g-i UNIVERSITE

B TAVAL

FACULTE DES SCIENGES ET DE GENIE
Département d'informatique et de génie logiciel

T BT
M=
5

Ll
Ll

=
= x

Pavillon Adrien-Pouliot, local 3908
1065, avenue de la Médecine
Université Laval

Québec, Canada, G1V A06

BUFFER OVERFLOW VULNERABILITIES IN C AND C++
PAR

PATRICE LACROIX
ET
JULES DESHARNAIS

RAPPORT DE RECHERCHE
DIUL-RR-0803

DEPARTEMENT D’INFORMATIQUE ET DE GENIE LOGICIEL
FACULTE DES SCIENCES ET DE GENIE

Pavillon Adrien-Pouliot
1065, avenue de laMédecine
Université Laval
Québec,QC,Canada
G1V 0A6

AOUT 2008

Buffer Overflow Vulnerabilities in C and C++*

PATRICE LACROIX and JULES DESHARNAIS
Université Laval

August 7, 2008

Abstract

Buffer overflows are bugs that are often present in programs and often
exploited by pirates. They have been known for a long time, but are still
the source of major security problems today. A buffer overflow happens
when some data are read from or written to a location that is not allocated
for them. Usually, there are already other data in memory next to the area
where an overflow happens, and these data are modified by the overflow.
A pirate can thus cause an overflow and modify these data at will, and
thus he can influence the rest of the execution of the program.

This survey describes the causes and consequences of this vulnerability.
It explains the techniques used by pirates to exploit programs containing
this kind of vulnerability. It also presents approaches and programs that
are useful to avoid buffer overflows or limit their consequences.

1 Introduction

1.1 Motivation

Today, computers are everywhere and, more important, they have the ability to
communicate with each other. They may be connected to a local network or to
the Internet, and it is now rare that a computer is completely isolated. This is
true for personal as well as enterprise computers.

With this increasing connectivity, interacting with a computer becomes eas-
ier and easier and many people use the network to gain illegal access to private
data. There can be security problems when software is not conceived with se-
curity in mind, or if it is not implemented properly. Pirates often exploit these
problems to gain access to information or to a computer they should not have
access to. This survey studies one kind of vulnerability that is often exploited
by pirates, namely, buffer overflows.

*Author’s address: LSFM Research Group, Département d’informatique et de génie logi-
ciel, Université Laval, Québec, QC G1K 7P4 Canada
e-mail: patrice.lacroix@ift.ulaval.ca; jules.desharnais@ift.ulaval.ca
This research was funded by Natural Sciences and Engineering Research Council of Canada
(NSERC) and Defence Research and Development Canada (DRDC).

Since a few years ago, buffer overflows pose major security problems. They
are the cause of a large percentage of recent vulnerabilities. Depending on the
source of information and the dates, about 50% of reported vulnerabilities are
caused by buffer overflows [CWPT00, PL04, Wag00]. In order to write secure
programs, it is important to know more about buffer overflow vulnerabilities.

1.2 Scope

The literature concerning buffer overflows is plentiful. We could not possibly
describe every variation of attacks and protection techniques and every tool
that can help detecting buffer overflows. However, we want to present, for
every approach, enough information to understand the ideas behind it, their
advantages and their limitations.

We examine buffer overflow vulnerabilities mostly for source code written in
C or C++, but we also look briefly at Java, a language not vulnerable to this
problem in the traditional way that C and C++ are. Unless stated otherwise,
demonstration programs were built with GCC 2.95.4 under Linux.

1.3 Buffer Overflows
According to [Wor03], a buffer is:

a part of RAM used for temporary storage of data that is waiting to
be sent to a device; used to compensate for differences in the rate of
flow of data between components of a computer system.

Usually, when we talk about buffer overflows, we refer to the action of writing
past the end of a buffer. For this work, buffer overflow has a larger meaning and
covers all memory accesses outside the bounds of an array without regard for
the way it is defined, allocated or accessed. A buffer overflow can thus happen
as well when reading as when writing into an array.

We are particularly interested in the cases where a buffer overflow introduces
a vulnerability that can be exploited maliciously. It is however not very useful
to make this distinction for the following reasons:

1. To check that a buffer overflow is exploitable, we first have to know of its
existence. It is however very hard to know if the execution of a program
will cause a buffer overflow.

2. Once a possibility of buffer overflow is identified, it is usually relatively
easy to correct it.

3. On the other hand, to determine if a buffer overflow is exploitable or not is
much more complex and the answer may vary depending on the compiler
and the options given for compilation, because languages like C and C++
do not define what happens at the time of a buffer overflow.

4. Even if a buffer overflow cannot be exploited in a malicious way, it can
nevertheless have unwanted effects on a program.

However that may be, we will see that many approaches to solve the prob-
lem of buffer overflows try only to protect certain cases more susceptible to be
vulnerable, but without proving that there really is vulnerability.

1.4 Plan of the Survey

Section 2 examines different causes and circumstances that can lead to buffer
overflow vulnerabilities. Section 3 studies consequences of these vulnerabilities,
mostly those that can compromise systems security. We will explain many ways
to exploit buffer overflows. In particular, we will see in Section 3.3 how an
attacker can force a vulnerable program to execute arbitrary code.

Section 4 looks at different approaches to detect buffer overflows. Section 4.1
covers approaches that require modifications to the source code, Section 4.2 is
about testing techniques, Section 4.3 discusses possible modifications to the
compiler and application libraries, Section 4.4 considers modifications to the
operating system kernel, Section 4.5 presents run-time checks that can be im-
plemented, and Section 4.6 deals with many kinds of static analysis techniques.

Section 5 presents our conclusion. The Appendix presents some programs
that can be useful to detect or avoid buffer overflows or their consequences.

2 Causes of Vulnerabilities

When we use a language like C, it is easy to write a program that contains unin-
tentional possibilities of buffer overflow. In fact, it is quite difficult to write a C
program with an absolute certainty that buffer overflows are impossible [Wag00,
p. 11]. Many factors contribute to this, notably the fact that the language does
not enforce type safety, that it contains standard functions very difficult to use
securely and, to a certain extent, a culture of laziness among C programmers.

2.1 Type Safety

This section is based on [CPM*98, CWP*00, MV00, Rit93].

Some languages are type-safe and are consequently immune to buffer over-
flow vulnerabilities. The C and C++ languages are not type-safe. A type-safe
language does not allow using a variable in a way that is incompatible with
its real type. Consequently, such a language cannot allow access to an element
outside the bounds of an array since this element does not exist, and thus there
is no way it can be used in a way compatible with its real type.

Contrary to C and C++, Java is a type-safe language, despite its syntax
being similar to C. In order to be type-safe, Java had to give up some con-
structions existing in C such as pointers and functions with a variable number
of parameters. Pointers are used inside the Java virtual machine to represent
references to objects, but those pointers are not visible to Java programmers

and, above all, it is impossible to manipulate them in an arbitrary way with
casts or arithmetic operations.

If there are type-safe languages, one can wonder why the C language is not.
The explanation can be found in the origins of the language [Rit93]. C was
designed as a high-level language for implementing the UNIX operating system.
There was a need for a language rivalling with assembly in terms of performance.
It is thus to generate speedier programs that there is no automatic array bounds
validation. The programmer has to do it himself.

Since an operating system must interact closely with the computer on which
it runs, pointer arithmetic and casting between integers and pointers allow ac-
cessing hardware in a relatively simple and efficient way.

Every buffer overflow can be seen as the consequence of a type-safety viola-
tion, but the following sections show, in practice, why buffer overflows happen.

2.2 Fixed-Size Buffer

This section is based on [Ale96, Smi97].

In some cases, a programmer defines a fixed-size buffer to store data from
some source. This is frequent when it is possible to know the largest size of valid
inputs at a certain point in the program. It is the case, for instance, when the
user is asked to enter his choice from a menu where every entry can be selected
with only one character.

However, nothing prevents the user from entering an invalid choice. In this
case, if the programmer is not cautious and does not validate the size of input
data, he risks introducing buffer overflow possibilities in his program.

In the C language, the problem is amplified by the fact that strings are
delimited by null characters instead of having a distinct variable indicating
length. The programmer thus has usually two stopping conditions to monitor
when looping on a string in C, one to watch for the null character and the other
to check if the index is inside the bounds of the array. By negligence, he can
forget one of these conditions, as is the case in the program of Table 1.

In this program, string represents a variable-length string entered by the
user and buffer, is a fixed-size buffer to make an upper case copy of the string.
The program does not check if the size of buffer is exceeded, which produces
a buffer overflow since the string is too large for the buffer.

An alternative would be to allocate the right amount of memory dynamically
for buffer buffer. It is important to note that there is nothing intrinsically bad
in using a fixed-size buffer. There are legitimate reasons to handle a limited
amount of data, especially when it comes from an untrusted source. However,
when using a fixed-size buffer, it is important to think about checking index
range.

2.3 Interfaces Not Allowing Bounds Checking
This section is based on [MV00, Smi97, VBKMO00, Wag00, Whe02b)].

#include <ctype.h>

int main()
{
/* The following string is larger than 100 */
unsigned char *string =
"Someone with malicious intentions
"could arrange things in such a way
"that this string gets much "
"larger than what the programmer"
"thought he had to handle.";
static unsigned char buffer[100];
int 1i;
/* Make an upper case copy */
for (i=0; string[i]!=0; i++)
buffer[i] = toupper(stringl[il);
buffer[i] = 0;
return O;

Table 1: Buffer overflow on a string. The program does not check that the index
is inside the bounds of the array in the stopping condition of the loop.

#include <string.h>

int main()

{
/* The following string is larger than 100 */
unsigned char *string =
"Someone with malicious intentions "
"could arrange things in such a way "
"that this string gets much "
"larger than what the programmer"
"thought he had to handle.";
static unsigned char buffer[100];
/* Next instruction causes a buffer overflow */
strcpy (buffer, string);
return O;
}

Table 2: Buffer overflow with strcpy(). The programmer does not ensure the
buffer is large enough to hold the string.

The C library contains standard functions having interfaces not allowing
array bounds checking. Here is a summary of functions considered dangerous
because they do not allow bounds checking or do not force it. They are grouped
by the particularity that renders them dangerous. When there are less dangerous
equivalent functions, they are mentioned with their differences. The behaviors
described are those of the GNU C Library (glibc) version 2.2, the C library most
often used under Linux.

2.3.1 strcpy() and wcesepy()

Functions strcpy() and wescpy() take a buffer and a string as parameters.
strcpy () handles strings of type char while wescpy () handles strings of type
wchar_t. When calling them, we have to be sure the buffer is at least as large
as the string.

In the program of Table 2, string represents once again a variable-length
string entered by the user. There is a buffer overflow because no check is
done to ensure that the size of the buffer is large enough to hold the string.
It is possible to fix the problem by allocating enough memory dynamically, for
instance with strlen() and malloc().

An alternative to the use of functions strcpy () and wcscpy() is to replace
them by strncpy () and wesncpy () respectively. These functions take one more
parameter, the buffer size, and never exceed this size. However, they have two

char buffer[10];

char *string = "Hello world!";
strncpy(buffer, string, 10);

/* Null character to end the string */
buffer[9] = ’\07;

Table 3: Use of strncpy()

drawbacks. First, there can be performance problems if the buffer size is much
larger than the string to copy. This is due to the fact that after the string
is copied, the unused part of the buffer is filled with null characters. Next,
the string risks not being terminated by a null character in the buffer if it
is larger than the buffer size. This problem is much more important from a
security standpoint because in C a string usually has to be terminated by a null
character and, if it is not, the program risks looking for it outside the bounds
of the buffer. Data from another variable could then appear in the string read
from the buffer, which could be serious if it is a password or other confidential
data. When strncpy () is used, it is important to overwrite the last character
of the buffer with a null character as in Table 3.

2.3.2 strcat() and wescat()

Functions strcat() and wcscat () are much like strepy() and wescepy (), re-
spectively. However, the string to be copied is appended to the one already in
the buffer instead of overwriting it. This means the buffer must be large enough
to hold the string it already contains plus the one to be copied.

They also have alternatives, which are strncat() and wcsncat(). These
functions do not have the performance problem of strncpy() and wcsncpy().
They also differ from these by the fact that the null character is always included
at the end of the string. Finally, the size given to strncat() is not the buffer
size, but represents the maximal number of characters that can be copied from
the string. When counting the size required for a buffer, we thus have to add
the length of the string already in the buffer, the maximal number of characters
to be copied which is given as a parameter, and one for the null character that
will end the string.

2.3.3 sprintf() and vsprintf()

Functions sprintf () and vsprintf () are more difficult to use correctly because
they take as parameter a format string that is used to format the buffer. This
string can contain conversion specifications to be replaced by values of variable
length. For instance, a “%s” is replaced by a string. Its size must thus be taken

char buffer[10];
sprintf (buffer, "%.9s", "Hello world!");
sprintf (buffer, "%.*s", 9, "Hello world!");

Table 4: “Precision” of a string with sprintf

into account when counting the size required for the buffer.

An alternative is to specify a “precision” with a string conversion specifica-
tion. This way, only the first characters of the string up to the given limit are
considered. It is possible to give the precision directly in the format string or
as a parameter. Table 4 shows the two ways it can be done.

It is important to note that the precision in the format string is specified
after the dot. If the dot is removed, the value becomes the minimal width
of the field and there is no protection against overflows. When the precision
specification is used to limit the length of a string, it is important to take into
account the rest of the format string when counting the required size for the
buffer, in particular, the null character.

A “%d” can also take a variable length once formatted. If there is no ad-
ditional constraint, the maximal length varies with the size of an int, which
depends on the compiler and the processor for which code is generated. It is
6 characters for 16-bit int, 11 characters for 32-bit int and 20 characters for
64-bit int.

Moreover, format strings can have multiple conversion specifications. This
complicates the calculation of the buffer size and renders errors more likely. If a
calculation error makes the buffer too small, there is a risk of buffer overflow. It
is thus important to be careful when choosing the size of a buffer corresponding
to a format string.

Functions snprintf () and vsnprintf () are respectively equivalent to
sprintf () and vsprintf (), but they are usually considered less dangerous be-
cause they take the size of the buffer as a parameter and observe it. Contrary
to strncpy (), these functions always reserve the space required for a null char-
acter at the end of the buffer. In order to avoid buffer overflows, one obviously
has to give the real size of the buffer. Another thing that may harm the use of
these functions is that they are not available on all systems. They are present
under Linux, but their absence poses a problem when trying to write code that
has to work on different systems.

2.3.4 scanf() and its Friends

Functions in this category are scanf (), fscanf (), sscanf (), vscanf (),
viscanf (), vsscanf (), wscanf (), fwscanf (), swscanf (), vwscanf () and
viwscanf ().

char *x*p;
scanf ("%as", p);

Table 5: Dynamically allocated string with scanf ()

They also take a format string as a parameter, but this time, the format
string indicates how to interpret and convert input data to be placed in some
variables. We obviously have to make sure we give parameters corresponding to
conversion specifications, but we also have to be careful about the size of buffers
receiving strings. Since the exact length of strings is usually not known before
they are read, it is always better to give the buffer size with a string conversion
specification. For instance, instead of “%s”, it is better to use “%20s” if the
buffer has 20 characters.

With glibe, it is also possible to use the “a” flag to indicate that a buffer
large enough to hold the complete string must be allocated dynamically. In
this case, one has to pass the address that will receive a pointer to the newly
allocated string as in Table 5. It is however important to note that this flag is
not specified by the C standard [Int99]. Programs using it are not portable.

2.3.5 gets()

Function gets() is almost impossible to use correctly. It takes only one pa-
rameter: a pointer to a buffer. It reads a line of input from stdin and places
it in the buffer without any check for overflow. The problem is that stdin is
usually connected to user input and it is thus impossible to know in advance
the amount of data that will be received. For this reason, it is recommended to
never use gets() and instead use another function such as fgets() to which
the buffer size is specified.

2.3.6 realpath() and getwd()

These functions both write a path in a buffer. realpath() writes the canonical
form of a given path and getwd() writes the current working directory. They
are not very difficult to use correctly. The buffer given to them only has to be
at least PATH_MAX characters large to avoid overflows.

2.3.7 Other Dangerous Functions

Functions getopt () and getpass () may, in some cases, be dangerous because in
some implementations of the C library they can lead to internal buffer overflows.
The problem is thus more related to the implementation than the interface.
Glibc does not have these problems. In particular, getpass() allocates as much
memory as required to hold a complete line of input.

#include <stdio.h>
#include <string.h>

int main()

{
char *string = "Hello world!";
char buffer([8];
strncpy(buffer, string, sizeof (buffer));
printf ("%d\n", strlen(string));
return O;
}

Execution of the program:

$./strlen
21

Table 6: Non-observance of strlen() interface

Functions streadd(), strecpy() and strtrns() should also be used cau-
tiously, but they do not exist in glibc and thus cannot cause any problem.

We saw in this section that many of the standard functions of the C li-
brary are difficult to use correctly to avoid buffer overflows. There often exists
replacing functions that allow specifying the size of buffers more easily, but pro-
grammers can be discouraged to use them because they do not always offer a
consistent interface.

2.4 Non-Observance of an Interface

There is non-observance of an interface when one passes to a function parameters
that do not satisfy its specification. The line can be fuzzy between this section
and the last one. One could argue that overflow risks presented in the last
section were all due to non-observance of an interface. Contrary to interfaces
without bounds checking, in this section we deal with functions conceived to
avoid buffer overflows, but used incorrectly.

For instance, strlen() takes a pointer to a string terminated by a null
character. Passing to it an unterminated string is thus an error and causes a
buffer overflow more often than not.

