcap \bar{R}$	$\overline{(Q \cup R)}=\bar{Q} \cap \bar{R}$
$\mathbb{I} ; R=R$	$I ; R=R$
$\mathbb{T}=\mathbb{I}$	$I=I$
$\pi^{\sim}=\pi$	$V^{\sim}=V$
$\pi ; \pi=\pi$	$V ; V=V$
$P ;(Q \sqcup R)=P ; Q \sqcup P ; R$	$P ;(Q \cup R)=P ; Q \cup P ; R$
$P ; Q \sqsubseteq R \Leftrightarrow P^{\sim} ; \bar{R} \sqsubseteq \bar{Q}$	$P ; Q \subseteq R \Leftrightarrow P^{\sim} ; \bar{R} \subseteq \bar{Q}$
$\Leftrightarrow \bar{R} ; Q^{\sim} \sqsubseteq \bar{P}$	$\Leftrightarrow \bar{R} ; Q^{\sim} \subseteq \bar{P}$
$P ; Q \sqcap R \sqsubseteq\left(P \sqcap R ; Q^{\sim}\right) ;\left(Q \sqcap P^{\sim} ; R\right)$	$P ; Q \cap R \subseteq\left(P \cap R ; Q^{\sim}\right) ;\left(Q \cap P^{\sim} ; R\right)$
???	$R \neq \emptyset \Rightarrow V ; R ; V=V$
: \quad : \quad :	

Properties of the equational axiomatisation

Because RAs are defined by equations, the class of RAs is a variety: it is closed under products, homomorphic images and subalgebras.

Example. Consider the relations on $S_{2} \xlongequal{\text { def }}\{1,2\}$ and $S_{3} \xlongequal{\text { def }}\{1,2,3\}$ or, equivalently, the subsets of

$$
V_{2} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \quad \text { and } \quad V_{3} \stackrel{\text { def }}{=}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

1. Products The set of pairs of relations

$$
A_{2,3}=\left\{\left(R_{2}, R_{3}\right) \mid R_{2} \subseteq V_{2} \wedge R_{3} \subseteq V_{3}\right\}
$$

is an RA with identity $\left(I_{2}, I_{3}\right)$. Operations are defined pointwise. E.g., $\left(Q_{2}, Q_{3}\right) ;\left(R_{2}, R_{3}\right)=\left(Q_{2} ; R_{2}, Q_{3} ; R_{3}\right)$ and $\left(R_{2}, R_{3}\right)^{\smile}=\left(R_{2}^{\sim}, R_{3}^{\breve{ }}\right)$. The top relation is (V_{2}, V_{3}) or, on an isomorphic matrix form,

$$
V_{2,3}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) .
$$

2. Homomorphic images Let $f: A_{2,3} \rightarrow \mathcal{P}\left(S_{2} \times S_{2}\right)$ be defined by

$$
f\left(\left(R_{2}, R_{3}\right)\right)=R_{2} .
$$

Then f is a homomorphism.
An RA homomorphism is defined by the following properties.

$$
\begin{aligned}
& \begin{array}{c|c}
f: \mathcal{A} \rightarrow \mathcal{B} & f: A_{2,3} \rightarrow \mathcal{P}\left(S_{2} \times S_{2}\right) \\
\hline f\left(Q \sqcup_{\mathcal{A}} R\right)=f(Q) \sqcup_{\mathcal{B}} f(R) & f\left(\left(Q_{2}, Q_{3}\right) \cup\left(R_{2}, R_{3}\right)\right)=Q_{2} \cup R_{2}
\end{array} \\
& f\left(\bar{R}^{\mathcal{A}}\right)=\overline{f(R)}{ }^{\mathcal{B}} \\
& f\left(Q ;_{\mathcal{A}} R\right)=f(Q) ;_{\mathcal{B}} f(R) \\
& f\left(R^{\sim \mathcal{A}}\right)=(f(R))^{\mathcal{B}^{\mathcal{B}}} \\
& f\left(\mathbb{I}_{\mathcal{A}}\right)=\mathbb{I}_{\mathcal{B}} \\
& f\left(\overline{\left(R_{2}, R_{3}\right)}\right)=\overline{R_{2}} \\
& f\left(\left(Q_{2}, Q_{3}\right) ;\left(R_{2}, R_{3}\right)\right)=Q_{2} ; R_{2} \\
& f\left(\left(R_{2}, R_{3}\right)^{\llcorner }\right)=\left(R_{2}\right)^{\llcorner } \\
& f\left(\left(I_{2}, I_{3}\right)\right)=I_{2}
\end{aligned}
$$

The image of an RA homomorphism is an RA.

