Js UNIVERSITE

1 T AVAL

M==
M==

)]
®

€ES
==

FACULTE DES SCIENCES ET DE GENIE
Département d’informatique et de génie logiciel

Pavillon Adrien-Pouliot, local 3908
1065, avenue de la Médecine
Université Laval

Québec, Canada, G1V A06

ON THE STRUCTURE OF DEMONIC
REFINEMENT ALGEBRAS

PAR

JEAN-LOU DE CARUFEL
ET
JULES DESHARNAIS

RAPPORT DE RECHERCHE
DIUL-RR-0802

DEPARTEMENT D’'INFORMATIQUE ET DE GEN,IE LOGICIEL
FACULTE DES SCIENCES ET DE GENIE

Pavillon Adrien-Pouliot
1065, avenue de la Médecine
Université Laval
Québec, QC, Canada
G1V 0A6

JANVIER 2008



On the Structure of
Demonic Refinement Algebras*

Jean-Lou De Carufel and Jules Desharnais

Département d’informatique et de génie logiciel, Pavillon Adrien-Pouliot,
1065, avenue de la Médecine, Université Laval, Québec, QC, Canada G1V 0A6

jldecl@ift.ulaval.ca, Jules.Desharnais@ift.ulaval.ca

January 15, 2008

Abstract

The main result of this report is that every demonic refinement algebra with
enabledness and termination is isomorphic to an algebra of ordered pairs of elements
of a Kleene algebra with domain and with a divergence operator satisfying a mild
condition. Divergence is an operator producing a test interpreted as the set of states
from which nontermination may occur.

1 Introduction

Demonic Refinement Algebra (DRA) was introduced by von Wright in [23, 24]. It is
a variant of Kleene Algebra (KA) and Kleene algebra with tests (KAT) as defined by
Kozen [14, 15] and of Cohen’s omega algebra [3]. DRA is an algebra for reasoning about
total correctness of programs and has the positively conjunctive predicate transformers as
its intended model. DRA was then extended with enabledness and termination operators
by Solin and von Wright [20, 21, 22], giving an algebra called DRAet in [20] and in this
report. The names of these operators reflect their semantic interpretation in the realm of
programs and their axiomatisation is inspired by that of the domain operator of Kleene
Algebra with Domain (KAD) [8, 10]. Further extensions of DRA were investigated with
the goal of dealing with both angelic and demonic nondeterminism, one, called daRAet,
where the algebra has dual join and meet operators and one, called daRAn, with a
negation operator [19, 20]; a generalisation named General Refinement Algebra was also
obtained in [24] by weakening the axioms of DRA.

We are here concerned with the structure of DRAet. The main result is that every
DRAet is isomorphic to an algebra of ordered pairs of elements of a KAD with a diver-
gence operator satisfying a mild condition. Divergence is an operator producing a test
interpreted as the set of states from which nontermination may occur (see [9] for the di-
vergence operator, and [17, 13] for its dual, the convergence operator). It is shown in [13]
that a similar algebra of ordered pairs of elements of an omega algebra with divergence

*This is an expanded version of [7]. It contains all the proofs that could not be included in the
proceedings due to space constraints.
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is a DRAet; in [17], these algebras of pairs are mapped to weak omega algebras, a related
structure. Our result is stronger because

1. it does not require the algebra of pairs to have an w operator, even though DRA
has one. This is a somewhat surprising result, since divergence only produces a
test, not an iterated element;

2. it states not only that the algebras of ordered pairs are DRAs, but that every DRA
is isomorphic to such an algebra.

A consequence of this result is that every KAD with divergence (satisfying the mild
condition) can be embedded in a DRAet.

Section 2 contains the definition of DRAet and properties that can be found in [23,
24, 20, 21, 22| or easily derivable from these. We have however decided to invert the
partial ordering with respect to the one used by Solin and von Wright. Their order is
more convenient when axiomatising predicate transformers, but ours is more in line with
the standard KA notation; in particular, this has the effect that the embedded KAD
mentioned above keeps its traditional operators after the embedding. Section 3 presents
new results about the structure of DRAet, such as the fact that the “bottom part” of the
lattice of a DRAet D is a KAD Dy with divergence and the fact that every element = of
D can be written as x = a +tT, where a,t € Dy and t is a test. Section 4 describes the
algebra of ordered pairs and proves the results mentioned in the previous paragraph; it
also contains an example conveying the intuition behind the formal results. Section 5
discusses prospects for further research.

2 Definition of Demonic Refinement Algebra
with Enabledness and Termination

We begin with the definition of Demonic Refinement Algebra [23, 24].

Definition 1 A demonic refinement algebra (DRA) is a structure (D, +,-,*,“,0,1) sat-
isfying the following azxioms and rules, where - is omitted, as is usually done (i.e., we

write xy instead of x - y), and where the order < is defined by x <y g +y=1y. The

operators * and “ bind equally; they are followed by - and then +.

IL.z+(y+z2)=(+y) +=2 9. (x+y)z=xz4+yz
2. rty=y+z 10. o* = zz* +1
5. z+0=z 11. zz4+y<z=z'y<z
4. c+x =2

12. ze+y<z=yr* <z
5. xz(yz) = (zy)z

13, 2% =xa¥ + 1
0. lx =x==xl1 o S
7 0x =0 14. z<zz+y=2<2"%
8 x(y+z2)=xy+axz 15. 2% =2* + 2*0



It is easy to verify that < is a partial order and that the axioms state that * and
x* are the least and greatest fixed points, respectively, of (Az |: xz + 1). All operators
are isotone with respect to <.

Let
T 4w (1)
One can show
r<T, (2)
Te=T , (3)

for all © € D. Hence, T is the top element and a left zero for composition. Other
consequences of the axioms are the unfolding (4), sliding (5), denesting (6) and other
laws that follow.

rf=a"r+1 ¥ =ar+1 (4)
w(yx)” = (zy)'x w(yx)” = (zy)“x ()

(o +y)" = 2" (ya")" (o4 9)° = 2 (ya) (©)
() =2T+1 (zT) =2T +1 (7)
(0)* =20+ 1 (z0)* =20+1 (8)

An element ¢t € D that has a complement —t satisfying
t-t=—-tt=0 and t4+-t=1 (9)

is called a guard. Let D¢ be the set of guards of D. Then (Dg, +,-,—,0,1) is a Boolean
algebra and it is a maximal one, since every ¢ that has a complement satisfying (9) is in
Dg¢. Properties of guards are similar to those of tests in KAT and KAD.