In the program of Table 6, the buffer is too small to receive the whole string.
There is no buffer overflow while copying since function strncpy () observes the
buffer size. However, this makes the buffer unterminated since the null character
cannot be copied. This leads strlen() to overflow the buffer and give a result

10

#include <ctype.h>

void off ()

{
unsigned char buffer[8];
unsigned char string[8] = "hello!!";
int 1i;

/* Upper case... */
for (i=0; i<=8; i++)
buffer[i] = toupper(stringl[il);

}
int main()
{
off();
return O;
}

Execution of the program:

$./off1
Segmentation fault

Table 7: Off-by-one error

different from the expected one. Indeed, there was clearly an access outside the
buffer since 21 characters were counted while only 8 characters were copied.

2.5 Off-by-One Error

An off-by-one error happens when some calculation gives a result that is one
unit greater or smaller than the right answer. This usually happens when the
programmer makes a mistake in a formula or in a loop condition, because he
forgets an item, often the null character, or counts one more, or he does not use
the right index as the first element (1 vs. 0). We are interested in cases where
an off-by-one error produces a buffer overflow. It happens mostly when dealing
with indices.

The program of Table 7 shows a typical off-by-one error. In this program,
the error is made by using the operator <= instead of <.

A simple off-by-one error is thus enough to crash a program. Moreover, we
will see in Section 3 that these errors may cause serious vulnerabilities.

11

int main()

{
int array[10];
int *ptr = &array[0];
int 1i;
for (i=0; i<30; i++)

array[i] = i;

return *ptr;

}

Here is the execution:

$./faultl
Segmentation fault

Table 8: Abnormal termination produced by an invalid pointer value.

3 Consequences of Buffer Overflows

In this section, we will see the possible consequences of buffer overflows, and
more specifically techniques to exploit them.

3.1 Abnormal Termination

An abnormal termination happens when a program does something serious and
uncontrolled. Buffer overflows can cause abnormal termination in many different
ways. One of these is when an overflow gives an invalid value to a pointer.
When the pointer is used to access memory, the result is something called a
segmentation fault. This is what happens in the program of Table 8.

3.2 Abnormal Execution

If buffer overflows can cause the termination of a program, thus producing
a denial of service, there are also many possible consequences that are more
serious.

If some data are placed in memory next to a buffer, they can be overwritten
by an overflow of that buffer. Depending on the meaning of these data, the
consequences can be more or less important. For example, overwriting a file
name, a user identification, or the description of his access rights has obvious
important consequences in a privileged program.

Other data can have indirect effects. This is the case, for instance, of a
variable that indicates the remaining number of tries for a user to be authenti-

12

Unused space
Top of the
stack

Local area

Frame of the

Return address
current procedure

Parameters

Frame of the

caller
Frame of the calle
of the caller
Bottom of
the stack

Figure 1: Run-time stack of a program. The (stack) frame of a function is made
of its parameters, its return address and its local area.

cated before his account is deactivated. Such a variable could be used to get an
unlimited number of tries before finding the right password.

Attack possibilities vary greatly, depending on data that can be overwritten
by an overflow. The remainder of this section shows some of the principles that
allow an attacker to control the execution of a program.

3.3 Arbitrary Code Execution

Among the possible consequences of buffer overflows, the most serious one is
probably the execution of arbitrary code. This goes further than abnormal
execution because the possibility to execute arbitrary code greatly simplifies
the task of someone who wants to exploit a buffer overflow. It is not obvious at
first sight how a buffer overflow, in an area that should contain data, can allow
execution of arbitrary code. We will see that many techniques can be used to
make this happen.

3.3.1 Overwriting the Return Address

Most programming languages allowing recursivity use a stack to handle the
parameters, the return address and the local variables of a function. It is notably
the case for the C and C++ languages.

On a function call, the caller first pushes the function parameters on the
stack, then it pushes the return address before transferring control to the func-
tion. The return address is normally the address of the instruction right after
the function call. At the beginning of its execution, the called function reserves
space from the stack for its local variables. It also uses this space to save the
value of some important registers that are modified by the function, but which
have to be restored to their original value before it returns to its caller. Figure 1
illustrates the organization of the stack.

13

If one could modify at will a return address on the stack, he would be able to
make the program transfer its execution to an arbitrary place in memory when
it tries to return to its caller. A buffer overflow can overwrite a return address,
but some conditions must be met.

First, the buffer must be located on the stack. Second, a return address has
to be present after the buffer. While it is possible to overflow a buffer on the
side where the buffer starts®, it is rarer. Buffer overflows usually happen at the
end of a buffer.

With this knowledge, we return to Figure 1, where we can see some indica-
tions about the top and the bottom of the stack, but no mention of the direction
in which the addresses grow. The reason is simple, it depends on the architec-
ture in use, notably the operating system and the processor. For the purpose of
this survey, we will assume that the stack grows towards lower addresses, which
is the most common case.

Suppose we have a buffer in the local area of a function. If this buffer can
be overflowed, the first values that can be overwritten are other local variables
following the buffer. Next, the return address can also be overwritten. Attackers
thus want to overwrite the return address of the function to make their code
execute when the function tries to return to its caller. To do this, they have
three problems to solve.

Firstly, an attacker must succeed in placing his code? inside the memory of
the target program. There are many ways to achieve this. Almost any source
of input of the program is susceptible to be used by an attacker to insert code
inside the program. For example, he can use the standard input stream, a file,
a network connection or an environment variable. Depending on the method
used by the program to handle the input, the attacker may not have absolute
freedom on the code he can insert in the program. For example, if the code is
treated as a string, it is usually not possible to embed null bytes anywhere but
at the end of the string since they indicate the end of the string. In this case,
the machine code must be written to avoid null bytes, which is usually not too
difficult.

Secondly, the attacker has to know where his code will go in memory to
overwrite the return address with the right value. This code can be among
static data of the program, inside the heap or inside the stack; it does not
matter. It is however important to know its address. An attacker can use a
debugger and a copy of the program to find this information more easily. If he
only has access to the source code, he can compile it to get an approximation
of the address. If he does not have the executable or the source code, he must
proceed by trial and error.

Many factors can make the exact address hard to guess for the attacker. For
instance, source code compiled with different compilers or options can result in

IThis is sometimes called an underflow, but we will not use this term because it is ambigu-
ous.
2This code is often called shellcode since it often executes a shell with administrator privi-
leges. The term egg is also used to refer to what is placed inside the overflowing buffer, which
allows an attacker to obtain what he wants. It can be the shellcode, pointers, or other things.

14

Top of the

stack
kK« Current function ——— Bottom of
< Local area the stack
R 4 Local area of
L1 Buffer | L2 A Parameterg the caller | * *°
Lower Higher
addresses addresse

Figure 2: Stack growing towards lower addresses. To overwrite the return ad-
dress (RA), Buffer has to overflow and overwrite L2, and then RA.

different executable programs. In addition, when memory is allocated dynami-
cally, the address may be different from one execution to the other. Even stack
addresses can change from one execution to the other, depending on the callers.

However that may be, an attacker can use a trick allowing an attack with
only an approximate knowledge of the address of his code. Indeed, he only has
to put instructions that do nothing in front of the code. Such instructions are
called NOP3. This way, it is possible to use the address of any of these instructions
as the return address and the attacker’s code will be executed.

Thirdly, the attacker must know the position of the return address to over-
write relatively to the buffer that overflows. Figure 2 shows a more detailed view
of the stack organization. The attacker who wants to overwrite the return ad-
dress (RA) thus has to fill the buffer (Buffer), and then the remaining local area,
from the end of the buffer to the return address (L2). At first sight, we could
think he must know the exact size of the buffer and that of the remaining local
area. However, in practice he does not have to. He can begin repeating the
address of his code well before RA is reached and continue to do so well after
it. He must however have an idea of the size of Buffer and L2 since the stack
is not infinite and the program will crash before control is given to his code if
there is an attempt to access memory outside the stack. On the other hand, if
the return address is not reached, his code will not be executed. Between these
two extremes, there is enough room to operate.

Note that nothing prevents using the buffer itself as the container for the
code of the attack. With only one overflow, it is thus possible to insert the
code in the program and overwrite a return address so that it points to this
code. This method is explained in detail by Aleph One in [Ale96], who suggests
creating an attack string that is 100 bytes longer than the buffer that will be
overflowed. The string is built so that the code to execute is located in the
middle, preceded by NOP instructions and followed by the return address, which
is repeated until the end of the string, and which should point somewhere in
the NOP instructions. Figure 3 shows the stack once the buffer has overflowed
this way.

This method is not the only possible one. If a buffer is too small and the

3NOP is an abbreviation for no operation.

15

Top of the

stack
kK« Current function ——— Bottom of
<— Local area —>} the stack
‘ ‘ vy | Local area df
L1 !NNNN ?ode Aﬁéﬁi\Afarameterﬁ the caller |- * -
Lower Higher
addresses addresse

Figure 3: Stack with an overflowed buffer. N represents a NOP instruction and
A represents an address that is inside the NOPs.

return address is too near to the buffer, one could put the NOP and the code
after the return addresses, and thus overflow further after the end of the buffer.
He only would have to be careful not to go beyond the stack limit.

The technique described in this section and its variations are very popular
for pirates because they are relatively simple and they can be adapted to a large
number of vulnerable programs. The following section presents alternatives that
can be used in some situations where it is not possible to overwrite the return
address, or at least not directly.

3.3.2 Overwriting the Saved Stack Frame Pointer

This technique allows exploiting a buffer overflow and executing arbitrary code
in some particular situations where it is not possible to overflow a buffer by
more than one byte. This may be the case when there is an off-by-one error in
a program. It is described in detail in [klo99]. To understand how it works, it is
necessary to know more about the code produced by a compiler for a function
call in C or C++.

What follows is written for TA-32 processors, but it is also applicable to other
little-endian* processors that have 32-bit words and a stack growing towards
lower addresses.

Compilers usually reserve one of the processor registers to hold the address
of the stack frame of the current function. This register, called EBP, usually
points near the return address, so that the parameters of a function are at a
positive offset of the stack frame pointer, and local variables in the local area of
a function are at a negative offset. This way, the compiler can use a constant
offset to access parameters and local variables. It would not be possible to do
so if the stack pointer (ESP) was used directly, since its value can change during
a function call.

The stack frame pointer thus has to be saved before it is initialized when
entering a function. When leaving a function, it has to be restored so that
the calling function has access to its stack frame. Table 9 shows instructions
that make all this happen. In funct(), EBP is first saved on the stack, then

4A little-endian processor stores the least significant byte at the lower address. A big-
endian processor stores the most significant byte at the lower address.

16

Here main() calls funct(1, 2, 3). The arguments are pushed in the
reverse order of appearance. This means that in memory they are in the
order of appearance because the stack grows towards lower addresses.

0x8048431 <main+9>: push $0x3

0x8048433 <main+11>: push $0x2

0x8048435 <main+13>: push $0x1

0x8048437 <main+15>: call 0x80483c0O0 <funct>
0x804843c <main+20>: add $0x10,%esp

The following is the prologue and the epilogue of funct(). It declares
an array of 60 bytes in its local area and 2 local variables. More space is
allocated for internal use by the compiler and for alignment.

0x80483c0 <funct>: push %ebp
0x80483c1 <funct+1>: mov %esp, %hebp
0x80483c3 <funct+3>: sub $0x58, %esp

0x8048424 <funct+100>: leave
0x8048425 <funct+101>: ret

It is important to know that the leave instruction is equivalent to:

mov %ebp, hesp
pop ’%ebp

Table 9: Typical assembly code corresponding to a function call and return in

C.

17

Top of the stack

ESP = EBP-88 EBP+4 EBP+12
EBP.68 to EBP lEBP ‘ EBP+8 ‘ EBP+16 Bottom of
6o 10) v Vi the stack
Caller
Local area \ SFP\ RA | P1| P2 | P3 frame
Lower Higher
addresses addresse

Figure 4: Detailed organization of a stack frame. P1, P2 and P3 represent the
three parameters of the function, RA is the return address and SFP is the saved
frame pointer, that is to say the old value of EBP.

Top of the stack

ESP = EBP-88 EBP+4 EBP+12
EBP EBP+8 | EBP+16 Bottom of
Caller
Localarea |SFRy RA | P1| P2 | P3 frame
Lower Higher
addresses addresse

Figure 5: Organization of the stack frame of funct() after an overflow has
overwritten the least significant byte of the saved frame pointer.

it is initialized to point to the top of the stack. After this, ESP is decreased,
thus creating the local area. Eighty-eight (0x58) bytes are reserved. The leave
instruction allows restoring the original values of ESP and EBP before the function
returns to its caller.

Figure 4 gives a detailed picture of the stack after the execution of the sub
instruction. On the stack, each parameter is usually 4 bytes wide. On the
other hand, in the local area, variables are usually organized in a much more
flexible manner. There are often structures and arrays.

Now, we will see how it is possible to cause the execution of arbitrary code
with an overflow of only one byte. We assume that the buffer is located on
the stack, right before the saved frame pointer, SFP. It is thus only possible to
overwrite the least significant byte of the saved frame pointer. We call SFPy; the
value of SFP with least significant byte modified. Figure 5 shows this situation.

When funct () terminates, the leave instruction is executed and the state
of the stack is described by Figure 6. We note that EBP has taken the value
of the modified stack frame pointer. If SFP had not been modified, EBP would
point to the saved frame pointer of the caller, and everything would be correct.
Since its least significant byte was modified, SFPy; (and thus EBP) can point to
at most 255 bytes before or after SFP.

Figure 7 shows the stack state after the return to main() is complete. The
control is correctly returned to main() and ESP has the right value. However,

18

EBP+4 EBP+12
ESP = EBP ‘ EBP+8 | EBP+16 Bottom of

EBP-88 to EBP-1 |, v v the stack
Caller
Local area \SFPM RA | P1| P2 | P3 frame
Lower Higher
addresses addresse
EBP = SFRy
|| I
L _ _ _ _I'ESPI_ — _~ — — " Bottom of
v \ N v , the stack
Caller
Localarea |SFR4 RA | P1| P2 | P3 frame
Lower Higher
addesses addresses

Figure 6: Result of the leave instruction with a modified saved frame pointer,
explained with the equivalent instructions mov %ebp, %esp and pop %ebp. The
part at the top of the figure shows the state after the mov. The part at the
bottom shows the state at the end of the pop. The dashed arrows represent
some of the addresses that EBP can take.

EBP = SFR,
[l Lo ,
I IR ESP Bottom of
v | V! , the stack
Local area |SFRs RA| P1| P2 | P3 gg:'ﬁé
Lower Higher
addresses addresse
EBP = SFR,
[e
A N B ESP Bottom of
v v | s the stack
Localarea |SFRy RA | P1| P2 | p3 | Caller
Lower Higher
addresses addresse

Figure 7: Stack state after returning to main(). The control is really returned
tomain() because ESP has the right value and the return address (RA) was not
modified. The part at the top represents the state of the program after the ret
instruction. At this time, EIP, the instruction pointer, has the value of RA. The
part at the bottom shows the state of the program after the add instruction,
which removes the parameters from the stack.

19

EBP =SFR, =ESP
[

C _____ L,,‘ Bottom of
v v/ Wthe stack
Local area |SFR, RA | P1| P2 | P3 ﬁgﬂg
Lower Higher
addresses addresse
ESP=SFR, +4
[
- _ _ _ _ - Bottomof
v v v |, the stack
Caller
Local area |SFRy|RA | P1| P2 | P3 frame
Lower Higher
addresses addresses

Figure 8: State of the stack at the end of main(), the calling function. As
in Figure 6, the leave instruction is broken in two steps to better see what
happens.

EBP keeps its wrong value, something that causes problems when main(), the
caller of funct(), ends.

Indeed, function main() is not different from others and it returns to its
caller in the same way that funct () does, that is to say, using leave and ret
instructions. Figure 8 shows the effect of the leave instruction on the state of
the program. The following instruction is ret and it has the effect of giving the
control to the instruction at the address pointed to by ESP. So that the attack
succeeds, the address at this place must be that of the attacker’s code. As in
the case of overwriting the return address, the code can be just about anywhere
in memory, but it is often easier to put it in the buffer that overflows.

To sum up, one can exploit a buffer overflow of only one byte by overwriting
the least significant byte of a saved frame pointer. It suffices to make it point 4
bytes before the location in memory where the address of the code to execute
is stored. Two leave and ret sequences later, the code executes.

This technique is much more sensitive than the overwrite of the return ad-
dress. Indeed, having only a partial control over the saved frame pointer, it is
not possible to give it a completely arbitrary value. It may be that all values
that it can take (+4) are addresses that cannot be controlled. In this case, it is
not possible to control where the execution will continue.

In addition, once the control returns to the calling function, the stack frame
pointer (EBP) is no longer valid. If the function does not return immediately, it
can have a strange behavior if it tries to use its parameters or its local variables.
It may also be possible that while trying to modify its variables, it modifies the
code in the buffer that the attacker wants to execute. However, a meticulous at-

20

#include <stdio.h>

/* Declaration of a function pointer */
void (*hello_ptr) (const char *);

void english_hello(const char *name)

{
printf("Hello %s!'\n", name);
}
int main(int n, char **argv)
{
/* Initialization of the function pointer */
hello_ptr = english_hello;
if (argv([1])
/* Use of the function pointer */
hello_ptr(argv([1]);
return O;
}

Table 10: Function call through a function pointer

tacker can sometimes build its attack so that the calling function sees “credible”
values in place of its real parameters and variables. It is also possible to put the
code to execute elsewhere than in this buffer, which gives more flexibility.

3.3.3 Overwriting a Function Pointer

When a buffer is allocated statically, or dynamically on the heap, it is usually
not possible to overwrite a return address. However, other elements can be the
target of an attack, and allow the execution of arbitrary code. Among them are
function pointers. Indeed, the C and C++ languages allow calling a function
through a function pointer. The program of Table 10 shows how it is done.

