Jo UNIVERSITE

1 T AVAL

== M=
M==

)]
®

==

FACULTE DES SCIENCES ET DE GENIE
Département d’informatique et génie logiciel

Pavillon Adrien-Pouliot, local 3908
Cité universitaire

Québec, Canada

G1K 7P4

DEMONIC ALGEBRA WITH DOMAIN
PAR

JEAN-LOU DE CARUFEL
ET
JULES DESHARNAIS

RAPPORT DE RECHERCHE
DIUL-RR-0601

DEPARTEMENT D'INFORMATIQUE ET DE GEN,IE LOGICIEL
FACULTE DES SCIENCES ET DE GENIE

Pavillon Adrien-Pouliot
Université Laval
Québec, QC, Canada
GI1K 7P4

JUIN 2006

Copyright (©) Jean-Lou De Carufel et Jules Desharnais
Département d’informatique et de génie logiciel
Université Laval
Québec, QC, G1K 7P4
Canada
http://www.ift.ulaval.ca
— tous droits réservés —

Demonic Algebra with Domain*

Jean-Lou De Carufel and Jules Desharnais

Département d’informatique et de génie logiciel
Université Laval, Québec, QC, G1K 7P4, Canada
jldecl@ift.ulaval.ca, Jules.Desharnais@ift.ulaval.ca

Abstract. We first recall the concept of Kleene algebra with domain
(KAD). Then we explain how to use the operators of KAD to define
a demonic refinement ordering and demonic operators (many of these
definitions come from the literature). Then, taking the properties of the
KAD-based demonic operators as a guideline, we axiomatise an algebra
that we call Demonic algebra with domain (DAD). The laws of DAD
not concerning the domain operator agree with those given in the 1987
CACM paper Laws of programming by Hoare et al. Finally, we investigate
the relationship between demonic algebras with domain and KAD-based
demonic algebras. The question is whether every DAD is isomorphic to a
KAD-based demonic algebra. We show that it is not the case in general.
However, if a DAD D is isomorphic to a demonic algebra based on a
KAD K, then it is possible to construct a KAD isomorphic to I using
the operators of D. We also describe a few open problems.

1 Introduction

The basic operators of Kleene algebra (KKA) or relation algebra (RA) can directly
be used to give an abstract angelic semantics of while programs. For instance,
a + b corresponds to an angelic non-deterministic choice between programs a
and b, and (¢ -b)* - it is the angelic semantics of a loop with condition ¢ and
body b. One way to express demonic semantics in KA or RA is to define demonic
operators in terms of the basic operators; these demonic operators can then be
used in the semantic definitions. In RA, this has been done frequently (see for
instance [[RIGITIISP2RA]); in KA, much less [[2]13].

In the recent years, various algebras for program refinement have seen the
day [BI14]15116 245 P7]. The refinement algebra of von Wright is an abstraction
of predicate transformers, while the laws of programming of Hoare et al. have
an underlying relational model. Moller’s lazy Kleene algebra has weaker axioms
than von Wright’s and can handle systems in which infinite sequences of states
may occur.

* This research was partially supported by NSERC (Natural Sciences and Engineering
Research Council of Canada) and FQRNT (Fond québécois de la recherche sur la
nature et les technologies). This report is an expanded version of E], giving all the
proofs that had to be omitted from the conference proceedings.

Our goal is also to design a refinement algebra, that we call a Demonic algebra
(DA). Rather than designing it with a concrete model in mind, our first goal is
to come as close as possible to the kind of algebras that one gets by defining
demonic operators in KA with domain (KAD) [IIOIIT], as is done in [[2]I3],
and then forgetting the basic angelic operators of KAD. Starting from KAD
means that DA abstracts many concrete models, just like KA does. We hope
that the closeness to KA will eventually lead to decision procedures like those of
KA. A second longer term goal, not pursued here, is to precisely determine the
relationship of DA with the other refinement algebras; we will say a few words
about that in the conclusion.

In Section B] we recall the definitions of Kleene algebra and its extensions,
Kleene algebra with tests (KAT) and Kleene algebra with domain (KAD). This
section also contains the definitions of demonic operators in terms of the KAD
operators. Section Blpresents the axiomatisation of DA and its extensions, DA
with tests (DAT) and DA with domain (DAD), as well as derived laws. It
turns out that the laws of DAT closely correspond to the laws of programming
of [[4II5]. In Section] we begin to investigate the relationship between KAD
and DAD by first defining angelic operators in terms of the demonic operators
(call this transformation G). Then we investigate whether the angelic operators
thus defined by G induce a KAD. Not all answers are known there and we state
a conjecture that we believe holds and from which the conditions that force G to
induce a KAD can be determined. It is shown in Section Elthat the conjecture
holds in those DADs obtained from a KAD by defining demonic operators in
terms of the angelic operators (call this transformation F). The good thing is
that F followed by G is the identity. Section [Glsimply states the main unsolved
problem. We conclude in Section [[lwith a description of future research.

2 Kleene Algebra with Domain and
KAD-based Demonic Operators

In this section, we recall basic definitions about KA and its extensions, KAT
and KAD. Then we present the KAD-based definition of the demonic operators.

Definition 1 (Kleene algebra). A Kleene algebra (KA) Q20 is a structure
(K,4+,-,%,0,1) such that the following properties hold for all xz,y,z € K.

lz=x-1=zx

(z+y)+z=2+(y+2) (1)
r+y=y+zx (2)
r+xr=x (3)
O+zx==x (4)

(z-y)-z=z-(y-2) (5)
0O-z=z-0=0 (6)

(7)

(8)

r-(y+z)=x-y+x-z

(z4y) 2=a 2ty 2 (9)
zr=z"-x+1 (10)

Addition induces a partial order < such that, for all z,y € K,
r<y <= r+y=y . (11)
Finally, the following properties must be satisfied for all x,y,z € K.
xoz+y<z = a"-y<z (12)
zrxt+y<z = y-x"<z (13)
Remark 2. Hollenberg has shown that the following symmetric version of (0],
=zt 41, (14)

is derivable from these axioms [[7] and Kozen has shown in [[9] that (2] and
(@3] are independent.