3. Subalgebras

- An RA

$$
\mathcal{B}=\left\langle B, \sqcup,{ }^{-}, ;,{ }^{\sim}, \mathbb{I}\right\rangle
$$

is a subalgebra of an RA

$$
\mathcal{A}=\left\langle A, \sqcup,-{ }^{-}, ;,{ }^{\smile}, \mathbb{I}\right\rangle
$$

if $A \subseteq B$ (note: the operations are the same).

- For instance,

$$
\langle\{\Perp, \mathbb{I}, \overline{\mathbb{I}}, \mathbb{\pi}\}, \sqcup,-, ;, \check{\sim}, \mathbb{I}\rangle
$$

is a subalgebra of every RA with at least 4 elements.

- Given $B \subseteq A$, a subalgebra can be generated by closing B under the operations of \mathcal{A}.

Models of the axioms

1. Relations on a set S where the universal relation V is an equivalence relation. For instance, all relations included in

$$
V_{2,3}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

form a relation algebra. Now let

$$
R_{2,3}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and consider the composition

$$
V_{2,3} ; R_{2,3} ; V_{2,3} .
$$

$$
\begin{aligned}
V_{2,3} ; R_{2,3} ; V_{2,3} & =\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) ;\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) ;\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right) \\
& =\left(\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \neq V_{2,3}
\end{aligned}
$$

Thus, RAs do not in general satisfy the Tarski rule

$$
R \neq \Perp \Leftrightarrow \mathbb{\pi} ; R ; \mathbb{\pi}=\mathbb{\pi} .
$$

Those that do are simple RAs (with only two homomorphic images: themselves and the trivial RA with one element; they are not closed under products). For concrete relations on a set S, they are those with

$$
V=S \times S
$$

Models of the axioms

2. Let $\mathcal{A}=\left\langle A, \sqcup,{ }^{-}, ;{ }^{\sim}, \mathbb{I}\right\rangle$ be an RA. Let \mathcal{M}_{n} be the set of $n \times n$ matrices with elements of A as entries. Define the following (red) operations on \mathcal{M}_{n}.

Operation	Definition
\bullet	$(\mathbf{M} \sqcup \mathbf{N})[i, j] \stackrel{\text { def }}{=} \mathbf{M}[i, j] \sqcup \mathbf{N}[i, j]$
-	$\overline{\mathbf{M}}[i, j] \stackrel{\text { def }}{=} \overline{\mathbf{M}[i, j]}$
\sim	$(\mathbf{M} ; \mathbf{N})[i, j \stackrel{\text { def }}{=}(\sqcup k: \mathbf{M}[i, k] ; \mathbf{N}[k, j])$
$\mathbf{M}[i, j] \stackrel{\text { def }}{=}(\mathbf{M}[j, i])$	
\mathbb{I}	$\mathbb{I}[i, j] \stackrel{\text { def }}{=} \begin{cases}\mathbb{I} & \text { if } i=j \\ \Perp & \text { if } i \neq j\end{cases}$

Then

$$
\left\langle\mathcal{M}_{n}, \sqcup,{ }^{-}, ;,{ }^{\sim}, \mathbb{I}\right\rangle
$$

is an RA.

This model can be used for the description of programs.

$$
\left(\begin{array}{cccc}
\Perp & t & \Perp & \bar{t} \\
\Perp & \Perp & Q & \Perp \\
R & \Perp & \Perp & \Perp \\
\Perp & \Perp & \Perp & \Perp
\end{array}\right)
$$

The matrix (graph) represents the control structure. The entries of the matrix (labels of the graph) are relations describing how the state changes by a transition.