If the function pointer could be overwritten between its initialization and its
use, it would be possible to execute arbitrary code instead of the function that
should be referred to by the pointer at the time of use. In [Con99], the author
explains in more detail how this is possible. As in the case of buffer overflows
overwriting a return address, the easiest way for an attacker is often to insert
the code to be executed directly in the buffer that overflows. The value to give
to the function pointer is then the address of this buffer.

Contrary to what usually happens when a return address is overwritten,
there can be much time elapsed between the moment at which the function is

21

ESP ESP+8

ESP+4 Bottom of
\p the stack
RA | P1| P2
Lower Higher
addressses addresse

Figure 9: Stack at the beginning of the execution of a function

overwritten and the moment at which it is used. This can play against the
attacker since an overflow often has to overwrite important variables before it
reaches the targeted function pointer. For the attack to succeed, it is necessary
that using of these variables does not make the program crash or modify the
injected code or data.

3.3.4 Copying and Executing Arbitrary Code With a Double Return

The technique presented here is described in detail in [Woj98]. In [Ale96] and
[Sol97a], the authors give more information about some ideas that it uses. This
technique is a particular case of the overwrite of a return address that was
presented in Section 3.3.1. Here, instead of returning directly to the address
where the code to execute is located, the execution first returns to a function
which copies the code to execute elsewhere in memory and then returns to the
new copy of the code.

The first question that comes to mind is why one would want to copy some
code already in memory before executing it? The answer is that some part of
the memory can be non-executable. For instance, some operating systems do
not allow code to be executed on the stack. The technique presented here allows
an attacker to copy his code, already injected on the stack, to the heap.

To understand how it works, it is important to remember the organization of
the stack when a function begins its execution. Figure 9 shows this organization.

Usually, the calling function first pushes the parameters, then it gives control
to the called function at the same time that it pushes the return address with
the call instruction.

Here, instead, it is a ret instruction that is used to call a function able to
copy some code, strcpy() for instance, that will be called. Right before this
instruction is executed, the stack thus has to look like Figure 10. Thus CA
must overwrite the old RA, the new RA must overwrite the old P1, the new P1
must overwrite the old P2, and the new P2 must overwrite the following value.

It is important to understand that in this figure, CA is the address of the
function that should be called, but for the function executing the ret instruc-
tion, it is also its new return address.

In theory, to copy some code and execute it, it is enough to use:

e as CA: the address of strcpy();

22

ESP ESP+8
ESP+4 | ESP+12 Bottom of
v N the stack

CA|RA| P1|P2

Lower Higher
addresses addresse

Figure 10: Stack before a “call through a ret”. CA represents the address of the
function that will be called, and RA represents the address where this function
will return when it terminates.

e as RA: the address of any memory area writable and executable;
e as P1: the same address as for RA;
e as P2: the address of the code to execute, which is already in memory.

For P2, there is no problem if the address does not contain any null byte. If
it does, it may be necessary to find some other location to hold the code. For
P1 and RA it is possible to choose just about any valid address from the heap
that does not have one null byte. This should be easy. It is important to note
that the heap is executable more often than not.

If it is so important to avoid null bytes, it is because buffer overflows are
often caused by the incorrect use of string-handling functions. If a null byte is
present in the string that tries to exploit a buffer overflow, the part of the string
after this null byte is ignored, and the overflow cannot be exploited correctly.

Things get more complicated with CA, which must take the address of
strcpy(). This is because, as a protection measure against attacks of this
kind, the patch from the Openwall Project [Sol02], which implements a non-
executable stack for Linux, also modifies the address at which the C library is
loaded in memory so that it is always under 0100000016. This way, all addresses
pointing to functions in the C library contain at least one null byte and it is not
possible to use them when the overflow is produced using a function handling
strings.

Fortunately (or unfortunately, depending on the point of view) it is possible
to work around this protection. Indeed, while the C library can be loaded at
addresses that all have at least a null byte, it is not the case for the main
program, which is usually loaded at addresses with the most significant byte
equal to 8. Both code and data of the program are loaded there. A part of the
code of the program makes up the Procedure Linking Table, or PLT.

To understand the role of the PLT, it is necessary to know how linking is
done with shared libraries under Linux. When a program has a reference to a
symbol in a shared library, it is not resolved at compile time, but at run time.
Indeed, when a program makes a call to a function in a shared library, the linker
does not know in advance where in memory the library will be loaded, much
less the position of the function within the library. It thus creates an entry in

23

the PLT for this function. Table 11 outlines how a function in a shared library
is called.

This example demonstrates that it is possible to call a function of the C
library without pointing to it directly. Using the PLT makes it possible to
avoid working with null bytes. To have an entry in the PLT, a function of the
C library only has to be called once, no matter where in the program.

The function strcpy () is not the only one that can be used to copy code
from some place to another. strncpy(), sprintf (), wescpy() and memmove ()
are only some of the functions of the C library that can be used to that effect.

To summarize this section, we saw a technique allowing the execution of ar-
bitrary code even in the presence of two protection mechanisms (non-executable
stack and modification of the address of the C library) against this kind of at-
tack. These two mechanisms will be presented in more detail in Section 4.

3.3.5 Overwriting a Pointer and then the Structures of atexit()

The technique presented in this section is explained in more detail with other
similar ones in [BK00]. Here the goal is to exploit a program even when the
return address is protected against overwrite. Section 4 describes methods pre-
venting or allowing detection of the overwrite of return addresses. The tech-
nique presented in Section 3.3.1 cannot be used in these situations. We saw
in Section 3.3.3 that it was often possible to overwrite a function pointer. The
technique presented here is an extension of this technique when a buffer overflow
does not allow overwriting a function pointer, but rather a data pointer.

Many conditions must be met so that this technique can be used successfully
by an attacker.

e There must be a buffer overflow.
e It must be possible to overwrite a pointer with the overflow.

e The pointer must be used as the destination of a copy operation after the
overflow.

e The pointer must not be initialized between the overflow and the copy
operation.

e The attacker must have control over data that are copied.

The program presented in Table 12 meets all these conditions. It cer-
tainly does not look like a real program. One would rather say it is devised
specifically to be exploited! It indeed is, so that the working of the attack is
clearer. In [BKO00], the authors show more convincing examples of vulnerable
programs. We observe that just about anything can happen between strcpy ()
and strncpy (), provided that p is not modified. It is also important to notice
that strcpy() can be replaced by any function causing the overflow of buffer
and that strncpy() can be replaced by any copy function.

24

This is the code corresponding to the call of function strcpy() of
the C library when it is linked as a shared library:

0x80483f9 <main+9>: push $0x8048474
0x80483fe <main+14>: push $0x80495c0
0x8048403 <main+19>: call 0x8048300 <strcpy>

We observe that the call is not made directly to the C library, but
rather in the PLT:

0x8048300 <strcpy>: Jjmp *0x8049584
0x8048306 <strcpy+6>: push $0x18
0x804830b <strcpy+11>: jmp 0x80482c0 <_init+40>

If we look at the value present at address 0x08049584, we notice
that it corresponds to the address of the next instruction, the push.
This value is part of a table called GOT, for Global Offset Table.

0x8049584 <_GLOBAL_OFFSET_TABLE_+24>: 0x08048306

The next jmp instruction gives the control to the dynamic linker.
The dynamic linker then resolves the address of strcpy() and it
saves this value in the GOT.

0x8049584 <_GLOBAL_OFFSET_TABLE_+24>: 0x001a4120

This way, on the next call to strcpy () via the PLT, the first jmp
instruction will give the control directly to the C library, rather
than to the dynamic linker.

We can also observe that Linux has the non-executable stack patch
from the Openwall Project applied because the most significant
byte of the address is 0.

Table 11: Function call in a shared library

25

#include <string.h>
int main(int n, char *xargv)
{
char *p;
char buffer[20];
p = buffer;
strcpy(p, argv[i]);

strncpy(p, argv[2], sizeof(buffer));

return O;

Table 12: Program allowing the overwrite of a pointer

The attack is carried out in two steps. Initially, the buffer overflow allows
overwriting the pointer. It is given the value of the address of a function pointer.
Then, in a copy operation, the function pointer is overwritten to point to the
code of the caller.

For the first step, it is necessary to know the address of a function pointer
to be used later. In [BKO0O], the authors suggest to overwrite a function pointer
in the structures used by the function atexit(), among other things. This
function allows the execution of other functions at the time the program ter-
minates. Overwriting a function pointer stored in its internal structures thus
makes it possible to execute additional code, provided the program terminates
normally. It is useful to know that two functions are registered automatically
at the beginning of a program, one to clean up the main program, and another
one to clean up the C library.

In [BKO00], the variable fnlist is used to find the position of the structure in
memory. It has been replaced by variable initial in glibe, but it is not visible
since it is not exported. It is however possible to find its address by following the
execution of atexit() and comparing it to the source code of glibc. Table 13
explains how this is done.

When the pointer that will be overwritten is identified, it is with its address
that the pointer used as a destination in a subsequent copy operation is over-
written. The arrow labeled 1° in Figure 11 indicates the expected result after
this step.

For the second step, the pointer just overwritten is used again as the des-
tination of a copy operation. Here, even if the program checks the bounds, it

26

First, it is necessary to identify the code that accesses this struc-
ture. It is __exit_funcs that contains a pointer to initial at the
beginning of the execution of the program.

0x4004cf7a <__cxa_atexit+122>: mov

0x4004cf80 <__cxa_atexit+128>:

0x8c0 (%ebx) , heax

mov (heax) ,%hesi

At this point, eax contains the address of __exit_funcs and esi
contains the address of initial, which are as follows (the text
following (gdb) is a command to the debugger gdb):

(gdb) info reg eax esi
eax 0x40134d1c
esi 0x40139e40

1075006748
1075027520

The content of the first 10 words of initial is:

(gdb) x/10
0x40139e40
0x40139e48
0x40139e50
0x40139e58
0x40139e60

The goal is

$esi

<errno+928>:
<errno+936>:
<errno+944>:
<errno+952>:
<errno+960>:

to overwrite the pointer at 0x40139e40 + 12 (i.e

0x00000000
0x00000004
0x00000000
0x00000004
0x00000000

0x00000002
0x40009e50
0x00000000
0x08048500
0x00000000

0x40009e50) or 0x40139e40 + 28 (i.e. 0x08048500).

Table 13: Address of the structures used by atexit ()

27

Bottom of

Stack the stack
Buffer - . «|Dest| - - /| RA Caller frame
\ ! . Higher
\ l_ 1 addresse
L o
2° |
LV

atexit() structure... (FP)

Heap

Figure 11: Before overwriting the function pointer FP, the destination pointer
of a copy operation (Dest) must first be overwritten. The arrows represent
pointers. In this figure, the attacker code is located in the buffer that is being
overflowed.

does not prevent the exploitation since only 4 bytes have to be copied. This
is because the pointer does not point to what it should anymore. The arrow
labeled 2° in Figure 11 shows the result of this operation. The data source for
the copy of course has to be under the control of the attacker so that he can
give an arbitrary value to the function pointer.

To summarize this section, we saw an attack allowing bypassing another
protection mechanism against buffer overflows. Even though this kind of attack
is not applicable to all programs, it demonstrates that the protection technique
is not infallible.

3.3.6 Other Targets to Execute Arbitrary Code

There are many other targets that can be overwritten to execute arbitrary code.
Some of them are presented here summarily with references to more information
about them.

Overwriting the vtable pointer In C++, the addresses of the virtual meth-
ods of a class are stored in a table called vtable and a pointer to this table is
present in each instance of the class. It is often possible to overwrite this pointer
so that it points to a table created by the attacker, who can then execute any-
thing he wants when a virtual method is called.

This technique is described in [rix00]. This article also gives an example
where the attacked program continues its execution normally after the attack
ends.

Overwriting a jmp_buf In [Con99], the author suggests an alternative to
overwriting a function pointer. It consists in overwriting the instruction pointer
that is stored in a jmp_buf. This structure is used by the functions setjmp()

28

and longjmp() of the C library. The structure makes it possible to memorize
part of the state of a program, including the stack pointer and the instruction
pointer, and to go back to this state later. They are mostly used in error
handling.

Overwriting a pointer and then a return address In [BKO00], the authors
present an alternative to the technique mentioned in Section 3.3.5. Instead of
overwriting a function pointer used by atexit(), it is possible to overwrite
directly the return address of a function. The idea is that if the overwrite
is targeted directly at the return address instead of starting in a buffer, the
StackGuard compiler will not detect it. It is important to note that at least one
version of this compiler is immune to this kind of attack [Imm00]. Section 4
gives more details on how StackGuard works.

Overwriting a pointer and then the GOT Still in [BK00], yet another
alternative is explained. This one requires about the same conditions as the
other two to be applicable, but it has the feature of allowing bypassing the
protection mechanisms of StackGuard, Stack Shield, and the patch preventing
execution of code on the stack all at the same time.

It is done by overwriting the entry of the GOT corresponding to a function of
the C library that is called right after the operation that causes the overflow. A
pointer to the attacker’s code is placed in the GOT and is immediately followed
by this code. Everything is thus copied in one step.

Overwriting the pointer __exit_funcs In [Bou00], the author notices that it
is sometimes possible to overwrite the pointer to the structure used by atexit ()
when the C library is linked statically. He explains that this structure matches
perfectly with the one used by the operating system to pass arguments to a
program. It is however important to know that the structure used by atexit ()
in glibc is different from the one described in [Bou00], and that this technique
is thus probably not applicable under Linux. What is described in the article
comes from the BSD world.

Overwriting the structures of malloc() and then anything Most
malloc () implementations store management information about allocated mem-
ory blocks in-band, that is consecutive to a memory block. Among this infor-
mation are pointers to implement a double linked list of memory blocks. In
[Ano01], it is explained that since these pointers are stored in-band, they can
be overwritten when a buffer overflow is possible in the heap. By choosing care-
fully the values used to corrupt pointers of the double linked list it is possible to
trick a call to free() into overwriting an arbitrary location with an arbitrary
value. Thus, the location overwritten can be any target that we have seen in
this section, which can lead to execution of arbitrary code.

29

3.4 Other Types of Attack

In this section, we describe summarily certain types of attack that, while not
allowing the execution of arbitrary code, are often as dangerous as the ones
allowing it. Indeed, most programs contain much code that can be used mali-
ciously. The following techniques explain how this code can be exploited.

3.4.1 Returning in the C Library

In [Sol97a], the author details a technique allowing to defeat the protection
offered by his own patch (now part of the Openwall Project) preventing the
execution of code on the stack. We mentioned it in Section 3.3.4. It works by
modifying the return address so that it points to a function of the C library
instead of the stack as in Section 3.3.1. The words following the return ad-
dress on the stack are also modified so that the function can see “interesting”
parameters.

The most common use of this technique is to execute a shell (/bin/sh) using
system(). This can be done without having to inject "/bin/sh" in memory
since the C library already contains this string. The execution of a shell allows
an attacker to do just about anything he can imagine thereafter.

The article also mentions it is possible to call two functions in a row when
the first one takes only one parameter.

It also explains a protection mechanism against this kind of attack, which
consists in loading libraries at addresses with null bytes. This mechanism is
explained in Section 4, but it is also mentioned in Section 3.3.4, which explains
a technique that can defeat it.

3.4.2 Returning in the PLT, Overwriting the GOT and Returning
to system()

In [Wo0j98], the author explains another way to exploit a program protected by
the patch from the Openwall Project preventing the execution of code on the
stack. Contrary to the technique explained in the previous section, this one
works when the C library is loaded at an address containing a null byte. Con-
trary to the one presented in section 3.3.4, this one also works if the data areas
are not executable either. On the other hand, it does not allow the execution
of arbitrary code.

The technique consists in modifying the return address and the word follow-
ing it so that the execution will return two times in a row in the PLT for the call
of strcpy(). This way, null bytes in addresses of the C library are avoided. In
the first call (or rather the first return), the source pointer (second parameter)
points to a file name. This file name ends with the address of system() in the C
library. The destination pointer is the address of the GOT entry for strcpy ()
adjusted so that it is overwritten by the address of system(), which is at the
end of the file name to be copied.

In the second call (or return!) it is thus system() that is called instead of
strcpy (). Its only parameter is the name of the file to be executed, which the

30

attacker took care to place in a temporary directory before the attack.

One could wonder why would one want to return two times in a row in such
a complex way to finally call system()? Why not call system() directly by way
of its PLT entry? The problem with this is that the program to be exploited
may not use system(), and thus may not have a PLT entry for system(). On
the other hand, this function is always present in the shared C library.

Another question could be how is it possible to put an address with a null
byte in the file name, but not directly as a return address? This is because the
most significant byte is the null one, and it is the last one on a little-endian
processor. Since a parameter has to be placed after the return address, it is
generally not possible to overwrite the return address with an address containing
a null byte. Since nothing has to be added after the file name, it can end with
a null byte.

Overwriting a pointer, and then the GOT to call system() In [BK00],
the authors explain another technique allowing bypassing many protection mech-
anisms against buffer overflows. As in Section 3.3.6, many conditions have to
be met so that this technique is applicable. It consists in overwriting the des-
tination pointer of a copy operation, and then overwriting the GOT entry of a
function called right after with the address of system(). This function has to
take as parameter a string, which the attacker must control so he can decide
what he wants to execute.

3.5 Published Exploits

Very often, when a buffer overflow vulnerability is discovered and published, a
program to exploit it is published at the same time or not long afterward. Thus,
there are now hundreds of publicly available exploits for buffer overflow vulnera-
bilities, which can be used as examples to build exploits for new vulnerabilities.
Here are just a few of them [cla05, Fra0l, Kae01].