Every guard t has a corresponding assertion t° defined by

T (10)

Guards and assertions are order-isomorphic: s < t < t° < s° for all guards s and ¢.
Thus, assertions form a Boolean algebra too. Assertions have a weaker expressive power
than guards and guards cannot be defined in terms of assertions, although the latter are
defined in terms of guards.

In the sequel, the symbols p, g, 7, s, t, possibly subscripted, denote guards or assertions
(which one will be clear from the context). The set of guards and assertions of a DRA
D are denoted by Dg and D4, respectively. In the proofs, BA abbreviates “Boolean
algebra”.

Next, we introduce the enabledness and termination operators [20, 21, 22]. The
definition below is in fact that of [20], because the isolation axiom (Definition 1(15)
above) and axioms (14) and (18) below are not included in [21, 22].

Definition 2 A demonic refinement algebra with enabledness (DRAe) is a structure
(D,+,-,*,%,"7,0,1) such that (D,+,-,*,*,0,1) is a DRA and the enabledness operator



": D — Dg (mapping elements to guards) satisfies the following axioms, where t is a
guard.

rx = =z (11)
Ttr) < ¢ (12)
(zy) = 'la'y) (13)
T = aT (14)

A demonic refinement algebra with enabledness and termination (DRAet) is a struc-
ture (D, +,-,*,%,", ™ 0,1) such that (D,+,-,*,%,7,0,1) is a DRAe and the termination
operator " : D — Dy (mapping elements to assertions) satisfies the following axioms,
where p is an assertion.

rx = = (15)

p < "(px) (16)
(zy) = "2"y) (17)
20 = 20 (18)

The termination operator is defined by four axioms in Definition 2 in order to exhibit
its similarity with the enabledness operator. It turns out however that Axioms (15), (16)
and (17) can be dropped, because they follow from Axiom (18). It is also shown in [20]

that ™20 = 20 <& " = 20 + 1. Thus (15) to (18) are equivalent to "z = 20 4+ 1 and it

looks like the termination operator might be defined by "x ) + 1, a possibility that

is also mentioned in [21, 22]. However, Solin and von Wright remark that this is not
possible unless it is known that 20+ 1 is an assertion; it is shown in [19, 20] that 20+ 1
is an assertion in daRAet. We show in Sect. 3 that this is the case in DRAe too.

The following are laws of enabledness.

i t (19)

T =1 (20)
(+y) = =+ (21)
(tz) = t'z (22)
-zz = 0 (23)
=0 & =0 (24)
=zt)r = =(zt)z—t (25)

In addition, both enabledness and termination are isotone. The first three axioms of
enabledness, (11), (12) and (13), are exactly the axioms of the domain operator in KAD.
We do not explain at this stage the intuitive meaning of enabledness and termination.
This will become clear in Sect. 4 after the introduction of the representation of DRA by
algebras of pairs.

In DRA, there seems to be no way to recover by an explicit definition the guard
corresponding to a given assertion. This becomes possible in daRA and daRAn [19, 20].
We show in Sect. 3 that it is also possible in DRAe.



3 Structure of Demonic Refinement Algebras
with Enabledness and Termination

This section contains new results about DRAe and DRAet. It is first shown that in
DRAe, guards can be defined in terms of assertions and that the termination operator
can be explicitly defined in DRAe rather than being implicitly defined by Axioms (15)
to (18). This means that every DRAe is also a DRAet, so that the two concepts are
equivalent. After introducing KAD and the divergence operator, we show that every
DRAet D contains an embedded KAD Dy with divergence and that every element of
D can be decomposed into its terminating and nonterminating parts, both essentially
expressed by means of Dy

Proposition 3 Let D be a DRAe and © : Dy — D¢ be the function defined by
P = =Tp0) (26)
Then, for any assertion p and guard t

1. p® is a guard with complement "(p0),

2. 1°° =,
3. p°° = p. Combined with the previous item, this says that ° and ° are dual isomor-
phisms.
PROOF.

1. That p°® is a guard follows from the fact that "z is a guard for any z. Its complement
is obviously '(p0).

2. t°°

= { (26) )
='(t°0)

= { (10))
(=t T +1)0)

= ( Definition 1(9,6) & (3))
=(=tT +0)

= ( Definition 1(3) & (22))
=(=t'T)

= ( (20) & Definition 1(6) & BAof guards )
t

3. Since p is an assertion, p = s° for some guard s, by (10). Then, using part 2 of

this proposition, p®° = s°°° = s° = p. 0

Now let the operators «: Dy — D and ': Dg X Dg — D4 be defined by
def °
-» = (=) and (27)
def
prg = —(-p+—q), (28)



for any assertions p and ¢. Using (10) and (26), it is easy to see that

—-p = = (p0)T +1 and
pMg = "(0)(q0)T +1,

as the following derivations show.

1. Proof of (29).

-p
= ((27))
(=(»°))°
= ( (26) & BA of guards )
("(p0))°
= ( (10))
=(p0)T +1

2. Proof of (30).

prq
= ((28))
= (=p + —q)
= ((29))
“((=p+—=9)0)T +1
= ((29))
(5 (pO)T +1+="(q0)T +1)0)T +1
= ( Definition 1(2,4,9,6,3) )
(= (p0) T 4+ ='(g0) T)T + 1
= ((21))
(=" 0)T) + (=" (¢0)T)) T +1
= ( Definition 1(3,6) & (22) & (20)
~(=(p0) + ="(q0)) T + 1
= ( BA of guards )
"(0)(q0)T +1

Proposition 4 For a given DRAe, the structures
(DA7I—I7+7—H7T71) and (DG)+7'7ﬂ>O7]-)

are isomorphic Boolean algebras, with the isomorphism given either by ° or

PROOF. D¢ is a BA [23, 24]. That D4 is also one follows from Proposition 3. Propo-
sition 3 shows that © is a bijective function from D¢g to D4 and the equations 1° = 1,
0° =T, (=t)° = =(t°), (st)° = s°+t° and (s +1)° = s°1t° are easily shown as follows.



1. 1° =1 follows from (10), the BA of guards and Definition 1(7,3): 1° = =1T +1 =
0T+1=0+1=1

2. 0° =T follows from (10), the BA of guards, Definition 1(6) and (2): 0° = =0T +1 =
1IT+1=T+1=T.