One can show that z* = p<(y = y -2 + 1) with (@, ([0 and [@3] and that
" = p<(yx-y+1) with @, @4 and ([@2].

To reason about programs, it is useful to have a concept of condition, or test.
It is provided by Kleene algebra with tests.

Definition 3 (Kleene algebra with tests). A KA with tests (KAT) [21] is
a structure (K, test(K),+,,*,0,1,-) such that test(K) C {t |t € K Nt < 1},
(K,4+,-,%,0,1) is a KA and (test(K),+,-,—,0,1) is a Boolean algebra.

In the sequel, we use the letters s, t, u, v for tests and w, x, y, z for programs.
The angelic semantics of programs is then given by the following, where z]y is
the non-deterministic choice between x and y.

abort =0
skip =1
rly=z+y
Ty=1x-y

iftthenzelsey=t-z+-t-y
while t do x = (t-z)" - —t

It is useful to have a grip on the inputs of the aforementioned programs. The
notion of domain encapsulates the necessary properties.

Definition 4 (Kleene algebra with domain). 4 KA with domain (KAD)
[A10113117] is a structure (K, test(K),+,-,*,0,1,-,7) such that (K, test(K),+,
+*,0,1,7) is a KAT and, for all x € K and t € test(K),

r<"r-x, (15)
t-z)<t, (16)
(-Ty) <Nz-y) . (17)

w

It turns out that these axioms force the test algebra test(K) to be the max-
imal Boolean algebra included in {z | z < 1} [II].

Ezxample 5. This example illustrates the domain operator for the familiar model
of relations.

{(0,0),(0,1),(2,1)} = {(0,0),(2,2)}
’_{(07 0)7 (07 1)7 (07 2)} = {(07 0)}
T ={

Note that (] is satisfied in relational algebras. It is called locality. However,
there are KATs where it is false; see [B] for a counter-example. There are many
other properties about KAT and KAD and we gather those that will be used
later on. See [II] or [13] for proofs.

Proposition 6. The following hold for allt € test(K) and all x,y € K.

1.t-t=t

2.t-—t=-t-t=0

S r=y<=uzc-t=y-tNx-~t=y -t
4. T =minc{t |t € test(K) AL -z ==z}
5 vz =2

6. v <t «<— z<t-x

7. N Ty) ="z y)

8 ""x-x=0

=t

10. (t-x)=t-"x

11. (z4+y)="z+"y

12. 2<y=>"x <Ty

18. [z t) <t > Ta*-t) <t

1. "(z*)=1

©

The following operator characterises the set of points from which no compu-
tation as described by x may lead outside the domain of y.

Definition 7 (KA-Implication). Let x and y be two elements of a KAD. The
KA-implication — y is defined by v — y = —"(x - =Ty).

We are now ready to introduce the demonic operators. Most proofs can be
found in [L3]

Definition 8 (Demonic refinement). Let x and y be two elements of a KAD.
We say that x refines y, noted x C4 y, when "y <"z and "y -z < y.

The subscript A in € 4 indicates that the demonic refinement is defined with
the operators of the angelic world. An analogous notation will be introduced
when we define angelic operators in the demonic world. It is easy to show that
C4 is a partial order. Note that for all tests s and ¢, s C4 t <= t < s. This
definition can be simply illustrated with relations. Let @ = {(1,2),(2,4)} and
R={(1,2),(1,3)}. Then "R = {(1,1)} C {(1,1),(2,2)} = "Q. Since in addition
R;Q ={(1,2)} C R, we have Q C4 R (*;” is the usual relational composition).

Proposition 9 (Demonic upper semilattice).

1. The partial order C 5 induces an upper semilattice with demonic join Ly :
TLpay<—=achy=y .
2. Demonic join satisfies the following two properties.

ryy="z-y- (z+y)
Tey) =z y="2-Ty

Definition 10 (Demonic composition). The demonic composition of two
elements x and y of a KAD, written x o4y, is defined by xoay = (x — y)-x-y.

Proposition 11. Let K be a KAD with t € test(K) and z,y,z € K.

zog(yoaz) = (roay)eaz
topxr=t-x
If'Ty=1thenzoqay=z-y
(woay)=(x—y) Tz
(x—y)=(x—"y)
(z—y)z=@—y) -z-Ty
(+y) —z=(@—2) (y—2)
(-y) —mz=2—(y—2)
(o) —y) =t (@ —y)
10. =t-((t o) = y) =t
11.t<z—t <= t<z*—>t
12. 25y = y—z<zr—2
13. zoy<z-y

14. LAYy = X0z Ly Yoz

15. x Loy = zox Cy 20Y

© % RS v oo~

Definition 12 (Demonic star). Let x € K, where K is a KAD. The unary
iteration operator *4 is defined by x4 = x* oy "x.

Proposition 13. Let x,y,z € K, where K is a KAD.

7 =g oy s 1

TOop2C 2 = X 0420y 2
ZOAXC A2 —> 204274 Cy 2
ToazUAYyCaz = T4 oayCp2
zoarUayCaz = yoar ™ Ly 2

Grds o o =

Proof.

