

DEMONIC ALGEBRA WITH DOMAIN

PAR

JEAN-LOU DE CARUFEL
ET

JULES DESHARNAIS

RAPPORT DE RECHERCHE
DIUL-RR-0601

DÉPARTEMENT D’INFORMATIQUE ET DE GÉNIE LOGICIEL
FACULTÉ DES SCIENCES ET DE GÉNIE

Pavillon Adrien-Pouliot

Université Laval
Québec, QC, Canada

G1K 7P4

JUIN 2006

FACULTÉ DES SCIENCES ET DE GÉNIE
Département d’informatique et génie logiciel

Pavillon Adrien-Pouliot, local 3908
Cité universitaire
Québec, Canada
G1K 7P4

Copyright c© Jean-Lou De Carufel et Jules Desharnais
Département d’informatique et de génie logiciel
Université Laval
Québec, QC, G1K 7P4
Canada
http://www.ift.ulaval.ca
— tous droits réservés —

Demonic Algebra with Domain�

Jean-Lou De Carufel and Jules Desharnais

Département d’informatique et de génie logiciel
Université Laval, Québec, QC, G1K 7P4, Canada

jldec1@ift.ulaval.ca, Jules.Desharnais@ift.ulaval.ca

Abstract. We first recall the concept of Kleene algebra with domain
(KAD). Then we explain how to use the operators of KAD to define
a demonic refinement ordering and demonic operators (many of these
definitions come from the literature). Then, taking the properties of the
KAD-based demonic operators as a guideline, we axiomatise an algebra
that we call Demonic algebra with domain (DAD). The laws of DAD
not concerning the domain operator agree with those given in the 1987
CACM paper Laws of programming by Hoare et al. Finally, we investigate
the relationship between demonic algebras with domain and KAD-based
demonic algebras. The question is whether every DAD is isomorphic to a
KAD-based demonic algebra. We show that it is not the case in general.
However, if a DAD D is isomorphic to a demonic algebra based on a
KAD K, then it is possible to construct a KAD isomorphic to K using
the operators of D. We also describe a few open problems.

1 Introduction

The basic operators of Kleene algebra (KA) or relation algebra (RA) can directly
be used to give an abstract angelic semantics of while programs. For instance,
a + b corresponds to an angelic non-deterministic choice between programs a
and b, and (t · b)∗ · ¬t is the angelic semantics of a loop with condition t and
body b. One way to express demonic semantics in KA or RA is to define demonic
operators in terms of the basic operators; these demonic operators can then be
used in the semantic definitions. In RA, this has been done frequently (see for
instance [1,2,6,7,18,22,26]); in KA, much less [12,13].

In the recent years, various algebras for program refinement have seen the
day [3,14,15,16,24,25,27]. The refinement algebra of von Wright is an abstraction
of predicate transformers, while the laws of programming of Hoare et al. have
an underlying relational model. Möller’s lazy Kleene algebra has weaker axioms
than von Wright’s and can handle systems in which infinite sequences of states
may occur.

� This research was partially supported by NSERC (Natural Sciences and Engineering
Research Council of Canada) and FQRNT (Fond québécois de la recherche sur la
nature et les technologies). This report is an expanded version of [5], giving all the
proofs that had to be omitted from the conference proceedings.

Our goal is also to design a refinement algebra, that we call a Demonic algebra
(DA). Rather than designing it with a concrete model in mind, our first goal is
to come as close as possible to the kind of algebras that one gets by defining
demonic operators in KA with domain (KAD) [9,10,11], as is done in [12,13],
and then forgetting the basic angelic operators of KAD. Starting from KAD
means that DA abstracts many concrete models, just like KA does. We hope
that the closeness to KA will eventually lead to decision procedures like those of
KA. A second longer term goal, not pursued here, is to precisely determine the
relationship of DA with the other refinement algebras; we will say a few words
about that in the conclusion.

In Section 2, we recall the definitions of Kleene algebra and its extensions,
Kleene algebra with tests (KAT) and Kleene algebra with domain (KAD). This
section also contains the definitions of demonic operators in terms of the KAD
operators. Section 3 presents the axiomatisation of DA and its extensions, DA
with tests (DAT) and DA with domain (DAD), as well as derived laws. It
turns out that the laws of DAT closely correspond to the laws of programming
of [14,15]. In Section 4, we begin to investigate the relationship between KAD
and DAD by first defining angelic operators in terms of the demonic operators
(call this transformation G). Then we investigate whether the angelic operators
thus defined by G induce a KAD. Not all answers are known there and we state
a conjecture that we believe holds and from which the conditions that force G to
induce a KAD can be determined. It is shown in Section 5 that the conjecture
holds in those DADs obtained from a KAD by defining demonic operators in
terms of the angelic operators (call this transformation F). The good thing is
that F followed by G is the identity. Section 6 simply states the main unsolved
problem. We conclude in Section 7 with a description of future research.

2 Kleene Algebra with Domain and
KAD-based Demonic Operators

In this section, we recall basic definitions about KA and its extensions, KAT
and KAD. Then we present the KAD-based definition of the demonic operators.

Definition 1 (Kleene algebra). A Kleene algebra (KA) [4,20] is a structure
(K, +, ·, ∗, 0, 1) such that the following properties hold for all x, y, z ∈ K.

(x + y) + z = x + (y + z) (1)
x + y = y + x (2)
x + x = x (3)
0 + x = x (4)

(x · y) · z = x · (y · z) (5)
0 · x = x · 0 = 0 (6)
1 · x = x · 1 = x (7)

x · (y + z) = x · y + x · z (8)

2

(x + y) · z = x · z + y · z (9)
x∗ = x∗ · x + 1 (10)

Addition induces a partial order ≤ such that, for all x, y ∈ K,

x ≤ y ⇐⇒ x + y = y . (11)

Finally, the following properties must be satisfied for all x, y, z ∈ K.

x · z + y ≤ z =⇒ x∗ · y ≤ z (12)
z · x + y ≤ z =⇒ y · x∗ ≤ z (13)

Remark 2. Hollenberg has shown that the following symmetric version of (10),

x∗ = x · x∗ + 1 , (14)

is derivable from these axioms [17] and Kozen has shown in [19] that (12) and
(13) are independent.

One can show that x∗ = μ≤(y :: y · x + 1) with (7), (10) and (13) and that
x∗ = μ≤(y :: x · y + 1) with (7), (14) and (12).

To reason about programs, it is useful to have a concept of condition, or test.
It is provided by Kleene algebra with tests.

Definition 3 (Kleene algebra with tests). A KA with tests (KAT) [21] is
a structure (K, test(K),+, ·, ∗, 0, 1,¬) such that test(K) ⊆ {t | t ∈ K ∧ t ≤ 1},
(K, +, ·, ∗, 0, 1) is a KA and (test(K),+, ·,¬, 0, 1) is a Boolean algebra.

In the sequel, we use the letters s, t, u, v for tests and w, x, y, z for programs.
The angelic semantics of programs is then given by the following, where x[]y is
the non-deterministic choice between x and y.

abort = 0
skip = 1
x[]y = x + y

x; y = x · y
if t then x else y = t · x + ¬t · y

while t do x = (t · x)∗ · ¬t

It is useful to have a grip on the inputs of the aforementioned programs. The
notion of domain encapsulates the necessary properties.

Definition 4 (Kleene algebra with domain). A KA with domain (KAD)
[9,10,13,11] is a structure (K, test(K),+, ·, ∗, 0, 1,¬, �) such that (K, test(K),+,
·, ∗, 0, 1,¬) is a KAT and, for all x ∈ K and t ∈ test(K),

x ≤ �x · x , (15)
�(t · x) ≤ t , (16)

�(x · �y) ≤ �(x · y) . (17)

3

It turns out that these axioms force the test algebra test(K) to be the max-
imal Boolean algebra included in {x | x ≤ 1} [11].

Example 5. This example illustrates the domain operator for the familiar model
of relations.

�{(0, 0), (0, 1), (2, 1)} = {(0, 0), (2, 2)}
�{(0, 0), (0, 1), (0, 2)} = {(0, 0)}

�{} = {}

Note that (17) is satisfied in relational algebras. It is called locality. However,
there are KATs where it is false; see [8] for a counter-example. There are many
other properties about KAT and KAD and we gather those that will be used
later on. See [11] or [13] for proofs.

Proposition 6. The following hold for all t ∈ test(K) and all x, y ∈ K.

1. t · t = t
2. t · ¬t = ¬t · t = 0
3. x = y ⇐⇒ x · t = y · t ∧ x · ¬t = y · ¬t
4. �x = min≤{t | t ∈ test(K) ∧ t · x = x}
5. �x · x = x
6. �x ≤ t ⇐⇒ x ≤ t · x
7. �(x · �y) = �(x · y)
8. ¬�x · x = 0
9. �t = t

10. �(t · x) = t · �x
11. �(x + y) = �x + �y
12. x ≤ y =⇒ �x ≤ �y
13. �(x · t) ≤ t ⇐⇒ �(x∗ · t) ≤ t
14. �(x∗) = 1

The following operator characterises the set of points from which no compu-
tation as described by x may lead outside the domain of y.

Definition 7 (KA-Implication). Let x and y be two elements of a KAD. The
KA-implication x → y is defined by x → y = ¬�(x · ¬�y).

We are now ready to introduce the demonic operators. Most proofs can be
found in [13].

Definition 8 (Demonic refinement). Let x and y be two elements of a KAD.
We say that x refines y, noted x �A y, when �y ≤ �x and �y · x ≤ y.

The subscript A in �A indicates that the demonic refinement is defined with
the operators of the angelic world. An analogous notation will be introduced
when we define angelic operators in the demonic world. It is easy to show that
�A is a partial order. Note that for all tests s and t, s �A t ⇐⇒ t ≤ s. This
definition can be simply illustrated with relations. Let Q = {(1, 2), (2, 4)} and
R = {(1, 2), (1, 3)}. Then �R = {(1, 1)} ⊆ {(1, 1), (2, 2)} = �Q. Since in addition
�R;Q = {(1, 2)} ⊆ R, we have Q �A R (“;” is the usual relational composition).

4

Proposition 9 (Demonic upper semilattice).

1. The partial order �A induces an upper semilattice with demonic join 	A:

x �A y ⇐⇒ x 	A y = y .

2. Demonic join satisfies the following two properties.

x 	A y = �x · �y · (x + y)
�(x 	A y) = �x 	A �y = �x · �y

Definition 10 (Demonic composition). The demonic composition of two
elements x and y of a KAD, written x �A y, is defined by x �A y = (x → y) ·x · y.

Proposition 11. Let K be a KAD with t ∈ test(K) and x, y, z ∈ K.

1. x �A (y �A z) = (x �A y) �A z
2. t �A x = t · x
3. If �y = 1 then x �A y = x · y
4. �(x �A y) = (x → y) · �x
5. (x → y) = (x → �y)
6. (x → y) · x = (x → y) · x · �y
7. (x + y) → z = (x → z) · (y → z)
8. (x · y) → z = x → (y → z)
9. t · ((t · x) → y) = t · (x → y)

10. ¬t · ((t · x) → y) = ¬t
11. t ≤ x → t ⇐⇒ t ≤ x∗ → t
12. x ≤ y =⇒ y → z ≤ x → z
13. x�y ≤ x · y
14. x �A y =⇒ x�z �A y�z
15. x �A y =⇒ z�x �A z�y

Definition 12 (Demonic star). Let x ∈ K, where K is a KAD. The unary
iteration operator ×A is defined by x×A = x∗

�A �x.

Proposition 13. Let x, y, z ∈ K, where K is a KAD.

1. x×A = x×A �A x 	A 1
2. x �A z �A z =⇒ x×A �A z �A z
3. z �A x �A z =⇒ z �A x×A �A z
4. x �A z 	A y �A z =⇒ x×A �A y �A z
5. z �A x 	A y �A z =⇒ y �A x×A �A z

Proof.