3. Using (27) and Proposition 3(2) yields —(t°) = (—(t°®))° = (—t)°.

4. (st)°
= { (10))
—(st)T +1
= ( BA of guards )
(—|8 + —|t)—|— +1
= ( Definition 1(9,4,2) )
asT +14+-tT +1
= ( (10))
5% 4 t°
D. s°mte
= ((28))
—(=(s%) + ()
= ( —(t°) = (—t)° (proved above) )
~((=8)° + (=1)°)
= ( (st)® = s°+t° (proved above) )
—((=s1)°)
= ( —(t°) = (—t)° (proved above) )
(=(=s=t))°
= ( BA of guards )
(s +1)° O
This is of course consistent with the remark about the order-isomorphism of assertions
and guards made in the previous section. Since inverting the order of a Boolean algebra

yields another Boolean algebra, (D4,+,M,—n,1,T) is also a Boolean algebra and it is
ordered by the DRAe ordering <.

Lemma 5 In a DRAe, z0 + 1 is an assertion.

PROOF. Using in turn Definition 1(7), (14), double negation (applicable since "(z0) is a
guard) and (10), we get

204+1=20T+1="20)T +1=-="(20)T +1 = (='(x0))° .

Thus, 20+ 1 is an assertion and, by Proposition 3, it uniquely corresponds to the guard
=(20). O
This means that it is now possible to give an explicit definition of ™.



Definition 6 For a given DRAe D, the termination operator ™ : D — D 4 is defined by
. def
z = 20+ 1.

By the results of Solin and von Wright mentioned in Sect. 2, the termination operator
satisfies Axioms (15) to (18).
We now recall the definition of KAD [8, 10].

Definition 7 A Kleene Algebra with Domain (KAD) is a structure (K,+,-,*,", 0,1)
satisfying all axioms of DRAe, except those involving “ (i.e., Definition 1(13,14,15)) and
T (i.e., (14)), with the additional aziom that 0 is a right zero of composition:

20=0 . (31)

The range of the domain operator " is a Boolean subset of K denoted by test(K) whose
elements are called tests. Tests satisfy the laws of guards in a DRAe (9).

The standard signature of KAT and KAD includes a sort B C K of tests and a
negation operator on B [15, 8, 10]. We have chosen not to include them here in order
to have a signature close to that of DRAe. In KAT, B can be any Boolean subset of
K, but in KAD, the domain operator forces B to be the maximal Boolean subset of
elements below 1 [10]. Thus, the definition of tests in KAD given above imposes the
same constraints as that of guards in DRA given in Sect. 2.

When using the laws of DRAe to justify a transformation for KAD (due to Defini-
tion 7), we add a suffix K. For instance, we write Definition 1(7)K and (12)K.

The domain operator satisfies the following inductive law (as does the enabledness
operator of DRAe) [10]:

(zt)+s<t = Tz*s) <t . (32)

In a given KAD, the greatest fixed point (vt | ¢ € test(K) : "(xt)), may or may not
exist. This fixed point plays an important role in the sequel. We will denote it by Vz
and axiomatise it by

ve < (zvz) (33)
t<"(zt) = t<vz. (34)

Vz is called the divergence of x [9] and this test is interpreted as the set of states from
which nontermination is possible. The negation of V& corresponds to what is known
as the halting predicate in the modal p-calculus [12]. The operator V binds stronger
than any binary operator but weaker than any unary operator. Among the properties
of divergence, we note

ve = (zvz) , (35)
xVr = VzzVr , (36)
-Vzr = -—Vzz-Vr , (37)
V(tr) < ¢, (38)
r<y = Vr<Vy. (39)



Proposition 8 In a KAD K where Vx exists for every x € K, (x*s) + Va is a fized
point of f(t) def "(xt) + s and

t<"at)+s = t<'(z"s)+ vz, (40)
that is, "(x*s) + Va is the greatest fived point of f.

The proof of this proposition is given in [9].
In the sequel, we denote by Dy the following set of elements of a DRAe D:

Dk izeD|z0=0} . (41)

Theorem 9 Let D be a DRAe. Then (Dk,+,-,*,",0,1) is a KAD in which Vz exists
for all x. In addition, the set of tests of Dy is the set of guards D¢g and

ve = '(z*0) , (42)
Vi=0Az<zz+y = z<z'y. (43)

PROOF.

1. The elements of Dy satisfy all axioms of KAD, including (31). All we need to
prove in order to show that Dy is a KAD is that it is closed under the operations
of KAD. First, D contains 1 and 0, since 10 = 0 and 00 = 0. Next, if ¢ is a guard,

then ¢t € Dk, since t0 < 10 = 0. Thus, guards are the tests of D and form a

BA with the operations +,- and —. This implies 'z € Dg for all z, since 'z is a

guard. Finally, for the remaining operations, we have the following, where 20 = 0
and y0 = 0 are assumed, due to (41):

e (z+y)0 =20+ y0 = 0 by Definition 1(9,4);

o zy0 =20 = 0;

o 20 <0<« 20+ 0 < 0 <« true by Definition 1(11,4).

2. Proof of (42). We show that (2¥0) satisfies the axioms of vz ((33) and (34)).

(@)  (a'(a¥0)
= ( (13))
(za¥0)
= ( Definition 1(9,6,3) )
((xz* 4+ 1)0)
= ( Definition 1(13) )
(2+0)
(b)  t<T(at)
= ( Isotony )
tT <" (at)T

& ( (14) & Definition 1(3) )



tT <atT 40
= ( Definition 1(14) )
tT < zx¥0
= (t=1t1<tT)
t <a¥0
= ( Tsotony of ")
T <'(z+0)
< ( (19))
t <'(a*0)
Thus, Vz exists in D; since (2¥0) € Dg (because it is a guard), Vz also exists in
Dg.

3. Proof of (43).

Ve=0 A z<z2+y

= ( Definition 1(14) )
Ve=0 A z<a%%y
& ( Definition 1(15,9,7) )
Ve=0 A z<zx*y+ 2“0
= ( (42) & (24) & Definition 1(3) )
z < z'y O

Theorem 10 Let D be a DRAe and t be a guard in D (hence in Dk ). Then

(20)z = "(20)T =20 , (44)
= (z0)z +"(z0)T , (45)
='(z0)z + 20 . (46)

Every x € D can be written as x = a +t T, where a,t € D and ta = 0.

PROOF. We start with (44). The refinement (20)z < (20)T follows from = < T. The
other refinement and the equality follow from (14), Definition 1(7), (11) and 0 < 1:
(20)T = 20T = 20 = (20)20 < "(20)z. This is used in the proof of (45), together with
the BA of guards and Definition 1(9): = = (='(z0) + (20))z = ='(z0)z + (20)z =
='(z0)x + "(z0)T. Equation (46) follows from (45), (14) and Definition 1(7). And
='(z0)z € Dk, since ='(20)z0 = 0 by (23), so that, by (45), 2 = a + tT, with
ol ='(20)x € D and t df (x0) € Dk satisfying ta = 0 by BA and Definition 1(7). O

In (46), 20 is the infinite or nonterminating part of x and —'(z0)z is its finite or
terminating part [16]. The possibility to write any element of D as a+tT with a,t € Dg
and ta = 0 means that both the terminating part a and the nonterminating part ¢ T are
essentially described by the elements a and ¢ of the KAD Dg. Under this form, we
already foresee the algebra of ordered pairs (a,t) of Sect. 4.