4 Avoiding Vulnerabilities

There are many different solutions to avoid buffer overflow vulnerabilities. They
differ mainly by:

e doing their work before the program is run, at run time, or both;

e requiring changes in the source code, the compiler or the operating system;

being ad hoc or based on formal methods;

e avoiding overflows or only some consequence of them;

possibly giving false negatives or false positives;

adding a large run-time overhead or not.

31

This section talks about all the different techniques available, no matter how
they are classified and whether they are efficient or not.

4.1 Solving the Problem at the Source

When a program is correct, without bugs, it does not have vulnerabilities such
as buffer overflows. Experience shows that it would be unrealistic to expect
programmers to write bug-free code. With languages such as C, it is easy
to do something incorrect [CWP100, Fry00, Wag00]. New vulnerabilities are
discovered almost every day in different software. We are thus looking for more
automated ways of finding or avoiding vulnerabilities.

4.1.1 Using an Immunized Language

Some languages, such as Java, are immune against buffer overflows. Even so,
there can be unwanted consequences to an attempt to access elements outside
the bounds of a buffer. Some approaches that we will see in this section can
thus be useful even for languages that are immune against buffer overflows. For
example, the program Wasp uses static analysis to detect accesses outside the
bounds of arrays in Java programs.

Moreover, it is not always possible to use a language other than C. For
instance, the choice of a programming language is often very limited when it
comes to writing operating system modules. There are also hundreds of millions
of lines of C code in existing software and it would not be realistic to rewrite
all of them in another language [CWPT00, GBPAIHQ 02, Whe01].

There is also a dialect of the C language, called Cyclone [Cyc02], that was
specially designed to avoid some problems such as buffer overflows. Despite its
apparent similarity with the C language, it is in fact a different language and
existing C programs cannot simply be recompiled to benefit from its advantages.

4.1.2 Protecting Sensitive Memory Areas

This section is based on [COR02, CPM198, Cow00, Woj98].

In a program, some data are more sensitive than others, thus greater care
could be taken to protect them. In particular, some data described in Section 3,
those that can be used to exploit buffer overflows, could be considered sensitive.

Almost all processors that support virtual memory offer page-level protection
against memory overwrite. It is possible to place on a given page only data that
have to be protected. Once they are initialized, the operating system is asked
to disallow write access to the whole page. If the data have to be modified
later by the program, the operating system must first be notified before they
can be modified. After, the read only status is restored by calling the operating
system again. Data are thus protected against any unintentional modification
by the program. For example, it is protected against a buffer overflow in the
page preceding the one containing sensitive data. This way, many attacks can
be stopped.

32

Performance is usually not impacted too much by this technique because it
requires only two system calls to modify an arbitrary amount of data. However,
it would be very much impacted if modifications were frequent and could not
be grouped together.

Everything needed to implement this technique is already present in modern
operating systems. No modification has to be done on compilers. However, the
program must be modified to indicate its intents. For this reason, this technique
is usually applied only to data that are really sensitive and that are not modified
often.

Here is a non-exhaustive list of objects that are interesting to protect. Pro-
tecting those that are not directly under the control of a program would require
modifications to the compiler or system libraries.

e Security related variables (authentication, rights descriptions, ...)

Pointers

e Return addresses

Saved frame pointers

Global Offset Table (GOT)
e Virtual function pointer table

e atexit () function pointer table

In addition, the code of applications is usually protected by default against
overwriting on most operating systems. This is to allow more efficient sharing of
code segments between applications that use, say, a common library. Moreover,
when the operating system is running out of memory, it can easily decide to drop
a code page without first writing it to swap space since it can always retrieve it
directly from the original file.

Even if the protection of sensitive memory areas has the potential to con-
siderably reduce the consequences of buffer overflows, it cannot prevent them
directly. The difficulty in protecting sensitive areas is to identify them all cor-
rectly. It not only requires deep knowledge about the program that must be
protected, but also the operating system, the compiler, the runtime environ-
ment, and all libraries it uses.

4.1.3 Using Safer Library Functions

We saw in Section 2.3 that some of the functions of the C library expose an
interface that makes it difficult to do bounds checking. Here are some alternate
functions that are easier to use safely.

33

strlepy() and strlcat() Functions strlcpy() and strlcat() are not stan-
dardized, but they offer an increasingly popular alternative to some functions
of the C library. They were created by the OpenBSD project, which has as its
prime goal the security of the operating system. These functions are consistent
in the sense that they always take the total length of the buffer as parameter,
they always end a string with a null character, and they always return the length
of the string that would result if there were no truncation. Under Linux, they
are most often available in the glib library under the names g_strlcpy() and
g-strlcat().

astring from libmib The library libmib contains a part called astring, which
offers an alternative to some functions of the C library. Instead of taking a
pointer to a buffer, this library asks for a pointer to a buffer pointer. This way,
the library can allocate a buffer of the right size and return to the program a
pointer to this buffer. This library is described in [Cav98].

4.2 Testing

It is certainly possible to discover problems caused by buffer overflow vulnera-
bilities by testing a program. However, it is often impossible to be sure that it
does not have these problems only by testing it. The tests it undergoes usually
concentrate on the parts for which it was well specified, while the source of
the vulnerabilities often comes from unexpected cases, those that were poorly
specified.

Even so, there are automated testing tools that can be useful to discover
some vulnerabilities in programs. For instance, in 1995, fuzz helped identifying
problems in the use of arrays and pointers in 24 programs from UNIX and its
derivatives [MKL195]. Fuzz generates random data as input for programs to
be tested.

4.2.1 Fault Injection

In [GOM98], the authors propose a slightly different approach. Instead of trying
to cause a buffer overflow while testing, the program is instrumented to simulate
buffer overflows. The program is then monitored for unsafe behaviors. If an
unsafe behavior is detected after a simulated overflow at some location in the
program, it means that special care must be taken to ensure that there is no
overflow at this location.

This approach is not very useful in practice since it never detects overflows, it
never suggests possible fixes, and the program must be instrumented manually,

4.3 Modifications to the Compiler and its Supporting Li-
braries

Attacks using buffer overflows exploit the knowledge of the inner workings of
a program generated by a compiler. Without modifying the C language, it is

34

possible to modify the structure of the code generated by the compiler in such
a way that buffer overflows are avoided or cannot be exploited. This section
describes some possibilities.

4.3.1 Protecting Return Addresses

When a buffer overflow is possible on the stack, the easiest target for an attacker
is certainly the return address. It is always present and it is (almost) always used
at the end of a function. This explains why some compilers take special measures
to protect the return address of a function against overwriting. The different
protection methods discussed in this section are explained in [CPM™98, Imm00].

Using a canary One way to protect the return address is to place some value
called a canary® in memory right before it. Here we assume the stack grows
towards lower addresses, as it is often the case. When entering a function, a
canary is pushed on the stack. When exiting it, the value of the canary is
checked. If it changed, the return address might also have been modified and it
cannot be used. Thus the program is stopped.

We assume here that in order to overwrite the return address using a buffer
overflow, an attacker first has to overwrite the canary. To be efficient, the
protection mechanism must not allow the attacker to overwrite the canary with
the same value. For this, the canary can be chosen in many different ways.

It is possible to use a 32-bit word with the value 0; it is called a null canary.
String operations usually do not allow copying null characters. The overflow
would thus be stopped before it reaches the return address. A variant of this is
to use a value containing many terminating characters. For instance, in a 32-
bit word, it is possible to place characters “\0”, “\r”, “\n” and “\xff”. This
is called a terminator canary. It increases the odds that a copy operation is
stopped by the canary.

Another possibility is to use a random value that is generated at the start
of the program. This way an attacker cannot know in advance the value he has
to use to overwrite the canary. It is also possible to XOR a random canari with
the return address to improve security [Imm00].

The use of canaries was introduced by StackGuard and this protection mech-
anism was then replicated in other compilers such as Stack-Smashing Protector
(SSP) [EY00] and Visual C++ 7.0 when using option “/Gs” [RWMO02].

Using a different stack To prevent buffer overflows from overwriting re-
turn addresses, it is possible to place them on a stack distinct from the main
program stack. To avoid breaking calling conventions between functions, the
return address is copied to a different stack when entering a function and the
copy is used to check the value of the main stack just before returning to the
caller. This is the technique used by Stack Shield [Ven00] and Return Address
Defender (RAD) [CHO1].

5Welsh miners brought canaries in cages to detect hazardous conditions. When a canary
died, they knew they had to leave the mine.

35

Using assistance from the processor and the operating system The
use of a canary does not prevent overwriting return addresses, it only makes
it possible to detect the overwriting before it causes problems. With some
cooperation from the operating system, it is possible to detect all write accesses
to some memory location. This way, it is possible to stop the program as soon
as the return address is modified.

On Pentium processors and its successors of the IA-32 family, two function-
alities are available to detect a write access to a specific address. First, the
processor has four debug registers that can specify an address generating an
exception when it is read or written.

When these registers do not suffice, it is possible to make a page, which is
usually 4 kB, only available for reading. Every write access then generates an
exception and the operating system can check if it is a return address that is
about to be overwritten.

The compiler thus has to insert code at the beginning and at the end of each
function to inform the operating system to start and stop protecting a return
address.

Both techniques are very costly in execution time since they require a call
to the operating system, but the page-level protection has a much greater cost.
This is because a 4 kB page on the stack does not only contain return addresses,
but also parameters, local variables, and possibly arrays. Each write access
to one of these elements generates an exception and must be checked by the
operating system before it gives control back to the program. The use of debug
registers does not cause this problem, but does not allow protecting more than
four addresses at a time.

It is also StackGuard that introduced these protection techniques. To do
this, it uses some functionality added to Linux by MemGuard. The authors of
StackGuard have measured that protecting a real program using debug registers
increases its execution time by a factor of up to 11. For page-level protection,
the factor can reach 460. Since the slowdown of these techniques is much too
high, newer versions of StackGuard do not implement these techniques anymore.

4.3.2 Modifying the Order of Variables on the Stack

To obtain a better protection, it is possible to protect other important variables
in addition to return addresses. For instance, pointers are often an interesting
target in attacks exploiting buffer overflows. The C language allows compilers
to choose the ordering of the local variables of a function. A compiler can thus
change it so that pointers are placed before arrays. In this case, a buffer overflow
cannot overwrite a pointer in the same stack frame.

Pointers passed as parameters cannot be moved without breaking calling
conventions between functions, but they can be copied among local variables
when entering a function. This way the copy is protected against buffer overflows
and the original is ignored. Thus, it does not matter if it is overwritten.

It is the project Stack-Smashing Protector (SSP) that introduced the idea
of modifying the ordering of variables to increase protection [EY00]. However,

36

this approach cannot protect structures containing arrays and pointers since
the C language prohibits changing the ordering of elements in a structure. In
addition, it cannot protect pointers passed in variable arguments of a function
such as printf ().

4.3.3 Using an Alternate Implementation of Libraries

The libraries used by default on a system, for instance the C library, are of-
ten implemented to support some specification while being as fast as possible.
Sometimes it is possible to use an alternate version of these libraries that does
more checks than strictly required in order to detect the bad behaviors of a
program.

Replacing malloc() and its friends This section is based on [Per93].

It is possible to replace the functions handling memory allocation to help
detect buffer overflows. These functions are malloc(), free(), calloc(),
realloc() memalign() and valloc(). Memory can be allocated in such a way
that it coincides with the beginning or the end of a memory page. If memory
is allocated at the end of a page, the following page can be marked as inacces-
sible. This way, the processor signals a fault as soon as the program accesses
memory after the allocated area. When an error is detected, a debugger can
show precisely what instruction causes the overflow. If memory is allocated at
the beginning of a page, overflows before the area can be detected in the same
way.

There can be alignment problems in some cases if the size of memory to
allocate is not an integral multiple of the native word size of the processor.
Indeed, programs rightfully expect an aligned memory area, and the offsets in
this area are chosen with this in mind. Luckily, compilers usually add filling
bytes to structures to ensure that they are an integral multiple of the word size.
The allocated memory is thus usually aligned.

This technique cannot detect all overflows. For instance, if the block of
memory allocated corresponds to a structure, which in turn contains an array,
this array can overflow without detection if the memory block does not overflow.
Another disadvantage of this technique is that it requires much memory. Even
when only a few bytes are requested by the program, two whole pages are used,
one for data, the other as guard.

This technique is implemented in the library Electric Fence [Per93].

Replacing gets() and its friends This section is based on [Ale01, TSO01b,
Lib01, Sna97, Sna00, TS01a, Whe02b].

This section covers many functions of the C library. The goal is to avoid
the worst possible consequences for functions not taking the size of a buffer
as parameter. Among these functions, there is gets(), strcpy(), sprintf (),
sscanf (), and their variations.

More precisely, we want to protect return addresses and saved frame pointers
against overwriting. We saw in Section 3 that these addresses are often used as

37

a target in attacks exploiting buffer overflows. On the stack, the saved frame
pointers form a linked list that can be used to identify the location of return
addresses. They mark the limit between local variables and the parameters of
a function. No array can extend over these values. It is thus possible at run
time to check that these values are not crossed in an operation filling an array.
While it does not avoid overflows, many attacks are stopped.

This technique is implemented under Linux in a library called libsafe [TS01b)
which can be linked dynamically to programs. These programs do not have to
be recompiled to benefit from the protection of this library. Under FreeBSD,
the library libparanoia [Sna00] offers a similar protection.

This technique could also be used for functions to which the size of a buffer is
passed to validate if it is plausible, but usually we trust a program that bothers
passing the size of buffers.

This approach has its limits. First, it does not detect overflows in a general
way, it only protects some special values on the stack. We saw in Section 3 that
other values could be used as targets in an attack. Moreover, this technique does
not offer any protection if a program is compiled without using frame pointers
(-fomit-frame-pointer). It cannot do anything against overflows on the heap.
In addition, the alternate libraries are not compatible with compilers using a
different stack frame format, such as StackGuard.

4.3.4 Stack Growing Towards Higher Addresses

We saw that with most operating systems and most processors, the stack grows
towards lower addresses. When the stack grows towards higher addresses, it
is impossible to exploit a buffer overflow at the top of the stack since there
is no data after this buffer. There are processors on which the stack grows
natively towards higher addresses, and others supporting a stack growing in
either direction. For example, VAX computers had a stack growing towards
higher addresses [KS02].

Even if the stack grows towards higher addresses, it is still possible to exploit
a buffer overflow that is not at the top of the stack. In particular, a buffer defined
among the local variables of the caller of the current function can overflow and
overwrite the return address of the current function. Figure 12 shows what
happens.

Although a stack growing towards higher addresses prevents the exploitation
of some overflows, its efficiency is limited. Moreover, implementing a stack
growing towards higher addresses on a processor not supporting it natively
would not be as fast. For these reasons, this approach is rarely used.

4.3.5 Protecting All Pointers from Overwrite

In [CBJWO3], the authors explain that it is possible to protect all the pointers
of a program, including return addresses, by encrypting them. Encryption is
simply XOR with a secret key randomly chosen at the start of the program.
Pointers are decrypted only when they are loaded into a register of the CPU.

38

Bottom of Top of
the stack the stack
Frame of the Frame of

- calling function — strepy() ——>
destination| src | dest| R| local
buffer ptr | ptr | A] space

Lower accessible Higher
addresses <— after an addresse
overflow

Figure 12: Overflow on a stack growing towards higher addresses. A function
called strcpy () and passed it a pointer to a local buffer. If there is an overflow,
the return address can be overwritten, as we saw in Section 3.3.1. The attack
happens “faster” than with a stack growing towards lower addresses since the
return to the attacker’s code is made as soon as strcpy() returns.

When it is in a register, a pointer is safe since registers cannot be overwritten
by a buffer overflow. A pointer can be overwritten in main memory, but since it
will be decrypted before it is used, the attacker cannot control to which address
it will point. Thus, this protection technique does not stop buffer overflows, but
it tries to prevent their exploitation.

In [PLO2], the main idea is the same, but it is applied only to function
pointers, thus data pointers are not protected.

4.3.6 Run-Time Bounds Checking

The C and C++ languages allow the use of pointers in contexts completely
disconnected from the declarations to which they refer. It renders run-time
bounds checking very difficult for a compiler. For instance, a function can take
as input a pointer to an integer. At run time, this integer can be a single variable
or an element of an array. In the former case, arithmetic on this pointer leads
to an undefined result, but in the latter case, the result is well defined as long
as the pointer stays inside the referred array.

However that may be, the specification of these languages does not make it
completely impossible to do bounds checking. It describes behaviors that have
a well-defined result and others that have an undefined one. A compiler can
thus be more or less restrictive on operations allowed on an array at run time.

Tracking buffers and checking arguments to library functions In
[LCO02], the authors explain a way to verify that library functions work on buffers
that are large enough for the work they are requested to do. For this, the com-
piler must be modified so that information about static and automatic buffers
is available at run time. Usually, this information, which is available during
compilation, is kept only for debugging purpose and it cannot be seen by the
application. Information about dynamically allocated memory is also made
available by intercepting calls to malloc() and free().

39

Calls to functions of the C library that are considered dangerous are also
intercepted. With all the information from the compiler and from dynamic
memory allocations, it is possible to check if a buffer given as parameter will
overflow or not. In case of an overflow, the program can be aborted. If no
overflow is possible, the real function is called. This approach can only detect
overflows that would happen in library functions.

Tracking buffers and looking for possible overflows In [HB03], the au-
thors present an approach that has a lot in common with the previous one.
Instead of targeting the deployed version of the program, they target versions
built for testing. They define interesting functions as the ones that can produce
a buffer overflow. The main difference with the previous approach is that when
an interesting function is called, the size of the destination buffer is compared
to the size of the source buffer instead of the size of actual data. If it is smaller,
a warning is logged even if there is no overflow for this particular call.

With this technique, there is no need to try triggering buffer overflows during
testing, the important thing is that each interesting function gets called from
all of its call sites in the program. This is called interesting function coverage.
The drawback is that there can be many false positives.