1. x×A �A x 	A 1
= 〈 by Definition 12 and Proposition11-1 〉

x∗
�A (�x �A x) 	A 1

5

= 〈 by Proposition 11-2 and Proposition 6-5 〉
x∗

�A x 	A 1
= 〈 by Proposition 9, Proposition 6-9 and (7) 〉

�(x∗
�A x) · (x∗

�A x + 1)
= 〈 by Proposition 11-4 and Definition 10 〉

(x∗ → x) · �(x∗) · ((x∗ → x) · x∗ · x + 1)
= 〈 because �(x∗) = 1 and by (7) 〉

(x∗ → x) · ((x∗ → x) · x∗ · x + 1)
= 〈 by (8) and Proposition 6-1 〉

(x∗ → x) · (x∗ · x + 1)
= 〈 by (10) 〉

(x∗ → x) · x∗

= 〈 by Proposition 11-6 and Proposition 6-5 〉
(x∗ → x) · x∗ · �x

= 〈 by Definition 10 and Definition 12 〉
x×A

2. x×A �A z �A z

⇐⇒ 〈 by Definition 12 and Proposition11-1 〉
x∗

�(�x �A z) �A z

⇐⇒ 〈 by Proposition 11-2 〉
x∗

�A (�x · z) �A z

⇐⇒ 〈 by Definition 8 〉
�z ≤ �(x∗

�A (�x · z)) ∧ �z · (x∗
�A (�x · z)) ≤ z

⇐⇒ 〈 by Proposition 11-4 and Definition 10 〉
�z ≤ (x∗ → (�x · z)) · �(x∗) ∧ �z · (x∗ → (�x · z)) · x∗ · �x · z ≤ z

⇐⇒ 〈 by Proposition 6-14 and (7) 〉
�z ≤ x∗ → (�x · z) ∧ �z · (x∗ → (�x · z)) · x∗ · �x · z ≤ z

⇐⇒ 〈 predicate logic and Boolean algebra 〉
�z ≤ x∗ → (�x · z) ∧ �z · x∗ · �x · z ≤ z

⇐= 〈 by Proposition 6-5 and Boolean algebra, �z ≤ �x implies
z = �z · z = �x · �z · z = �x · z 〉

�z ≤ �x ∧ �z ≤ x∗ → z ∧ �z · x∗ · z ≤ z

⇐⇒ 〈 by Proposition 11-5, (9) and Boolean algebra 〉
�z ≤ �x ∧ �z ≤ x∗ → �z ∧ �z · (�z · x + ¬�z · x)∗ · z ≤ z

⇐⇒ 〈 by Proposition 11-11 and the law (x + y)∗ = (x∗ · y)∗ ·x∗ 〉
�z ≤ �x ∧ �z ≤ x → �z ∧ �z · ((�z · x)∗ · ¬�z · x)∗ · (�z · x)∗ · z ≤ z

6

⇐⇒ 〈 from �z ≤ x → �z, Boolean algebra, and Propositions 11-4
and 11-6, we get
�z · x = �z · (x → �z) · x = �z · (x → �z) · x · �z = �z · x · �z 〉

�z ≤ �x ∧ �z ≤ x → �z ∧ �z · ((�z · x · �z)∗ · ¬�z · x)∗ · (�z · x)∗ · z ≤ z

⇐⇒ 〈 by (10) 〉
�z ≤ �x ∧ �z ≤ x → �z ∧
�z ·

((
(�z · x · �z)∗ · �z · x · �z + 1

)
· ¬�z · x

)∗
· (�z · x)∗ · z ≤ z

⇐⇒ 〈 by (9), (4) and because �z · ¬�z = 0 〉
�z ≤ �x ∧ �z ≤ x → �z ∧ �z · (¬�z · x)∗ · (�z · x)∗ · z ≤ z

⇐⇒ 〈 by Proposition 11-5 and (14) 〉
�z ≤ �x ∧ �z ≤ x → z ∧ �z · (¬�z · x · (¬�z · x)∗ + 1) · (�z · x)∗ · z ≤ z

⇐⇒ 〈 by (8), (4), (7) and because �z · ¬�z = 0 〉
�z ≤ �x ∧ �z ≤ x → z ∧ �z · (�z · x)∗ · z ≤ z

⇐⇒ 〈 law of domain: y ≤ z ⇐⇒ �z · y ≤ z 〉
�z ≤ �x ∧ �z ≤ x → z ∧ (�z · x)∗ · z ≤ z

⇐= 〈 by (12) with x, y := �z · x, z 〉
�z ≤ �x ∧ �z ≤ x → z ∧ �z · x · z ≤ z

⇐⇒ 〈 by Boolean algebra and predicate logic 〉
�z ≤ (x → z) · �x ∧ �z · (x → z) · x · z ≤ z

⇐⇒ 〈 by Proposition 11-4 and Definition 10 〉
�z ≤ �(x �A z) ∧ �z · (x �A z) ≤ z

⇐⇒ 〈 by Definition 8 〉
x �A z �A z

3. z �A x �A z

⇐⇒ 〈 by Definition 8 〉
�z ≤ �(z �A x) ∧ �z · (z �A x) ≤ z

⇐⇒ 〈 by Proposition 11-4 and Definition 10 〉
�z ≤ (z → x) · �z ∧ �z · (z → x) · z · x ≤ z

⇐⇒ 〈 by Boolean algebra and Proposition 6-5 〉
�z ≤ (z → x) · �z ∧ z · x ≤ z

=⇒ 〈 by Proposition 11-5, and (13) with y := z 〉
�z ≤ (z → �x) · �z ∧ z · x∗ ≤ z

This derivation thus gives

�z ≤ (z → �x) · �z , (18)
z · x∗ ≤ z . (19)

7

�z
≤ 〈 by (18) 〉

(z → �x) · �z
≤ 〈 by (19) and Proposition 11-12 〉

((z · x∗) → �x) · �z
= 〈 by Proposition 11-8 〉

(z → (x∗ → �x)) · �z
= 〈 by Proposition6-14 and (7) 〉

(z → ((x∗ → �x) · �(x∗))) · �z
= 〈 by Propositions 11-4 and 11-5 〉

(z → (x∗
�A �x)) · �z

= 〈 by Proposition 11-4 〉
�(z �A (x∗

�A �x))
= 〈 by Definition 12 〉

�(z �A x×A)

And the last inequality goes like this.

�z · (z �A x×A)
= 〈 by Definition 12 〉

�z · (z �A (x∗
�A �x))

≤ 〈 Proposition 10-13 〉
�z · z · (x∗

�A �x)
≤ 〈 Proposition 10-13 〉

�z · z · x∗ · �x
= 〈 by (19) and because �z ≤ 1 and �x ≤ 1 〉

z

The result then follows from Definition 8.
4. Suppose x �A z 	A y �A z. Then y �A z and x �A z �A z by Proposition 9.

Then Part 2 of the present proposition gives x×A �A z �A z.

x×A �A y

�A 〈 since y �A z and by Proposition 11-15 〉
x×A �A z

�A 〈 since x×A �A z �A z 〉
z

5. The proof is similar to the previous one. �	

8

Definition 14 (Conditional). For each t ∈ test(K) and x, y ∈ K, the t-
conditional is defined by x �At y = t · x + ¬t · y. The family of t-conditionals
corresponds to a single ternary operator �A• taking as arguments a test t and
two arbitrary elements x and y.

The demonic join operator 	A is used to give the semantics of demonic non-
deterministic choices and �A is used for sequences. Among the interesting prop-
erties of �A, we cite t �A x = t ·x (Proposition 11-2), which says that composing a
test t with an arbitrary element x is the same in the angelic and demonic worlds,
and x �A y = x · y if �y = 1 (Proposition 11-3), which says that if the second ele-
ment of a composition is total, then again the angelic and demonic compositions
coincide. The ternary operator �A• is similar to the conditional choice operator
� � of Hoare et al. [14,15]. It corresponds to a guarded choice with disjoint

alternatives. The iteration operator ×A rejects the finite computations that go
through a state from which it is possible to reach a state where no computation
is defined (e.g., due to blocking or abnormal termination).

We now present three theorems about the demonic operators introduced in
this section, Theorems 15, 16 and 17. They consist of laws that will be taken
as axioms of demonic algebra with domain in Section 3. Theorem 15 contains
laws relating 	A, �A and ×A . Theorem 16 concerns the t-conditional �At. And
Theorem 17 is about the relationship between 	A, �A and �.

As usual, unary operators have the highest precedence, and demonic compo-
sition �A binds stronger than 	A and �A•, which have the same precedence.

Theorem 15. Let K be a KAD. The following properties hold for all x, y, z ∈
K.

1. x 	A (y 	A z) = (x 	A y) 	A z
2. x 	A y = y 	A x
3. x 	A x = x
4. 0 	A x = 0
5. x �A (y �A z) = (x �A y) �A z
6. 0 �A x = x �A 0 = 0
7. 1 �A x = x �A 1 = x
8. x �A (y 	A z) = x �A y 	A x �A z
9. (x 	A y) �A z = x �A z 	A y �A z

10. x×A = x×A �A x 	A 1
11. x �A y ⇐⇒ x 	A y = y
12. z �A x 	A y �A z =⇒ y �A x×A �A z
13. x �A z 	A y �A z =⇒ x×A �A y �A z

Proof. See [13] for the proof of 1 to 9 and 11. Refer to Proposition 13 for the
proof of 10, 12 and 13. �	

Theorem 16. Let K be a KAD. The following properties hold for all s, t, u ∈
test(K) and all x, y, z ∈ K.

1. 1 �A s

9

2. s �At u ∈ test(K)
3. ¬t = 0 �At 1
4. x �At y = y �A¬t x
5. (t �A x) �At y = x �At y
6. x �At x = x
7. x �At 0 = t �A x
8. (x �At y) �A z = (x �A z) �At (y �A z)
9. s �A (x �At y) = (s �A x) �At (s �A y)

10. x �At (y 	A z) = (x �At y) 	A (x �At z)
11. x 	A (y �At z) = (x 	A y) �At (x 	A z)
12. t 	A ¬t = 0
13. ¬(1 �At s) = ¬t 	A ¬s

Proof.

1. By Boolean algebra and Proposition 6-9, �s ≤ 1 and �s·1 = �s = s, so 1 �A s.
2. s �At u

= 〈 by Definition 14 〉
t · s + ¬t · u

∈ 〈 by Boolean algebra and definition of test(K) 〉
test(K)

3. 0 �At 1
= 〈 by Definition 14 〉

t · 0 + ¬t · 1
= 〈 by Boolean algebra 〉

¬t

4. x �At y

= 〈 by Definition 14 〉
t · x + ¬t · y

= 〈 by (2) and Boolean algebra 〉
¬t · y + ¬(¬t) · x

= 〈 by Definition 14 〉
y �A¬t x

5. (t �A x) �At y

= 〈 by Definition 14 and Proposition 11-2 〉
t · t · x + ¬t · y

= 〈 by Boolean algebra 〉
t · x + ¬t · y

= 〈 by Definition 14 〉
x �At y

10

6. x �At x

= 〈 by Definition 14 〉
t · x + ¬t · x

= 〈 by (9) 〉
(t + ¬t) · x

= 〈 by Boolean algebra and (7) 〉
x

7. x �At 0
= 〈 by Definition 14 〉

t · x + ¬t · 0
= 〈 by (6) and (4) 〉

t · x
= 〈 by Proposition 11-2 〉

t �A x

8. (x �At y) �A z

= 〈 by Definition 14 〉
(t · x + ¬t · y) �A z

= 〈 by Definition 10 〉
((t · x + ¬t · y) → z) · (t · x + ¬t · y) · z

= 〈 by Proposition 11-7 〉
((t · x) → z) · ((¬t · y) → z) · (t · x + ¬t · y) · z

= 〈 by (8) 〉
(((t · x) → z) · ((¬t · y) → z) · t · x +
((t · x) → z) · ((¬t · y) → z) · ¬t · y) · z

= 〈 by Proposition 11-9 and Boolean algebra 〉
(((¬t · y) → z) · t · (x → z) · x + ((t · x) → z) · ¬t · (y → z) · y) · z

= 〈 by Proposition 11-10 〉
(t · (x → z) · x + ¬t · (y → z) · y) · z

= 〈 by (9) 〉
t · (x → z) · x · z + ¬t · (y → z) · y · z

= 〈 by Definition 10 〉
t · (x �A z) + ¬t · (y �A z)

= 〈 by Definition 14 〉
(x �A z) �At (y �A z)

9. s �A (x �At y)
= 〈 by Definition 14 and Proposition 11-2 〉

11

s · (t · x + ¬t · y)
= 〈 by Boolean algebra and (8) 〉

t · s · x + ¬t · s · y
= 〈 by Definition 14 and Proposition 11-2 〉

(s �A x) �At (s �A y)

10. (x �At y) 	A (x �At z)
= 〈 by Definition 14 〉

(t · x + ¬t · y) 	A (t · x + ¬t · z)
= 〈 by Proposition 6-11, Proposition 6-10 and Proposition 9 〉

(t · �x + ¬t · �y) · (t · �x + ¬t · �z) · (t · x + ¬t · y + t · x + ¬t · z)
= 〈 by (2), (3) and (8) 〉

(t · �x + ¬t · �y) · (t · �x + ¬t · �z) · (t · x + ¬t · (y + z))
= 〈 by Boolean algebra 〉

(t · �x + ¬t · �y · �z) · (t · x + ¬t · (y + z))
= 〈 by (8), (9), Boolean algebra and Proposition 6-5 〉

t · x + ¬t · �y · �z · (y + z)
= 〈 by Proposition 9 〉

t · x + ¬t · (y 	A z)
= 〈 by Definition 14 〉

x �At (y 	A z)

11. (x 	A y) �At (x 	A z)
= 〈 by Definition 14 〉

t · (x 	A y) + ¬t · (x 	A z)
= 〈 by Proposition 9 〉

t · �x · �y · (x + y) + ¬t · �x · �z · (x + z)
= 〈 by (8), (9), Boolean algebra and Proposition 6-5 〉

�x · (t · �y + ¬t · �z) · (x + (t · y + ¬t · z))
= 〈 by Proposition 6-11, Proposition 6-10 and Proposition 9 〉

x 	A (t · y + ¬t · z)
= 〈 by Definition 14 〉

x 	A (y �At z)

12. t 	A ¬t

= 〈 by Proposition 6-9 and Proposition 9 〉
t · ¬t · (t + ¬t)

= 〈 by Boolean algebra 〉

12

0
13. ¬(1 �At s)

= 〈 by Definition 14 〉
¬(t · 1 + ¬t · s)

= 〈 by Boolean algebra 〉
¬t · ¬s · (¬t + ¬s)

= 〈 by Proposition 6-9 and Proposition 9 〉
¬t 	A ¬s �	

Theorem 17. Let K be a KAD. The following properties hold for all t ∈ test(K)
and all x, y ∈ K.

1. �(x �A t) �A x = x �A t
2. �(x �A y) = �(x �A �y)
3. �(x 	A y) = �x 	A �y

Proof.