Expressing properties of relations

Property	Definition	Set-theoretical expression
\bar{R} total	$R ; \mathbb{T}=\mathbb{T}$	$(\forall x:(\exists y: x R y)$)
	$\begin{aligned} & \mathbb{I} \sqsubseteq R ; R^{\hookrightarrow} \\ & \bar{R} \sqsubseteq R ; \overline{\mathbb{I}} \end{aligned}$	
\bar{R} functional (or univalent)	$\begin{aligned} & R^{\wedge} ; R \sqsubseteq \mathbb{I} \\ & R ; \overline{\mathbb{I}} \sqsubseteq \bar{R} \end{aligned}$	$(\forall x, y, z: x R y \wedge x R z \Rightarrow y=z)$
\bar{R} reflexive	$\mathbb{I} \sqsubseteq R$	$(\forall x: x R x)$
R antisymmetric	$R \sqcap R^{\sim}=\mathbb{I}$	$(\forall x, y: x R y \wedge y R x \Rightarrow x=y)$
R transitive	$R ; R \sqsubseteq R$	$(\forall x, y, z: x R y \wedge y R z \Rightarrow x R z)$
:	\vdots	:

Using the relational instead of the set-theoretical definitions leads to equational proofs that are more compact and easier to verify.

Other properties

Representing subsets

There are three equivalent ways to represent subsets by relations.

1. Vectors: relations of the form $R ; \mathbb{T}$.
2. Covectors: relations of the form $\pi ; R$.
3. Subidentities (tests, types): relations t such that $t \sqsubseteq \mathbb{I}$.

Example: representation of the subset $\{1,2\}$ of $\{1,2,3\}$

1. Vector

$$
\{(1,1),(1,2),(1,3),(2,1),(2,1),(2,3)\} \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

2. Covector

$$
\{(1,1),(2,1),(3,1),(1,2),(2,2),(3,2)\} \quad\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

3. Subidentity

$$
\{(1,1),(2,2)\} \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Vectors, covectors, tests form a Boolean algebra
Let $\mathcal{A}=\left\langle A, \sqcup, \sqcap,{ }^{-}, ;{ }^{-}, \Perp, \mathbb{\Pi}, \mathbb{I}\right\rangle$ be an RA
($\sqcap, \Perp, \mathbb{T}$ added to the signature for simplicity).

1. Vectors: $\langle\{R ; \mathbb{T} \mid R \in A\}, \sqcup, \sqcap,-, \Perp, \mathbb{\pi}\rangle$ is a BA.
2. Covectors: $\langle\{\pi ; R \mid R \in A\}, \sqcup, \sqcap,-, \Perp, \mathbb{\pi}\rangle$ is a BA.
3. Tests: For $t \sqsubseteq \mathbb{I}$, define $\neg t \stackrel{\text { def }}{=} \bar{t} \sqcap \mathbb{I}$.

$$
\langle\{t \mid t \sqsubseteq \mathbb{I}\}, \sqcup, \sqcap, \neg, \Perp, \mathbb{I}\rangle \quad \text { is a BA. }
$$

For this BA, $s \sqcap t=s ; t$. Tests occur in structures without \square and π, like Kleene algebra with tests.

Correspondence between vectors, covectors and tests

1. Vector to covector: $R ; \mathbb{T} \mapsto \mathbb{\pi} ; R^{\hookrightarrow}$
2. Covector to vector: $\mathbb{\pi} ; R \mapsto R^{〔} ; \pi$
3. Test to vector: $t \mapsto t ; \mathbb{T}$
4. Vector to test: $R ; \mathbb{T} \mapsto \mathbb{I} \sqcap R ; \mathbb{\pi}$

Prerestriction and postrestriction

	prerestriction	postrestriction
vector	$R ; \mathbb{\pi} \sqcap Q$	
covector		$\pi ; R \sqcap Q$
test	$t ; Q$	$Q ; t$

Representability

1. An RA is representable if it is isomorphic to a subalgebra of a concrete relation algebra (one that consists of the subsets of an equivalence relation).
2. There exist nonrepresentable RAs (even finite ones).
3. The class of representable RAs can only be axiomatised with an infinite number of axioms.

3 Heterogeneous relation algebra

Relations between different sets

Let $S=\{1,2,3\}, T=\{\mathrm{a}, \mathrm{b}\}$ and $U=\{\boldsymbol{\oplus}, \boldsymbol{\varphi}, \gtrdot\}$.