1. ¥4 0 xly 1
= (by Definition [[2]and Propositiormib

x* o4 (Twogz)s 1

(by Proposition [132]and Proposition [615])

¥ oq 2l 1
= (by Proposition [9] Proposition [f19]and (@)

M(a*oqx) (z*oqz+1)
= (by Proposition [[1¥]and Definition [10])

(z* = z)-"(a*) ((z* —) 2" 2+ 1)
= { because "(z*) =1 and by (@)

(" =) (z*—2x) 2" z+1)
= { by (8] and Proposition [(I1])

(z* = z) (z*-z+1)
= (by @)
—x)-x
= (by Proposition [[16land Proposition [615])
—x)-a*
= (by Definition [[0Jand Definition [[2])
xxA

T4 0g 20y 2

— (by Definition [[2]and PropositionI1I1])
x*o(Twoqz)Cp 2
= (by Proposition [[112])
x*os ("w-2)Ca 2
= { by Definition [8])
Z<Ma*ea(-2)) ATz (27 (T2 2)) <2
= (by Proposition [TH]and Definition [I0])
< ("= (x-2) (@) ANz-(a* > (z-2) 25T -2<z
— (by Proposition [6I14]and (7])
<zt = (- 2) Nz (v* = (w-2)-2" T 2<%
— (predicate logic and Boolean algebra)

<z (x-z) ANz T 2<z
— (by Proposition [6I5]and Boolean algebra, 2 < "z implies
z="2z="T0-T2z2="0-2)
z2<Tx N z2<a* =2 ATz 2" 2<z
= (by Proposition [1J5] (@) and Boolean algebra)
< AN Zz<s* > A2z (a4 T2 a) 2 <2
= (by Proposition [IT]and the law (z + y)* = (z* -y)*-2*)

< AN Zz2<e—="2 AN 2 () zea) () 2 < 2

= (from 7z <z — "z, Boolean algebra, and Propositions [T34]

and [[116] we get
Zx="2-(z—>2) =2 (x> "2)x-2="2-2-T2)
< AN Z2<e—>"2 A - ((zrax-T2)) () 2 < 2
= (by @@)
Z<Tx AN 2<zx—=T2z A
rz~(((rz~:zz-r,z)*Tz-att-%—i—l)~ﬁrz-gc)*-(rz-ﬂc)*-zgz
— (by (@, (@ and because z- ="z =0
< AN Z2<e—>"2 AN - (") () 2 < 2
= { by Proposition [1I5]and (4])
< AN z<zr—=2z AN Z- (" (0zx) +1) () 2 < 2
= (by B, @, [@ and because z- -2 =0)
< AN Z2<zx—>2 A2 (zx)2<z
— (law of domain: y < z <= T2y < z)
<z AN"z<z—2 A (z-2)"2<z
— (by (@] with z,y:="2-z,2)
2 <Te N 2<x—=2 AN "z-2-2<z
— (by Boolean algebra and predicate logic)
Z<(@x—z)-Tr ANz (x—>2)x-2<z2
= { by Proposition [T¥]and Definition [[Q])
<Mxoaz) N Tz-(xog2) <z
= { by Definition [8])
ToaZLCy 2
ZogxTCh 2
= { by Definition [8])
2 <Mzogx) N "z-(28g2) <z
— (by Proposition [1¥4]and Definition [10])
Z<(z—a)- 2 AN 2 (z—ox)zx<2
= (by Boolean algebra and Proposition [615])
Z<(z—xz)- 2 AN z-x<z
= { by Proposition [1I5] and (3] with y := 2)
Z<(z—="Tr)- 2 Azt <z
This derivation thus gives

< (by @8])
(z—Tx) Tz
< { by ([@) and Proposition [TII2])
((z-27) =) -T2
= { by Proposition [[TI8])
(z — (" - Tx)) - =
= { by PropositiontdI4]and (7])
(z = ((z" = "z) - "(27))) - =
= (by Propositions [1H]and [115])
(z — (2% 04 ")) - "2
= (by Proposition [134])
"(z 04 (2" 04 "x))
= (by Definition [[2])
(204 274)
And the last inequality goes like this.
T2 (zog x™4)
= (by Definition [[2])
2 (204 (2% 04 "))
(Proposition [10J13])
2z (x" 0g ")
{ Proposition [[0II31)
Zoz-a* T
{ by (9] and because "z <1 and "z < 1)

IN

IN

z

The result then follows from Definition
4. Suppose x oq zUgyCy 2. Then y C4 2z and x og 2 £y 2 by Proposition [0]
Then Part Rlof the present proposition gives x4 04 2 Cy 2.

T4 oay

Ca (since y C4 2z and by Proposition m_h_’ﬂ)
7 oy 2

C < o XA

Ca since x™4 o4 2 Ly 2)

z

5. The proof is similar to the previous one. a

Definition 14 (Conditional). For each t € test(K) and x,y € K, the t-
conditional is defined by x Fa, y = t-x + =t -y. The family of t-conditionals
corresponds to a single ternary operator P, taking as arqguments a test t and
two arbitrary elements x and y.

The demonic join operator Uy is used to give the semantics of demonic non-
deterministic choices and o4 is used for sequences. Among the interesting prop-
erties of oy, we cite toqpz =t -z (Proposition|ﬂlﬂ7 which says that composing a
test t with an arbitrary element z is the same in the angelic and demonic worlds,
and xoqy=z-yify=1 (Propositionm, which says that if the second ele-
ment of a composition is total, then again the angelic and demonic compositions
coincide. The ternary operator fFa, is similar to the conditional choice operator
_<_p> _ of Hoare et al. m It corresponds to a guarded choice with disjoint
alternatives. The iteration operator *4 rejects the finite computations that go
through a state from which it is possible to reach a state where no computation
is defined (e.g., due to blocking or abnormal termination).

We now present three theorems about the demonic operators introduced in
this section, Theorems [15] [[6]and [LZ] They consist of laws that will be taken
as axioms of demonic algebra with domain in Section B] Theorem [[5]contains
laws relating L, o4 and *4. Theorem [[6]concerns the t-conditional Fis,. And
Theorem [[7lis about the relationship between U, o4 and .

As usual, unary operators have the highest precedence, and demonic compo-
sition o4 binds stronger than Uy and Flae, which have the same precedence.

Theorem 15. Let K be a KAD. The following properties hold for all x,y,z €
K.