1. �(x �A t) �A x

= 〈 by Propositions 11-2 and 11-4 〉
(x → t) · x

= 〈 by Propositions 11-6 and 6-9 〉
(x → t) · x · t

= 〈 by Definition 10 〉
x �A t

2. �(x �A y)
= 〈 by Proposition 11-4 〉

(x → y) · �x
= 〈 by Proposition 11-5 〉

(x → �y) · �x
= 〈 by Proposition 11-4 〉

�(x �A �y)
3. �(x 	A y)

= 〈 by Proposition 9 〉
�x · �y

= 〈 by Boolean algebra 〉
�x · �y · (�x + �y)

= 〈 by Proposition 9 〉
�x 	A �y �	

13

3 Axiomatisation of Demonic Algebra with Domain

The demonic operators introduced at the end of the last section satisfy many
properties. We choose some of them —more precisely, those of Theorems 15,
16 and 17— to become axioms of a new structure called demonic algebra with
domain. For this definition, we follow the same path as for the definition of KAD.
That is, we first define demonic algebra, then demonic algebra with tests and,
finally, demonic algebra with domain.

3.1 Demonic Algebra

Demonic algebra, like KA, has a sum, a composition and an iteration operator.
Here is its definition.

Definition 18 (Demonic algebra). A demonic algebra (DA) is a structure
(AD,	, �,×, 0, 1) such that the following properties are satisfied for x, y, z ∈ AD.

x 	 (y 	 z) = (x 	 y) 	 z (20)
x 	 y = y 	 x (21)
x 	 x = x (22)
0 	 x = 0 (23)

x�(y�z) = (x�y)�z (24)
0�x = x�0 = 0 (25)
1�x = x�1 = x (26)

x�(y 	 z) = x�y 	 x�z (27)
(x 	 y)�z = x�z 	 y�z (28)

x× = x×
�x 	 1 (29)

There is a partial order
 induced by 	 such that for all x, y ∈ AD,

x
 y ⇐⇒ x 	 y = y . (30)

The next two properties are also satisfied for all x, y, z ∈ AD.

x�z 	 y
 z =⇒ x×
�y
 z (31)

z�x 	 y
 z =⇒ y�x×
 z (32)

When comparing Definitions 1 and 18, one observes the obvious correspon-
dences + ↔ 	, · ↔ �, ∗ ↔ ×, 0 ↔ 0, 1 ↔ 1. The only difference in the axioma-
tisation between KA and DA is that 0 is the left and right identity of addition
in KA (+), while it is a left and right zero of addition in DA (). However, this
minor difference has a rather important impact. While KAs and DAs are upper
semilattices with + as the join operator for KAs and 	 for DAs, the element 0
is the bottom of the semilattice for KAs and the top of the semilattice for DAs.
Indeed, by (23) and (30),

x
 0 (33)

14

for all x ∈ AD.
All operators are monotonic with respect to the refinement ordering
. That

is, for all x, y, z ∈ AD,

x
 y =⇒ z 	 x
 z 	 y ∧ z�x
 z�y ∧ x�z
 y�z ∧ x×
 y× .

Monotonicity of 	 and � can easily be derived from (30), (27) and (28). That of
× is shown from (29) and (32) as follows:

x
 y =⇒ y×
�x 	 1
 y×

�y 	 1 ⇐⇒ y×
�x 	 1
 y× =⇒ x×
 y× .

Most of the time, this property will be used without explicit mention.

Remark 19. Like for the corresponding unfolding law (14) in KA, the following
symmetric version of (29),

x× = x�x× 	 1 , (34)

is derivable from these axioms. Indeed,

x×
 x�x× 	 1
⇐= 〈 by (31) and (26) 〉

x�(x�x× 	 1) 	 1
 x�x× 	 1
⇐= 〈 monotonicity of � and 	 〉

x�x× 	 1
 x× —this is the other inequality we have to show
⇐⇒ 〈 by (29) 〉

x�x× 	 1
 x×
�x 	 1

⇐= 〈 monotonicity of 	 〉
x�x×
 x×

�x

⇐= 〈 by (32) 〉
x×

�x�x 	 x
 x×
�x

⇐⇒ 〈 by (29), (28), (26) and (30) 〉
true .

One can show x× = μ
(y :: y�x 	 1) with (26), (29) and (32) and x× =
μ
(y :: x�y 	 1) with (26), (34) and (31).

3.2 Demonic Algebra with Tests

Now comes the first extension of DA, demonic algebra with tests. This extension
has a concept of tests like the one in KAT and it also adds the conditional
operator �t. In KAT, + and · are respectively the join and meet operators of the
Boolean lattice of tests. But in DAT, it will turn out that for any tests s and t,
s 	 t = s�t, and that 	 and � both act as the join operator on tests (this is also
the case for the KAD-based definition of these operators given in Section 2, as
can be checked). Introducing �t provides a way to express the meet of tests, as
will be shown below. Here is how we deal with tests in a demonic world.

15

Definition 20 (Demonic algebra with tests). A demonic algebra with tests
(DAT) is a structure (AD, BD,	, �,×, 0, 1,�•) such that

1. (AD,	, �,×, 0, 1) is a DA;

2. {1, 0} ⊆ BD ⊆ AD;

3. for all t ∈ BD, 1
 t;

4. �• is a ternary operator of type BD×AD×AD → AD that can be thought of
as a family of binary operators. For each t ∈ BD, �t is an operator of type
AD ×AD → AD, and of type BD ×BD → BD if its two arguments belong to
BD;

5. �• satisfies the following properties for all s, t ∈ BD and all x, y, z ∈ AD. In
these axioms, we use the negation operator ¬, defined by

¬t = 0 �t 1 . (35)

x �t y = y �¬t x (36)
(t�x) �t y = x �t y (37)

x �t x = x (38)
x �t 0 = t�x (39)

(x �t y)�z = x�z �t y�z (40)
s�(x �t y) = s�x �t s�y (41)

x �t (y 	 z) = (x �t y) 	 (x �t z) (42)
x 	 (y �t z) = (x 	 y) �t (x 	 z) (43)

t 	 ¬t = 0 (44)
¬(1 �t s) = ¬t 	 ¬s (45)

The elements in BD are called (demonic) tests.

Remark 21. By point 4 of the definition, BD is closed under �•. By (35), BD is
closed under ¬ since only �• is used for its definition. BD is closed under 	 and
� too and this comes respectively from Proposition 22-2 and Proposition 22-8
below.

The axioms for �t given in the definition of DAT are all satisfied by the
choice operator � t � of Hoare et al. [14,15]. The conditional operator satisfies
a lot of additional laws, as shown by the following proposition, and more can be
found in the precursor paper [23] (with a different syntax).

We list the correspondence between the axioms of DAT and properties of
Hoare et al.’s conditional operator, using the same notation as the authors.

16

DAT Laws of programming [14] UTP [15]

x � y ⇐⇒ x � y = y P ⊆ Q ⇐⇒ P ∪ Q = Q [P ⇒ Q] ⇐⇒ [P � Q = Q]
x � (y � z) = (x � y) � z P ∪ (Q ∪ R) = (P ∪ Q) ∪ R P � (Q � R) = (P � Q) � R
x � y = y � x P ∪ Q = Q ∪ P P � Q = Q � P
x � x = x P ∪ P = P P � P = P
0 � x = 0 ⊥ ∪ P = ⊥ true � P = true
x�(y�z) = (x�y)�z P ; (Q; R) = (P ; Q); R P ; (Q; R) = (P ; Q); R
0�x = x�0 = 0 ⊥; P = P ;⊥ = ⊥ true; P = P ; true = true
1�x = x�1 = x II ; P = P ; II = P II αP ; P = P ; II αP = P
x�(y � z) = x�y � x�z P ; (Q ∪ R) = (P ; Q) ∪ (P ; R) P ; (Q � R) = (P ; Q) � (P ; R)
(x � y)�z = x�z � y�z (P ∪ Q); R = (P ; R) ∪ (Q; R) (P � Q); R = (P ; R) � (Q; R)
x �t y = y �¬t x P � b � Q = Q � ¬b � P P � b � Q = Q � ¬b � P
x �t x = x P � b � P = P P � b � P = P
(x �t y)�z = x�z �t y�z (P � b � Q); R = (P ; R) � b � (Q; R) (P � b � Q); R = (P ; R) � b � (Q; R)
x× νR • (P ; R � II α(P ;R))

We now prove some additional properties of �t.

Proposition 22. The following properties are true for all s, t ∈ BD and all
x, x1, x2, y, y1, y2, z ∈ AD.

1. ¬¬t = t

2. s 	 t ∈ BD
3. x
 y =⇒ x �t z
 y �t z

4. x
 y =⇒ z �t x
 z �t y

5. 0 �t x = ¬t�x

6. x �t ¬t�y = x �t y

7. t�t = t

8. s 	 t = s�t

9. t�¬t = ¬t�t = 0
10. s�t = t�s

11. ¬1 = 0
12. ¬0 = 1
13. x
 t�x and x
 x�t

14. x
 t�y ⇐⇒ t�x
 t�y

15. t�x
 x ⇐⇒ 0
 ¬t�x

16. s
 t =⇒ ¬t
 ¬s

17. x
 y ⇐⇒ t�x
 t�y ∧ ¬t�x
 ¬t�y

18. x = y ⇐⇒ t�x = t�y ∧ ¬t�x = ¬t�y

19. t�(x �t y) = t�x

20. ¬t�(x �t y) = ¬t�y

21. x
 y �t z ⇐⇒ x
 t�y ∧ x
 ¬t�z

22. x �t y
 z ⇐⇒ x
 t�z ∧ y
 ¬t�z

23. (x1 �s y1) �t (x2 �s y2) = (x1 �t x2) �s (y1 �t y2)

17

Proof.

1. ¬(¬t)
= 〈 by (35) 〉

0 �¬t 1
= 〈 by (36) 〉

1 �t 0
= 〈 by (39) 〉

t

2. s 	 t

= 〈 by Proposition 22-1 〉
¬(¬s) 	 ¬(¬t)

= 〈 by (45) 〉
¬(1 �¬s ¬t)

∈ 〈 since ¬s ∈ BD and ¬t ∈ BD for all s, t ∈ BD,
and by the typing of �• 〉

BD

3. x
 y

⇐⇒ 〈 by (30) 〉
x 	 y = y

=⇒ 〈 Leibniz 〉
(x 	 y) �t z = y �t z

⇐⇒ 〈 by (36) 〉
z �¬t (x 	 y) = y �t z

⇐⇒ 〈 by 42 〉
(z �¬t x) 	 (z �¬t y) = y �t z

⇐⇒ 〈 by (36) 〉
(x �t z) 	 (y �t z) = y �t z

⇐⇒ 〈 by (30) 〉
x �t z
 y �t z

4. x
 y

=⇒ 〈 by Proposition 22-3 〉
x �¬t z
 y �¬t z

⇐⇒ 〈 by (36) 〉
z �t x
 z �t y

5. 0 �t x

= 〈 by (36) 〉

18

x �¬t 0
= 〈 by (39) 〉

¬t�x

6. x �t ¬t�y

= 〈 by (36) 〉
¬t�y �¬t x

= 〈 by (37) 〉
y �¬t x

= 〈 by (36) 〉
x �t y

7. t�t

= 〈 by (39) 〉
t �t 0

= 〈 by (44) 〉
t �t (t 	 ¬t)

= 〈 by (42) 〉
(t �t t) 	 (t �t ¬t)

= 〈 by (38) 〉
t 	 (t �t ¬t)

= 〈 by (37) 〉
t 	 (1 �t ¬t)

= 〈 by Proposition 22-6 〉
t 	 (1 �t 1)

= 〈 by (38) 〉
t 	 1

= 〈 by Definition 20-3 〉
t

8. Definition 20 gives 1
 s from which t
 t�s. We have s
 s�t and t
 s�t
the same way. We then deduce s 	 t
 s�t. We now look for s�t
 s 	 t.

s�t

 〈 because s
 s 	 t and t
 s 	 t 〉
(s 	 t)�(s 	 t)

= 〈 by Propositions 22-2 and 22-7 〉
s 	 t

9. This follows from Proposition 22-8 and (44).

19

10. s�t

= 〈 by Proposition 22-8 〉
s 	 t

= 〈 by (21) 〉
t 	 s

= 〈 by Proposition 22-8 〉
t�s

11. ¬1
= 〈 by (35) 〉

0 �1 1
= 〈 by Proposition 22-6 〉

0 �1 ¬1�1
= 〈 by Proposition 22-9 〉

0 �1 0
= 〈 by (38) 〉

0
12. This is direct from Propositions 22-1 and 22-11.
13. This follows from (26), Definition 20-3 and monotonicity of �.
14. x
 t�y

=⇒ 〈 left composition with t and monotonicity of � 〉
t�x
 t�t�y

⇐⇒ 〈 by Proposition 22-7 〉
t�x
 t�y

=⇒ 〈 by Proposition 22-13 and transitivity of
 〉
x
 t�y

15. t�x
 x

=⇒ 〈 left composition by ¬t and monotonicity of � 〉
¬t�t�x
 ¬t�x

⇐⇒ 〈 by Proposition 22-9 and by (25) 〉
0
 ¬t�x

=⇒ 〈 by Proposition 22-4 〉
x �t 0
 x �t ¬t�x

⇐⇒ 〈 by (39) and Proposition 22-6 〉
t�x
 x �t x

⇐⇒ 〈 by (38) 〉
t�x
 x

20

16. s
 t

⇐⇒ 〈 by (30) 〉
s 	 t = t

⇐⇒ 〈 by Proposition 22-8 〉
s�t = t

⇐⇒ 〈 by Propositions 22-15 and 22-13 〉
0
 ¬s�t

⇐⇒ 〈 by Proposition 22-10 〉
0
 t�¬s

⇐⇒ 〈 by Proposition 22-1 〉
0
 ¬¬t�¬s

⇐⇒ 〈 by Propositions 22-15 and 22-13 〉
¬t�¬s = ¬s

⇐⇒ 〈 by Proposition 22-8 〉
¬t 	 ¬s = ¬s

⇐⇒ 〈 by (30) 〉
¬t
 ¬s

17. x
 y

=⇒ 〈 left composition with t and ¬t, and monotonicity of � 〉
t�x
 t�y ∧ ¬t�x
 ¬t�y