(3)

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) \quad ; \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad=\quad\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Composition of matrices is possible if sizes match.

Axiomatising heterogeneous relation algebra

Same axioms, but add typing and typing rules (the definition can also be based on category theory).

1. $R_{\mathrm{S}, \mathrm{T}}: \mathrm{S} \leftrightarrow \mathrm{T}$ (relation $R_{\mathrm{S}, \mathrm{T}}$ has type $\mathrm{S} \leftrightarrow \mathrm{T}$).
2. $Q_{\mathrm{S}, \mathrm{T}} \sqcup R_{\mathrm{S}, \mathrm{T}}: \mathrm{S} \leftrightarrow \mathrm{T}$.
3. $\overline{R_{\mathrm{S}, \mathrm{T}}}: \mathrm{S} \leftrightarrow \mathrm{T}$.
4. $Q_{\mathrm{S}, \mathrm{T}} ; R_{\mathrm{T}, \mathrm{U}}: \mathrm{S} \leftrightarrow \mathrm{U}$.
5. $R_{\mathrm{S}, \mathrm{T}}^{\sim}: \mathrm{T} \leftrightarrow \mathrm{S}$.
6. $Q_{\mathrm{S}, \mathrm{T}} \sqcup R_{\mathrm{U}, \mathrm{V}}$ is defined only if $\mathrm{S}=\mathrm{U}$ and $\mathrm{T}=\mathrm{V}$.
7. $Q_{\mathrm{S}, \mathrm{T}} ; R_{\mathrm{U}, \mathrm{V}}$ is defined only if $\mathrm{T}=\mathrm{U}$.
8. There are constants $\mathbb{I}_{S, S}, \Perp_{S, T}, \mathbb{T}_{S, T}$ for each S and T.

Types are usually omitted from expressions. Thus, different instances of \mathbb{I} may have different types (same remark for \Perp and \mathbb{T}).

Laws that can be derived

Most laws derivable in the homogeneous setting are also derivable in the heterogeneous setting, but there are exceptions.

Example

- Homogeneous RA law: $\pi ; \pi=\pi$.

Proof

$$
\mathbb{\pi}=\mathbb{I} ; \mathbb{T} \sqsubseteq \mathbb{\pi} ; \mathbb{T} \sqsubseteq \mathbb{\pi}
$$

- Heterogeneous RA: $\mathbb{\pi}_{\mathrm{S}, \mathrm{T}} ; \mathbb{T}_{\mathrm{T}, \mathrm{U}}=\pi_{\mathrm{S}, \mathrm{U}}$ cannot be derived. The above proof cannot be used:

$$
\mathbb{\pi}_{\mathrm{S}, \mathrm{U}}=\mathbb{I}_{\mathrm{S}, \mathrm{~S}} ; \mathbb{\pi}_{\mathrm{S}, \mathrm{U}} \stackrel{\bigotimes}{\underline{K}} \mathbb{\pi}_{\mathrm{S}, \mathrm{~T}} ; \mathbb{\pi}_{\mathrm{T}, \mathrm{U}} \sqsubseteq \mathbb{\pi}_{\mathrm{S}, \mathrm{U}}
$$

And there is a counterexample. The only relation between sets S and \emptyset is

$$
\mathbb{\pi}_{S, \emptyset}=\Perp_{S, \emptyset}
$$

Thus $\mathbb{T}_{S, \emptyset} ; \mathbb{T}_{\emptyset, S}=\Perp_{S, \emptyset} ; \Perp_{\emptyset, S}=\Perp_{S, S} \neq \mathbb{T}_{S, S}$ unless $S=\emptyset$.