Using bounded pointers This section is based on [ABS94, Jon95, JK97,
McG98a, McG98b, McG99].

Pointers in C and C++ are usually represented by the address to which they
point. This representation allows for the best possible performance since it can
be used directly by the processor. However, it is not the only representation
allowed by the language. Compilers can use any possible representation, as long
as it does not violate the language specification.

In particular, a pointer can be represented by a tuple <address, base, limit>.
Here, address is the address of the pointed variable, base is the address of the
first element of the array and limit is the address of the end of the array, after
the last element. This is called a bounded (or fat) pointer. If there is a pointer
to a variable of type T', which is not part of an array, we have:

address = base = limit — sizeof(T)

When the address of an element of an array is initially generated, the compiler
can always identify the beginning and the end of the array. Thus, it can also
give the right value to the three fields of the pointer. Thereafter, no matter if
the pointer is passed as parameter or returned by a function, the base and the
limit of the array follow the pointer. When arithmetic operations are computed
on a pointer, the compiler can check efficiently if the pointer respects the bounds
of the object to which it points.

However, this technique has some disadvantages. First, many programs
assume it is possible to put a pointer in an int variable. When pointers are
represented by a tuple of 3 addresses, it is obviously not the case. Nevertheless,

40

these programs do not respect the language specification, and thus it is sensible
to expect that they will not benefit from bounds checking.

Another disadvantage to the change of pointer representation is related to
compatibility. If two compilers simply use the address as the pointer represen-
tation, the code generated by them can be linked together without problem.
If they use a different representation, the code cannot be linked. In this case,
an adaptation layer must be used to convert one representation to the other.
The advantages of bounded pointers are lost. Moreover, passing as parameter
a pointer to a pointer might not even work correctly. Libraries available only
as binary code are thus more difficult to use. It is easier when the source code
is available since they can be rebuilt.

The use of bounded pointers also has impacts on performance. This is un-
derstandable since the pointers are three times larger and bounds checking also
takes a significant amount of time. The performance penalty is about 50%
for well-optimized implementations of bounds checking using bounded pointers,
and up to 200% otherwise.

There is an extension to GCC implementing this approach [McG00]. Another
implementation stores yet more information in the pointer in order to detect
all possible spatial and temporal memory access errors [ABS94]. Yet another
implementation [XDS04] tries to be more efficient. It adds information about
run-time types but it introduces some optimizations to disable bounded pointers
when it is safe. However, it cannot handle all C programs.

Encoding integers and bounded pointers In [OSSY02], the authors ex-
plain how they changed the representation of integers and bounded pointers in
order to allow casts between integers and pointers without losing information.
Information about run-time types is kept and encoded pointers have a flag that
indicates if their static type is the same as the run-time type of the memory
they point to. The notion of virtual offset is introduced to improve compatibility
with code that assumes that pointers and integers are 32-bit wide. A garbage
collector is used to make sure no dangling pointer capture another object at the
same location.

Decoupling bounds checking In [PF97], the authors suggest a way to de-
crease the cost of run-time bounds checking. Their idea is to use a second
processor, which would be idle otherwise. To that end, a second, customized
version of the program is created. Some kind of bounded pointer is used, but
everything that is not related to bounds checking is removed from the program.

At run time, there are two processes for a program, the main process does the
real work and the shadow process runs the customized version of the program
to detect overflows. For events that cannot be reproduced such as user input,
the shadow process must be informed of the result by the main process. It is
important to note that this technique does not prevent buffer overflows, and
does not stop attacks. It merely detects overflows.

41

Let us consider the following C code (which is correct).

int i[10];

int *p = i;

int *q;

memcpy (&q, &p, sizeof(int *));
ptt;
If pointers are represented by descriptors, the result is incorrect
because both pointers use the same pointer descriptor and both
are incremented when only p should be.

Table 14: Problem with the representation of pointers with descriptors

Representing pointers using descriptors If the size of pointers cannot be
changed, it is possible to represent them with a descriptor which is the index of
an entry in a pointer table. This table can then contain bounded pointers, as
they are defined in Section 4.3.6.

When a pointer is modified, for instance by incrementing it, its representa-
tion is unaltered, only the entry in the table is changed. Two different pointers
cannot share the same descriptor. If it were allowed, incrementing one of them
would also increment the other one, something we do not want. When a pointer
is copied, its entry in the descriptor table is thus copied to the entry of the
destination variable.

This approach has an important problem. The C language allows to copy
pointers in many ways, and compilers cannot intercept them all. For the code
presented in Table 14, the compiler cannot produce a correct program if pointers
are represented by descriptors.

The use of memcpy () and all other functions that copy memory must thus be
banned for copying a pointer. The C++ language also has this kind of restriction
for copying objects (struct or class). This is because objects can have a
complex copy semantic defined by the copy operator and the copy constructor.
Pointers represented by descriptors are thus more like C++ objects than a
primitive data type.

This approach for bounds checking is usually rejected because it is not com-
patible with a significant proportion of correct programs.

Tracking allocated memory areas and pointers at run time This sec-
tion is mostly based on [Jon95, JK97].

A different approach to bounds checking is possible without modifying the
representation of pointers. For this, it is necessary to keep, at run time, the
definition of all allocated objects (memory areas). They are indexed in such a

42

way that it is fast to find the object of which an address is part of. An object
can be static, dynamically allocated (malloc()) or on the stack. It corresponds
to a declaration. For instance, if one declares an array of structures, which in
turn contain arrays, then all of this is part of the same object. It is not possible
to divide the area in many objects without risking associating many possible
objects to one address.

Each operation on a pointer is modified to check if, after its application,
the pointer is still in the range of the original object. For example, before
incrementing a pointer, the object to which it points is noted, and after the
incrementation a check is performed to ensure the new pointer has not passed
the end of this object. If it has, it receives the special value ILLEGAL, which
is different from the NULL pointer. This value is not strictly necessary and the
program could be stopped as soon as it generates an illegal pointer. However,
it seems that many programs generate illegal pointers without ever using them.
The special value ILLEGAL thus allows stopping a program only when it uses
such a pointer.

For many operations using two pointers, both must point to locations that
are part of the same object, else the operation has no well-defined meaning.
This is the case for operators -, <, <=, > and >=. The compiler thus adds this
check and the program is also stopped if the pointers point to different objects.

The C language allows obtaining a pointer on the element immediately fol-
lowing the end of an array, even if it does not allow it to be dereferenced. This
can be used to check a termination condition of a loop. These pointers thus
cannot be represented by the value ILLEGAL. To avoid any ambiguity between a
pointer to the element following the end of an array and the first of the following
array, and to keep the accuracy of the checks, it is necessary to keep at least
one unallocated byte of memory between objects.

Before dereferencing a pointer, the compiler always checks that the value is
not ILLEGAL and that it is not after the end of the object.

Tracking objects at run time thus requires modifications to the allocation of
memory at many places. Two aspects must be taken into account. All objects
must be added to the global list of allocated objects when they are allocated, and
they must be removed when they are unallocated. In addition, there must be
at least one byte separating objects. This is easily done for dynamic allocations
by modifying malloc() and free(). For static allocation, the compiler must
be modified. For local variables, the most difficult is to correctly handle the
scope of variables. They must be added and removed from the list of objects
correctly, even when there are gotos. This is very similar to the handling of
constructors and destructors in C++.

It is more difficult to introduce an unallocated byte between function param-
eters without breaking the calling convention. Luckily, the case most susceptible
to lead to pointer arithmetic is when passing by value a structure containing an
array. This is not very common.

To handle parameters correctly, without modifying calling conventions, it is
possible to make a copy of local variables and use this copy instead of the param-
eter directly. This is the method described in [EY00] to protect against some

43

4

// The compiler
struct {

char c[4];
} s1[10];

‘sees’’ an object for sl

// and another one for s2
struct {

char c[4];

int 1i;
} s2;

int main()

{
// The accesses outside the bounds are not detected
// because they are still inside the right ‘‘object’’
s1[0].c[20] = 1;
s2.c[4] = 2;
return O;

}

Table 15: Object tracking at run time may not be enough for correct array
bounds checking.

buffer overflows. Obviously, this does not work when the number of arguments
accepted by a function is variable.

This approach to do array bounds checking has its limits. In fact, it does
not do array bounds checking, but object bounds checking. The program of
Table 15 exhibits cases where bounds checking is not done correctly.

This approach also considerably reduces the performance of programs. For
example, it has been implemented as an extension to GCC. Depending on the
program executed, the execution time can be multiplied by a factor of up to 50.

In [RLO4], the authors present another implementation of this approach.
To improve performance, they offer the option of checking only pointers to
characters. They believe security is not compromised by this. To improve
compatibility with existing code, they introduce out-of-bounds objects to replace
the value ILLEGAL. These objects allow tracking pointers that go outside the
bounds of the object they refer to.

Segmentation This section is based on [Int00, Jon95, KS02].

Intel processors of the [A-32 family offer a segmentation mechanism allowing
a fine division of data. Linux uses a memory model in which the application
does not care about segments. In particular, code and data segments usually

44

cover the whole address space. Nonetheless, it would be possible to define a
segment for each memory area. This way, results very similar to the ones of
Section 4.3.6 could be achieved, but with much better performances using help
from the processor.

Defining memory areas using segments requires modifications to the com-
piler. The operating system must also intervene since modifying a segment
descriptor is a privileged operation. Contrary to the tracking of objects at run
time, segmentation does not force keeping unused space between memory ar-
eas. However, the pointer representation must be modified to include a 16-bit
segment selector in addition to a 32-bit offset. Pointers must thus be made
larger. Another drawback of this approach is that it does not allow the use of
more than 16 384 segments at a time. For programs handling a large amount
of data, it is probably not enough. Thus, it would be important to reserve a
global descriptor for areas that cannot be represented by their own descriptor
while also allocating available descriptors “cleverly”.

If this technique does not permit the detection of all buffer overflows, it
ensures they are contained inside their area.

Keeping a memory map Another approach to do array bounds checking
consists in keeping a map of allocated memory. It is described in [Gin98, HJ91,
Jon95]. For each byte of memory used in a program, there is a corresponding
bit indicating if it is allocated or not. As is the case in Section 4.3.6, memory
allocation must be modified in the compiler and in malloc() and free() to
keep the memory map up to date. It is also possible to keep free memory blocks
between allocated areas to better detect overflows. They are called red-zones.
In particular, some parts of the stack, such as return addresses and saved frame
pointers, are considered red-zones because they are between the local variables
of a function and it parameters. This allow detection of attacks overwriting the
return address.

It is important to understand that this approach is less precise than the one
of Section 4.3.6. With the latter, we are sure that pointers do not jump from one
area to another one. Here, we only check that the pointers point to allocated
memory. Each instruction accessing memory is thus modified to check the bit
indicating if the memory is allocated or not.

This approach does not only allow the detection of unallocated memory, but
also uninitialized memory. This requires a second bit indicating whether a byte
is initialized or not. Thus, there are two bits for each byte, one to indicate
if it can be read and the other to indicate if it can be written to. Valgrind
implements this approach and can even detect the use of individual uninitialized
bits by keeping 8 initialization bits for each byte.

It is also possible to use this approach directly on the machine code of a
program when the source code is not available. The tools Purify and Valgrind
do this by modifying or interpreting the machine code that has to be checked.

This approach thus has the advantage of working with almost all existing
programs without any modification, but it does not permit the detection of all

45

buffer overflows. It also has a significant impact on the performance of programs.
Purify slows down execution time by a factor between 2 and 5. This kind of
tool is thus used mainly for debugging.

Checking unsafe pointers This section is based on [NMWO02, YHO03]. The
idea is to add bounds checking at run time, but only when static analysis cannot
prove that a memory access is safe. The two papers present different techniques
to achieve this end.

In [NMWO02] the authors explain how they used type inference to decide
whether a run time check is required or not. They describe their type system
and their type inference algorithm. They implemented it in CCured, a tool
that is free software. CCured always ignores explicit memory deallocation and
instead relies on a garbage collector to free memory.

In [YHO3], the authors explain that their idea is to check at run time whether
pointer dereferences always target appropriate locations or not. To minimize
the overhead, some static analysis is done during compilation and no run-time
check is added when it determines that a pointer is manipulated safely.

There are three steps to the static analysis. The first step is performing
a flow-insensitive points-to analysis. The result of this analysis is used in the
next two steps. The second step is identifying unsafe pointers. A pointer is
considered unsafe when it may refer to invalid memory at run time, when it is
dereferenced for writing and when it is passed as an argument to free(). The
third step is identifying tracked locations: variables that may be, at some point
during execution, an appropriate target of some unsafe pointer.

At run time, a mirror of the memory is used to tell whether some specific
byte of memory is an appropriate target of some unsafe pointer. There is one
bit in the mirror for every byte of memory. A location is marked as appropriate
at the time of its allocation during execution. It is marked as inappropriate at
the time of its deallocation. Before dereferencing an unsafe pointer or calling
free(), a check is made to ensure that the pointer points to an appropriate
location.

This approach as a lot in common with the one described in Section 4.3.6.
The key difference is that, with the help of static analysis, it is possible to remove
completely some run-time checks, and thus the overhead is smaller. Moreover,
since relatively few locations are tracked at run time, a memory access error (i.e.
pointing to the wrong location, whether appropriate or not) is more likely to be
detected because locations that are not tracked are never marked as appropriate.

Another difference is that the technique described in this section does not
check reads, only writes. For the tests that were done, the programs ran about
1.97 times slower on average when protected this way. This seems to be better
than what CCured achieves.

4.4 Modifications to the Operating System

An operating system can help countering some of the attacks exploiting buffer
overflows. It does so by changing the way it sets up virtual memory or the way

46

it handles special conditions.

4.4.1 Non-Executable Stack

This section is based on [Sol97b, Sol97a, Sol02, Woj98].

We already mentioned, for instance in Section 3.4.1, that it is possible to
have a non-executable stack. This prevents attacks in which the code to execute
is placed on the stack. It is important to note that the stack is the memory
zone used most often by attackers. On UNIX operating systems, environment
variables, arguments and all non-static local variables are on the stack.

The patch from the Openwall Project for Linux, which prevents execution of
code on the stack, is very specific to processors of the IA-32 family. It works by
breaking the symmetry in the definition of segments. Usually, under Linux, the
code, the data and the stack segments (CS, DS and SS) all give access to the
same memory. This patch changes the code segment so that it does not reach
the stack, which is at the end of the address space.

However, the use of a non-executable stack has its drawbacks. Some legit-
imate programs place code on the stack to execute it. For example, when one
uses an extension of GCC allowing definition of nested functions in C, the com-
piler must generate “trampolines” to allow the use of pointers to these nested
functions. A trampoline is code that allows a nested function to get access to
its context (local variables of the outer function). When a pointer to a nested
function is generated, the trampoline, and thus the code, is placed on the stack.
This mechanism does not work when the stack is not executable.

The patch is able to detect and emulate trampolines. A trampoline is de-
tected when the instruction transferring control to code on the stack is a call,
instead of a ret. If it is, a very limited number of instructions can be emulated
in the trampoline.

Another problem caused by the non-executable stack exists in signal han-
dling. When a signal is sent to a process, Linux places the code allowing return-
ing to the main program on the stack. This does not work when the stack is
non-executable. To solve this problem, the method used to return from a signal
handler is modified, but this modification is not visible to applications, only to
the kernel.

There are other programs that use the stack to place code. For instance,
programs written in a functional language often use the stack to execute code.
LISP and Objective C are two examples. Thus, there must be a mechanism to
deactivate the protection against execution of code on the stack if we want to
make these programs work correctly.

However that may be, preventing the execution of code on the stack does
not prevent any buffer overflow. In the best case it prevents some attacks, but
there are many ways to defeat this protection, as we have seen in Section 3.

47

4.4.2 Making Other Data Area Non-Executable

The material in this section is based on [Con99, dR03, Dup02, Mol03, Sta0l,
PaX00, PaX02, Woj01].

Arranging for data outside the stack to be non-executable is a bit more
difficult. The stack is at the end of the address space of the program, and it
is thus possible to shorten the code segment. However, data areas are usually
placed between two code segments. This would not cause any problem if the
processor allowed to mark each page individually as executable or not, but it
was not the case for processors of the IA-32 family until recently [Mol04].

However that may be, three different techniques can be used to obtain simi-
lar results on older processors of the family. The first one consists in exploiting
knowledge about the internal working of the processor. All processors support-
ing paging keep a small number of page entries in a cache memory to avoid
accessing main memory on every access to a page. This cache memory is called
translation look-aside buffer, or TLB. If the entry of a page is modified in main
memory, the entry of the TLB remains unaltered.

For all processors of the IA-32 family and their clones, the processor has
different TLB for code (ITLB) and data (DTLB). Although the two TLBs use
the same source for page entries, it is possible to have one loaded while the other
is not. The kernel of the operating system can also intercept the load of the
ITLB or DTLB by marking a page not available or not accessible by the user.
It can thus control precisely which pages are in the ITLB, and thus which ones
can be executed.

This approach is implemented by PaX, an extension of Linux. It slows down
a bit the execution of programs using many pages at a time, but usually, the
performance loss is only 5% to 8%.

The second technique uses the segmentation mechanism instead of paging.
This is the usual way to prevent execution of code on IA-32 processors. The
problem is that Linux programs are generally not aware of segments. They use
a memory model where the whole address space of a program, usually 3 giga-
bytes of virtual memory, is accessible from every segment without restriction.
When using segmentation to prevent data from being executed, it is necessary
to maintain the symmetry in the definition of the code and data segments so
that existing programs can execute properly, that is to say, any page of physical
memory must appear at the same offset in both segments. This means that a
page requires two different definitions since it can be accessible as data, and
not accessible as code. Defining two mappings for each page divides by two the
virtual memory of a process. Thus, programs using large memory-mapped files
can suffer from this technique.