1. xUs (ys z) = (xUay) s 2

2. xqy=yax

S xhor==x

4. 0Uax=0

5. wog (yoaz)=(roay)oaz

6. ODAJZZLEDAO:O

7. lopr=2xoml==x

8 xop(yaz)=wzoqaythzogz

9. (xUay)oaz=woa2Uayos 2

10. x4 =x"A oy vy 1

11. zcpy <= azlay=y

12. zopgxUAayCyuz = Yyoax™ Ly 2
18. wopzUAyCyz — 274 04 yCy 2

Proof. See [13] for the proof of [[]to @]and [[1] Refer to Proposition [13]for the
proof of 10)[[2]and [13] =

Theorem 16. Let K be a KAD. The following properties hold for all s,t,u €
test(K) and all z,y,z € K.

1. IEAS

$Fla; u € test(K)

-t =0Ma, 1

T Yy =Y T

(toax)Pary =2y

rFag =2

P4 0=tosqx

(Fary) oa 2 = (z 04 2) Fay (Y 24 2)
s04 (2 Fapy) = (504 2) Fay (504 9)
10. xFa; (yUa 2) = (x Fay y) Ua (2 Fay 2)
11. 2 Ug (yFlag 2) = (2 4a y) Flag (x Ua 2)
12. tUy -t =0

15. ﬂ(l Flas 8) =ty s

© %0 NS G Lol

Proof.
1. By Boolean algebra and Proposition[619] s < 1 and "s-1 ="s =s,s0 1 C4 s.
2. sFasu
= (by Definition [[4])
t-s+-t-u
€ (by Boolean algebra and definition of test(K))
test(K)
3. 04, 1

= (by Definition [I4])
t-04+—t-1
= (by Boolean algebra)
-t
4. Ay
= (by Definition [[4])
tex+t-y
= { by (@] and Boolean algebra)
—t-y+(t) - x
= { by Definition [[4])
Yy @
5. (tea) Maz y
= (by Definition [4]and Proposition [112])
totozt—tey
= (by Boolean algebra)
t-x+—t-y
= (by Definition [I4])
Ay

10

T Fa x
= (by Definition [14])
t-x+-t-x
(by @)
(t+-t)-x
= { by Boolean algebra and (])
T
P4 0
= { by Definition [[4])
t-x+-t-0

= (by (6] and (4)

= { by Proposition [[T12])
togx
(xFagy)oa z
(by Definition [[4])
(t-x+ -t -y)osz
= (by Definition [10])
(t-wt+=t-y)—2)-(t-2+t-y)-2
{ by Proposition [1I71)
(£ 2) =) (S y) = 2) - (Ezt~t) -2
(by &)
((t-z) =2)-((~t-y) —2)-t-z+
((t-2) = 2)-((~t-y) = 2) - ot-y) 2
= (by Proposition [119]and Boolean algebra)
(L) =)t (e) a4 () = 2) b (g = 2)) 2
= (by Proposition [TI10])

(t(z—2) okt (y—2)y) =

(by @)

t-(x—z)x-z+-t-(y—2) -y -z
{ by Definition [[0])
t-(zoaz)+ -t (yoaz)
(by Definition [[4])
(w04 2) Flag (y oa 2)
soa (rFar y)
- { by Definition [[4]and Proposition [1112])

11

10.

11.

12.

s-(t-z+-t-y)
(by Boolean algebra and (8])
t-s-x+-t-s5-y
{ by Definition [4Jand Proposition [TI2])
(soa®)Fag (seay)
(x Py y) ba (z Fag 2)
{ by Definition [[4])
x4 tey)a (B + ot 2)
{ by Proposition [6ITT] Proposition [(dI0]and Proposition [1)
t-Te+—t-Ty)- (-T2 (ot y+ o+t 2)
(by @], @ and @)
T4 —t-Ty) (Tt 2) (ot (y+ 2))
(by Boolean algebra)
T4 —t-Ty-2) -ttt (y+2))
{ by @], @, Boolean algebra and Proposition [6I5])
t-x+-t-Ty-"z-(y+2)
{ by Proposition [])
t-x+ -t (yUa2)
{ by Definition [[4])
Py (ya 2)
(zUa y) Pay (2L 2)
(by Definition [I4])
t-(xlsy)+ -t (zly 2)
(by Proposition [9])
t-"x-Ty-(z+y)+t-Tx-Tz (x4 2)
(by @), (@, Boolean algebra and Proposition [6I5])
Tt TE) (ot (gt 2)
{ by Proposition [6ITT] Proposition [(dI0]and Proposition [1)
s (t-y+-t-2)
{ by Definition [[4])

o Ug (y Flag 2)

—
~

—~

—
~

—
~

tLy —t
{ by Proposition [[2]and Proposition [@1)

t-—t-(t+—t)
(by Boolean algebra)

12

0
13. —(1 P4 8)
= { by Definition [[4])
S(t-1+-t-s)
= (by Boolean algebra)
=t - s (-t + —s)
= (by Proposition [(19]and Proposition [2])

-t Ly s O
Theorem 17. Let K be a KAD. The following properties hold for allt € test(K)
and all x,y € K.

1. (xogat)oax=x04t
2. (@woay) ="(xeay)
3 Mzay)="Tahy
Proof.

1. Nxogt)oax
= { by Propositions [TR2]and [1I4])
(x —=t)-x
= (by Propositions [T3Gland [6191)
(x —t) - x-t
= { by Definition [[Q])
xrogt
2. "(z=ay)
= (by Proposition [134])
(z—y)-Tx
= (by Proposition [135])
(—"Ty) "
= { by Proposition [13])
(@ ea'y)
3. Nz Uay)
= (by Proposition [2])
T -
= (by Boolean algebra)
l_x . ’_y . (l—l. + V—y)
= { by Proposition [)
Tz sy d

13

3 Axiomatisation of Demonic Algebra with Domain

The demonic operators introduced at the end of the last section satisfy many
properties. We choose some of them —more precisely, those of Theorems [[5]
[[6land [T} to become axioms of a new structure called demonic algebra with
domain. For this definition, we follow the same path as for the definition of KAD.
That is, we first define demonic algebra, then demonic algebra with tests and,
finally, demonic algebra with domain.