10



Another part of the DRAe structure worth mentioning is the set

Dp ™ {zeD|2aT=T}. (47)

This set contains all the assertions, since for any guard ¢, t°T = (=tT +1)T = T (see
(10)). Its elements are the total or nonmiraculous elements and they satisfy 'z = 1. As
already remarked in [13], the substructure Dp of D is a Demonic Algebra with Domain
(DAD) in the sense of [4, 5, 6]. The set Dp is the image of Dy by the transformation

o(x) def + =T, (48)

The ordering T of DAD satisfies z C y < ¢(z) < ¢(y). Now let ¢(z) = ='(z0)x, where
x € Dp. It is easy to prove that v is the inverse of ¢. The following properties can
then be derived. In these, x,y,t € Dg and t is a guard. The notation for the demonic
operators is that of [4, 5, 6] (in the definition of demonic negation, the “=" at the left

of ¥ is demonic negation, while the one at the right is DRA negation). The demonic
operators of DAD are concerned only with the terminating part of the elements of Dp.

For each operator, the 4 ¢ ransformation is obtained by calculating the image in Dp of
x and y, using ¢. An operation of D is then applied and, finally, the terminating part
of the result is kept, using . The final expression given for each operator is exactly the
expression defining KAD-based demonic operators in [4, 5, 6].

1. Demonic join: = Uy < 4(b(x) + o(y)) = Yz +1).

2. Demonic composition: zoy e (o(x)p(y)) = —'(z="y)zy.

3. Demonic star: 2% % P((p(x))*) = x*o'x.

4. Demonic negation: —t def Y(—(o(t))) = —t.

5. Demonic domain: "z P("(d(x))) = .

The proof of these assertions follows.

1. Proof of ¥(¢(x) + ¢(y)) = "z'y(z + y).

P(o(x) + ¢(y))

= ¢Yx+-"2T+y+-yT)

= ((z+ 2T +y+-YT)0)(x+ 2T +y+-yT)

= ( Definition 1(9) & (3) & z,y € Dg & (41))
(AT +=yT)(x+ 2T +y+ -yT)

= ((21) & (13) & (20) & Definition 1(6) & (19) )
(=" + -y)(z + 2T +y+YT)

- (BA)
"yl + 2T +y+-yT)

= ( Definition 1(8,7) & BA)
2y(z +y)

11



2. Proof of $(6(x)(y)) = ~Ta~y)ay.

(o(z)o(y))
= P((@+ 2Ty +-yT))
= ( Definition 1(8,9) & (3))
Y(ry + 2=y T + ="2T)
= —((zy + 2=y T 4+ -"2T)0)(zy + 2=y T + ='2T)
= ( Definition 1(9) & (3) & z,y € Dx & (41))
=(z="yT + ="2T)(xy + ="y T + ='2T)
= ( (21) & (13) & (20) & Definition 1(6) & (19))
~((z-"y) + —'z)(xy + 2=y T + -"2T)
= (BA)
“Nz='y)z(xy + 2=y T + —-2T)
( Definition 1(8,7) & (11) & BA & (23))
~(z-ly)zy

3. Proof of ¥((¢(x))*) = a*o'a.

= =(2*(=2T +1)0)z*(='2T + 1)

= ( Definition 1(9,6) & (3))
== T)a* (=T + 1)

= ( (13) & (20) & Definition 1(6) )
=z =)z (=TT 4+ 1)

= ((25))
=N ="r)a* e (=2 T + 1)

= ( Definition 1(8,7) & BA')
=N(x*="r)x*

= ( Part 2 just proved )

r*o'y

4. Proof of (= (o(t))) = —t.

12



(= (o(1)))
= ((19))
(=t 4 —tT))
= ((29))
Y(=((t+—tT)0)T +1)
Definition 1(9) & (3) & t€ Dg & (41))

( (19) & BA)
YT +1)
((19) & BA)
(T +1)0)(¢T +1)
= ( Definition 1(9,6) & (3))
-ET)(ET +1)
= ( Definition 1(8,6) & (23))
—'(tT)
= ( (13) & (20) & Definition 1(6) & (19) )
=t

5. Proof of ¥("(¢(z))) = "z.

P("(6(x)))

= (e +-2T))

= ( Definition 6 )
Y((z+-2T)0+1)

= ( Definition 1(9) & (3) & z€ Dg & (41))
Y(=2T +1)

= (=27 +1)0)(="2T + 1)

- ( Definition 1(9,6) & (3) )
(A2 T)(=2T +1)

= ( Definition 1(8,6) & (23))
—(=2T)

= ( (13) & (20) & Definition 1(6) & (19) )
—(='z)

- ( (19) & BA)

"z

13



However, unlike what is shown for KAD in Theorem 13 below, not every DAD can be
embedded in a DRA, because not every DAD is the image of a KAD. It is shown in [6]
that some DADs contain so-called nondecomposable elements, but in Dp, all elements
are decomposable.

4 A Demonic Refinement Algebra of Pairs

This section contains the main theorem of the report (Theorem 13), about the isomor-
phism between any DRAe and an algebra of ordered pairs. We first define this algebra
of pairs, show that it is a DRAe and then prove Theorem 13. At the end of the section,
Example 14 provides a semantically intuitive understanding of the results of the paper.

Definition 11 Let K be a KAD such that
vV exists for allz € K and Vr=0Az<zz+y = z<zx'y . (49)

Define the set of ordered pairs P by

PYf(zt) |z €K Atetest(K) Atz =0} .

We define the following operations on P.

1. (z,8) ® (y,t) def (=(s+t)(z+y),s+1)

2. (2,5) ® (y,t) & ((at)zy, s + (at))
3. (2,0)® & (<a*t)a*, (a*t))

4. (2,0)° ¥ (o t)~vaa*, (a*t) + Vz)
5 Tz, ) & (2 +1,0)

It is easy to verify that the result of each operation is a pair of P. The condition on
pairs can be expressed in many equivalent ways

tr=0st<-zeox<ats tr=0& te ="z, (50)

by (24)K, (22)K, (11)K and Boolean algebra. The programming interpretation of a pair
(z,t) is that ¢ denotes the set of states from which nontermination is possible, while z
denotes the terminating computations.