Direct products (internal)

A pair of (projection) relations $\left(\pi_{1}, \pi_{2}\right)$ is called a direct product iff
(a) $\pi_{1}^{\sim} ; \pi_{1}=\mathbb{I} \quad \pi_{1}$ functional and surjective
(b) $\pi_{2}^{\sim} ; \pi_{2}=\mathbb{I} \quad \pi_{2}$ functional and surjective
(c) $\pi_{1}^{\sim} ; \pi_{2}=\pi \quad$ any two elements can be paired
(d) $\pi_{1} ; \pi_{1}^{\sim} \sqcap \pi_{2} ; \pi_{2}^{\sim}=\mathbb{I} \quad \pi_{1}, \pi_{2}$ total and construct all pairs in a unique way

Set model

$$
\begin{aligned}
& \pi_{1} \stackrel{\text { def }}{=}\left\{\left(\left(s_{1}, s_{2}\right), s_{1}\right) \mid s_{1} \in S_{1} \wedge s_{2} \in S_{2}\right\} \\
& \pi_{2} \stackrel{\text { def }}{=}\left\{\left(\left(s_{1}, s_{2}\right), s_{2}\right) \mid s_{1} \in S_{1} \wedge s_{2} \in S_{2}\right\}
\end{aligned}
$$

1. $\pi_{1}^{\sim} ; \pi_{1}=\left\{(s, s) \mid s \in S_{1}\right\}=I_{\mathrm{S}_{1}, \mathrm{~S}_{1}}$
2. $\pi_{2}^{\sim} ; \pi_{2}=\left\{(s, s) \mid s \in S_{2}\right\}=I_{\mathrm{S}_{2}, \mathrm{~S}_{2}}$
3. $\pi_{1}^{\sim} ; \pi_{2}=S_{1} \times S_{2}=V_{\mathrm{S}_{1}, \mathrm{~S}_{2}}$
 $\cap\left\{\left(\left(s_{1}, s_{2}\right),\left(s_{1}^{\prime}, s_{2}\right)\right) \mid s_{1}, s_{1}^{\prime} \in S_{1} \wedge s_{2} \in S_{2}\right\}$
$=\left\{\left(\left(s_{1}, s_{2}\right),\left(s_{1}, s_{2}^{\prime}\right)\right) \mid s_{1}, s_{2} \in S_{1} \wedge s_{2}^{\prime} \in S_{2}\right\}$
$=\quad I_{\mathrm{S}_{1} \times \mathrm{S}_{2}, \mathrm{~S}_{1} \times \mathrm{S}_{2}}$

Remark: Direct products for empty types

Consider the set model on the previous page. If $S_{1}=\emptyset$ and $S_{2} \neq \emptyset$, then both π_{1} and π_{2} are empty and π_{2} cannot be surjective. If empty types have to be dealt with, only functionality of π_{1} and π_{2} should be required ${ }^{1}$, i.e., $\pi_{1}^{\sim} ; \pi_{1} \sqsubseteq \mathbb{I}$ and $\pi_{2}^{\sim} ; \pi_{2} \sqsubseteq \mathbb{I}$.

Tupling and parallel product

$$
\begin{aligned}
&\left\langle R_{1}, R_{2}\right] \stackrel{\text { def }}{=} R_{1} ; \pi_{1}^{\breve{ }} \sqcap R_{2} ; \pi_{2}^{\breve{ }} \\
& {\left[R_{1}, R_{2}\right] \stackrel{\text { def }}{=} \pi_{1} ; R_{1} ; \pi_{1}^{\breve{ } \sqcap \pi_{2} ; R_{2} ; \pi_{2}^{\hookrightarrow}} }
\end{aligned}
$$

Set model

$$
\begin{gathered}
\left\langle R_{1}, R_{2}\right]=\left\{\left(s,\left(s_{1}, s_{2}\right)\right) \mid s R_{1} s_{1} \wedge s R_{2} s_{2}\right\} \\
{\left[R_{1}, R_{2}\right]=\left\{\left(\left(s_{1}, s_{2}\right),\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right) \mid s_{1} R_{1} s_{1}^{\prime} \wedge s_{2} R_{2} s_{2}^{\prime}\right\}}
\end{gathered}
$$

Compare with the cartesian product:

$$
R_{1} \times R_{2}=\left\{\left(\left(s_{1}, s_{1}^{\prime}\right),\left(s_{2}, s_{2}^{\prime}\right)\right) \mid s_{1} R_{1} s_{1}^{\prime} \wedge s_{2} R_{2} s_{2}^{\prime}\right\}
$$

Same cardinality, but different structure.