3.1 Demonic Algebra

Demonic algebra, like KA, has a sum, a composition and an iteration operator.
Here is its definition.

Definition 18 (Demonic algebra). A demonic algebra (DA) is a structure
(Ap,U,0,%,0,1) such that the following properties are satisfied for x,y,z € Ap.

zU(ydz)=(xUdy)Uz (20)
rUy=yUzx (21)
rUzr=ux (22)
OUxz=0 (23)
zo(yoz) = (zoy)oz (24)
0oz =220=0 (25)
lox =z0l=2x (26)
xo(yUz) =xoyUdaoz (27)
(xUy)oz =ax0zUyoz (28)
¥ =x oz Ul (29)

There is a partial order C induced by U such that for all x,y € Ap,
tCy < zUy=y . (30)

The next two properties are also satisfied for all x,y,z € Ap.

zozUyLCz = zXoyL 2 (31)
zoxgUyC z = yox* C 2 (32)

When comparing Definitions [Jand [I8] one observes the obvious correspon-
dences + < U, - <> 0,* <+ X 0 < 0,1 < 1. The only difference in the axioma-
tisation between KA and DA is that 0 is the left and right identity of addition
in KA (+), while it is a left and right zero of addition in DA (4). However, this
minor difference has a rather important impact. While KAs and DAs are upper
semilattices with + as the join operator for KAs and U for DAs, the element 0
is the bottom of the semilattice for KAs and the top of the semilattice for DAs.

Indeed, by 23] and (B0,

2T 0 (33)

14

for all x € Ap.
All operators are monotonic with respect to the refinement ordering C. That
is, for all z,y,z € Ap,

2Cy = zUxCzUy A zoz Czoy A 2oz Cyoz A o Cy™ .

Monotonicity of U and o can easily be derived from 0], (7] and 28]. That of
* is shown from 29 and (B2] as follows:

rCy = y ooUlILCy oyUl < y oxUICy* = x* Cy~ .
Most of the time, this property will be used without explicit mention.
Remark 19. Like for the corresponding unfolding law (@ in KA, the following
symmetric version of (@,
¥ =gox* Ul | (34)
is derivable from these axioms. Indeed,

X C gozX Ul

—= (by 3 and (6])
zo(zox® U1)U1 C oz Ul

= (monotonicity of = and U)

rox* Ul C x* —this is the other inequality we have to show
= (by @9])

gozX* U1l C "oz U1
= (monotonicity of U)

zox™ C %oz

= (by B2])
X ogox Uy C x*ox

<~ <bym’(®7mand@>

true .

One can show z* = pr(y : yoxr U1) with 6], @9 and 2] and 2% =
pr (y : zey U 1) with @6], B4) and @B1.

3.2 Demonic Algebra with Tests

Now comes the first extension of DA, demonic algebra with tests. This extension
has a concept of tests like the one in KAT and it also adds the conditional
operator A;. In KAT, + and - are respectively the join and meet operators of the
Boolean lattice of tests. But in DAT, it will turn out that for any tests s and ¢,
sUt = sot, and that U and o both act as the join operator on tests (this is also
the case for the KAD-based definition of these operators given in Section 2] as
can be checked). Introducing F; provides a way to express the meet of tests, as
will be shown below. Here is how we deal with tests in a demonic world.

15

Definition 20 (Demonic algebra with tests). A demonic algebra with tests
(DAT) is a structure (Ap, Bp,U,=,*,0,1,As) such that

(ADal=l7 9, Xaov 1) is a DA)
forallt € Bp, 1 Ct;

Fe s a ternary operator of type Bp X Ap x Ap — Ap that can be thought of
as a family of binary operators. For each t € Bp, A, is an operator of type
Ap X Ap — Ap, and of type Bp X Bp — Bp if ils two arguments belong to
B’D;

5. e satisfies the following properties for all s,t € Bp and all x,y,z € Ap. In
these axioms, we use the negation operator —, defined by

e v o~

-t=0F1 . (35)
rFy=yA x (36)
(tox) ry =2y (37)
xFyx=x (38)
;0 =tox (39)

(x A y)oz = xoz AL yoz (40)
so(x Ay y) = soax Ay soy (41)
P (yUz) = (zRry) U (P 2) (42)
xU(yFrz)=(zUy) P (z U 2) (43)
tu—t=0 (44)
(1A s) =-tU s (45)

The elements in Bp are called (demonic) tests.

Remark 21. By point lof the definition, Bp is closed under A,. By [B5], Bp is
closed under — since only F, is used for its definition. Bp is closed under U and
o too and this comes respectively from Proposition B212]and Proposition 22181
below.

The axioms for F; given in the definition of DAT are all satisfied by the
choice operator _<t > _ of Hoare et al. m The conditional operator satisfies
a lot of additional laws, as shown by the following proposition, and more can be
found in the precursor paper m (with a different syntax).

We list the correspondence between the axioms of DAT and properties of
Hoare et al.’s conditional operator, using the same notation as the authors.

16

DAT Laws of programming IEI uTpP IEI
rCy<=aUy=y |PCQ+=PUQ=Q [P=Q]—=[PN1Q=0Q)]
zUd(yUz)=(zUy)Uz|PU(QUR)=(PUQ)UR Pn(QMR)=(PNQ)NR
rUdy=yUz PUQ=QUP PNR=QnNP

rUdr=ua rPuUP=P PNP=P

OUz =0 luP=_1 true M P = true

zo(yoz) = (zoy)oz Pi(QiR) = (P;Q); R Pi(QR) = (P;Q); R

Ooz =200=0 1L, P=P;1 =1 true; P = P;true = true
lox =zxol ==z I, P=P;II =P llop; P=P;ll,p =P
wo(yUz) = aoyUaoz |P(QUR) = (P;Q)U(PiR) |P{(QNR) = (P;Q) N (Ps R)
(xUy)oz=wozUyoz [(PUQ):R=(P;R)U(QR) |(PNQ)R=(P;R)N(Q;R)
cFAy=yRA.x PabrQ=Q<x—-b>P P<1b>Q:Q<1—|b>P
cFrr ==z Pab>P =P Pab>P =P

(xFAry)oz =zozP yoz|(PQ); R = (P;R) (Q; R)|[(PQ); R=(P;R) (Q; R)
z* vRe (P;RMN I (p;r)y)

We now prove some additional properties of F;.