If K were a complete lattice (in particular, if K were finite), only the existence of Vx
would be needed to get all of (49) [1]. We do not know if this is the case for an arbitrary
KAD. Note that Dy satisfies (49), by Theorem 9.

Theorem 12 The algebra (P, ®,®,%,%,",(0,0),(1,0)) is a DRAe. Moreover,

1. (2,8) T (y,t) & s<t A —te <y, where (z,5) C (y,t) & (2,5) @ (y,t) = (y,1),

2. the top element is (0,1),

3. guards have the form (t,0), and —(t,0) = (=t,0),
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4. the assertion corresponding to the guard (t,0) is (t,—t),
J. _"(ta _'t) = (_'tvt)a
6. "(z,t) = (—t,t).

PROOF. In the derivations below, steps that use Definition 11 are not justified. Also,
the constraint on pairs is usually not invoked (e.g., tx = 0 for the pair (x,t)).

Verification of the axioms of DRA (Definition 1). For the verification of the * and
“ axioms, we assume (z,s) C (y,t) <& s <t A —tx <y, which is item 1 of the theorem;
this is shown after verifying the axioms of DRA and those of ".

L (z,7) @ ((y,5) @ (2,1))
= (z,7) @ (~(s +1)(y +2),5 + 1)
= ((r+s+t)z+(s+t)(y+2),r+s+1)
= ( Definition 1(8)K & BA)
(~(r+s+t)(z+y+z),r+s+t)

= ( Symmetric transformations )

((z,r) ® (y,5)) @ (2,1)
2. (z,5)® (y,t) = (y,t) ® (z, s) is obvious from the definition of &.
3. (2,1) ® (0,0) = (=(t+0)(z + 0),t + 0) = (~tz, ) = (z,£) by (50).
4. (z,t) @ (2,t) = (z,¢) is obvious from the definition of & and (50).
5. (x,r) 0 ((y,8) © (2,1))
= (z,7) © (~(yt)yz, s +(yt))

= (='(z(s +(yt))x="(yt)yz, r + (2(s + (yt))))

= ( Definition 1(8)K & (21)K & BA)
(=(zs)="(@(yt)) 2= (yt)yz, v + (2s) + (2'(y1)))

_ ((25)K & (13)K)
(=(zs)="(zyt)zyz, r + (2s) + (2yt))

([ (22)K & BA)
(="(="(xs)zyt)="(xs)zyz,r + (xs) + (' (xs)xyt))
= ((@s)zy,r +(xs)) © (2,1)
= ((z,r) © (y,9)) © (2,1)

6. (z,t)®(1,0)
= (="(20)z1,t + (20))
. ((31) & (19)K & BA & Definition 1(6,3)K )
(z,1)
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— ( Definition 1(6,2,3)K & (19)K & (50) )
(="(1t)1x,0 + '(1t))
—= (1,0)® (z,1)
7. (0,0)® (z,t)

= (=0t)0z,0 + 0t))
- ( (31) & Definition 1(7,3)K & (19)K )

(0,0)
8. (z,r) 0 ((y,5) ®(21))
= (&,r) 0+ +2),s+1)
= (F@(s+1))a=(s +1)(y + 2),7 + (2(s + 1))

= ( (25K & (50) )
(=(z(s + 1)~ ra(y + 2),7 + (z(s + 1))
( Definition 1(8)K & (21)K)
(= ((zs) + (zt))~r(wy + x2),7 + (2s8) + (2t))
= ( Definition 1(8)K & BA)
s) + (xt)) (= (zs)zy + —'(xt)xz2),r + (xs) + "(xt))
( BA)
(=(r+"(zs) + 7+ "(xt) (= (zs)xy + =" (xt)z2),r + (25) + r + "(2t))
= (=" (xs)zy,r + (xs)) & (= (zt)zz,r + (1))
= (z,7) ® (y,8) & (z,7) ® (2,t)

(== (e

9. ((z,7) @ (y,8)) © (2,1)
= (=(r+s)(x+y),r+s)o(zt)
= (F(=(r+s)(@+y)t)=(r+s)(@+y)z,r+ s+ (=(r + s)(x +y)t))
= ( (22)K & Definition 1(9)K & (21)K)
(=(=(r + ) ((@t) + (i) =(r + s)(@ + y)z,r + s+ =(r + 5)((@t) + (yt)))
- ( BA>
(=(r + s)=((@t) + () (@ + y)z, 7 + s + (xt) + (yt))
= ( Deﬁmtlon 1(8,9)K & BA)
(= (r + Tat) + s+ (yt) (@) zz + ~(yt)y2),r + (@t) + s + (yt))
= (Hat)zz,r +(2t) & (- (yt)yz, s + (y1))
= (z,7) ®(2,t) ® (y,8) ® (2,1)

10 (2,6)© (2,4)® @ (1,0)
= (z,t) © (='(z"t)z", (z*1)) ® (1,0)
= ('(@"(z"t))z~"(2"t)z", t + (2(271))) & (1,0)
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=

<

=

<~

( (25)K)

(=" (x*t))za*, t + (x
( (50) & (1

(="(za*t)~tez* t + (x
( BA & (1

(= t)za”, (2"t)) &

(o
3)K

9)K

(17

1)) @ (1,0)

)
z"t))
&

0)

@ (1,0)
(21)K & Definition 1(9,10)K )

(=("(z*t) + 0)(="(x*t)zx* 4+ 1), (z*t) + 0)
( BA & Definition 1(8,10)K )

(=)™, (271))

( (22)K & BA)

(=(ar)=(z"s)a™y, (a*r) + (27s)) C (2,1)
( Part 1 of this theorem, proved below )

(z*r) + "(x*s) <t A —t="(a*
( (ar) + (2"

s) C (z,1)
"y, (@) + (='(@"r)2"s)) € (2,1)

r)=(x*s)r*y < 2

s) <t = —t<(a*r)-(z*s) & (21)K &

Definition 1(8)K )

((32))

—tr* < (—tx)*

=

=

=

=

(z*(r+s)) <t AN ~tz*y <z

(zt)+r+s<t AN —tz*y <z

-t

( Definition 1(12)K )
(—tx)*—tx + -t < (—tx)*—t

((xt) <t = =t < =(xt))
(mtx)* =t
(2

(ﬂt:c)*—'t—"_(:ct)x—'t + —t < (ﬁtx)*—'t

{

=(xt

t)x + -t < (—tx)*—t

5)K)

) <1 & Definition 1(9,6)K )

((=tz)*—ta + 1)=t < (~tz)*—t
( (HK)

=

true

)

(zt)+r+s<t A (mtx) -ty <z
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12.