=⇒ 〈 by Proposition 22-3 〉
t�x �t ¬t�x
 t�y �t ¬t�x ∧ ¬t�x �¬t t�y
 ¬t�y �¬t t�y

⇐⇒ 〈 by (36) 〉
t�x �t ¬t�x
 t�y �t ¬t�x ∧ t�y �t ¬t�x
 t�y �t ¬t�y

=⇒ 〈 transitivity of
 〉
t�x �t ¬t�x
 t�y �t ¬t�y

=⇒ 〈 by (37) and Proposition 22-6 〉
x �t x
 y �t y

=⇒ 〈 by (38) 〉
x
 y

18. x = y

⇐⇒ 〈 because
 is a partial ordering 〉
x
 y ∧ y
 x

⇐⇒ 〈 by Proposition 22-17 〉
t�x
 t�y ∧ ¬t�x
 ¬t�y ∧ t�y
 t�x ∧ ¬t�y
 ¬t�x

21

⇐⇒ 〈 because
 is a partial ordering 〉
t�x = t�y ∧ ¬t�x = ¬t�y

19. t�(x �t y)
= 〈 by (41) 〉

t�x �t t�y

= 〈 by (37) and Proposition 22-6 〉
x �t ¬t�t�y

= 〈 by Proposition 22-9 〉
x �t 0

= 〈 by (39) 〉
t�x

20. ¬t�(x �t y)
= 〈 by (36) 〉

¬t�(y �¬t x)
= 〈 by Proposition 22-19 〉

¬t�y

21. x
 y �t z

⇐⇒ 〈 by Proposition 22-17 〉
t�x
 t�(y �t z) ∧ ¬t�x
 ¬t�(y �t z)

⇐⇒ 〈 by Propositions 22-19 and 22-20 〉
t�x
 t�y ∧ ¬t�x
 ¬t�z

⇐⇒ 〈 by Proposition 22-14 〉
x
 t�y ∧ x
 ¬t�z

22. x �t y
 z

⇐⇒ 〈 by Proposition 22-17 〉
t�(x �t y)
 t�z ∧ ¬t�(x �t y)
 ¬t�z

⇐⇒ 〈 by (36) 〉
t�(x �t y)
 t�z ∧ ¬t�(y �¬t x)
 ¬t�z

⇐⇒ 〈 by Proposition 22-19 〉
t�x
 t�z ∧ ¬t�y
 ¬t�z

⇐⇒ 〈 by Proposition 22-14 〉
x
 t�z ∧ y
 ¬t�z

23. (x1 �s y1) �t (x2 �s y2)
 z

⇐⇒ 〈 by Proposition 22-22 〉
x1 �s y1
 t�z ∧ x2 �s y2
 ¬t�z

⇐⇒ 〈 by Proposition 22-22 〉

22

x1
 s�t�z ∧ x2
 s�¬t�z ∧ y1
 ¬s�t�z ∧ y2
 ¬s�¬t�z

⇐⇒ 〈 by Proposition 22-10 〉
x1
 t�s�z ∧ x2
 ¬t�s�z ∧ y1
 t�¬s�z ∧ y2
 ¬t�¬s�z

⇐⇒ 〈 by Proposition 22-22 〉
x1 �t x2
 s�z ∧ y1 �t y2
 ¬s�z

⇐⇒ 〈 by Proposition 22-22 〉
(x1 �t x2) �s (y1 �t y2)
 z �	

Note that Propositions 22-3 and 22-4 simply express the monotonicity of �t

in its two arguments. On the other hand, �• is not monotonic with respect to
its test argument.

As a direct consequence of Proposition 22, one can deduce the next corollary.

Corollary 23. The set BD of demonic tests forms a Boolean algebra with bot-
tom 1 and top 0. The supremum of s and t is s 	 t (or s�t), their infimum is
1 �s t —in particular, 1 �s ¬s = 1—, and the negation of t is ¬t = 0 �t 1 (see
(35)).

Thus, tests have quite similar properties in KAT and DAT. But there are
important differences. The first one is that 	 and � behave the same way on tests
(Proposition 22-8). The second one concerns Laws 17 and 18 of Proposition 22,
which show how a proof of refinement or equality can be done by case analysis by
decomposing it with cases t and ¬t. The same is true in KAT. However, in KAT,
this decomposition can also be done on the right side, since for instance the law
x ≤ y ⇐⇒ x · t ≤ y · t ∧ x · ¬t ≤ y · ¬t holds, while the corresponding law does
not hold in DAT. In DAT, there is an asymmetry between left and right that
can be traced back to laws (40) and (41). In (40), left distributivity holds for
arbitrary elements, while right distributivity in (41) holds only for tests. Another
law worth noting is Proposition 22-15. On the left of the equivalence, t acts as
a left preserver of x and on the right, ¬t acts as a left annihilator.

3.3 Demonic Algebra with Domain

The next extension consists in adding a domain operator to DAT. It is denoted
by the symbol ��.

Definition 24 (Demonic algebra with domain). A demonic algebra with
domain (DAD) is a structure (AD, BD,	, �,×, 0, 1,�•, ��), where (AD, BD,	, �,
×, 0, 1,�•) is a DAT, and the demonic domain operator �� : AD → BD satisfies
the following properties for all t ∈ BD and all x, y ∈ AD.

��(x�t)�x = x�t (46)
��(x�y) = ��(x���y) (47)

��(x 	 y) = ��x 	 ��y (48)

23

Remark 25. As noted above, the axiomatisation of DA is very similar to that of
KA, so one might expect the resemblance to continue between DAD and KAD.
In particular, looking at the angelic version of Definition 24, namely Definition
4, one might expect to find axioms like ��x�x
 x and t
 ��(t�x), or equivalently,
t
 ��x ⇐⇒ t�x
 x. These three properties can be derived from the chosen
axioms (see Propositions 29-2, 29-5 and 29-6) but (46) cannot be derived from
them, even when assuming (47) and (48). But (46) holds in KAD-based demonic
algebras. Since our goal is to come as close as possible to these, we include (46)
as an axiom.

Example 26. For this example AD = {0, s, t, 1, a, b, c, d} and BD = {0, s, t, 1}.
The demonic operators are defined by the following tables.

	 0 s t 1 a b c d
0 0 0 0 0 0 0 0 0
s 0 s 0 s a a a a
t 0 0 t t 0 0 t t
1 0 s t 1 a a c c
a 0 a 0 a a a a a
b 0 a 0 a a b a b
c 0 a t c a a c c
d 0 a t c a b c d

� 0 s t 1 a b c d
0 0 0 0 0 0 0 0 0
s 0 s 0 s a b a b
t 0 0 t t 0 0 t t
1 0 s t 1 a b c d
a 0 a 0 a a a a a
b 0 a 0 b a a a a
c 0 a t c a a c c
d 0 a t d a a c c

×

0 0
s s
t t
1 1
a a
b a
c c
d c

¬
0 1
s t
t s
1 0

��
0 0
s s
t t
1 1
a s
b s
c 1
d 1

x �0 y = y x �1 y = x �s 0 s t 1 a b c d
0 0 0 t t 0 0 t t
s s s 1 1 s s 1 1
t 0 0 t t 0 0 t t
1 1 1 1 1 1 1 1 1
a a a c c a a c c
b b b d d b b d d
c a a c c a a c c
d b b d d b b d d

�t 0 s t 1 a b c d
0 0 s 0 s a b a b
s 0 s 0 s a b a b
t t 1 t 1 c d c d
1 t 1 t 1 c d c d
a 0 s 0 s a b a b
b 0 s 0 s a b a b
c t 1 t 1 c d c d
d t 1 t 1 c d c d

The demonic refinement ordering corresponding to 	 is represented in the fol-
lowing semilattice.

0
��

� ��
�

a

��
�� ��

�

��������� t
��

��

s
��

�� b
��

� c

��
��

���������

1 d

This algebra is a DAT for which ��x�x
 x, t
 ��(t�x), (47) and (48) all hold,
but (46) does not. Indeed ��(b�s)�b = a �= b = b�s.

24

Then why choose (46) rather than ��x�x
 x and t
 ��(t�x)? The justification
is twofold. Firstly, models that come from KAD satisfy property (46), that is,
�(x �A t) �A x = x �A t (see Theorem 17-1). Secondly, there are strong indications
that this law will be needed to solve Conjecture 43 (see page 45).

Law (47) is locality in a demonic world.
In KAD, it is not necessary to have an axiom like (48), because additivity

of � (Proposition 6-11) follows from (6) and the laws of KAT. However, it is
necessary in the context of demonic algebras since the following example satisfies
all prescribed laws except that one.

Example 27. For this example AD = {0, 1, a} and BD = {0, 1}. The demonic
operators are defined by the following tables.

	 0 1 a
0 0 0 0
1 0 1 0
a 0 0 a

� 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

×

0 0
1 1
a 0

�0 0 1 a
0 0 1 a
1 0 1 a
a 0 1 a

�1 0 1 a
0 0 0 0
1 1 1 1
a a a a

¬
0 1
1 0

��
0 0
1 1
a 1

The demonic refinement ordering corresponding to 	 is represented in the fol-
lowing semilattice.

0
��

� ��
��

1 a

This algebra is a DAT and, in addition, (46) and (47) are satisfied, but (48) is
not. Indeed ��(1 	 a) �= ��1 	 ��a.

Examples 26 and 27 show that Axioms (46) and (48) are independent from
each other and also from (47). The following example completes this proof of
independence. Thus, the three axioms that define demonic domain are indepen-
dent.

Example 28. For this example AD = {0, 1, a} and BD = {0, 1}. The demonic
operators are defined by the following tables.

	 0 1 a
0 0 0 0
1 0 1 a
a 0 a a

� 0 1 a
0 0 0 0
1 0 1 a
a 0 a 0

×

0 0
1 1
a 0

�0 0 1 a
0 0 1 a
1 0 1 a
a 0 1 a

�1 0 1 a
0 0 0 0
1 1 1 1
a a a a

¬
0 1
1 0

��
0 0
1 1
a 1

The Hasse diagram of the demonic refinement ordering corresponding to 	 is
simply given by 1 � a � 0. In this DAT, (46) and (48) are satisfied, but (47) is
not. Indeed ��(a�a) = 0 �= 1 = ��(a���a).

By Proposition 29-2 below, ��x is a left preserver of x. By Proposition 29-6, it is
the greatest left preserver. Similarly, by Proposition 29-9, ¬��x is a left annihilator
of x. By Proposition 29-8, it is the least left annihilator (since Proposition 29-8
can be rewritten as ¬��x
 t ⇐⇒ 0
 t�x).

25

Proposition 29. In a DAD, the demonic domain operator satisfies the follow-
ing properties. Take x, y ∈ AD and t ∈ BD.

1. x
 y =⇒ ��x
 ��y
2. ��x�x = x

3. ��t = t

4. ��(t�x) = t���x
5. t
 ��(t�x)
6. t
 ��x ⇐⇒ t�x
 x

7. ��x = max�{t | t ∈ BD ∧ t�x = x}
8. t
 ��x ⇐⇒ 0
 ¬t�x

9. ¬��x�x = 0
10. ��x
 ��(x�y)
11. ��x = 0 ⇐⇒ x = 0
12. ��(x �t y) = ��x �t ��y
13. x 	 y = ��x���y�(x 	 y)
14. ��(x�s)���(x�t) = ��(x�s�t)

All the above laws except 12 and 14 are identical to laws of � , after compen-
sating for the reverse ordering of the Boolean lattice (on tests,
 corresponds
to ≥).

Proof.

1. x
 y

⇐⇒ 〈 by (30) 〉
x 	 y = y

=⇒ 〈 evaluating demonic domain both sides and by (48) 〉
��x 	 ��y = ��y

⇐⇒ 〈 by (30) 〉
��x
 ��y

2. This is direct from (46) with t := 1 and (26).
3. This is direct from (46) with x := 1 and (26).

4. t���x
= 〈 by Proposition 29-3 〉

��(t���x)
= 〈 by (47) 〉

��(t�x)
5. By Definition 20-3, and Proposition 29-4, t = t�1
 t���x = ��(t�x).
6. [=⇒] By the assumption, monotonicity of � and Proposition 29-1, t�x

��x�x
 x.