Proposition 22. The following properties are true for all s,t € Bp and all
T,T1,T2,Y,Y1,Y2, 2 € Ap.

sUt e Bp

0F; x = ~tox
Ty oy =a My
tot =1t
sUt=sot
to—t = —tot =0
sot =tos
.1 =0
-0=1
x C tox

SO RSO o~

NN N~
Lo o =~

and

NN~
S o

sCt =

~

to(x Py y) = tox

. otz Py y) = —toy
. Cyfpz <= o
LMy Cz <= o

SECESES
BN =S

Ly = zMzCyfz
cCy = z2MizC2M:y

x C xot

. x Cioy < tox L toy

tox C x <— 0 C —tox

=t C —s

rCy <= tox L toy A —tox C —toy
r=y < tox=1toy N ~tox = —toy

C toy ANz E —toz
C toz Ay C —toz
(21 Fs y1) Py (w2 Fs y2) =

(1 Ay 22) As (11 Ay y2)

17

Proof.

1. (1)
= (by B3])
0F.; 1
= (by @8])
1A, 0
= (by B9)
t
2. sut

— (by Proposition R211])
—(—s) U —(—t)

= (by @3))
—(1A-s —t)
€ (since —s € Bp and —t € Bp for all s,t € Bp,
and by the typing of A,)
Bp
3. zCy
= (by @2)
rHdy=y
= (Leibniz)
(xUy) P z=yF, 2
= (by (B6])
A (xUy) =yF, 2
= (by [2])
(zA)Y (z2Acy) =yFe 2
= (by @6])
(P 2)U(yFrz) =y 2
= (by @1)
cyzCyf; 2
4. zLCy
= (by Proposition 22131
cAzCyfz
— (by @8])
2y C 2Py
5. 0F; x
= (by B6])

18

= (by @)

—tox
6 x Ay —toy

= (by B6])
—toy Ay @

= (by B3)
YRz

= (by B3])
Py

7. tot

= (by 9])
tH ;0

= (by @4))
tF, (£ —t)

= (by @2])
(t P t) U (¢ Ay —t)

= (by B3])
tU (¢ Ay —t)

= (by @)
tu (1R, —t)

= { by Proposition 22J6])
tU(1A, 1)

= (by B8])
tul

= { by Definition 20I31)

t
8. Definition RQlgives 1 C s from which ¢ C tos. We have s C sot and ¢t C sot
the same way. We then deduce s Ut C sot. We now look for sot C s L ¢.

sot

1=

(because sC sUt and t C sUt)
(sUt)e(sUt)
= (by Propositions R2R2]and R217])

sut

9. This follows from Proposition 22f8]and ([44].

19

10. sot
= { by Proposition R21R])

sUt

= (by @D)
tUs

= { by Proposition R2I8])
tos

11. -1

= (by B3])

0/F; 1

= { by Proposition 22J6])
0/R; —1a1

= { by Proposition 2219])
0/ 0

(by B8])

0
12. This is direct from Propositions P21]and R2J11]
13. This follows from (26], Definition R0J3]land monotonicity of o.

14. x L toy
= (left composition with ¢ and monotonicity of =)
tox C totoy
= (by Proposition R2171)
tox L toy
= (by Proposition R2I13]and transitivity of T)

15. tox C x

= (left composition by —t and monotonicity of o)
—totox C —tox

= { by Proposition 2219]and by 5])
0C —tox

= { by Proposition 22J4])
rF; 0 C xFy ~tox

= (by B9 and Proposition R2I6])
tox C oM x

= (by @8])

tox C x

20

16. sCt

= (by B0)
sdt=1

— { by Proposition 22I8])
sot =1t

— { by Propositions P2IT5]and R2I131)
0LC —sot

= { by Proposition 221101)
0L to—s

= (by Proposition 22111
0C ——to—s

— (by Propositions 22415 land [221131)
—to—ms = —1s

— { by Proposition R2I8])
-t s = s

= (by @0)
-t C —s

17. zCy
== (left composition with ¢ and —¢, and monotonicity of o)

tox C toy A —tox C —toy

= (by Proposition 22131
tox Ay —tox C toy Ay ~tox A —tox A toy C —toy M toy
= (by @B6)
tox Ay —tox C toy Ay ~tox A toy Py —tox C toy [y —toy
= (transitivity of C)
tox Ay ~tox C toy Ay ~toy
= { by B2 and Proposition R2161)
sz Cyfy
— (by B3])
Ly
18. rT=y
= (because L is a partial ordering)

zCy N yCx
— (by Proposition R2117])
tox L toy A —tox L —toy A toy L tox N —toy L —tox

21

19.

20.

21.

22.

23.

— (because L is a partial ordering)

tox = toy N —tox = —toy
to(z My y)
(by @)
tox Ay toy
(by 37) and Proposition 22161)
x [y ~totoy
{ by Proposition 2219])
x[; 0
(by BY)
tox
~to(z Py y)
(by B8])
—to(y A)
{ by Proposition 22119])
—|t|:\y
zLCyfz

= (by Proposition R2J17])

tox Cto(yFAyz) A —tex T —te(y A 2)

— (by Propositions 22419land 224201)

tox C toy A —tox C —toz

— { by Proposition R2I141)

zCtoy N € —toz
xPyCz

= { by Proposition R2IIT])

to(xFAry) Ctoz A —to(zFpy) C —toz

= (by B6))

to(z Py y) Ctoz A —to(yP-, o) C —toz

= (by Proposition 22119])

tox C oz N —toy C —toz

= (by Proposition 22114])

rCtoz N yL —toz
(71 Fs y1) A (2 As y2) C 2

= { by Proposition 22122])

21 PAsyr Etoz N 22 Psy2 E toz

= (by Proposition R21221)

22

21 € sotoz N a9 E so—toz A yp € —sotoz A yo C —so—toz
= (by Proposition 22J10])
21 C tosoz N\ a9 C —tosoz A yp Ctomsoz A yo C —fo—soz
— (by Proposition 22122])
1 2o C soz A y1 Apys C —soz
— { by Proposition R21221)
(z1 e 22) Fs (y1 Pey2) T 2 O

Note that Propositions R2138]land R2Jd]simply express the monotonicity of A,
in its two arguments. On the other hand, F, is not monotonic with respect to
its test argument.