= ( Definition 1(11)K )
(zt)+r+s<t AN —tzz+ -ty <z

& ( Definition 1(8)K )
(zt)+r+s<t AN ~tlzz+y) <z

= (Mzt)+r+s<t = -t<-((xt)+r+s))
(zt)+r+s<t A ~t=((at)+r+s)(vz+y) <z

& ( Part 1 of this theorem, proved below )
(=((t) + 7+ s)(xz+y), (xt) +r+5) C (2,1)

= ( Definition 1(8)K & BA)

(=(r +(2t) + 5) (= (@t)zz + y), r + (2t) + 5) C (2,1)
& (DN(at)xz,r +(xt)) @ (y,8) C (2,1)
< (z,1) ©(2,8) & (y, 5) C (2,1)

& ( Part 1 of this theorem, proved below )
s+ (ya*r) <t A —t="(yz*r)yz* <z

& ( (ya*r) <t = -t < =(yx*r))
s+ (yz*r) <t N —tyx* < z

= ( By isotony, (22)K and BA, —tyz* < z = —tyz*r < zr =
(—tyz*r) <'(zr) & =t'(yz*r) < '(zr) & (ya*r) < (zr) + t. Hence,
(zr) <t A —tyz* <z = (yz*r) <t)

(zr)+s<t A —tyz* <z

= ( Definition 1(12)K )
zr)+s<t N zz+ -ty <z

& ( Definition 1(8)K & =tz = z by (50) )
zr)+s<t A ~tlzz+y) <z

& (BA& t4+(zr)+s<t = at<-=(t+"(zr)+s))
t+(zr)+s<t A =t=(t+(zr)+8)(zz+y) <z

& ( Part 1 of this theorem, proved below )
(=t + o) + )z + 1), b+ (o) + 5)  (20)

& ( Definition 1(8)K & BA)

(=t +(zr) + s) (= (zr)zz + y), t + (2r) + 5) C (2,1)
& (H(zr)za,t +(2r)) @ (y,8) C (2,1)

18



= (2,t) © (z,7) ® (y,5) C (z,1)

(z,1) © (2,t)° & (1,0)

= (z,t) © (= (z*t)=vez*, (z*t) + Vz) & (1,0)

= (="(z((z*t) + va))z-"(z*t)~Vaz*, t + (z((z*t) + Vx))) @ (1,0)

= ( Definition 1(8)K & (21)K)
(=("(2"(z*t)) + (zvz))z—"(z*t)~Vaz*, t + (2" (x*t)) + (zVz)) & (1,0)

= (BA & (25)K & (13)K & (19K & (21)K)
(="(zx*t)="(xVe)za®, (t + xa*t) + (xVr)) & (1,0)

- ( Definition 1(6,9,10)K & (35) )
(=" (xa*t)~vVrrx®, (2*t) + Va) @ (1,0)

= (—("(«*t) + V& + 0)(="(za*t)~Vzaz* + 1), (a*t) + V& + 0)

= ( Definition 1(3)K & De Morgan )
(="(z*t) Ve (=" (zz*t)~Vere* + 1), (x*t) + V)

= ( Definition 1(8)K & xz*t < x*t by Definition 1(10)K & BA')
(='(z*t)=Va(zz* + 1), (z*t) + V)

= ( Definition 1(10)K )
(="(z*t)~vrz*, (2*t) + Vz)

= (z,t)¥

. In this proof, the abbreviation p L (x*(r 4 s)) + Vz is used.

C (,7)% O (y,9)
& (2,t) C (2 (x*r)=vax*,(z¥r) + Vz) © (y, 5)
C (= (="(z*r)=vVaz*s)=(z*r)=Vaz*y, (x*r) + Vo + (= (a*r)-vza*s))
& ( (22)K & BA)
(z,t) C (="(z*r)="(a*s)~vaz*y, (x*r) + (2*s) + Vz)

& ( De Morgan & (21)K & Definition 1(8)K )
(2,t) E (=pz*y,p)
& ( Part 1 of this theorem, proved below )

t<p A —pz < -pzty

= ( Multiplying both sides of the right inequality below by —-p & BA)
t<p A —pz<zy

= (—p<1 & Isotony )
t<p A —pz < (-pz)y

= ( (49) & V(=pz) = 0, since V(—px) < —pve < =VzVz by (38), (39)
and the definition of p )

t<p N —pz<-pr-pz+y
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& ( We show —pzx = —pz—p. Only < need be shown, the other direction
being direct by isotony.
—px
= ( De Morgan )
='(z*(r + s))=Vax
= ( Definition 1(10,9)K & (35) )
“(za*(r+s) +r+s)-(xvr)z
= ((2D)K & (13)K & BA & (19)K)
=(r + s)='(zp)x
= ((25)K)
=(r 4 )= (zp)z-p
= ( Reversing the previous steps on —(r + s)='(xp) )
—prTp
)
t<p N —pz < prz+y
= ( Definition 1(8)K & —-p<1)
t<p A —pz < —p(xz+y)
“= ( Multiplying each side of the right inequality by —p and using that
—p < =("(zt) + r + s) because
(zt)+7r+s
< ( Using the left inequality t < p )
(xp) +r+s
= ( Definition 1(8)K & (21)K & (13)K)
(xa*(r+s)+ave)+r+s
= ( (199K & (21)K)
(xa*(r+s)+r+s)+(xvr)
- { Definition 1(6,9,10)K & (35) )

)

t<p A =((xt)+r+s)z <=((xt) +r+s)(zz+y)
= ( Proposition 8 )

t<Hat)+r+s A o((at)+r+s)z < =((xt) +r+s)(zz+y)
& ( Part 1 of this theorem, proved below )

(z,t) C (=((xt) +r + s)(xz + y), (xt) + r + 5)
& ( Definition 1(9)K & BA)

(2,1) € (=(r + (at) + s)(='(at)zz + y),r + (at) + 5)
& (2,t) C (2 (xt)zz,r + (xt)) & (y, 5)
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& (2,1) E (2,7) © (2,1) © (y, )

z,t)% ® (0,0)
=N(z*t)~vaza*, (a*t) + va) © (0,0)
,(@*t) @
(=2 t)=Vez*0)-"(2*t) = Vez*0, (2*t) + Vo + (= (z*t)~Vez*0))
= ( (31) & (19)K & Definition 1(3)K )
(="(z*t)z*,"(x*t)) ® (0, (z*t) + V)
= (=("(z*t) + "(a*t) + va)(="(z*t)z* + 0), (x*t) + (2*t) + Vo)
= ( Definition 1(3)K & BA)
(="(z*t)~vez*, (2*t) + V)
= (z,1)°

* o~ o~

Verification of the axioms of enabledness ((11), (12), (13), (14)).