Since this approach uses “real” functionalities of the processor to achieve its
result, we can expect the performance to be better. The performance loss is
indeed almost zero. It is implemented in kNoX and RSX.

In the third technique, the code segment is reduced in a way similar to
that described for the stack in Section 4.4.1. It is much simpler that what
PaX, kNoX or RSX do. However, for this to be effective, the executable code

48

has to be linked lower than data in the program address space. There is an
implementation of this approach for Linux called exec-shield and another one in
OpenBSD 3.4 called WX. The OpenBSD implementation does more work than
the Linux one to ensure that every data page is above the execution limit, and
thus, it is more secure.

As for the stack, preventing execution of code in other data areas does not
prevent any buffer overflow. It blocks some attacks, but it is possible to bypass
this protection [Woj01].

4.4.3 Changing the Location of Libraries

This section is based on [Sol97a, Wo0j98, Woj01].

Many attacks use the fact that a library is always at the same location in
memory. For example, the C library contains almost all the code an attacker
could want to execute. However, to use this code, he has to give control to the
exact location. Under Linux, it is possible to load a shared library anywhere in
memory since its code is position independent.

Null byte in the address The presence of a null byte in the address of a
library renders more difficult the attacks using the code of this library, such as
the one described in Section 3.4.1. Indeed, for this kind of attack, the address
of the function to call must be followed by its parameters on the stack. If the
return address contains a null character and it is copied using a function such
as strcpy (), the copy stops as soon as the null character is encountered and it
is not possible to give arbitrary parameters to the function.

This protection measure was implemented for the first time in the patch
from the Openwall Project, which prevents the execution of code on the stack.
It is also present in kNoX, a patch also preventing execution of other modifiable
data. The main program cannot be protected in this way because its code is
not position independent.

Random address Another manner to protect against these attacks is to load
the library at a random location. This approach is implemented in PaX. As for
addresses with null bytes, the main program cannot be moved. It is important
to note that there may be some ways for an attacker to discover at run time the
address of a library [Woj01].

4.4.4 Modifying the Stack Location

Many attacks need the exact or approximate address of some variables or buffer
on the stack. By randomly choosing the address at which the stack starts, it is
possible to defeat many of these attacks. This approach is explained in [Ket98|
with an example showing how this protection measure can be placed directly
in the code of a program. PaX implements this feature in the Linux kernel to
protect all programs without modification or recompilation [Woj01].

49

However, it does not offer an absolute protection since an attacker can try
every possibility until he finds the right one. There are also other kinds of
attacks that do not require the address of a variable on the stack.

4.4.5 Protecting Return Addresses on Sparc Processors

The techniques presented here have a lot in common with the ones of Sec-
tion 4.3.1. An important difference is that they are implementated in the oper-
ating system instead of the compiler. They are based on [FS01].

Sun Microsystem’s Sparc processor architecture implements function call
differently than most other processor architectures. From the application point
of view, each function sees 24 registers (the register window) of what appears to
be an infinit number of registers available for functions calls (input parameters,
local variables and output parameters). When a function is called the register
window is shifted so that output parameters become input parameters, and
new registers are available for output parameters and local variables. When a
function returns, the register window is shifted back so that the calling function
sees its own input registers, output registers and local variables again.

Obviously, the number of register is not infinit. It is in fact quite limited.
The operating system kernel must save registers on the stack in memory if
there is no register available for a function call. It must also load them back
from memory on a function return if the registers of the calling function are
no longer available. It is thus possible to modify the kernel so that it encrypts
registers (XOR) with a per-process secret key before saving them. Then they
are decrypted when loaded back.

Another possibility suggested is the implementation of a return address hash
table. Most registers are saved directly on the stack, but return addresses
receive a special treatment. They are saved in a hash table (indexed by the
frame address) together with a random number, which takes the place of return
addresses among saved registers. This allow better detection of attacks.

4.4.6 Protecting Return Addresses on Other Processors

For other processor architectures, which are not designed to allow the operating
system to protect return addresses, it is possible, at least in theory, to modify
them expressly to offer such protection without changing applications. This has
been suggested three times [MKSL03, PL04, XKPI02].

The idea is that the processor can keep a copy of return addresses in memory
that is not accessible to applications. It is called the secure return address stack
(SRAS). When a function returns, if the address in the main stack differs from
the address of the SRAS, the processor raises an exception and the operating
system can log an attack attempt.

With this approach, the compiler might have to be modified in order to
handle some kinds of non-local flow control. For example, exceptions and and
longjmp () require special considerations.

50

4.5 Run-time Checks

This section describes other dynamic techniques that do not prevent overflow
vulnerabilities but render them more difficult to exploit.

4.5.1 Principle of Least Privilege

It is possible to limit the consequences of possible buffer overflow vulnerability
by executing a program that presents some risk with reduced privileges. For
this, an unprivileged account of the operating system is often used to execute
the program, particularly when it offers services on the Internet. For example,
the Apache web server is often executed under an unprivileged account such as
nobody.

This approach is not a general solution to the problems caused by buffer
overflow vulnerabilities because it does not avoid them at all. It only prevents
them from making too much damage. Moreover, it is of no use for programs
that, by their nature, require some privileges to do their task.

Privilege elevation In [Pro03], the author explains how it is possible to
elevate an application’s privilege only for some system calls using a technique
that will be described in Section 4.5.3. This can be used to apply the principle
of least privilege.

4.5.2 Looking for Executable Code

In [TKO02], the authors present an approach designed to protect applications
offering services on the Internet, for example, web servers. Their idea is to
look for executable code among data received from a client. It is considered
normal to find some machine instruction in random data, but if the number of
consecutive executable instructions is unusually high, it could be the code of
an attack exploiting a buffer overflow. When it happens, the service can stop
processing the request. This technique is called abstract payload execution.

4.5.3 Monitoring System Calls

Another approach consists in scrutinizing the actions of a program and inter-
vening, for instance by stopping it, when it deviates from what it is supposed
to do. The idea is that an attacker cannot do most of the malicious actions
without making a system call’. Indeed, whether it is for reading or writing
a file, establishing or using a network connection or executing a program, the
operating system must intervene.

Protecting a program with this approach is achieved in two phases. In the
first one, a policy for the program is built. This policy represents the system
calls that are allowed for a program. The second one happens at run time. The
trace of the program is checked in real time for conformance to the policy.

6 A possible exception to this is the production of a denial of service by executing an infinite
loop not containing any system call.

o1

For example, Janus [GWTBY6], Subterfugue [Sub02] and syscalltrack [Sys02]
allow monitoring system calls and they make it possible to disallow some of
them. These tools provide a mechanism for monitoring programs, but no policy
telling whether a system call is acceptable or not. The next few sections discuss
different approaches to build such a policy.

4.5.4 Obtaining Allowed System Calls from Test Runs

A simple technique to generate a base policy is to monitor a program in order
to obtain the set of system calls it generates. This is suggested in [Pro03]. The
policy can then be refined by the user.

4.5.5 Creating a Specification Manually

In [SU99], the authors propose a language to define a specification of programs,
which they call regular expressions for events (REE). It deals with system calls as
well as their arguments and it incorporates variables. It is much more expressive
than regular expressions. This approach can allow a system call in a specific
context, but not in other contexts, someting that can improve security.

4.5.6 Automatic Learning of a Finite-State Automaton

In [SBDBO01], the authors describe an automatic learning algorithm that gener-
ate a finite-state automaton (FSA) from system call traces efficiently. The FSA
can then be used to monitor a program. Since the learning process cannot en-
sure the FSA is perfect, the monitor must implement some technique to ignore
isolated anomalies, otherwise the false-positive rate could be too high.

4.5.7 Creating a Model with Static Analysis

The ideas of this section are described in detail in [Wag00].

Instead of building a policy manually, empirically or from an external spec-
ification, it is proposed to build a model for the program automatically from
its source code The source code of a program is statically analyzed to find out
what system calls it should do at run time.

The model can be expressed in many different ways. It may represent a
program very roughly, very precisely, or anything in between.

A trivial model A very simple model for a program could be the set of all
system calls it can do. It has the advantage of being easy to check. For each
system call done at run time, we can check if it is part of the set of authorized
system calls. If it is not, the program can be stopped immediately. However,
this type of model is not very precise because it does not take into account the
ordering of system calls.

92

The callgraph model A more precise model can be built by considering
the control flow graph of the program. This graph indicates for each instruction
(node) of the program all its possible successors including those inside a function
that is possibly called. Some instructions correspond to a system call and others
do not. An instruction can have many successors, for example when there is an
if or a loop. A return from a function also has one successor for each place
from which the function is called.

From this graph, it is possible to build a nondeterministic finite automaton
where the alphabet is the set of system calls. This automaton accepts a sequence
of system calls if and only if there exists a path of the graph such that the
sequence of nodes corresponding to a system call matches the sequence of system
calls. We ignore nodes that do not make a system call.

When executing the program, we check if the sequence of system calls exe-
cuted by the program is accepted by the automaton. It is not necessarily the
case if the program is maliciously exploited. To do this verification, there is no
need to wait for the complete sequence. The automaton can be simulated while
the program runs and the program can be stopped as soon as the automaton
reaches state Wrong.

This model never generates a false positive, that is to say, it never gives
an indication that the program respects the model when it does not. The
automaton is built in such a way that all possible execution traces of the program
are covered. On the other hand, it also accepts many impossible traces. Indeed,
after a function call, it permits a return to a different location from the one
where the call originates. An attack that would follow one of these paths would
not be detected.

Abstract stack model It is possible to use a nondeterministic pushdown
automaton to obtain a more precise model. To that end, the stack of a pushdown
automaton is used to ensure that, when a function ends, it returns to a point
that matches the corresponding function call.

Even though it allows exploration of execution paths that do not match the
real one, we have the assurance that the real one is always among possible paths.
Thus, there can be no false positive.

This model, while much more precise than the one built with a finite au-
tomaton, is not perfect in the sense that it does not allow the detection of all
intrusions. A meticulous attacker could build an attack that makes system calls
in an order allowed by the automaton. Simulating a pushdown automaton is
also much less efficient that a finite automaton. Depending on the program
checked using this model, the overhead can be acceptable or not. For some
programs, this model adds many minutes and even hours to the running time
of the program that is checked for a single interactive action of the user. For
these, a more efficient model must be used.

Directed graph model Another possible model can be built by considering,
among all possible sequences of system calls, only windows of length k. A

93

directed graph can thus be built with nodes representing sequences of length
k —1, and edges (s182...8k—1,8283...5k) indicating that the program has at
least one trace containing the sequence siss ... sg.

Checking a program using this kind of model is very efficient, but the problem
is building the directed graph. The technique used by David Wagner is so
inefficient that it prevented experimenting with sequences of more than two
system calls. However that may be, this model can be interesting, particularly
if the window could be enlarged.

4.5.8 Monitoring Control Flow Transfers

In [KBAO2], the authors propose to monitor branches in programs instead of
system calls, they call it program shepherding. It cannot prevent buffer over-
flows, but it can stop attacks that try to exploit them by changing control flow
transfers. This can be done by interpreting a program instead of executing it na-
tively. It is then possible to reduce overhead to a minimum by using a dynamic
optimizer. This approach is implemented in a product called SecureCore.

4.6 Static Analysis

Static methods offer many advantages over dynamic ones. They allow obtaining
results that are true for all possible executions of a program. However, checking
whether a program can overflow its buffers is not only difficult, it is undecidable
for the general case. Thus, there will always be false positives or false negatives
for any program attempting to tell whether an arbitrary program can overflow
a buffer.

There are many approaches using static analysis. Some of them only detect
the overflows done by some functions, others detect overflows anywhere in the
code. Some do their analysis one function at a time, others analyze a complete
program. They can be distinguished by whether they produce false positives,
false negatives or both, as well as the frequency of false diagnostics.

4.6.1 Lexical Analysis

Lexical analysis is not very powerful, it only recognizes tokens in the source code
of a program. Analyzers using such an approach are looking for a sequence of
tokens that can pose problem. For example, an analyzer can check whether there
is a call to strcpy () and flag it unconditionally as a potential buffer overflow.
It does not try to see if this function is used safely or not, it only indicates to
the programmer that there may be a vulnerability and it incites him to check
if the code is correct.

Tools using these techniques have the advantage of being fast because the
analysis does not require many calculations. They usually give many false pos-
itives, that is to say they give indications that an overflow is possible when it is
not. Also, they can never ensure that no overflow is possible. For example, they
consider some functions as secure and they do not warn when they are not used

o4

correctly. In addition, they do not detect an overflow caused by a bad condition
in a loop.

The simplest tool to do lexical analysis is grep. It allows finding the lines
matching a regular expression in a text file. For example, the command grep
-n strcpy test.c finds all the lines of the file test.c that call the function
strcpy (), but also those having a comment or a string containing “strcpy”.
Thus it is not very precise and there are many false positives. This is why there
are tools trying to better filter the code most susceptible to cause problems.

Flawfinder, RATS, and I'TS4 are software tools performing a more powerful
lexical analysis to increase the precision of the results. Flawfinder [Whe02a)]
can detect potential buffer overflow problems, format string vulnerabilities, and
race conditions in C and C++ programs. RATS too can detect potential buffer
overflow problems, format string vulnerabilities, and race conditions in C, C++,
Perl, PHP and Python programs. ITS4 [VBKMO00] can detect potential buffer
overflow problems, format string vulnerabilities, race conditions, and bad uses
of functions generating pseudo-random numbers in C and C++ programs.

4.6.2 Annotation-Assisted Lightweight Static Checking

Evans and Larochelle [EL02, LEO1] explain a method allowing, among other
things, the detection of buffer overflows in C programs by using some kind of
lightweight static checking. Their method avoids interprocedural analysis with
the use of annotations, also called semantic comments, added by the programmer
to the prototype of the functions. These annotations form a kind of contract
for the behavior of a function. It is thus possible to check if the contract is
respected by any party independently of others.

To check if a function can cause an overflow, we assume the values received
as input respect the pre-conditions expressed in the annotations. Under these
conditions, it is often possible to verify that the code of the function ensures
the requirements that the post-conditions are met at the end of the function. If
it does not, the programmer is informed.

Where there is a function call, we verify that the parameters passed to the
function respect the pre-conditions and we assume that, after this point, the
post-conditions of the annotations are met. If a pre-condition is not satisfied
for a function call, the programmer is warned. Since the prototypes are equally
visible for the compilation of a function and for the compilation of all modules
calling it, we have the assurance that the analysis is correct, unless the anno-
tations are modified between the compilation of a function and the compilation
of its callers.

The tool doing this kind of analysis is called Splint and it is free software. Its
analysis is not limited to buffer overflows. It also recognizes annotations to check
the allocation and the deallocation of memory, format string vulnerabilities, and
the use of null pointers.

The main annotations that allow buffer overflow detection are the operators
maxSet and maxRead. maxSet (t) represents the maximal index of the array t
for which a value can be assigned, while maxRead (t) represents the maximal

99

void strcpy (char *sl1, char *s2)
/*@requires maxSet(sl) >= maxRead(s2) @*/
/*@ensures maxRead(sl) == maxRead (s2) @x/;

char * fgets (char *s, int n, FILE *stream)
/*@requires maxSet(s) >= (n -1); @*/
/*Q@ensures maxRead(s) <= (n -1) /\ maxRead(s) >= 0; 0x/;

Table 16: Some of the annotations used by Splint. Only some of the annotations
concerning buffer overflows are present to show the general principle. Operator
/\ represents conjunction.

index of array t that can be read. When used in a requires clause, they express
pre-conditions, while in an ensures clause, they express post-conditions. It is
also possible to use operators minSet and minRead that represent the minimal
index for an array, for assignment and for reading respectively. Table 16 shows
some annotations present by default in Splint.

To obtain useful results from Splint, it is not necessary to annotate all func-
tions. First, Splint has annotated declarations for the standard C library. It is
thus possible to find many overflows without adding any annotation. In addi-
tion, when there is no annotation, Splint uses default pre-conditions and post-
conditions. These default annotations are defined so that they match as many
functions as possible. It is thus possible to annotate only the functions for which
default annotations are not right. Moreover, since Splint does a lightweight
static analysis, and thus runs fast, we can run it once, modify some annota-
tions, run it again and repeat the procedure as many times as required, the
same way compilation errors are corrected with the help of the compiler.

The analysis done by Splint is neither sound nor complete. Indeed, it can
cause false positives and false negatives. Sometimes, the analysis is not sufficient
to determine that some code respects all the conditions. The analysis considers
the control flow but only minimally. In addition, it cannot always check that
the result of an expression is in a given range.

Other times, certain violations of the conditions imposed by the annotations
can escape the analysis because of some simplifications. The analysis is done
one instruction at a time and it does not consider that the value of a variable
can change during an instruction. To analyze a loop, some heuristics are used
to determine the number of times it can execute, but they do not ensure the
result is correct. The analysis assumes that a loop causing a buffer overflow
will show this behavior in its first or in its last iteration. Most often this is the
case, but it is possible to build a loop overflowing a buffer while not making it
apparent in the first and in the last iteration.

Splint never assures there is no overflow, but for most real programs, it

96

char s[20], *p, t[10];
strcpy(s, "Hello");
p=s+5;

strcpy(p, " world!");
strcpy(t, s);

Table 17: The overflow of buffer t is not detected by BOON because the string
s is modified by another pointer.

detects almost all of them. On the other hand, it gives many false positives
that must be checked manually by the programmer. However, it is useful.
For instance, for the program WU-FTPD, the addition of 22 annotations is
enough to convince Splint that 92% of the 225 function calls usually considered
dangerous are correct.