As a direct consequence of Proposition 2] one can deduce the next corollary.

Corollary 23. The set Bp of demonic tests forms a Boolean algebra with bot-
tom 1 and top 0. The supremum of s and t is s Ut (or sot), their infimum is
1At —in particular, 1 Ay ~s = 1—, and the negation of t is -t = 0F; 1 (see

(23)).

Thus, tests have quite similar properties in KAT and DAT. But there are
important differences. The first one is that U and o behave the same way on tests
(Proposition m The second one concerns Laws [[T]and [[8]of Proposition 22]
which show how a proof of refinement or equality can be done by case analysis by
decomposing it with cases ¢t and —t. The same is true in KAT. However, in KAT,
this decomposition can also be done on the right side, since for instance the law
r<y<= x-t<y-tNx-—-t<y-—tholds, while the corresponding law does
not hold in DAT. In DAT, there is an asymmetry between left and right that
can be traced back to laws [(@Q) and @1). In [@QJ], left distributivity holds for
arbitrary elements, while right distributivity in (IE holds only for tests. Another
law worth noting is Proposition R2I15] On the left of the equivalence, ¢ acts as
a left preserver of x and on the right, —t acts as a left annihilator.

3.3 Demonic Algebra with Domain

The next extension consists in adding a domain operator to DAT. It is denoted
by the symbol ™.

Definition 24 (Demonic algebra with domain). A demonic algebra with
domain (DAD) is a structure (Ap, Bp,U,2,*,0,1,F,,"), where (Ap, Bp, U, o,
X,0,1,M,) is a DAT, and the demonic domain operator ™ : Ap — Bp satisfies
the following properties for allt € Bp and all x,y € Ap.

Mxot)ox = xot (46)
(aoy) = "(z:"y) (47)
MaxUy)="zuTy (48)

23

Remark 25. As noted above, the axiomatisation of DA is very similar to that of
KA, so one might expect the resemblance to continue between DAD and KAD.
In particular, looking at the angelic version of Definition 4] namely Definition
[] one might expect to find axioms like "zox C z and ¢t C "(tox), or equivalently,
t C "pr <= tox C 2. These three properties can be derived from the chosen
axioms (see Propositions ROI2) R95]and R9G) but (@) cannot be derived from
them, even when assuming ([47] and (@8]. But (6] holds in KAD-based demonic
algebras. Since our goal is to come as close as possible to these, we include (&)
as an axiom.

Ezample 26. For this example Ap = {0,s,t,1,a,b,c,d} and Bp = {0,s,t,1}.
The demonic operators are defined by the following tables.

LUostlabcd osl0stlabcd x - ™
0[00000000 000000000 00 Of1 0j0
s/0sOsaaaa sl0sOsabab s|s s|t s|s
t00tt00tt tl00tt00tt tit tis t|t
1[0stlaacc 10stlabcd 1)1 1|0 11
al0alaaaaa al0a0aaaaa aja ajls
blj0a0aabab bj0aObaaaa bla b|s
cl0atcaacc clDatcaacc c|c c|l
dl0atcabcd dl0atdaacc djc dj1

rMoy=1y rMiy==x Fs0Ostlabcd FeOstlabcd
0100tt00tt 0|0sOsabab
s|ssllssll s 0sOsabab
t 00tt00tt tjtltlcdcd
111111111 1jtltlcdcd
alaaccaacc a|l0sOsabab
blbbddbbdd b|/0OsOsabab
claaccaacc cltltlcdcd
dlbbddbbdd djitltlcdcd

The demonic refinement ordering corresponding to LI is represented in the fol-
lowing semilattice.
0

a/ \t
&%)
N

This algebra is a DAT for which "zox C z, t T Ttox), (@) and (@8] all hold,
but [46] does not. Indeed T(bos)ob = a # b = bes.

S

24

Then why choose (@8] rather than "zoz C 2 and ¢ C "(toz)? The justification
is twofold. Firstly, models that come from KAD satisfy property ([@6], that is,
(2 oat)oax =04t (see Theorem [[TIL]. Secondly, there are strong indications
that this law will be needed to solve Conjecture B3](see page B5].

Law ([T] is locality in a demonic world.

In KAD, it is not necessary to have an axiom like (8], because additivity
of ™ (Proposition [GIIT] follows from (6] and the laws of KAT. However, it is
necessary in the context of demonic algebras since the following example satisfies
all prescribed laws except that one.

Ezample 27. For this example Ap = {0,1,a} and Bp = {0,1}. The demonic
operators are defined by the following tables.

L01a o|01a x Fol0 1 a M0 1 a - m
0000 0000 0]0 0101a 01000 0|1 0]0
1010 1101 a 1|1 1 01a 1111 10 11
al00a al0al al0 a |0la a l[aaa all

The demonic refinement ordering corresponding to LI is represented in the fol-
lowing semilattice.

0
1 a
This algebra is a DAT and, in addition, (6] and {Z] are satisfied, but (@8] is
not. Indeed "(1 U a) # M U .

Examples RGland R7]show that Axioms &) and [@R] are independent from
each other and also from (@Z]. The following example completes this proof of
independence. Thus, the three axioms that define demonic domain are indepen-
dent.