(11) (z,t) ® (z,t)

Il
—
J
—
&—|
+
N2
=
~
—~
Rj
+
~
~—

3‘3
@)
+
—
—
&_‘
+
~
~
prd
~

= ( BA & (19)K)
(—t'zx,t)

= ( (1HK & =tz =z by (50) )
(z,1)

(12) Assume that guards have the form (¢,0), as stated in part 3 of the theorem; this
is shown below.

L0 © (2,5))
= "(="(ts)tw, 0+ (ts))
= ( BA & (19)K)

(t—sx,ts)
= ("(t—sz) + ts,0)
= ( (22K & BA)
(t('x +5),0)

( Part 1 of this theorem, proved below & BA )

1M

(t,0)

(13)  ((2,5) ©(y,1))
(=(xt)zy, s + "(xt))

= ("(='(zt)zy) + s + "(xt),0)

= ( (22)K & BA)
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("(zy) + "(at) + 5,0)
- ( (13)K & (21)K & Definition 1(9)K )
((z(y +1)) +5,0)

= ( (31) & (199K & BA & Definition 1(6)K )
(=" (20)z(y + t), s + "(x0))

= ((z,5) © (y +1,0))

= ((2,5) ©(y,1))

(14) Assume that the top element is (0, 1), as stated in part 2 of the theorem; this is
shown below.

= ("z+t0)©(0,1)
="z +)1)("z +)0,0 + (("z + t)1))

= ( (31) & Definition 1(2,3,6) & (19)K )
0,z + 1)

= ( (31) & Definition 1(2,6) )
(="(21)z0,t + "(x1))
= (z,t) ®(0,1)

Verification of statements 1 to 6 of the theorem.

L (@) C (50)
& ( Definition of C )

(z,5) @ (y, 1) = (y,1)

(s + i)z +y)s+1) = (y,1)

& ( BA & Definition 1(8)K )
(mt—sx + —s—ty, s +t) = (y,t)

& (—sx = x by (50) & -ty = y by (50) & Equality of pairs &
Definition of <)

i

s<t N ~tx+-sy=y

& (ty=0 & s<t = sy<ty = sy=0 & Definition 1(3,9)K )
s<t AN tx+(s+s)y=y
& ( BA & Definition 1(6)K & Definition of <)

s<t ANtz <y

2 (@t (0,1)
& ( Part 1 of this theorem )
t<1A-1z<0
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& ( BA & Definition 1(7)K )
true

3. By (9), a pair (z,s) is a guard iff there exists a complement (y,t) satisfying (9),
that is, (2,5) ® (3,6) = (3,£) © (z,5) = (0,0) and (z, ) ® (3 t) — (1,0). Now,

(2,5) © (3,1) = (0,0)
< (H(at)zy, s + (xt)) = (0,0)
& (zt)zy =0 A s+ (at) =0
= ( BA & By (24), (at) =0 at =0 & (19)K)
zy=0 A s=0.
Similarly, (y,t) ® (z,s) = (0,0) = yz =0 At =0. Using s = ¢ = 0 in the last

constraint, we get (x,0) ® (y,0) = (1,0) < =+ y = 1. Hence, z and y are guards
and y = .

4. By (10), parts 2 and 3 of this theorem, and (19)K, (¢,0)° = =(¢,0)®(0,1)®(1,0) =
(=¢,0) ©(0,1) @ (1,0) = (0, ~t) @ (1,0) = (¢, ~t).

5. By (29), =(t,=t) = =((t,~t) ©(0,0)) © (0,1) & (1,0) = =(0, ) © (0,1)  (1,0) =
=(=1,0)© (0, 1) @ (1,0) = (£,0) © (0,1) ® (1,0) = (0,¢) ® (1,0) = (=t, ).

6. By Definition 6, "(z,t) = (z,t) ® (0,0) & (1,0) = (0,t) & (1,0) = (=t,t). O

And now the main theorem.

Theorem 13 1. FEvery DRAe is isomorphic to an algebra of ordered pairs as in Def-
def

inition 11. The isomorphism is given by ¢(x) = (='(x0)z,(20)), with inverse
U((a, 1) a+1T.

2. Every KAD K satisfying (49) can be embedded in a DRAe D in such a way that
Dy is the image of K by the embedding.

PROOF.

1. Let D be a DRAe. The sub-Kleene algebra (D, +,-,*,",0,1) of D satisfies (49), by
Theorem 9. Use Dx to construct an algebra of pairs (P,®,®,®,%,",(0,0),(1,0))
as per Definition 11. We first show that 1 is the inverse of ¢, so that they both
are bijective functions.

(a)  (o(z))
= ¢((-'(z0)z, (20)))
= ='(20)z + "(z0)T

= ( (14) & Definition 1(7) )
='(z0)x + 20

= ( (46) )
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(="((z4+tT)0)(z+tT),((x +tT)0))

( Definition 1(9) & (3))
(=20 +tT)(x+tT),(20+1¢T))

( Since z € Dg, 0 =0 by (41) & Definition 1(3) )
(ET)(@+tT),"(tT))

( (13) & (20) & Definition 1(6) & (19) )
(—t(x+1tT),1t)

( Definition 1(8,7,3) & BA & —tx =z by (50) )
(z,1)

What remains to show is that ¢ preserves the operations. Since v is the inverse of
¢, it is equivalent to show that ¢ preserves the operations and this is what we do
(it is somewhat simpler).

(a)

()

((z,5) @ (y,1))
(s + 1)z +y),s+1))

= (s+t)x+y) +(s+t)T

( BA & Definition 1(8,9) )
—tmsx 4+ sty +sT +1T
(sx=0 & ty=0 & (50) & tx <tT & sy<sT)
—tr +tx + sy +sy+sT +¢7T
( Definition 1(9,2,6) & BA)
r+sT +y+tT
((z,8) + (. 1))
P((z,5) © (y, 1))
P((H'(@t)zy, s + (at)))

= Nat)zy + (s +(2t))T

<

( Definition 1(9) & "(at)xy < (at)T )
—N(at)zy + (xt)xy + sT + (xt) T
( Definition 1(9,6) & BA & (14))
zy+sT +atT
( Definition 1(9,8) & (3))
(@ +sT)(y+1T)
(2, 8)) - ¥((y,1))
((z,1)%)
((

—(zt)a”, (a*1)))

<

8
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= —(z*t)z* + "(a*t)T

= ( (z*t)x* <"(z*t)T )
SN(x )z + (e t)a* + (a*t) T

= ( Definition 1(9,6) & BA & (14) )
¥+ a*tT

= ( Definition 1(8,2,6) & (7))
x*(tT)*

= ((3))
a*(tTa*)*

= ((6))
(x4+tT)*

= (¥((z,1)))"