26

[⇐=]

t�x
 x

=⇒ 〈 by Proposition 29-1 〉
��(t�x)
 ��x

=⇒ 〈 by Proposition 29-5 〉
t
 ��x

7. This is direct from Proposition 29-6.
8. t
 ��x

⇐⇒ 〈 by Proposition 29-6 〉
t�x
 x

⇐⇒ 〈 by Proposition 22-15 〉
0
 ¬t�x

9. This law follows directly from Proposition 29-8 and (33).
10. Since ��x�(x�y) = (��x�x)�y = x�y, the result follows from Proposition 29-6.
11. ��x = 0

⇐⇒ 〈 by (33) 〉
0
 ��x

⇐⇒ 〈 by Proposition 29-6 〉
0�x
 x

⇐⇒ 〈 by (25) 〉
0
 x

⇐⇒ 〈 by (33) 〉
x = 0

12. s
 ��(x �t y)
⇐⇒ 〈 by Proposition 29-6 〉

s�(x �t y)
 x �t y

⇐⇒ 〈 by (41) 〉
s�x �t s�y
 x �t y

⇐⇒ 〈 by Proposition 22-22 〉
s�x
 t�(x �t y) ∧ s�y
 ¬t�(x �t y)

⇐⇒ 〈 by Proposition 22-19 and (36) 〉
s�x
 t�x ∧ s�y
 ¬t�y

⇐⇒ 〈 by Proposition 22-14 〉
t�s�x
 t�x ∧ ¬t�s�y
 ¬t�y

⇐⇒ 〈 by Proposition 22-10 〉

27

s�t�x
 t�x ∧ s�¬t�y
 ¬t�y

⇐⇒ 〈 by Proposition 29-6 〉
s
 ��(t�x) ∧ s
 ��(¬t�y)

⇐⇒ 〈 by Proposition 29-4 〉
s
 t���x ∧ s
 ¬t���y

⇐⇒ 〈 by Proposition 22-21 〉
s
 ��x �t ��y

13. x 	 y

= 〈 by Proposition 29-2 〉
��(x 	 y)�(x 	 y)

= 〈 by (48) 〉
(��x 	 ��y)�(x 	 y)

= 〈 by Proposition 22-8 〉
��x���y�(x 	 y)

14. ��(x�s)���(x�t)
= 〈 by Proposition 22-8 〉

��(x�s) 	 ��(x�t)
= 〈 by (48) 〉

��(x�s) 	 (x�t)
= 〈 by (27) 〉

��(x�(s 	 t))
= 〈 by Proposition 22-8 〉

��(x�s�t) �	

To simplify the notation when possible, we will use the abbreviation

x � y = x ���x y . (49)

Under special conditions, � has easy to use properties, as shown by the next
corollary. The most useful cases are when � is used on tests and when ��x���y = 0.

Corollary 30. Let x, y, z be arbitrary elements and s, t be tests of a DAD.

1. s � t is the meet of s and t in the Boolean lattice of tests.
2. x � y = x � ¬��x�y
3. 0 � x = x � 0 = x
4. t�(x � y) = t�x � t�y
5. x = t�x � ¬t�x
6. ��x
 t =⇒ t�(x � y) = t�x
7. ¬��x
 t =⇒ t�(x � y) = t�y
8. ��x�y = ��y�x =⇒ x � y = y � x

28

9. ��x���y = 0 =⇒ ��x�y = ��y�x
10. x � x = x
11. x � y
 x
12. (x � y) � z = x � (y � z)
13. x 	 (y � z) = (x 	 y) � (x 	 z)
14. ��(x � y) = ��x � ��y
15. ��x���y = 0 =⇒ (x � y)�z = x�z � y�z

Proof. 1. This follows from Corollary 23, since 1 �s t = s �s t = s � t by (37)
and (49).

2. x � y

= 〈 by (49) 〉
x ���x y

= 〈 by Proposition 22-6 〉
x ���x ¬��x�y

= 〈 by (49) 〉
x � ¬��x�y

3. 0 � x

= 〈 by (49) and Proposition 29-3 〉
0 �0 x

= 〈 by Proposition 22-5 〉
¬0�x

= 〈 by Proposition 22-12 and (26) 〉
x

= 〈 by (39) and Proposition 29-2 〉
x ���x 0

= 〈 by (49) 〉
x � 0

4. z
 t�(x � y)
⇐⇒ 〈 by (49) 〉

z
 t�(x ���x y)
⇐⇒ 〈 by (41) and Proposition 22-7 〉

z
 t�t�x ���x t�y

⇐⇒ 〈 by Propositions 22-21 and 22-10 〉
z
 t���x�t�x ∧ z
 ¬��x�t�y

⇐⇒ 〈 by (39) and Propositions 22-10, 22-7 and 22-9 〉
z
 t���x�t�x ∧ z
 (¬��x�t �t ¬t�t)�y

⇐⇒ 〈 by Proposition 22-6 〉

29

z
 t���x�t�x ∧ z
 (¬��x�t �t t)�y

⇐⇒ 〈 by (40) and (26) 〉
z
 t���x�t�x ∧ z
 (¬��x �t 1)�t�y

⇐⇒ 〈 by (36) 〉
z
 t���x�t�x ∧ z
 (1 �¬t ¬��x)�t�y

⇐⇒ 〈 by (45) and Proposition 22-8 〉
z
 t���x�t�x ∧ z
 ¬(t���x)�t�y

⇐⇒ 〈 by Proposition 22-21 〉
z
 t�x �t���x t�y

⇐⇒ 〈 by (49) and Proposition 29-9 〉
z
 t�x � t�y

5. x = t�x � ¬t�x

⇐⇒ 〈 by Proposition 22-18 〉
t�x = t�(t�x � ¬t�x) ∧ ¬t�x = ¬t�(t�x � ¬t�x)

⇐⇒ 〈 by Corollary 30-4, and Propositions 22-7 and 22-9 〉
t�x = t�x � 0 ∧ ¬t�x = 0 � ¬t�x

⇐⇒ 〈 by Corollary 30-3 〉
true

6. Suppose ��x
 t.

t�(x � y)
= 〈 by Corollaries 30-2 and 30-4 〉

t�x � t�¬��x�y

= 〈 by hypothesis ��x
 t so 0
 t�¬��x by Proposition 22-9 〉
t�x � 0

= 〈 by Corollary 30-3 〉
t�x

7. Suppose ¬��x
 t.

t�(x � y)
= 〈 by Corollary 30-4 and Proposition 29-2 〉

t���x�x � t�y

= 〈 by hypothesis ¬��x
 t so 0
 t���x by Proposition 22-9 〉
0 � t�y

= 〈 by Corollay 30-3 〉
t�y

30

8. Suppose ��x�y = ��y�x.

x � y = y � x

⇐⇒ 〈 by Proposition 22-18 and (49) 〉
��x�(x � y) = ��x�(y ���y x) ∧ ¬��x�(x � y) = ¬��x�(y � x)

⇐⇒ 〈 by (41) and Corollaries 30-6, 30-7 and 30-4 〉
��x�x = ��x�y ���y ��x�x ∧ ¬��x�y = ¬��x�y � ¬��x�x

⇐⇒ 〈 by Propositions 29-2 and 29-9 〉
x = ��x�y ���y x ∧ ¬��x�y = ¬��x�y � 0

⇐⇒ 〈 by Corollary 30-3 〉
x = ��x�y ���y x ∧ true

⇐⇒ 〈 by hypothesis 〉
x = ��y�x ���y x

⇐⇒ 〈 by (37) and (38) 〉
true

9. ��x���y = 0
⇐⇒ 〈 by Propositions 29-11, 29-4 and 22-10 〉

��x�y = 0 ∧ ��y�x = 0
=⇒ 〈 logic 〉

��x�y = ��y�x

10. x � x

= 〈 by (49) 〉
x ���x x

= 〈 by (38) 〉
x

11. x � y
 x

⇐⇒ 〈 by (49) 〉
x ���x y
 x

⇐⇒ 〈 by Proposition 22-22 〉
x
 ��x�x ∧ y
 ¬��x�x

⇐⇒ 〈 by Propositions 29-2 and 29-9 〉
x
 x ∧ y
 0

⇐⇒ 〈 by (33) 〉
true

12. (x � y) � z = x � (y � z)
⇐⇒ 〈 by Proposition 22-18 〉

31

��x�((x � y) � z) = ��x�(x � (y � z)) ∧
¬��x�((x � y) � z) = ¬��x�(x � (y � z))

⇐⇒ 〈 by Corollary 30-11 x � y
 x and thus ��(x � y)
 ��x
by Proposition 29-1; then apply Corollary 30-6 twice
and Corollary 30-7 once 〉

��x�(x � y) = ��x�x ∧ ¬��x�((x � y) � z) = ¬��x�(y � z)
⇐⇒ 〈 by Corollary 30-6 〉

true ∧ ¬��x�((x � y) � z) = ¬��x�(y � z)
⇐⇒ 〈 by Corollary 30-4 〉

¬��x�(x � y) � ¬��x�z = ¬��x�y � ¬��x�z

⇐⇒ 〈 by Corollary 30-7 〉
true

13. x 	 (y � z)
= 〈 by (49) 〉

x 	 (y ���y z)
= 〈 by (43) 〉

(x 	 y) ���y (x 	 z)
= 〈 by (37) and Proposition 22-6 〉

��y�(x 	 y) ���y ¬��y�(x 	 z)
= 〈 by Corollary 30-5 〉

��y�

(��y�(x 	 y) ���y ¬��y�(x 	 z)
)

� ¬��y�

(��y�(x 	 y) ���y ¬��y�(x 	 z)
)

= 〈 by (41) and Propositions 22-7 and 22-9 〉(��y�(x 	 y) ���y 0
)

�
(
0 ���y ¬��y�(x 	 z)

)
= 〈 by (39) and Propositions 22-5 and 22-7 〉

��y�(x 	 y) � ¬��y�(x 	 z)
= 〈 by Corollaries 23 and 30-1, and Boolean algebra 〉

��y�(x 	 y) � ¬(��x 	 ��y)�¬��y�(x 	 z)
= 〈 by (39), (48) and Propositions 29-2, 22-10 22-5 〉(��y�(x 	 y) ���x	��y 0

)
�

(
0 ���x	��y ¬��y�(x 	 z)

)
= 〈 by (41) and Propositions 29-13, 22-7, 22-9, 22-10 〉

��y�

(��x���y�(x 	 y) ���x	��y ¬��y�(x 	 z)
)
�

¬��y�

(��x���y�(x 	 y) ���x	��y ¬��y�(x 	 z)
)

= 〈 by Proposition 29-13 and Corollary 30-5 〉
��x���y�(x 	 y) ���x	��y ¬��y���x���z�(x 	 z)

= 〈 by Corollary 30-1 and Boolean algebra 〉
��x���y�(x 	 y) ���x	��y (¬��x � ¬��y)���x���z�(x 	 z)

32

= 〈 by Proposition 29-13 and Corollary 30-1 〉
(x 	 y) ���x	��y ¬(��x 	 ��y)�(x 	 z)

= 〈 by Proposition 22-6 〉
(x 	 y) ���x	��y (x 	 z)

= 〈 by (49) and (48) 〉
(x 	 y) � (x � z)

14. ��(x � y)
= 〈 by (49) 〉

��(x ���x y)
= 〈 by Proposition 29-12 〉

��x ���x ��y
= 〈 by (49) and Proposition 29-3 〉

��x � ��y
15. Suppose ��x���y = 0.

(x � y)�z

= 〈 by (49) 〉
(x ���x y)�z

= 〈 by (40) 〉
x�z ���x y�z

= 〈 by Corollary 30-5 〉
��x�(x�z ���x y�z) � ¬��x�(x�z ���x y�z)

= 〈 by (41), the assumption and Propositions 29-2, 29-9 〉
(x�z ���x 0) � (0 ���x ¬��x�y�z)

= 〈 by (39) and Propositions 22-5, 29-2, 22-7 〉
x�z � ¬��x���y�y�z

= 〈 by the assumption and Boolean algebra, ¬��x���y = ��y,
and by Proposition 29-2 〉

x�z � y�z �	

Remark 31. By Corollary 30-11, x � y
 x. In general, x � y
 y does not hold.
Take the relations x = {(0, 0)} and y = {(0, 1)} as a counter-example.

By Corollary 30-13 and Definition (21), (x � y) 	 z = (x 	 z) � (y 	 z).
However, (x 	 y) � z = x � z 	 y � z is false in general. Take the relations
x = {(0, 0)}, y = {} and z = {(0, 1)} as a counter-example. Furthermore, the
equality (x� y)�z = x�z � y�z is also false in general (compare with (40)). Take
the relations x = {(0, 0), (0, 1), (1, 0), (1, 1)}, y = {(0, 1), (1, 1)} and z = {(1, 1)}
as a counter-example.

33

Remark 32. In the sequel, some transformations based on Corollaries 23 and 30-
1 are simply justified by invoking “Boolean algebra”.

In KAD, it can be shown that the set of tests is maximal in the sense that,
if an element s has a complement relative to 1, then it is a test [9,11]. In KAD,
we say that an element y is the complement of x relative to 1 iff x + y = 1 and
x·y = 0. In DAD, there are two possible definitions for the notion of complement
relative to 1.

Definition 33. We say that

1. x is the 	-complement of y relative to 1 iff x � y = 1 and x 	 y = 0;
2. x is the �-complement of y relative to 1 iff x � y = 1 and x�y = 0.

These definitions are asymmetric, because x � y and x�y need not be equal
to y�x and y�x, respectively, but, as simply follows from the following theorem,
it nevertheless turns out that the two definitions are both equivalent to x � y =
y�x = 1 ∧ x�y = y�x = 0. The theorem also shows that the maximality result
of KAD also holds in DAD.

Theorem 34. Let D = (AD, BD,	, �,×, 0, 1,�•, ��) be a DAD and let x, y ∈
AD.

1. x � y = 1 =⇒ ��x = x.
2. x � y = 1 ∧ x 	 y = 0 =⇒ ��y = y.
3. x is the 	-complement of y iff y is the 	-complement of x.
4. x is the �-complement of y iff x is the 	-complement of y.
5. x is the �-complement of y iff y is the �-complement of x.
6. ��x = x ⇐⇒ x ∈ BD.
7. The set BD consists of all the elements that have a (or �)-complement

relative to 1.

Proof.

1. Using the hypothesis, (26), Corollary 30-6 and Proposition 29-2, we get

��x = ��x�(x � y) = ��x�x = x .

2. Assume x � y = 1 and x 	 y = 0. We show ��y = y.

��y
= 〈 by hypothesis and (26) 〉

��y�(x � y)
= 〈 by Corollary 30-4 and Proposition 29-2 〉

��y���x�x � ��y�y

= 〈 by Propositions 29-2 and 22-8 〉
(��y 	 ��x)�x � y

34

= 〈 by (48) 〉
��(x 	 y)�x � y

= 〈 by hypothesis and Proposition 29-3 〉
0�x � y

= 〈 by (25) and Corollary 30-3 〉
y

3. Assume that x is the 	-complement of y. Then ��x = x and ��y = y by
Definition 33-1 and Theorems 34-1 and 34-2. Thus, by Corollary 30-1 and
the hypothesis,

y � x = ��y � ��x = ��x � ��y = x � y = 1 .