More general product

$$
\pi_{1} ; R_{1} ; \rho_{1}^{\breve{1}} \sqcap \pi_{2} ; R_{2} ; \rho_{2}^{\breve{\rho_{2}}}
$$

where $\left(\pi_{1}, \pi_{2}\right)$ and $\left(\rho_{1}, \rho_{2}\right)$ are direct products.

Matrix model (an example of parallel product)

The axioms: $\quad \pi_{1}^{\leftrightharpoons} ; \pi_{1}=\mathbb{I} \quad \pi_{2}^{\leftrightharpoons} ; \pi_{2}=\mathbb{I} \quad \pi_{1}^{c} ; \pi_{2}=\mathbb{T} \quad \pi_{1} ; \pi_{1}^{\breve{ }} \sqcap \pi_{2} ; \widetilde{\pi_{2}}=\mathbb{I}$

$$
\begin{aligned}
& \pi_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right) \quad \pi_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad R_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad R_{2}=\left(\begin{array}{ccc}
e & f & g \\
h & i & j \\
k & l & m
\end{array}\right) \\
& a, \ldots, m \in\{0,1\} \\
& {\left[R_{1}, R_{2}\right]=\left(\begin{array}{lll|lll}
a \wedge e & a \wedge f & a \wedge g & b \wedge e & b \wedge f & b \wedge g \\
a \wedge h & a \wedge i & a \wedge j & b \wedge h & b \wedge i & b \wedge j \\
a \wedge k & a \wedge l & a \wedge m & b \wedge k & b \wedge l & b \wedge m \\
\hline c \wedge e & c \wedge f & c \wedge g & d \wedge e & d \wedge f & d \wedge g \\
c \wedge h & c \wedge i & c \wedge j & d \wedge h & d \wedge i & d \wedge j \\
c \wedge k & c \wedge l & c \wedge m & d \wedge k & d \wedge l & d \wedge m
\end{array}\right)}
\end{aligned}
$$

Matrix model (an example of tupling)

$$
\begin{aligned}
\pi_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & 1
\end{array}\right) \quad \pi_{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad R_{1}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad R_{2}=\left(\begin{array}{lll}
e & f & g \\
h & i & j
\end{array}\right) \\
a, \ldots, j \in\{0,1\} \\
\left\langle R_{1}, R_{2}\right]=\left(\begin{array}{lllll}
a \wedge e & a \wedge f & a \wedge g & b \wedge e & b \wedge f
\end{array} \begin{array}{lll}
\hline c \wedge h & c \wedge i & c \wedge j \\
c \wedge \wedge h & d \wedge i & d \wedge j
\end{array}\right)
\end{aligned}
$$

Unsharpness

Let $\left(\pi_{1}, \pi_{2}\right)$ be the direct product used in the tuplings and parallel products below. Let

$$
\left[R_{1}, R_{2}\right\rangle \stackrel{\text { def }}{=} \pi_{1} ; R_{1} \sqcap \pi_{2} ; R_{2} .
$$

The problem: [Cardoso 1982] Does

$$
\left\langle Q_{1}, Q_{2}\right] ;\left[R_{1}, R_{2}\right\rangle=Q_{1} ; R_{1} \sqcap Q_{2} ; R_{2}
$$

hold for all relations $Q_{1}, Q_{2}, R_{1}, R_{2}$?

Unsharpness

Let $\left(\pi_{1}, \pi_{2}\right)$ be the direct product used in the tuplings and parallel products below. Let

$$
\left[R_{1}, R_{2}\right\rangle \stackrel{\text { def }}{=} \pi_{1} ; R_{1} \sqcap \pi_{2} ; R_{2} .
$$

The problem: [Cardoso 1982] Does

$$
\left\langle Q_{1}, Q_{2}\right] ;\left[R_{1}, R_{2}\right\rangle=Q_{1} ; R_{1} \sqcap Q_{2} ; R_{2}
$$

hold for all relations $Q_{1}, Q_{2}, R_{1}, R_{2}$?