(@) (1))
= ()2, Te*t) + Vi)
= —(z*t)~vaz* + ((a*t) + va) T

=("(x*t) + vo)z* + ((a*t) + vo)z* + ((x*t)
= ( Definition 1(9,6) & BA & (42)
o+ (2" t)T 4+ (2¥0)T
= ( (14) & Definition 1(7) & z%0 = z“0tT )
¥+ tT + %0 4 2¥0tT
= ( Definition 1(2,9,15) )
¥ +xvtT
= ( Definition 1(6,8,2) & (7))

+ va)T
)
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(f) By definition of ¢ and Definition 1(7,3), 1((0,0)) =04 0T = 0.
(g) By definition of ¢ and Definition 1(7,3), ¢((1,0)) =1+0T = 1. O

2. By Theorem 12, the construction in Definition 11 can be used to produce a DRAe P
of pairs. The pairs of the form (x,0) are precisely those that satisfy (x,0)®(0,0) =
(0,0) and thus constitute a KAD by Theorem 9. In addition, (x,0) & (y,0) = (z +
¥,0), (2,0)0(y,0) = (xy,0), (2,0)® = (z*,0), (x,0) = ("z,0) and V(z,0) = (vz,0),
as is readily checked. Thus the embedding of K in P is simply = — (z,0).

Example 14 Figure 1 may help visualising some of the results. It displays the DRAe of
ordered pairs built from the algebra of all 16 relations over the set {e,o}. The following
abbreviations are used: a = {(e,0)},b = {(c,e)},s = {(e,0)},t = {(0,0)},0={}, T =
a+b+s+t,1 =s+t,1=a+b. The guards are (0,0), (s, 0), (t,0), (1,0) and the assertions
are (1,0), (t,s), (s,t), (0,1). The conjunctive predicate transformer f corresponding to a
pair (z,t) is given by f(s) & —t='(z—s). In words, a transition by z is guaranteed to
reach a state in s if the initial state cannot lead to nontermination (—t) and it is not
possible for x to reach a state that is not in s (='(x—s)). The predicate transformers
for all pairs follow. The entry for line (t + 1,0) and column t, for instance, is s because
f(t) = =0-"((t + 1)-t) = s, as is readily checked.

0 s t 1 0 s t 1 0 s t 1
0,1) o 0 0 0 s+1,0) |0 t 0 1 1,0) [0 s t 1
(b+t,s)|0 0 O t (a+1,00 |0 0 t 1 (a+t0)|0 0 1 1
(a+s,t) |0 0 0 s (b+1,0) |0 s 0 1 (b+t,0)|s s s 1
(b,s) 0t 0t (t+1,0) |0 0 s 1 (s,0) t 1t 1
(t,s) 00t t (0,t) S s s s (a,0) t t 11
(T,0) 0001 (a+s,0) |t t t 1 (b,0) s 1 s 1
(s,t) 0 s 0 s (b+s,0) 0 1 0 1 (t,0) s s 1 1
(a,t) 0 0 s s (1,0) 0t s 1 (0,0) 1111
(0,s) t ot ot ot

Going back to Figure 1, we see that the terminating elements, that is, those of the
form (z,0), form a Kleene algebra, in this case a relation algebra isomorphic to the
full algebra of relations over {e,0}. For these terminating elements, (z,0) = ("z,0) (by
Definition 11), so that enabledness on pairs directly corresponds to the domain operator
on the first component relation.

Another subset of the pairs is identified as the nonmiraculous elements, or demonic
algebra, in the figure. This subset forms a demonic algebra [4, 5, 6]. Its pairs are total,
that is, (z,t) = ("z +¢,0) = (1,0) (the identity element on pairs). From any starting
state, (x,t) is enabled, in the sense that it either leads to a result or to nontermination.
The termination operator applied to (x,t) gives "(x,t) = (=t,t) (Theorem 12(6)). This
is interpreted as saying that termination is guaranteed for initial states in —t. In the
demonic algebra of [4, 5, 6], the demonic domain of z, "z, is equal to —t, so that the
termination operator and demonic domain correspond on the subset of nonmiraculous
elements.

Some elements are nonterminating, some are miraculous, and some are both, such as
(0,t). This element does not terminate for initial states in t (here, {o}) and terminates
for states in —t while producing no result (due to the first component being 0).
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Figure 1: A demonic refinement algebra of ordered pairs.
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The set of terminating elements (the Kleene algebra) is the set Dg defined in (41).
The set of nonmiraculous elements (the demonic algebra) is the set Dp defined in (47).
For pairs, the function ¢ mapping Dy to Dp (see (48)) is ¢((x,t)) = (x,—'x), by
Definition 11 and Theorem 12. For instance, ¢((0,0)) = (0,1) and ¢((a,0)) = (a,t). The
terminating and nonmiraculous elements have the form (z,0), with 'z = 1. They are
mapped to themselves. For instance, ¢((T,0)) = (T,0).

Instead of viewing pairs as the representation of programs, we can view them as
specifications. The weakest specification is (0,1) at the top of the lattice. It does not
even require termination for a single initial state. Lower down, there is the havoc element
(T,0). As a specification, it requires termination, but arbitrary final states are assigned
to initial states. Still lower, there is the identity element (1,0). It requires termination
and assigns a single final state to each initial state. The least element of the lattice,
(0,0) also requires termination, but it is a specification so strong that it assigns no final
state to any initial state; we could say it is a contradictory specification.

5 Conclusion

The main theorem of this report, Theorem 13, provides an alternative, equivalent way
to view a DRAe as an algebra of ordered pairs. This view, or the related decomposition
of any element z of a DRAe as x = a + tT (Theorem 10), offers an intuitive grasp of
the underlying programming concepts that is easier to understand than the predicate
transformer model of DRAe for the relationally minded (this may explain why pair-based
representations have been used numerous times, such as in [2, 11, 13, 17, 18], to cite just
a few).

It is asserted in [9] that the divergence operator often provides a more convenient
description of nontermination than the w operator of omega algebra. Theorem 13 brings
some weight to this assertion, because DRAe, although it has an w operator (different
from that of omega algebra, though), is equivalent to an algebra of ordered pairs of
elements of a KAD with divergence and without an w operator.

A side effect of Theorem 13 is that the complexity of the theory of DRAe is at most
that of KAD with a divergence operator satisfying the implication in 49 (this complexity
is unknown at the moment).

As future work, we plan to look at the variants of DRAe mentioned in the introduction
to see if similar results can be obtained.
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