By the assumption x 	 y = 0 and (21), y 	 x = 0 and hence y is a 	-
complement of x by Definition 33-1.
The reverse implication holds by symmetry.

4. We have to show x�y = 1 ∧ x�y = 0 ⇐⇒ x�y = 1 ∧ x	y = 0. Assuming
x � y = 1, we show x�y = 0 ⇐⇒ x 	 y = 0.

x�y = 0
⇐⇒ 〈 by Proposition 29-11 〉

��(x�y) = 0
⇐⇒ 〈 by (47) 〉

��(x���y) = 0
⇐⇒ 〈 by Proposition 29-11 〉

x���y = 0
⇐⇒ 〈 by the assumption and Theorem 34-1 〉

��x���y = 0
⇐⇒ 〈 by Proposition 22-8 〉

��x 	 ��y = 0
⇐⇒ 〈 by (48) 〉

��(x 	 y) = 0
⇐⇒ 〈 by Proposition 29-11 〉

x 	 y = 0

5. This follows directly from Theorems 34-3 and 34-4.
6. The implication =⇒ follows by the typing of �� (Definition 24). The other

implication follows from Proposition 29-3.
7. This is a simple consequence of Definition 33 and the other parts of this

theorem. �	

35

Since 	-complementation and �-complementation are equivalent, we can sim-
ply say that an element x is the complement of y relative to 1. Because an ele-
ment x and its complement belong to the Boolean algebra BD, the complement
of x is unique. This justifies defining x as “the” complement of y instead of “a”
complement of y in Definition 33.

4 Definition of Angelic Operators in DAD

Our goal in this section is to define angelic operators from demonic ones, as
was done when going from the angelic to the demonic universe (Section 2). This
is done in order to study transformations between KAD and DAD (Sections 5
and 6). We add a subscript D to the angelic operators defined here, to denote
that they are defined by demonic expressions. We start with the angelic partial
order ≤D.

Definition 35 (Angelic refinement). Let x, y be elements of a DAD. We say
that x ≤D y when the following two properties are satisfied.

��y
 ��x (50)
x
 ��x�y (51)

Proposition 37 below states that ≤D is a partial order. Moreover, it gives
a formula using demonic operators for the angelic supremum with respect to
this partial order. In order to demonstrate this theorem, we need the following
lemma.

Lemma 36. The function

f : AD × AD → AD

(x, y) �→ (x 	 y) � ¬��y�x � ¬��x�y

satisfies the following four properties for all x, y, z ∈ AD. Note that f is well
defined by Corollary 30-12.

1. ��f(x, y) = ��x � ��y
2. f(x, x) = x
3. f(x, y) = f(y, x)
4. f(x, f(y, z)) = f(f(x, y), z)

Proof.

1. ��f(x, y)
= 〈 by hypothesis 〉

��((x 	 y) � ¬��y�x � ¬��x�y)
= 〈 by Corollary 30-14 〉

��(x 	 y) � ��(¬��y�x) � ��(¬��x�y)

36

= 〈 by (48), Proposition 22-8 and Proposition 29-4 〉
��x���y � ¬��y���x � ¬��x���y

= 〈 by Corollaries 23 and 30-1, and Boolean algebra 〉
��x � ��y

2. f(x, x)
= 〈 by hypothesis 〉

(x 	 x) � ¬��x�x � ¬��x�x

= 〈 by Proposition 29-9 and (25) 〉
(x 	 x) � 0 � 0

= 〈 by Corollary 30-3 and (22) 〉
x

3. f(x, y)
= 〈 by hypothesis 〉

(x 	 y) � ¬��y�x � ¬��x�y

= 〈 by (21) and Corollaries 30-9 and 30-8, since
��(¬��y�x)���(¬��x�y) = ¬��y���x�¬��x���y = 0
by Propositions 29-4 and 22-9 〉

(y 	 x) � ¬��x�y � ¬��y�x

= 〈 by hypothesis 〉
f(y, x)

4. We first show x 	 t�y = t�(x 	 y) (true for all x, y and all tests t).

x 	 t�y

= 〈 by Propositions 29-13 and 29-4 〉
��x�t���y�(x 	 t�y)

= 〈 by (27) and Propositions 22-7, 22-10 〉
��x�t���y�(x 	 y)

= 〈 by Propositions 22-10 and 29-13 〉
t�(x 	 y)

The main derivation follows. It repeatedly invokes Corollaries 30-8 and 30-9.
Using (48) and Propositions 22-8 and 29-4, it is easy to check the operands
of the various � operators are pairwise disjoint, so that the condition ��x���y
of Corollary 30-9 is satisfied. This is what allows permuting the operands.

f(x, f(y, z))
= 〈 by hypothesis and Lemma 36-1 〉

(x 	 ((y 	 z) � ¬��z�y � ¬��y�z)) �
¬(��y � ��z)�x � ¬��x�((y 	 z) � ¬��z�y � ¬��y�z)

37

= 〈 by Corollaries 30-13, 30-4, 23, 30-1, and Boolean algebra 〉
(x 	 y 	 z) � (x 	 ¬��z�y) � (x 	 ¬��y�z) �
¬��y�¬��z�x � ¬��x�(y 	 z) � ¬��x�¬��z�y � ¬��x�¬��y�z

= 〈 see the previous derivation and Corollaries 30-8 30-9 〉
(x 	 y 	 z) � ¬��z�(x 	 y) � ¬��y�(x 	 z) � ¬��x�(y 	 z) �
¬��y�¬��z�x � ¬��x�¬��z�y � ¬��x�¬��y�z

= 〈 by (21), (48), Propositions 22-10 and 29-4,
Corollaries 30-8 and 30-9, and Boolean algebra 〉

(z 	 x 	 y) � ¬��y�(z 	 x) � ¬��x�(z 	 y) � ¬��z�(x 	 y) �
¬��x�¬��y�z � ¬��z�¬��y�x � ¬��z�¬��x�y

= 〈 see the previous derivation and Corollaries 30-8, 30-9 〉
(z 	 x 	 y) � (z 	 ¬��y�x) � (z 	 ¬��x�y) � ¬��x�¬��y�z �
¬��z�(x 	 y) � ¬��z�¬��y�x � ¬��z�¬��x�y

= 〈 by Corollaries 30-13, 30-4, 23, 30-1 and Boolean algebra 〉
(z 	 ((x 	 y) � ¬��y�x � ¬��x�y)) � ¬(��x � ��y)�z �
¬��z�((x 	 y) � ¬��y�x � ¬��x�y)

= 〈 by hypothesis and Lemma 36-1 〉
f(z, f(x, y))

= 〈 by Lemma 36-3 〉
f(f(x, y), z) �	

Proposition 37 (Angelic choice). The angelic refinement of Definition 35
satisfies the following three properties.

1. For all x, 0 ≤D x.
2. For all x, y,

x ≤D y ⇐⇒ f(x, y) = y ,

where f is the function defined in Lemma 36.
3. ≤D is a partial order. Letting x +D y denote the supremum of x and y with

respect to ≤D, we have
x +D y = f(x, y) .

Proof.

1. Let x be any element of a DAD. From Proposition 29-11, we have ��0 = 0,
hence ��x
 ��0. Also, ��0�x = 0, so 0
 ��0�x. The last two refinements are
those from Definition 35, so 0 ≤D x.

2. f(x, y) = y

⇐⇒ 〈 by Propositions 22-18, 29-2, 29-9 〉
��y�f(x, y) = y ∧ ¬��y�f(x, y) = 0

⇐⇒ 〈 by Propositions 22-18, 29-2, and (25) 〉

38

��x���y�f(x, y) = ��x�y ∧ ��x�¬��y�f(x, y) = 0 ∧
¬��x���y�f(x, y) = ¬��x�y ∧ ¬��x�¬��y�f(x, y) = 0

⇐⇒ 〈 by definition of f , Corollaries 30-4, 30-3 and Propositions
22-9, 29-2, 29-9, 29-13 〉

��x���y�(x 	 y) = ��x�y ∧ ¬��y�x = 0 ∧ ¬��x�y = ¬��x�y ∧ 0 = 0
⇐⇒ 〈 by Propositions 22-7 and 29-13 〉

��x�(x 	 y) = ��x�y ∧ ¬��y�x = 0
⇐⇒ 〈 by (27), Proposition 29-2 and Proposition 29-11 〉

〈 by (27) and Propositions 29-2, 29-11 and 29-4 〉
x 	 ��x�y = ��x�y ∧ ¬��y���x = 0

⇐⇒ 〈 by Proposition 29-8 〉
x 	 ��x�y = ��x�y ∧ ��y
 ��x

⇐⇒ 〈 by (30) and by Definition 35 〉
x ≤D y

3. It follows from the previous point of the present theorem and by the fact
that f is reflexive, symmetric and transitive (see Lemma 36). �	

The following expected properties are a direct consequence of Lemma 36 and
Proposition 37.

(x +D y) +D z = x +D (y +D z)
x +D y = y +D x

x +D x = x

0 +D x = x

We now turn to the definition of angelic composition. But things are not as
simple as for ≤D or +D. The difficulty is due to the asymmetry between left and
right caused by the difference between axioms (40) and (41), and by the absence
of a codomain operator for “testing” the right-hand side of elements as can be
done with the domain operator on the left. Consider the two relations

Q = {(0, 0), (0, 1), (1, 2), (2, 3)} and R = {(0, 0), (2, 2)} .

The angelic composition of Q and R is Q·R = {(0, 0), (1, 2)}, while their demonic
composition is Q�R = {(1, 2)}. There is no way to express Q ·R only in terms of
Q�R. What we could try to do is to decompose Q as follows using the conditional

Q = Q���R � Q�¬��R � (Q1 	 Q2) ,

where Q1 = {(0, 0)} and Q2 = {(0, 1)}. Note that Q���R = {(1, 2)} and Q�¬��R =
{(2, 3)}, so that the domains of the three operands of � are disjoint. The effect
of � is then just union. With these relations, it is possible to express the angelic
composition as Q · R = Q�R � Q1�R. Now, it is possible to extract Q1 	 Q2

39

from Q, since Q1 	 Q2 = ¬��(Q���R)�¬��(Q�¬��R)�Q. The problem is that it is
not possible to extract Q1 from Q1 	Q2. On the one hand, Q1 and Q2 have the
same domain; on the other hand, there is no test t such that Q1 = (Q1 	Q2)�t.
This is what leads us to the following definition.

Definition 38. Let t be a test. An element x of a DAD is said to be t-decom-
posable iff there are unique elements xt and x¬t such that

x = x�t � x�¬t � (xt 	 x¬t) , (52)
��xt = ��x¬t = ¬��(x�t)�¬��(x�¬t)���x , (53)
xt = xt �t , (54)

x¬t = x¬t �¬t . (55)

And x is said to be decomposable iff it is t-decomposable for all tests t.

It is easy to see that all tests are decomposable. Indeed, the (unique) t-
decomposition of a test s is

s = s�t � s�¬t � (0 	 0) . (56)

Remark 39. The domains ��(x�t), ��(x�¬t) and ��xt (or ��x¬t) obtained by decom-
posing x as in Definition 38 are pairwise disjoint. That ��xt and ��x¬t are disjoint
from ��(x�t) and ��(x�¬t) is obvious from (53). By Propositions 29-14, 22-9, (25)
and Proposition 29-3,

��(x�t)���(x�¬t) = ��(x�t�¬t) = ��(x�0) = ��0 = 0 ,

so that ��(x�t) and ��(x�¬t) are disjoint as well. Moreover,

��x = ��(x�t) � ��(x�¬t) � ��xt ,

since

��(x�t) � ��(x�¬t) � ��xt

= 〈 by (53) 〉
��(x�t) � ��(x�¬t) � ¬��(x�t)�¬��(x�¬t)���x

= 〈 by Boolean algebra 〉
��(x�t) � ��(x�¬t) � ��x

= 〈 by Proposition 29-10 〉
��x .

This disjointness is often used in applications of Corollaries 30-8, 30-9 and
30-15.

One may wonder whether there exists a DAD with non-decomposable ele-
ments. The answer is yes. The following nine relations constitute such a DAD,

40

with the operations given (they are the standard demonic operations on rela-
tions), omitting �•. The set of tests is {0, s, t, 1}.

0 =
(

0 0
0 0

)
s =

(
1 0
0 0

)
t =

(
0 0
0 1

)
1 =

(
1 0
0 1

)

a =
(

1 0
1 1

)
b =

(
1 1
0 1

)
c =

(
1 1
1 1

)
d =

(
1 1
0 0

)
e =

(
0 0
1 1

)

	 0 s t 1 a b c d e
0 0 0 0 0 0 0 0 0 0
s 0 s 0 s s d d d 0
t 0 0 t t e t e 0 e
1 0 s t 1 a b c d e
a 0 s e a a c c d e
b 0 d t b c b c d e
c 0 d e c c c c d e
d 0 d 0 d d d d d 0
e 0 0 e e e e e 0 e

� 0 s t 1 a b c d e
0 0 0 0 0 0 0 0 0 0
s 0 s 0 s s d d d 0
t 0 0 t t e t e 0 e
1 0 s t 1 a b c d e
a 0 s 0 a a c c d 0
b 0 0 t b c b c 0 e
c 0 0 0 c c c c 0 0
d 0 0 0 d d d d 0 0
e 0 0 0 e e e e 0 0

×
0 0
s s
t t
1 1
a a
b b
c c
d 0
e 0

��
0 0
s s
t t
1 1
a 1
b 1
c 1
d s
e t

¬
0 1
s t
t s
1 0

The demonic refinement ordering corresponding to 	 is represented in the fol-
lowing semilattice.