1. It holds for concrete algebras of relations and all representable RAs.
2. It holds in RA for many special cases [Zierer 88].
3. It does not hold in RA [Maddux 1993].
4. It holds in RA for the special cases

$$
\begin{aligned}
\left\langle Q_{1}, Q_{2}\right] ;\left[R_{1}, R_{2}\right] & =\left\langle Q_{1} ; R_{1}, Q_{2} ; R_{2}\right] \\
{\left[Q_{1}, Q_{2}\right] ;\left[R_{1}, R_{2}\right] } & =\left[Q_{1} ; R_{1}, Q_{2} ; R_{2}\right]
\end{aligned}
$$

[Desharnais 1999]. The last equality was in fact the original problem of Cardoso and it was generalized to the one stated above.

Direct sums (internal)

A pair of (injection) relations $\left(\sigma_{1}, \sigma_{2}\right)$ is called a direct sum iff
(a) $\sigma_{1} ; \sigma_{1}^{\leftrightharpoons}=\mathbb{I} \quad \sigma_{1}$ total and injective
(b) $\sigma_{2} ; \sigma_{2}^{-}=\mathbb{I} \quad \sigma_{2}$ total and injective
(c) $\sigma_{1} ; \sigma_{2}^{2}=\Perp \quad \sigma_{1}$ and σ_{2} inject elements in disjoint subsets
(d) $\sigma_{1}^{\sim} ; \sigma_{1} \sqcup \sigma_{2}^{\sim} ; \sigma_{2}=\mathbb{I} \quad \sigma_{1}, \sigma_{2}$ functional and construct all injected elements

Set model

$$
\begin{aligned}
& \sigma_{1} \stackrel{\text { def }}{=}\left\{(s,(s, 1)) \mid s \in S_{1}\right\} \\
& \sigma_{2} \stackrel{\text { def }}{=}\left\{(s,(s, 2)) \mid s \in S_{2}\right\}
\end{aligned}
$$

1. $\sigma_{1} ; \sigma_{1}^{\leftrightharpoons}=I_{\mathrm{S}_{1}, \mathrm{~S}_{1}}$
2. $\sigma_{2} ; \sigma_{2}^{\leftrightharpoons}=I_{\mathrm{S}_{2}, \mathrm{~S}_{2}}$
3. $\sigma_{1} ; \sigma_{2}^{\breve{ }}=\emptyset_{\mathrm{s}_{1}, \mathrm{~s}_{2}}$
4. $\sigma_{1}^{\sim} ; \sigma_{1} \cap \sigma_{2}^{\sim} ; \sigma_{2}=\left\{((s, 1),(s, 1)) \mid s \in S_{1}\right\} \cup\left\{((s, 2),(s, 2)) \mid s \in S_{2}\right\}$

$$
=\quad I_{\mathrm{S}_{1} \uplus \mathrm{~S}_{2}, \mathrm{~S}_{1} \uplus \mathrm{~S}_{2}}
$$

Matrix model (an example of direct sum)

$$
\begin{gathered}
\sigma_{1}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \\
R_{1}=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad R_{2}=\left(\begin{array}{ccc}
e & f & g \\
h & i & j \\
k & l & m
\end{array}\right) \quad a, \ldots, m \in\{0,1\} \\
\sigma_{1}^{\sim} ; R_{1} ; \sigma_{1} \cup \widetilde{\sigma_{2}} ; R_{2} ; \sigma_{2}=\left(\begin{array}{cc|ccc}
a & b & 0 & 0 & 0 \\
c & d & 0 & 0 & 0 \\
\hline 0 & 0 & e & f & g \\
0 & 0 & h & i & j \\
0 & 0 & k & l & m
\end{array}\right)
\end{gathered}
$$

Expressivity

1. Maddux, page 33 in [Brink Kahl Schmidt 1997]:

An equation is true in every relation algebra iff its translation into a 3 -variable sentence can be proved using at most 4 variables.
2. Maddux, page 36 in [Brink Kahl Schmidt 1997]:

Already in 1915 Löwenheim presented a proof (taken from a letter by Korselt) that the sentence saying "there are at least four elements", namely
$\exists v_{0} \exists v_{1} \exists v_{2} \exists v_{3}\left(\neg v_{0} \mathbb{I} v_{1} \wedge \neg v_{0} \mathbb{I} v_{2} \wedge \neg v_{1} \mathbb{I} v_{2} \wedge \neg v_{0} \mathbb{I} v_{3} \wedge \neg v_{1} \mathbb{I} v_{3} \wedge \neg v_{2} \mathbb{I} v_{3}\right)$
is not equivalent to any relation-algebraic equation.
3. How to increase expressivity?