4.6.3 Abstract Data Type and Integer Range Analysis

In [WFBAO0O, Wag00], the authors consider strings as an abstract data type
manipulated by the functions of the C library. The strings are modeled as a
pair of integers indicating the allocated size of a string and its real length. For
each manipulation of a string, one or more constraints are associated to these
two integers.

The time spent for solving the constraint system with this algorithm is pro-
portional to the number of constraints for cases that were observed. The result
is, for each string, a range of possible values for the memory allocated and an-
other one for the size of the string. To be sure there is no overflow, the upper
bound of the range for the size must be smaller than or equal to the lower bound
of the range for allocated memory.

The tool implementing this technique is called BOON. It is written in ML
and only parts of it is free software. It has some important limitations. First, it
can only detect overflows on strings, and not for arbitrary arrays. Moreover, only
manipulations of strings by the functions of the C library are considered and not
those modifying a string as a character array or using pointer dereferences. An-
other problem is the function strncpy () that is not modeled correctly. BOON
does not handle the case of a result string not terminated by a null character.

The handling of pointers also poses problems because it is much simplified in
BOON. For instance, BOON largely ignores the fact that two pointers can refer
to the same string at the same time. It also totally ignores doubly indirected
pointers, arrays of pointers, function pointers and union. All these deficien-
cies prevent the detection of some buffer overflows. Table 17 exhibits a buffer
overflow that would not be detected by BOON.

The analysis done to generate constraints has the advantage of being fast,

o7

but it lacks precision. This is why the number of false positives is rather high
with BOON. First, the analysis does not take control flow into account, that
is, the order of instructions and control structures is ignored. Second, this
tool considers there is only one instance of each variable composing a structure
instead of one for each instance of the structure. This can greatly enlarge the
range of possible values seen by BOON as opposed to the real values it can take.
However, this principle has the advantage of considering that two pointers to a
structure can modify the same variable.

BOON has been used to find previously unknown overflows in some software
used under Linux. Even though the number of false positives is high, it is about
15 times smaller than that obtained with the simple use of grep.

Improving static analysis In [GJCT03], the authors discuss their improve-
ments to the analysis described in the previous section. In particular, they
implement a more precise pointer analysis. They also achieve context-sensitive
analysis using two techniques. The first one is by inlining constraints, but it
cannot work with recursive function calls. The second one is by generating
summary constraints for functions. Their approach to solve constraint is also
different, it is based on linear programming. Even with these improvements,
the rate of false-positives is still high.

4.6.4 Catching All String Errors with Integer Analysis

The approach presented in [DRS03| can detect all string manipulation errors.
It reduces the problem of checking string manipulations to that of checking
integer manipulations. It can use annotations, but it can never miss an error
because a contract is too weak or too strong. In the worst case, there will be
more false positives. When no contract is given, the tool uses an algorithm
to compute an approximation of the strongest postcondition and the weakest
liberal precondition.

CSSV must perform some rather precise static analysis to implement all
this. It is important to know which pointers may be or must be aliases, else the
number of false positives would be too high. CSSV is not publicly available. The
results presented show that, in some cases, the time and memory required for
the analysis and the number of false positives can be relatively high. However,
it is difficult to tell how representative these results are, because they represent
less than 1000 lines of code.

4.6.5 Reducing False Positives

The approach presented in [XCEO03] allows checking millions of lines of existing
code because it is fast and it is tuned to suppress common sets of false positives.
It can use annotations but it does not require them because of the way the
analysis is performed and because it uses statistical belief analysis to infer parts
of them.

98

The analysis is interprocedural and path-sensitive, since otherwise it would
not give precise enough results. It also needs to be aware of pointer aliases for
buffers (and their offsets) to ensure that a certain class of errors is detected.
First, the callgraph of the program to analyse is built. Functions are analysed
in bottom-up order and cycles are broken in such a way that the function with
the least number of callees is analysed first. When a function is analysed, its
memory access constraints are summarized so that they can be checked when a
call to it is encountered later.

The analysis of a function ends when all possible execution paths are anal-
ysed or after a pre-determined time limit, which defaults to 5 seconds. Obvi-
ously, there are some heuristics to handle loops.

The solver tracks as many relations as possible between variables. It is not
the most powerful one, but it can be queried and updated in constant time. In
general, it reports an error only when it can demonstrate that a memory access
is unsafe.

This approach was implemented in a tool called ARCHER, which is not
publicly available, and 2.6 millions lines of code in four large open-source pro-
grams were analysed. It found 160 potential errors and there were only 55 false
positives. The analysis ran for about 6 hours.

4.6.6 Hybrid pointer Alias Analysis and IPSSA

In [LLO03], the authors present another approach. Their goal is to catch errors
that arise from inconsistencies around procedure boundaries and along excep-
tional control flow paths without producing too many false alarms. It uses a
hybrid pointer alias analysis. The first component of this analysis is precise
and it is path and context sensitive. It is used to track locations accessed from
parameters and local variables by simple paths, that is to say, without iterated
dereference or field access. The second component is more efficient but less
precise because it is flow and context insensitive. It is used to track all other
locations.

This approach uses an unsound assumption, which is that pointers passed
into a procedure and locations that can be accessed by applying simple paths
to these pointers are all distinct from each other. It has the dual benefit of
speeding up the analysis and suppressing many false positives. It also matches
well with how most programs are written. The analysis reports a warning when
it concludes that this assumption is definitely violated.

Once the analysis is complete, an abstract representation of the program is
generated. This representation is called IPSSA. It captures intraprocedural and
inter-procedural definition-use chains for both directly and indirectly accessed
memory locations. A tool that finds buffer overflows and format string vulner-
abilities from this representation has been implemented. It found 14 security
vulnerabilities in ten applications programs while producing only one false pos-
itive. The IPSSA representation could also be used to implement, in less time,
a tool to detect different kinds of bugs in C programs.

99

4.7 Other Approaches to Protection

In this section, we covered all approaches to avoid buffer overflows or mitigate
their consequences for which we could find publicly available information. We
have not mentioned commercial tools that can help detecting buffer overflows
at run time or statically, but for which there is not enough publicly available
information to describe how they work. We believe most of them use techniques
that are presented here.

5 Conclusion

In this survey, we have described what buffer overflows are and how they can be
exploited. We have also described methods to detect this kind of vulnerability,
to get the assurance that it is not present, and to avoid its exploitation.

In an ideal world, a static approach would give the assurance that a program
does not have such vulnerabilities before executing it. Dynamic methods to
avoid these vulnerabilities or limit their consequences would then be superfluous
and the program could execute at full speed without risking compromising the
security of a system.

However, in the real world, this is impossible. Thus there are cases where
some static approach is better, there are cases where some dynamic approach
is better, and there are other cases where the combination of many approaches
is preferable.

The approaches using static analysis that we have studied all have important
limitations. They either miss some errors, or they generate too many false
positives to be useful when analysing large programs. The dynamic approaches
give a result that is valid only for a limited number of executions of a program,
and most of them cannot detect all buffer overflows. Those that can add a large
overhead in execution time.

Moreover, there is still an important problem: what should be done when a
vulnerability is detected? Usually, the best can be done is to stop the program
since allowing it to continue could have consequences that are more serious.
However, abruptly stopping a critical program can also lead to serious conse-
quences. This question is still open and applies not only to C and C++, but also
to Java and other languages for which there is full run-time bounds checking.

APPENDIX

This appendix presents different publicly available programs that can be useful
to detect or avoid buffer overflows and/or some of their consequences. We did
not test most of them, and the information in this section is based on available
documentation. We classified them in five categories:

e static analysis;

60

dialect of C;

run-time bounds checking or overflow detection;

testing tools;

other dynamic checks.

A.1 Static Analysis Tools

This section describes the tools that use static analysis to detect buffer overflows.

Splint We described this program and its working in Section 4.6.2. In addition
to detecting buffer overflows, Splint detects format string vulnerabilities and
many misuses of the C language. The analysis is based on annotations that the
programmer has to add to function declarations and is done one function at a
time. Even though some errors can escape the analysis, most aspects of the C
language are taken into account by Splint. Earlier versions of this program were
called LCLint. http://www.splint.org/

RATS We discussed this program in Section 4.6.1. It does a lexical anal-
ysis that can detect “dangerous” constructions of C, C++, and a few other
languages. This approach allows finding buffer overflows, format string vulner-
abilities, and some other potential security problems. http://www.fortify.
com/security-resources/rats. jsp

Flawfinder We discussed this program in Section 4.6.1. It does a lexical
analysis that can detect “dangerous” constructions of the C and C++ lan-
guages. This approach allows finding buffer overflows, format string vulnerabil-
ities, and some other potential security problems. http://www.dwheeler.com/
flawfinder/

ITS4 We discussed this program in Section 4.6.1. It does a lexical analy-
sis that can detect “dangerous” constructions of the C and C++ languages.
This approach allows finding buffer overflows and some other potential security
problems. http://www.cigital.com/its4/

BOON (Partly free) We discussed how this program works in Section 4.6.3.
It can find buffer overflows by considering strings as an abstract data type ma-
nipulated by the functions of the C library. It does an interprocedural analysis,
but not a very precise one. The detection of buffer overflows is done by solving a
system of constraints on integer ranges representing the space allocated for the
strings and their length. The overflows not caused by the call of a function of the
C library are completely ignored. http://www.cs.berkeley.edu/~daw/boon/

61

Wasp This program is described in [Mat01]. It analyzes Java programs.
Among other things, it can detect array overflows statically. http://www.
waspsoft.com/

UNO This program is described in [Hol02]. It analyzes C programs. It can
detect some array overflows statically, but for this many conditions have to be
met. http://spinroot.com/uno/

A.2 Dialect of C

Cyclone It is a programming language based on C that does not allow buffer
overflows and format string vulnerabilities. It was mentioned briefly in Sec-
tion 4.1.1. http://www.research.att.com/projects/cyclone/

A.3 Run-Time Bounds Checking or Overflow Detection

GCC — Bounded Pointers It is an extension to GCC that modifies the
representation of pointers so that run-time bounds checking can be efficient. The
technique it uses is described in Section 4.3.6. http://gcc.gnu.org/projects/
bp/main.html

Bounds Checking for C This is an extension of GCC that does run-time
bounds checking on most pointers without any modification to their represen-
tation. The technique used is described in Section 4.3.6. http://www.doc.ic.
ac.uk/~phjk/BoundsChecking.html

CCured This program analyses C source code and adds to it some run-time
checks to avoid buffer overflows. It is described in Section 4.3.6. http://manju.
cs.berkeley.edu/ccured/

StackGuard This is an extension to GCC protecting the return address of
the functions on the stack. To do this, it uses canary values and assistance from
the processor. It is described in Sections 4.3.1 and 4.3.1. Depending on versions
and the configuration, the canary can be null, terminating or random. The
protection with assistance from the processor (MemGuard) was available only
in the first few versions because it is not efficient enough. StackGuard does not
do real bounds checking and it does not avoid any overflow. It only prevents
some attacks from working. To that end, the code generated by the compiler
for the prologue and the epilogue of functions is altered.

Stack Shield It protects the return address of the functions on the stack. To
do that, it uses an alternate stack. This technique is described in Section 4.3.1.
However, the alternate stack is limited in size and, by default, it can only contain
256 elements. It means that if more than 256 function calls are nested, the last
ones do not benefit from the protection. Stack Shield works by modifying the

62

assembly code generated when compiling code with GCC. It does not do any
bounds checking and it does not avoid any overflow. It only prevents some
attacks from working. This program is no longer maintained. http://www.
angelfire.com/sk/stackshield/

Stack-Smashing Protector (SSP) It is an extension of GCC protecting
return addresses and many other important data on the stack. To do this, it
uses canaries and it reorders the variables on the stack. These techniques are
described in Sections 4.3.1 and 4.3.2 respectively. It does no bounds checking
and it does not prevent any overflow, but it can counter many attacks. It
works by modifying the intermediate language code generated by GCC. It does
not add any code when it can determine that the program will always behave
correctly without these additions. However, the optimizer of GCC can remove
some of the checks added by SSP when the optimization level asked is too high.
In the past, this project was known as Propolice. http://www.trl.ibm.com/
projects/security/ssp/

Libsafe This is a library replacing some of the functions of the C library. It
works under Linux and it prevents return addresses from being overwritten in
addition to format string vulnerabilities. The techniques it uses are described
in Section 4.3.3. This library does not prevent all overflows, but it prevents the
most obvious ones. http://dag.wieers.com/rpm/packages/libsafe/ http:
//www.research.avayalabs.com/project/libsafe/

Libparanoia This is a library replacing some of the functions of the C library.
It works under FreeBSD and it prevents return addresses from being overwritten.
The technique it uses is described in Section 4.3.3. This library does not prevent
all overflows, but it prevents the most obvious ones. http://www.lexa.ru/
snar/libparanoia/

strlcpy() et strlcat() These functions offer alternate interfaces for handling
strings, which help the programmer to avoid buffer overflows. They are de-
scribed in Section 4.1.3.

Libmib — astring This is an alternate library doing allocation and real-
location of strings automatically to avoid buffer overflows. It is described in
Section 4.1.3. http://www.mibsoftware.com/libmib/astring/

Checker This program is a debugging tool that can be used to find, at run
time, if a program reads or writes outside allocated memory, or if it reads an
uninitialized value. Thus, it can find some buffer overflows. The technique
it uses is described in Section 4.3.6. It can also find memory blocks that are
no longer referenced while still allocated. The program to be checked has to
be instrumented using an extension of GCC. http://www.gnu.org/software/
checker/checker.html

63

Valgrind This program is a debugging tool that can be used to find, at run
time, if a program reads or writes outside allocated memory, or if it reads an
uninitialized value. Thus, it can find some buffer overflows. The technique it
uses is described in Section 4.3.6. It follows the use of memory bit by bit. It
can also find memory blocks that are no longer referenced while still allocated
and other kinds of errors. Moreover, it can simulate cache memory to profile
its use. A JIT compiler allows instrumenting in real-time the machine code
of the program to be checked (IA-32 to TA-32). http://developer.kde.org/
~sewardj/

Rational Purify This program is a debugging tool that can be used to find,
at run time, if a program reads or writes outside allocated memory, or if it reads
an uninitialized value. Thus, it can find some buffer overflows. The technique it
uses is described in Section 4.3.6. It follows the use of memory bit by bit. It can
also find memory blocks that are no longer referenced while still allocated. The
machine code of the checked program is modified dynamically at run time to
keep a record of memory accesses. This software is not available under Linux,
only under some other Unix platforms. http://www-306.ibm.com/software/
awdtools/purify/unix/

Electric Fence It is a replacement library for the functions dealing with
memory allocation. It allocates memory so that an access after (or before)
any block of memory generates a memory fault. This technique is described in
Section 4.3.3. http://perens.com/FreeSoftware/

A.4 Testing Tools

Fuzz This program generates random input for a program in order to find
problems. It helped to identify many buffer overflows. It is mentioned in Sec-
tion 4.2. http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

BFBTester This tool tries to detect buffer overflows in the handling of argu-
ments and environment variables of a program.
http://bfbtester.sourceforge.net/

A.5 Other Dynamic Checks

The programs in this section do not prevent buffer overflow vulnerabilities di-
rectly, but they can limit their consequences by preventing bad behaviors.

Linux kernel patch from the Openwall Project This patch to the Linux
kernel prevents the execution of code on the stack and it modifies the address
used to load shared libraries. These techniques are described in Sections 4.4.1
and 4.4.3. It also prevents other actions often done by pirates. http://www.
openwall.com/linux/

64

PaX This extension of the Linux kernel allows marking individual pages as
executable or not. It also locates shared libraries and the stack at random
addresses so that it is more difficult to find the right address in an attack.
These techniques are described in the first part of Section 4.4.2 and in Sections
4.4.3 and 4.4.4.

kNoX This patch for Linux kernel 2.2 prevents the execution of code located
in all pages accessible for writing, and it modifies the address used to load
dynamically-linked libraries. These techniques are described in Section 4.4.2
and in Section 4.4.3. It also prevents other actions often done by pirates. http:
//isec.pl/projects/knox/knox.html

RSX This extension of the Linux kernel allows marking individual pages as
executable or not. The technique it uses is described in Section 4.4.2.

exec-shield This extension of the Linux kernel restricts the part of the address
space of a program that can be executed by defining a code segment limit. It
loads shared libraries in low memory in an attempt to have a code segment as
small as possible. The technique it uses is described in Section 4.4.2. http:
//people.redhat.com/mingo/exec-shield/

Syscalltrack This software is, in large part, an extension of the Linux kernel,
and it can be used to filter the system calls to the kernel for all programs of
the system. It is mentioned briefly in Section 4.5.1. http://syscalltrack.
sourceforge.net/

Janus This program can execute another program in a controlled environ-
ment, that is, with its actions checked for conformance to a security policy.
It is mentioned briefly in Section 4.5.1. http://www.cs.berkeley.edu/~daw/
janus/

Subterfugue It is an application framework to change the reality as seen by
the programs. It can check system calls to discover what programs attempt
to do or prevent them from doing some actions. It is mentioned briefly in
Section 4.5.1. http://subterfugue.org/

References

[ABS94] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Effi-
cient detection of all pointer and array access errors. In PLDI
’94: Proceedings of the ACM SIGPLAN 199 conference on
Programming language design and implementation, pages 290—
301, New York, NY, USA, 1994. ACM Press.

65

[Ale96]

[Ale01]
[Ano01]

[Bea01]

[BKOO]

[Bou00]

[Cav9g]

[CBIWO03]

[CHO1]

[cla05)

[Con99]

[COR02]

[Cow00]

[CPM+98]

Aleph One. Smashing the stack for fun and profit. Phrack,
7(49):14, November 1996.

Aleph One. Bugtraq frequently asked questions, 2001.

Anonymous. Once upon a free()... Phrack, 11(57):0x09, August
2001.