0
��

� ��
��

d

��
� ��

� e

��
�� ��

��

s
��

��
c

��
�� ��

� t

��
�

a
��

�� b

��
�

1

The elements a, b, c, d and e are not decomposable. For instance, to decompose
c with respect to s would require the existence of relations

(
1 0
1 0

)
and

(
0 1
0 1

)
,

which are not there.

Definition 40 (Angelic composition). Let x and y be elements of a DAD
such that x is decomposable. Then the angelic composition ·D is defined by

x ·D y = x�y � x��y �y .

Proposition 41. Let x, y, z be decomposable elements of a DAD. Then,

1. 1 ·D x = x ·D 1 = x,
2. 0 ·D x = x ·D 0 = 0,

41

3. ��(x ·D y) = ��x�¬��(x�¬��y)
4. ��(x ·D (y ·D z)) = ��((x ·D y) ·D z).

Proof.

1. Firstly, we show that x��1 = 0.

��x��1
= 〈 by (53) 〉

��x¬��1
= 〈 by (55) 〉

��x¬��1�¬��1
= 〈 by Propositions 29-3 and 22-11, and (25) 〉

0

So x��1 = 0 by Proposition 29-11. Here is the desired derivation.

1 ·D x

= 〈 by Definition 40 〉
1�x � 1��x�x

= 〈 by (56) 〉
1�x � 0�x

= 〈 by (26) and (25) and Corollary 30-3 〉
x

= 〈 by (26) and Corollary 30-3 〉
x�1 � 0�1

= 〈 see the previous derivation 〉
x�1 � x��1�1

= 〈 by Definition 40 〉
x ·D 1

2. Firstly, we show that x��0 = 0.

��x��0
= 〈 by (54) 〉

��x��0���0
= 〈 by Proposition 29-3 and (25) 〉

0

So x��0 = 0 by Proposition 29-11. Here is the desired derivation.

42

0 ·D x

= 〈 by Definition 40 〉
0�x � 0��x�x

= 〈 by (56) 〉
0�x � 0�x

= 〈 by (25) and Corollary 30-10 〉
0

= 〈 by (25) and Corollary 30-10 〉
x�0 � 0�0

= 〈 see the previous derivation 〉
x�0 � x��0�0

= 〈 by Definition 40 〉
x ·D 0

3. Firstly, we need the following.

¬��(x�¬��y)���x
 ��(x���y)
⇐⇒ 〈 by Proposition 22-8 and Boolean algebra 〉

¬��(x�¬��y)
 ��(x���y) ∧ ��x
 ��(x���y)
⇐⇒ 〈 by Corollary 23, shunting and Proposition 29-10 〉

0
 ��(x�¬��y) 	 ��(x���y) ∧ true

⇐⇒ 〈 by Propositions 22-8 and 29-14 〉
0
 ��(x���y�¬��y)

⇐⇒ 〈 by Proposition 22-9 〉
0
 ��0

⇐⇒ 〈 by Proposition 29-11 〉
true

We are now ready to calculate the desired result.

��(x ·D y)
= 〈 by Definition 40, Corollary 30-14 and (47) 〉

��(x���y) � ��(x��y ���y)
= 〈 by (54) 〉

��(x���y) � ��x��y
= 〈 by (53) 〉

��(x���y) � ¬��(x���y)�¬��(x�¬��y)���x
= 〈 by Corollary 23 and 30-1 and Boolean algebra 〉

43

��(x���y) � ¬��(x�¬��y)���x
= 〈 by the previous derivation and Boolean algebra 〉

��x�¬��(x�¬��y)

4. ��(x ·D (y ·D z))
= 〈 by Proposition 41-3 〉

��x�¬��(x�¬(��y�¬��(y�¬��z)))
= 〈 by De Morgan 〉

��x�¬��(x�(¬��y � ��(y�¬��z)))
= 〈 by Definition 38 (��y-decomposition of x 〉

��x�¬��((x���y � x�¬��y � (x��y 	 x¬��y))�(¬��y � ��(y�¬��z)))
= 〈 by Corollary 30-15 and Remark 39 〉

��x�¬��(x���y�(¬��y � ��(y�¬��z)) � x�¬��y�(¬��y � ��(y�¬��z)) �
(x��y 	 x¬��y)�(¬��y � ��(y�¬��z)))

= 〈 by Corollaries 30-7, 30-6 and Proposition 22-7 〉
��x�¬��(x���y���(y�¬��z) � x�¬��y � (x��y 	 x¬��y)�(¬��y � ��(y�¬��z)))

= 〈 by Propositions 22-8 and 29-10 〉
��x�¬��(x���(y�¬��z) � x�¬��y � (x��y 	 x¬��y)�(¬��y � ��(y�¬��z)))

= 〈 by Corollary 30-14 and (47) 〉
��x�¬��(x�y�¬��z � x�¬��y � (x��y 	 x¬��y)�(¬��y � ��(y�¬��z)))

= 〈 by (54), (55) and (28) 〉
��x�¬��(x�y�¬��z � x�¬��y �

(x��y ���y�(¬��y � ��(y�¬��z)) 	 x¬��y �¬��y�(¬��y � ��(y�¬��z))))
= 〈 by Corollaries 30-7, 30-6 and Proposition 22-7 〉

��x�¬��(x�y�¬��z � x�¬��y � (x��y ���y���(y�¬��z) 	 x¬��y �¬��y))
= 〈 by (55) 〉

��x�¬��(x�y�¬��z � x�¬��y � (x��y ���(y�¬��z) 	 x¬��y))
= 〈 by Corollary 30-14 and (48) 〉

��x�¬(��(x�y�¬��z) � ��(x�¬��y) � (��(x��y ���(y�¬��z)) 	 ��x¬��y))
= 〈 since ��x¬��y = ��x��y
 ��(x��y ���(y�¬��z)) by (53) and

Proposition 29-10 〉
��x�¬(��(x�y�¬��z) � ��(x�¬��y) � ��(x��y ���(y�¬��z)))

= 〈 by Boolean algebra and (47) 〉
��x�¬��(x�¬��y)�¬��(x�y�¬��z)�¬��(x��y �y�¬��z)

= 〈 by Boolean algebra and Corollary 30-14 〉
��x�¬��(x�¬��y)�¬��(x�y�¬��z � x��y �y�¬��z)

= 〈 by Corollary 30-15 and Remark 39 〉

44

��x�¬��(x�¬��y)�¬��((x�y � x��y �y)�¬��z)
= 〈 by Proposition 41-3 and Definition 40 〉

��((x ·D y) ·D z) �	

We have not yet been able to show the associativity of ·D nor its distributivity
over +D.

By Definition 7 and Proposition 11-4,

�(x �A y) = �x · ¬�(x · ¬�y) .

Comparing this expression with the one given in Proposition 41-3, namely

��(x ·D y) = ��x�¬��(x�¬��y) ,

reveals a nice duality. It remains to be seen whether this is accidental or whether
there is something profound hiding there.

The last angelic operator that we define here is the iteration operator that
corresponds to the Kleene star.

Definition 42 (Angelic iteration). Let x be an element of a DAD. The an-
gelic finite iteration operator ∗D is defined by

x∗D = (x � 1)× 	 1 .

Although we are still struggling to ascertain the properties of ·D (and, as a
side effect, those of ∗D), we have a conjecture that most probably holds. At least,
it holds for a very important case (see Section 5).

Conjecture 43.

1. The set of decomposable elements of a DAD D is a subalgebra of D.
2. For the subalgebra of decomposable elements of D, the composition ·D is

associative and distributes over +D (properties (5), (8) and (9)).
3. For the subalgebra of decomposable elements of D, the iteration operator

∗D satisfies the unfolding and induction laws of the Kleene star (properties
(10), (14), (12) and (13)).

5 From KAD to DAD and Back

In this section, we introduce two transformations between the angelic and de-
monic worlds. The ultimate goal is to show how KAD and DAD are related one
to the other.

Definition 44. Let (K, test(K),+, ·, ∗, 0, 1,¬, �) be a KAD. Let F denote the
transformation that sends it to

(K, test(K),	A, �A,×A , 0, 1,�A•, �) ,

45

where 	A, �A,×A and �A• are the operators defined in Proposition 9 and Defini-
tions 10, 12 and 14, respectively.

Similarly, let (AD, BD,	, �,×, 0, 1,�•, ��) be a DAD. Denote by G the trans-
formation that sends it to

(AD, BD,+D, ·D, ∗D , 0, 1,¬D, ��) ,

where +D, ·D, ∗D and ¬D are the operators defined in Proposition 37, Defini-
tions 40 and 42, and (35), respectively (since no special notation was introduced
in Definition 20 to distinguish DAT negation from KAT negation, we have added
a subscript D to ¬ in order to avoid confusion in Theorem 46).

By this definition, the transformations F and G transport the domain op-
erator and the negation operator unchanged between the angelic and demonic
worlds. Indeed, it turns out that �x = ��x and ¬t = ¬Dt are the right transfor-
mations.

Having defined F and G, we can now state an important theorem. Just before,
we need to introduce the following lemma.

Lemma 45. Let K be a KAD. For all x ∈ K and all t ∈ test(K),

x = x �A t ⇐⇒ x = x · t .

Proof.
x �A t = x

⇐⇒ 〈 by Definition 10 〉
(x → t) · x · t = x

⇐⇒ 〈 by Proposition 6-3 〉
(x → t) · x · t · t = x · t ∧ (x → t) · x · t · ¬t = x · ¬t

⇐⇒ 〈 by Definition 7, and Propositions 6-9 and 6-2 〉
¬�(x · ¬t) · x · t · t = x · t ∧ 0 = x · ¬t

⇐⇒ 〈 substituting 0 for x · ¬t in ¬�(x · ¬t)
and by Propositions 6-9 and 6-2 〉

x · t · t = x · t ∧ x · t · ¬t = x · ¬t

⇐⇒ 〈 by Proposition 6-3 〉
x · t = x �	

Theorem 46. Let K = (K, test(K),+, ·, ∗, 0, 1,¬, �) be a KAD and let F and
G be the transformations introduced in Definition 44.

1. F(K) is a DAD.
2. All elements of F(K) are decomposable and, for x ∈ K and t ∈ test(K),

xt = �(x · ¬t) · x · t ,
x¬t = �(x · t) · x · ¬t .

46

3. G◦F is the identity on K. In other words, the algebra (K, test(K),+D, ·D, ∗D ,
0, 1,¬D, �) derived from the DAD F(K) is isomorphic to K (only the symbols
denoting the operators differ).

4. Let D be a DAD. If φ is an isomorphism between F(K) and D, then φ is
also an isomorphism between K and G(D).

Proof.

1. That F(K) is a DAD is just a compact restatement of Theorems 15, 16
and 17.

2. Let x be any element of K and t be any test. We have to show

x = x �A t �A x �A ¬t �A (xt 	A x¬t) ,

where xt and x¬t have the unique solution given in the statement if they
satisfy (53), (54) and (55). Remark 39 shows that �x can be split in three
disjoint parts, namely �(x�At), �(x�A¬t) and �xt. Thus, by Proposition 22-18,
the above equality holds if and only iff the following four equalities also do.

¬�x �A x = ¬�x �A

(
x �A t �A x �A ¬t �A (xt 	A x¬t)

)
�(x �A t) �A x = �(x �A t) �A

(
x �A t �A x �A ¬t �A (xt 	A x¬t)

)
�(x �A ¬t) �A x = �(x �A ¬t) �A

(
x �A t �A x �A ¬t �A (xt 	A x¬t)

)
�xt �A x = �xt �A

(
x �A t �A x �A ¬t �A (xt 	A x¬t)

)

Using Propositions 29-9 and 29-13, Corollary 30-4 and (53), the first equality
reduces to 0 = 0. The second one follows from Corollary 30-6, Proposition
29-2 and (46), and the third one from Remark 39, Propositions 30-8, 30-9,
Corollary 30-6, Proposition 29-2 and (46). The following derivation is about
the fourth equality and constructs the unique expressions for xt and x¬t,
assuming that xt and x¬t satisfy (53), (54) and (55). Uniqueness is due to
the sequence of equivalences.