- Add projections.
- Use fork algebra: RA with an additional operator ∇ for pairing. See Haeberer et al., Chapter 4 in [Brink Kahl Schmidt 1997].

Additional operators

1. Transitive closure *: add the axioms [Ng 1984]

- $R \sqcup R ; R^{*}=R ; R^{*} \quad$ (i.e., $\left.R \sqsubseteq R ; R^{*}\right)$
- $\left(R ; \overline{\bar{R} ; R^{\sim}}\right)^{*}=R ; \overline{\bar{R} ; R^{\sim}}$
- $R^{*} \sqcup(R \sqcup Q)^{*}=(R \sqcup Q)^{*} \quad$ (i.e., monotonicity $\left.R^{*} \sqsubseteq(R \sqcup Q)^{*}\right)$

2. Left residual: largest solution X of $X ; Q \sqsubseteq R$

- Definition by a Galois connection: $X ; Q \sqsubseteq R \Leftrightarrow X \sqsubseteq R / Q$
- Explicit definition: $R / Q=\overline{\bar{R} ; Q^{\checkmark}}$

3. Right residual: largest solution X of $Q ; X \sqsubseteq R$

- Definition by a Galois connection: $Q ; X \sqsubseteq R \Leftrightarrow X \sqsubseteq Q \backslash R$
- Explicit definition: $Q \backslash R=\overline{Q^{\checkmark} ; \bar{R}}$

Complete relation algebras

1. A complete RA is an $\operatorname{RA}\left\langle A, \sqcup,{ }^{-}, ;{ }^{\sim}, \mathbb{I}\right\rangle$ for which

$$
\bigsqcup T \text { exists for all } T \subseteq A
$$

(hence $\rceil T$ exists too).
2. In a complete RA, monotonic functions have a least and greatest fixed point. For instance, R^{*} can be defined by

$$
R^{*}=(\mu X: \mathbb{I} \sqcup R ; X) .
$$

3. Useful, e.g., for program semantics.
4. Calculational rules for the manipulation of fixed points can be found in [Backhouse 2000].

References

[Backhouse 2000] Roland Backhouse. Fixed point calculus. Presented at the Summer School and Workshop on Algebraic and Coalgebraic Methods in the Mathematics of Program Construction, Oxford, April 11-14, 2000. Available at http://www.cs.nott.ac.uk/~rcb/MPC/acmmpc.ps.gz.
[Brink Kahl Schmidt 1997] C. Brink, W. Kahl and G. Schmidt (eds.). Relational Methods in Computer Science, Springer, 1997.
[Cardoso 1982] R. Cardoso. Untersuchung paralleler Programme mit relationenalgebraischen Methoden. Diplomarbeit, Institut für Informatik, Technische Universität München, 1982.
[Desharnais 1999] J. Desharnais. Monomorphic characterization of n-ary direct products. Information Sciences - An International Journal, 119 (3-4): 275288, October 1999.
[Hirsch Hodkinson 2002] R. Hirsch and I. Hodkinson. Relation Algebras by Games. Volume 147 of Studies in Logic and the Foundations of Mathematics, North Holland, 2002.
[Maddux 1993] R.D. Maddux. On the derivation of identities involving projection functions. Department of Mathematics, Iowa State University, July 1993.
[Maddux 2006] R. D. Maddux. Relation Algebras, Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.
[Ng 1984] K. C. Ng. Relation algebras with transitive closure. Ph.D. thesis, University of California, Berkeley, 1984.
[Schmidt Strohlein 1993] G. Schmidt and T. Ströhlein. Relations and Graphs, EATCS Monographs in Computer Science (Springer-Verlag, Berlin, 1993).
[Tarski 1941] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73-89, 1941.
[Zierer 88] H. Zierer. Programmierung mit Funktionsobjekten: Konstruktive Erzeugung semantischer Bereiche und Anwendung auf die partielle Auswertung. Report TUM-I8803, Institut für Informatik, Technische Universität München, February 1988.