Maxime Beaudoin. Données malicieuses: théorie et
analyse. Technical Report DIUL-RR-0105, Département
d’informatique, Université Laval, August 2001.

Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack, 10(56):0x05, November 2000.

Pascal Bouchareine. __atexit in memory bugs. Posted on Vuln-
Dev mailing list, Dec., December 2000.

Forrest J. Cavalier III. Libmib allocated string functions, 1998.
http://mibsoftware.com/libmib/astring/.

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities. In Pro-
ceedings of the 12th USENIX Security Symposium, Berkeley,
CA, USA, August 2003. USENIX Association.

Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compile-time so-
lution to buffer overflow attacks. In 21st International Con-
ference on Distributed Computing, page 409, Washington, DC,
USA, April 2001. IEEE Computer Society.

class101. Veritas backup exec 8.x/9.x remote universal exploit.
Posted on BugTraq mailing list, January, January 2005. http:
//www.securityfocus.com/archive/1/386754.

Matt Conover. wOOwO0O0 on heap overflows, January 1999. http:
//wuw.w00w00.org/articles.html.

CORE Security Technologies. Multiple vulnerabilities in stack
smashing protection technologies, April 2002. Apr. http://
wwwl.corest.com/corelabs/advisories/index.php.

Crispin Cowan. Stackguard 1.21 vulnerability. Posted on Bug-
Traq mailing list, Aug., August 2000.

Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton,
Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard: Automatic adap-
tive detection and prevention of buffer-overflow attacks. In
Proc. 7th USENIX Security Conference, pages 63—78, Berke-
ley, CA, USA, January 1998. USENIX Association.

66

[CWP+00]

[Cyc02]
[dRO3]

[DRS03]

[Dup02]

[EL02]

[EY00]

[Fra01]

[Fry00]

[FS01]

[GBPAIHQ+02]

[Gin9g]

Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and
Jonathan Walpole. Buffer overflows: Attacks and defenses for
the vulnerability of the decade. In Proceedings of the DARPA
Information Survivability Conference and Exposition (DISCEX
2000), pages 1119-1129, Washington, DC, USA, 2000. IEEE
Computer Society.

Cyclone. Cyclone, 2002. http://www.research.att.com/
projects/cyclone/.

Theo de Raadt. 1386 W~X. Posted on OpenBSD mailing list,
Apr., April 2003.

Nurit Dor, Michael Rodeh, and Mooly Sagiv. CSSV: Towards
a realistic tool for statically detecting all buffer overflows in
C. In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation, pages
155-167, New York, NY, USA, 2003. ACM Press.

Kasper Dupont. Why a stack with exec flag? Posted on
comp.os.linux.security, June, June 2002.

David Evans and David Larochelle. Improving security using
extensible lightweight static analysis. IEEE Software, 19(1):42—
51, Jan/Feb 2002.

Hiroaki Etoh and Kunikazu Yoda. Protecting from stack-
smashing attacks, June 2000. IBM Research Division http:
//www.trl.ibm.com/projects/security/ssp/main.html.

Przemyslaw Frasunek. ntpd =< 4.0.99k remote buffer overflow.
Posted on BugTraq mailing list, April, April 2001.

Niklas Frykholm. Countermeasures against buffer over-
flow attacks, November 2000. RSA Security http://www.
rsasecurity.com/rsalabs/node.asp?id=2011.

Mike Frantzen and Mike Shuey. StackGhost: Hardware facili-
tated stack protection. In 10th USENIX Security Symposium,
pages 55-66, Berkeley, CA, USA, August 2001. USENIX Asso-
ciation.

Jesus M. Gonzalez-Barahona, Miguel A. Ortufio Pérez, Pe-
dro de las Heras Quirés, José Centeno Gonzilez, and Vi-
cente Matellan Olivera. Counting potatoes: The size of Debian
2.2, January 2002. http://opensource.mit.edu/papers/
counting-potatoes.html.

Tristan Gingold. Checker, 1998. http://www.gnu.org/
software/checker/checker.html.

67

[GJCH03]

[GOMOYS]

[GWTBO6]

[HB03)]

[HJ91]

[Hol02]

[Imm97]

[ImmO00]
[Int99]

[Int00]

[JK97)

Vinod Ganapathy, Somesh Jha, David Chandler, David Melski,
and David Vitek. Buffer overrun detection using linear pro-
gramming and static analysis. In CCS ’03: Proceedings of the
10th ACM Conference on Computer and Communications Se-
curity, pages 345-354, New York, NY, USA, 2003. ACM Press.

A. K. Ghosh, T. O’Connor, and G. McGraw. An automated
approach for identifying potential vulnerabilities in software.
In IEEE Symposium on Security and Privacy, pages 104—114,
Washington, DC, USA, May 1998. IEEE Computer Society.

ITan Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewe. A secure environment for untrusted helper applica-
tions. In Proceedings of the 6th USENIX Security Symposium,
Berkeley, CA, USA, 1996. USENIX Association.

Eric Haugh and Matthew Bishop. Testing C programs for buffer
overflow vulnerabilities. In Proceedings of the 10th Annual Net-
work and Distributed System Security Symposium, Reston, VA,
USA, February 2003. Internet Society.

Reed Hastings and Bob Joyce. Purify: Fast detection of mem-
ory leaks and access errors. In Proceedings of the Winter 1992
USENIX Conference, pages 125-136, Berkeley, CA, USA, 1991.
USENIX Association.

Gerard J. Holzmann. UNO: Static source code checking for
user-defined properties, 2002. Lucent Technologies ftp://cm.
bell-labs.com/cm/cs/what/uno/uno_cstr.pdf.

Immunix. Immunix canary patch to GCC 2.7.2.2 — a buffer
overflow exploit detector, December 1997.

Immunix. StackGuard mechanism: Emsi’s vulnerability, 2000.

International Organization for Standardization. ISO/IEC
9899:1999: Programming Languages — C. International Orga-
nization for Standardization, Geneva, Switzerland, December
1999.

Intel Corporation. IA-32 Intel Architecture Software Devel-
oper’s Manual Volume 3: System Programming Guide, 2000.

Richard W. M. Jones and Paul H. J. Kelly. Backwards-
compatible bounds checking for arrays and pointers in C pro-
grams, 1997. Department of Computing Imperial College of
Science, Technology and Medicine.

68

[Jon95]

[Kae01]

[KBAO2]

[Ket9s]

[kl099)]

[KS02]

[LC02]

[LEO01]

[Lib01]

[LLO3]

[Mat01]

Richard W. M. Jones. A bounds checking C compiler, May
1995. Department of Computing Imperial College of Science,
Technology and Medicine.

Michel Kaempf. [synnergy] - sudo vudo. Posted on BugTraq
mailing list, June, June 2001.

Vladimir Kiriansky, Derek Bruening, and Saman P. Amaras-
inghe. Secure execution via program shepherding. In Proceed-
ings of the 11th USENIX Security Symposium, pages 191-206,
Berkeley, CA, USA, 2002. USENIX Association.

Richard Kettlewell. Protecting against some buffer-overrun
attacks, April 1998. http://www.greenend.org.uk/rjk/
random-stack.html.

klog. The frame pointer overwrite. Phrack, 9(55):08, September
1999.

Paul A. Karger and Roger R. Schell. Thirty years later: Lessons
from the multics security evaluation. In ACSAC ’02: Proceed-
ings of the 18th Annual Computer Security Applications Con-
ference, page 119, Washington, DC, USA, 2002. IEEE Com-
puter Society.

Kyung-suk Lhee and Steve J. Chapin. Type-assisted dynamic
buffer overflow detection. In Proceedings of the 11th USENIX
Security Symposium, pages 81-88, Berkeley, CA, USA, 2002.
USENIX Association.

David Larochelle and David Evans. Statically detecting likely
buffer overflow vulnerabilities. In 10th USENIX Security Sym-
posium, Berkeley, CA, USA, August 2001. USENIX Associa-
tion.

Libsafe. Libsafe, 2001. http://www.research.avayalabs.
com/project/libsafe/.

V. Benjamin Livshits and Monica S. Lam. Tracking pointers
with path and context sensitivity for bug detection in C pro-
grams. In Proceedings of the 9th European Software Engineer-
ing Conference held jointly with 10th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
pages 317-326, New York, NY, USA, 2003. ACM Press.

Vincent Mathieu. Outils d’analyse statique. Technical Re-
port DIUL-RR-0106, Département d’informatique, Université
Laval, August 2001.

69

[McG98a]

[McG98b)

[McG99)]

[McGO0O0]

[MKL*+95]

[MKSLO3]

[Mol03]

[Mol04]

[MVO0]

[NMWO02]

[0SSY02]

[PaX00]

Greg McGary. Array bounds checking? Posted on egcs mailing
list, May, May 1998.

Greg McGary. Bounds checking. Posted on egcs mailing list,
May, May 1998.

Greg McGary. Support array bounds checking. Posted on egcs-
patches mailing list, June, June 1999.

Greg McGary. Bounds checking in C and C++ using bounded
pointers, August 2000. http://gcc.gnu.org/projects/bp/
main.html.

Barton P. Miller, David Koski, Cjin Pheow Lee, Vivekananda
Maganty, Ravi Murthy, Ajitkumar Natarajan, and Jeff Steidl.
Fuzz revisited: A re-examination of the reliability of UNIX
utilities and services, 1995. Computer Sciences Department,
University of Wisconsin ftp://ftp.cs.wisc.edu/paradyn/
technical_papers/fuzz-revisited.pdf.

John P. McGregor, David K. Karig, Zhijie Shi, and Ruby B.
Lee. A processor architecture defense against buffer overflow at-
tacks. In IEEFE International Conference on Information Tech-
nology: Research and Education (ITRE 2003), pages 243-250,
Washington, DC, USA, August 2003. IEEE Computer Society.

Ingo Molnar. Exec shield, new Linux security feature. Posted
on linux-kernel mailing list, May, May 2003.

Ingo Molnar. Nx (no execute) support for x86. Posted on
linux-kernel mailing list, Jun, June 2004.

Gary McGraw and John Viega. Make your software behave:
Preventing buffer overflows, March 2000. IBM developer Works.

George C. Necula, Scott McPeak, and Westley Weimer.
CCured: type-safe retrofitting of legacy code. In Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 128-139, New York, NY, USA,
2002. ACM Press.

Yutaka Oiwa, Tatsurou Sekiguchi, Eijiro Sumii, and Akinori
Yonezawa. Fail-safe ANSI-C compiler: An approach to making
C programs secure (progress report). In Proceedings of Inter-
national Symposium on Software Security, Tokyo, Japan, pages
25-36, New York, NY, USA, November 2002. Springer-Verlag.

PaX Team. Original design & implementation of PAGEEXEC,
November 2000.

70

[PaX02]

[Per93]

[PF97]

[PL02]

[PLOA]

[Pro03]

[Rit93]

[rix00]
[RLO4]

[RWMO02]

[SBDBO1]

[Smi97]

PaX Team. Why a stack with exec flag? Posted on
comp.os.linux.security group, June, June 2002.

Bruce Perens. Electric fence, 1993. http://perens.com/
FreeSoftware/.

Harish Patil and Charles Fischer. Low-cost, concurrent check-
ing of pointer and array accesses in C programs. Software:
Practice and Ezxperience, 27(1):87-110, 1997.

Changwoo Pyo and Gyungho Lee. Encoding function pointers
and memory arrangement checking against buffer overflow at-
tack. In ICICS ’02: Proceedings of the 4th International Con-
ference on Information and Communications Security, pages
25-36, New York, NY, USA, 2002. Springer-Verlag.

Yong-Joon Park and Gyungho Lee. Repairing return address
stack for buffer overflow protection. In CF’04: Proceedings of
the First Conference on Computing Frontiers, pages 335-342,
New York, NY, USA, 2004. ACM Press.

Niels Provos. Improving host security with system call poli-
cies. In Proceedings of the 12th USENIX Security Symposium,
Berkeley, CA, USA, August 2003. USENIX Association.

Dennis M. Ritchie. The development of the ¢ language. In
HOPL-II: The second ACM SIGPLAN conference on History
of programming languages, pages 201-208, New York, NY,
USA, 1993. ACM Press.

rix. Smashing C++ vptrs. Phrack, 10(56):0x08, May 2000.

Olatunji Ruwase and Monica S. Lam. A practical dynamic
buffer overflow detector. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium, Reston,
VA, USA, February 2004. Internet Society.

Chris Ren, Michael Weber, and Gary McGraw. Microsoft com-
piler flaw technical note, 2002. Cigital http://www.cigital.
com/news/mscompiler-tech.pdf.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program be-
haviors. In SP ’01: Proceedings of the IEEE Symposium on
Security and Privacy, page 144, Washington, DC, USA, 2001.
IEEE Computer Society.

Nathan P. Smith. Stack smashing vulnerabilities in the UNIX
operating system, May 1997.

71

[Snag7)

[Sna00]

[Sol974a]

[Sol97b)

[Sol02]

[Sta01]

[SU99]

[Sub02]
[Sys02]

[TKO02]

[TSO1a]

[TSO1b)]

[VBKMOO]

[Ven00]

Alexander Snarskii. Increasing overall security..., February
1997.

Alexandre Snarskii. Libparanoia, 2000. http://www.lexa.ru/
snar/libparanoia/.

Solar Designer. Getting around non-executable stack (and fix).
Posted on BugTraq mailing list, Aug., August 1997.

Solar Designer. Non-executable stack — final Linux kernel
patch. Posted on linux-kernel mailing list, May, May 1997.

Solar Designer. Linux kernel patch from the Openwall Project,
September 2002. http://www.openwall.com/linux/.

Paul Starzetz. Announcing RSX - non exec stack/heap module.
Posted on BugTraq mailing list, June, June 2001.

R. Sekar and P. Uppuluri. Synthesizing fast intrusion preven-
tion/detection systems from high-level specifications. In Pro-
ceedings of the 8th USENIX Security Symposium, pages 63—78,
Berkeley, CA, USA, 1999. USENIX Association.

Subterfugue. Subterfugue, 2002. http://subterfugue.org/.

Syscalltrack. Syscalltrack, 2002. http://syscalltrack.
sourceforge.net/.

Thomas Toth and Christopher Kruegel. Accurate buffer over-
flow detection via abstract payload execution. In Recent Ad-
vances in Intrusion Detection : 5th International Symposium,
pages 274-291, New York, NY, USA, October 2002. Springer-
Verlag.

Timothy Tsai and Navjot Singh. Libsafe 2.0: Detection of
format string vulnerability exploits, February 2001.

Timothy Tsai and Navjot Singh. Libsafe: Protecting critical
elements of stacks. Technical Report ALR-2001-019, Avaya
Labs, Avaya Inc., 233 Mt. Airy Rd., NJ 07920 USA, August
2001.

J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A
static vulnerability scanner for C and C++ code. In ACSAC
’00: Proceedings of the 16th Annual Computer Security Ap-
plications Conference, page 257, Washington, DC, USA, 2000.
IEEE Computer Society.

Vendicator. Stack Shield, 2000. http://www.angelfire.com/
sk/stackshield/.

72

[Wag00]

[WEFBAOO]

[Whe01]

[Whe02a]

[Whe02b]

[Wojos]

[Woj01]

[Wor03]

[XCE03]

[XDS04]

[XKPI02]

David A. Wagner. Static analysis and computer security: New
techniques for software assurance. PhD thesis, University of
California at Berkeley, 2000.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexan-
der Aiken. A first step towards automated detection of buffer
overrun vulnerabilities. In Proceedings of Network and Dis-
tributed System Security Symposium, pages 3—17, Reston, VA,
USA, February 2000. Internet Society.

David A. Wheeler. More than a gigabuck: Estimating
GNU/Linux’s size, July 2001. http://www.dwheeler.com/
sloc/.

David A. Wheeler. Flawfinder, 2002. http://www.dwheeler.
com/flawfinder/.

David A. Wheeler. Secure programming for Linux and Unix
howto, 2002. http://www.dwheeler.com/secure-programs/.

Rafal Wojtczuk. Defeating Solar Designer non-executable stack
patch. Posted on BugTraq mailing list, Jan., January 1998.

Rafal Wojtczuk. The advanced return-into-lib(c) exploits: PaX
case study. Phrack, 11(58):0x04, December 2001.

WordNet. Wordnet, 2003. http://www.cogsci.princeton.
edu/~wn/.

Yichen Xie, Andy Chou, and Dawson Engler. ARCHER: us-
ing symbolic, path-sensitive analysis to detect memory access
errors. In Proceedings of the 9th Furopean Software Engineer-
ing Conference held jointly with 10th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering,
pages 327-336, New York, NY, USA, 2003. ACM Press.

Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient
and backwards-compatible transformation to ensure memory
safety of C programs. In SIGSOFT ’04/FSE-12: Proceedings
of the 12th ACM SIGSOFT Tuwelfth International Symposium
on Foundations of Software Engineering, pages 117-126, New
York, NY, USA, 2004. ACM Press.

Jun Xu, Zbigniew Kalbarczyk, Sanjay Patel, and Ravis-
hankar K. Iyer. Architecture support for defending against
buffer overflow attacks. In Second Workshop on FEwvaluating
and Architecting System dependabilitY (EASY). Web, October
2002.

73

[YHO3]

Suan Hsi Yong and Susan Horwitz. Protecting C programs from
attacks via invalid pointer dereferences. In Proceedings of the
9th European Software Engineering Conference held jointly with
10th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 307-316, New York, NY, USA,
2003. ACM Press.

74

	PAGE_TITRE-DIUL-RR-0803.pdf
	BUFFER OVERFLOW VULNERABILITIES IN C AND C++
	PAR
	Patrice Lacroix
	et
	JULES DESHARNAIS
	DÉPARTEMENT D’INFORMATIQUE ET DE GÉNIE LOGICIEL
	Université Laval