�xt �A x = �xt �A

(
x �A t �A x �A ¬t �A (xt 	A x¬t)

)
⇐⇒ 〈 by Corollary 30-7, (53) and Boolean algebra 〉

�xt �A x = �xt �A

(
x �A ¬t �A (xt 	A x¬t)

)
⇐⇒ 〈 by Corollary 30-7, (53) and Boolean algebra 〉

�xt �A x = �xt �A (xt 	A x¬t)
⇐⇒ 〈 by Proposition 11-2 〉

�xt · x = �xt · (xt 	A x¬t)
⇐⇒ 〈 by Propositions 9 and 6-1, and (53) 〉

�xt · x = �xt · (xt + x¬t)
⇐⇒ 〈 by (8), Proposition 6-5 and (53) 〉

�xt · x = xt + x¬t

47

⇐⇒ 〈 by Proposition 6-3 〉
�xt · x · t = (xt + x¬t) · t ∧ �xt · x · ¬t = (xt + x¬t) · ¬t

⇐⇒ 〈 by (54), (55) and Lemma 45 〉
�xt · x · t = (xt · t + x¬t · ¬t) · t ∧ �xt · x · ¬t = (xt · t + x¬t · ¬t) · ¬t

⇐⇒ 〈 by (9), Propositions 6-1 and 6-2, (6) and (4) 〉
�xt · x · t = xt · t ∧ �xt · x · ¬t = x¬t · ¬t

⇐⇒ 〈 by (54), (55) and Lemma 45 〉
�xt · x · t = xt ∧ �xt · x · ¬t = x¬t

⇐⇒ 〈 by (53), Proposition 11-4 and Boolean algebra 〉
(¬(x → t) + ¬�x) · (¬(x → ¬t) + ¬�x) · x · t = xt ∧
(¬(x → t) + ¬�x) · (¬(x → ¬t) + ¬�x) · x · ¬t = x¬t

⇐⇒ 〈 by Boolean algebra, (9), Proposition 6-8 and (4) 〉
xt = ¬(x → t) · ¬(x → ¬t) · x · t ∧
x¬t = ¬(x → t) · ¬(x → ¬t) · x · ¬t

⇐⇒ 〈 by Definition 7, Boolean algebra and Proposition 6-5 〉
xt = �(x · ¬t) · x · t ∧ x¬t = �(x · t) · x · ¬t

3. To show this third point, it suffices to prove x + y = x +D y, x · y = x ·D y,
x∗ = x∗D and ¬t = ¬Dt.
(a) Firstly, we show that x ≤ y ⇐⇒ x ≤D y.

x ≤D y

⇐⇒ 〈 by Definition 35 〉
�y �A �x ∧ x �A �x �A y

⇐⇒ 〈 by Definition 8 〉
�x ≤ �y ∧ �x · �y ≤ �x ∧ �(�x �A y) ≤ �x ∧ �(�x �A y) · x ≤ �x �A y

⇐⇒ 〈 because �x · �y ≤ �x and by Proposition 11-2 〉
�x ≤ �y ∧ �(�x · y) ≤ �x ∧ �(�x · y) · x ≤ �x · y

⇐⇒ 〈 (16) and Proposition 6-10 〉
�x ≤ �y ∧ �x · �y · x ≤ �x · y

⇐⇒ 〈 because �x ≤ �y 〉
�x ≤ �y ∧ �x · x ≤ �x · y

⇐⇒ 〈 by monotonicity of � and · for ⇐= and
by Proposition 6-5 and x ≤ �x · y ≤ y for =⇒ 〉

x ≤ y

So x + y = x +D y by (11) and Proposition 37.
(b) x ·D y

= 〈 by Definition 40 〉

48

x �A y �A x�y �A y

= 〈 by Definition 49 and Definition 14 〉
�(x �A y) �A x �A y + ¬�(x �A y) �A x�y �A y

= 〈 by Proposition 29-2 and Proposition 11-2 〉
x �A y + ¬�(x �A y) · (x�y �A y)

= 〈 by Definition 10, Proposition 11-4 and Boolean algebra
〉

(x → y) · x · y + (¬(x → y) + ¬�x) · (x�y �A y)
= 〈 by (54) and Lemma 45 〉

(x → y) · x · y + (¬(x → y) + ¬�x) · x�y · y
= 〈 by Theorem 46-2 and Proposition 6-5 〉

(x → y) · x · y + (¬(x → y) + ¬�x) · �(x · ¬�y) · x · y
= 〈 by (9), Boolean algebra, Proposition 6-8, (6) and (4) 〉

(x → y) · x · y + ¬(x → y) · �(x · ¬�y) · x · y
= 〈 by (9), Definition 7 and Boolean algebra 〉

((x → y) + ¬(x → y)) · x · y
= 〈 by Boolean algebra and (7) 〉

x · y

(c) x∗D

= 〈 by Definition 42 and (49) 〉
(x �A��x 1)×A 	A 1

= 〈 by Definition 14, Proposition 6-5 and (7) 〉
(x + ¬�x)×A 	A 1

= 〈 by Definition 12 〉
(x + ¬�x)∗ �A �(x + ¬�x) 	A 1

= 〈 by Propositions 6-11 and 6-9, Boolean algebra and (26)
〉

(x + ¬�x)∗ 	A 1
= 〈 by Proposition 9 〉

�((x + ¬�x)∗) · �1 · ((x + ¬�x)∗ + 1)
= 〈 by Propositions 6-14 and 6-9, and 1 ≤ x∗ by (10) 〉

(x + ¬�x)∗

= 〈 by the KA law (x + y)∗ = x∗ · (y · x∗)∗ 〉
x∗ · (¬�x · x∗)∗

= 〈 by (14), (8), Proposition 6-8, (6) and (7) 〉
x∗ · (¬�x)∗

49

= 〈 for any test t, t∗ = 1 〉
x∗

(d) By (35) and Theorem 16-3, ¬Dt = 0 �At 1 = ¬t.
4. Let x, y ∈ K and t ∈ test(K). Because φ : F(K) → D is an isomorphism,

φ(x 	A y) = φ(x) 	 φ(y) ,

φ(x �A y) = φ(x)�φ(y) ,

φ(x×A) = (φ(x))× ,

φ(0) = 0 ,

φ(1) = 1 ,

φ(x �At y) = φ(x) �φ(t) φ(y) ,

φ(�x) = ��(φ(x)) ,

φ(¬t) = ¬(φ(t)) .

We have to show that φ : K → G(D) is an isomorphism, that is,

φ(x + y) = φ(x) +D φ(y) ,

φ(x · y) = φ(x) ·D φ(y) ,

φ(x∗) = (φ(x))∗D ,

φ(0) = 0 ,

φ(1) = 1 ,

φ(�x) = ��(φ(x)) ,

φ(¬t) = ¬(φ(t)) .

We only show φ(x+y) = φ(x)+D φ(y). The others are either trivial or proved
similarly.

φ(x + y)
= 〈 by Theorem 46-3 〉

φ(x +D y)
= 〈 by Proposition 37 and the definition of f in Lemma 36

(the demonic operators are those of F(K)) 〉
φ
(
(x 	A y) �A ¬�y �A x �A ¬�x �A y

)
= 〈 φ : F(K) → D is an isomorphism 〉

(φ(x) 	 φ(y)) � ¬�(φ(y))�φ(x) � ¬�(φ(x))�φ(y)
= 〈 by Proposition 37 and the definition of f in Lemma 36 〉

φ(x) +D φ(y) �	

Due to this theorem, the conjecture stated in the previous section holds for
the DAD F(K). This is a very important case. Since the elements of F(K) are
decomposable, this result gives much weight to the conjecture.

50

6 From DAD to KAD and Back

Let D = (AD, BD,	, �,×, 0, 1,�•, ��) be a DAD. If AD has non-decomposable
elements, then D cannot be the image F(K) of a KAD K, by Theorem 46-2. The
question that is still not settled is whether the subalgebra Dd of decomposable
elements of D is the image F(K) of some KAD K. If Conjecture 43 holds, then
this is the case and the composition of transformations F ◦ G is the identity on
Dd. This problem will be the subject of our future research.

7 Conclusion

The work on demonic algebra presented in this paper is just a beginning. Many
avenues for future research are open. First and foremost, Conjecture 43 must
be solved. In relation to this conjecture, the properties of non-decomposable
elements are also intriguing. Are there concrete models useful for Computer
Science where these elements play a rôle?

Another line of research is the precise relationship of DAD with the other re-
finement algebras and most particularly those of [16,24,25,27]. DAD has stronger
axioms than these algebras, and thus these contain a DAD as a substructure.
Some basic comparisons can already be done. For instance, DADs can be related
to the command algebras of [16] as follows. Suppose a KAD K = (K, test(K),+, ·,
∗, 0, 1,¬, �). A command on K is an ordered pair (x, s), where x ∈ K and
s ∈ test(K). The test s denotes the “domain of termination” of x. If s ≤ �x,
the command (x, s) is said to be feasible; otherwise, it is miraculous. The set of
non-miraculous commands of the form (x, �x), with the appropriate definition
of the operators, is isomorphic to the KAD-based demonic algebra D obtained
from K. If K is the set of all relations over a set S, then D is isomorphic to
the non-miraculous conjunctive predicate transformers on S; this establishes a
relationship with the refinement algebras of [25,27], which have predicate trans-
formers as their main model. The algebras in [25,27] have two kinds of tests,
guards and assertions. Assertions correspond to the tests of DAD and the ter-
mination operator τ of [25] corresponds to the domain operator of DAD.

Finally, let us mention the problem of infinite iteration. In DAD, there is no
infinite iteration operator. One cannot be added by simply requiring it to be the
greatest fixed point of λ(z :: x�Az	A1), since this greatest fixed point is always 0.
In [13], tests denoting the starting points of infinite iterations for an element x
are obtained by using the greatest fixed point (in a KAD) of λ(t :: �(x · t)). We
intend to determine whether a similar technique can be used in DAD.

References

1. R. C. Backhouse and J. van der Woude. Demonic operators and monotype factors.
Mathematical Structures in Computer Science, 3(4):417–433, 1993.

2. R. Berghammer and H. Zierer. Relational algebraic semantics of deterministic and
nondeterministic programs. Theoretical Computer Science, 43:123–147, 1986.

51

3. E. Cohen. Separation and reduction. In Mathematics of Program Construction,
volume 1837 of Lecture Notes in Computer Science, pages 45–59. Springer, July
2000.

4. J. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

5. J.-L. De Carufel and J. Desharnais. Demonic algebra with domain. In 9th Inter-
national Conference on Relational Methods in Computer Science and 4th Interna-
tional Workshop on Applications of Kleene Algebra, Lecture Notes in Computer
Science. Springer, Aug. 2006. In press.

6. J. Desharnais, N. Belkhiter, S. Sghaier, F. Tchier, A. Jaoua, A. Mili, and N. Zaguia.
Embedding a demonic semilattice in a relation algebra. Theoretical Computer
Science, 149:333–360, 1995.

7. J. Desharnais, A. Mili, and T. Nguyen. Refinement and demonic semantics. In
C. Brink, W. Kahl, and G. Schmidt, editors, Relational Methods in Computer
Science, pages 166–183. Springer, 1997.

8. J. Desharnais and B. Möller. Characterizing determinacy in Kleene algebras. In-
formation Sciences, 139(3–4):253–273, Dec. 2001.

9. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. Tech-
nical Report 2003-7, Institut für Informatik, Augsburg, Germany, May 2003.
Available at http://www.informatik.uni-augsburg.de/lehrstuehle/dbis/pmi/
publications/all_pmi_tech-reports/tr-2003-7_moe_str/.

10. J. Desharnais, B. Möller, and G. Struth. Modal Kleene algebra and applications
— a survey. JoRMiCS — Journal on Relational Methods in Computer Science,
1:93–131, 2004.

11. J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. To appear
in ACM Transactions on Computational Logic, 2006.

12. J. Desharnais, B. Möller, and F. Tchier. Kleene under a demonic star. In AMAST
2000, volume 1816 of Lecture Notes in Computer Science, pages 355–370. Springer,
May 2000.

13. J. Desharnais, B. Möller, and F. Tchier. Kleene under a modal demonic star.
Journal of Logic and Algebraic Programming, Special issue on Relation Algebra
and Kleene Algebra, 66(2):127–160, Feb.-Mar. 2006.

14. C. A. R. Hoare, I. J. Hayes, H. Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sorensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communi-
cations of the ACM, 30(8):672–686, 1987.

15. C. A. R. Hoare and H. Jifeng. Unifying Theories of Programming. International
Series in Computer Science. Prentice Hall, 1998.

16. P. Höfner, B. Möller, and K. Solin. Omega algebra, demonic refinement algebra and
commands. In 9th International Conference on Relational Methods in Computer
Science and 4th International Workshop on Applications of Kleene Algebra, Lecture
Notes in Computer Science. Springer, Aug. 2006. In press.

17. M. Hollenberg. Equational axioms of test algebra, 1996. Logic Group Preprint
Series 172, Department of Philosophy, Utrecht University. Available at http://

citeseer.ifi.unizh.ch/hollenberg96equational.html.
18. W. Kahl. Parallel composition and decomposition of specifications. Information

Sciences, 139(3–4):197–220, 2001.
19. D. Kozen. On Kleene algebras and closed semirings. In B. Rovan, editor, Math-

ematical Foundations of Computer Science 1990, volume 452 of Lecture Notes In
Computer Science, pages 26–47. Springer, 1990.

20. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, May 1994.

52

http://www.informatik.uni-augsburg.de/lehrstuehle/dbis/pmi/publications/all_pmi_tech-reports/tr-2003-7_moe_str/
http://citeseer.ifi.unizh.ch/hollenberg96equational.html

21. D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Lan-
guages and Systems, 19(3):427–443, 1997.

22. R. Maddux. Relation-algebraic semantics. Theoretical Computer Science, 160:1–85,
1996.

23. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70.
North-Holland, Amsterdam, 1963. Available at http://www-formal.stanford.

edu/jmc/basis/basis.html.
24. B. Möller. Lazy Kleene algebra. In D. Kozen and C. Shankland, editors, Mathemat-

ics of Program Construction, volume 3125 of Lecture Notes in Computer Science,
pages 252–273. Springer, 2004.

25. K. Solin and J. von Wright. Refinement algebra with operators for enabledness and
termination. In Mathematics of Program Construction, Lecture Note in Computer
Science. Springer, 2006. In press.

26. F. Tchier and J. Desharnais. Applying a generalization of a theorem of Mills to
generalized looping structures. In Colloquium on Science and Engineering for Soft-
ware Development, organised in the memory of Dr. Harlan D. Mills, and affiliated
to the 21st International Conference on Software Engineering, pages 31–38, Los
Angeles, May 1999.

27. J. von Wright. Towards a refinement algebra. Science of Computer Programming,
51:23–45, 2004.

53

http://www-formal.stanford.edu/jmc/basis/basis.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