Ezample 28. For this example Ap = {0,1,a} and Bp = {0,1}. The demonic
operators are defined by the following tables.

ulola 2[01a x Mol01a Ml01a - ™
0000 0000 0[0 01|01a 01000 0|1 0|0
1101a 10 1a 1|1 1 01a 1 1111 1/0 1

al0aa al0a0 al0 a|0la a laaa a

1
1
The Hasse diagram of the demonic refinement ordering corresponding to U is

simply given by 1 C a C 0. In this DAT, {@6] and (8] are satisfied, but [{@Z] is
not. Indeed "(asa) =0 # 1 = "(a="a).

By PropositionR9RIbelow, ™ is a left preserver of z. By Proposition 29J6] it is
the greatest left preserver. Similarly, by Proposition[2919] = is a left annihilator
of z. By Proposition R9IR] it is the least left annihilator (since Proposition R9IR]
can be rewritten as ="x C ¢t «—= 0 C tox).

25

Proposition 29. In a DAD, the demonic domain operator satisfies the follow-
ing properties. Take x,y € Ap and t € Bp.

1.zCy= T2 C"y

2. "pox =2

3 Tt=t

4. Mtox) =to"x

5.t C tox

6. tC "y <= tox C x

7. "e = maxc{t |t € Bp Atox =z}
8 tC™y «— 0L —tox
9. ="xox =0

10. "x C "(zoy)

11. "e =0« 2=0

12. (P y) ="z Ay

18, x Uy ="zo"yo(z Uy)
14. M(os)o"(xot) = "(wosot)

All the above laws except [[2Jand [[4]are identical to laws of ™, after compen-
sating for the reverse ordering of the Boolean lattice (on tests, C corresponds
to >).

Proof.
1. zLCy
= (by @1)
rHy =y
= (evaluating demonic domain both sides and by (@8])
= (by @Q))

2. This is direct from [{G] with ¢ := 1 and (26].
3. This is direct from &) with z := 1 and (26].

tex

— { by Proposition R9I31)
Mo

= (by @D)
"(tox)

5. By Definition R0J3] and Proposition RoJ4] t = to1 C to™z = Mtox).
6. [=] By the assumption, monotonicity of o and Proposition Roli] toz
Teox C 2.

26

(=]

tox C x

= { by Proposition 291])
Mtox) C "x

= { by Proposition 29I5])
tC "y

7. This is direct from Proposition 2916]
8. tC "z
= { by Proposition 29J6])
tox C o
= (by Proposition R2I5]1)
0LC —tox

9. This law follows directly from Proposition R29I&Jand (33].
10. Since "za(zoy) = (Tzox)oy = oy, the result follows from Proposition 29J6]

11. =0

= (by @3])
0C "x

= { by Proposition 29J6])
Qoz C x

= (by @3])
0C x

= (by @3])
z=0

12. sC"xzFAy)

= (by Proposition 29J61)
so(zFry) CaPy

= (by @)
sox P socyCx Py

= { by Proposition 22122])
sox Cto(z Py y) A soy C —to(x Py y)

— { by Proposition 22J19]and (B6])
sox C tox A soy C —toy

= { by Proposition 22114])
tosox C tox N —tosoy C —toy

= (by Proposition R21101)

27

13.

14.

sotox C tox A so-toy C —toy
= { by Proposition 29J61)
sC(tox) A s C (—toy)
— { by Proposition 29¥4])
sCtoz A sty
— { by Proposition P22T1)
sC xRy
rUy
(by Proposition 29121
Tz Uy)a(zUy)
= (by @8))
(T U)oz Uy)
{ by Proposition 22I8])
"ayo (x Uy)
Mzos)o(xot)
= (by Proposition R21R])
Mzos) U (wot)
= (by (H8])
Mxos) U (wot)
= (by @0)
Mza(sUt))
= { by Proposition 22I8])
Mxosot) O

To simplify the notation when possible, we will use the abbreviation
Ay =2Fny . (49)

Under special conditions, [has easy to use properties, as shown by the next

corollary. The most useful cases are when 1 is used on tests and when "zo™y = 0.

Corollary 30. Let x,y,z be arbitrary elements and s,t be tests of a DAD.

0 RS G Co o~

st is the meet of s and t in the Boolean lattice of tests.
zFAy=2fA-""zoy

ORz=2A00=x

to(xAy) =tox Atoy

T = tox A —~tox

"t Ct = to(zAy) =tox
-z Ct = to(xPy) =toy

Tpoy =Tyoxr = zFPy=yMa

28

9. "xo"y =0 = "oy = "yox

10. xAz=x

11. xAyCx

12. (zxRy)Rz=2RA(yAz)

13 zU(yAz)=(xUy)A(xUd2)

1. (zRy)="zA"y

15. "po"y =0 = (xAy)oz = xoz A yoz

Proof. 1. This follows from Corollary 23] since 1A, t = s Pyt = s At by B7]
and (@9].

2. zRy

(by @)

T A y
= { by Proposition 22J6])

Z Py, —"woy

= (by @)
x A ="zoy
3. 0fz
= { by ([@9] and Proposition R9I31)
0Fg x
= { by Proposition 22J5])
—0ox
= (by Proposition 2212]and [26])
x
= (by (B and Proposition R9I2])
T A 0
= (by @D)
A0
4. z Cto(xAy)
= (by @)
2 Cto(x P y)
= (by (I and Proposition R2171)
z L totox A toy
= (by Propositions 2212T]and 221101)

2 C ta"gotox A 2 C -"zotoy

= { by (B3] and Propositions R2I10] 22I7]and R2101)
2 Cto"gotox A 2z C (="xot Ay ~tot)oy

— (by Proposition 22J61)

29

2z Cto"zotox A 2z C (m"wot [t)oy
— (by @Q] and (6])

2 Cto"gotox A 2 C (=" Py 1)otoy

= (by @8])
z Cto"gotox A 2z C (1A —"z)otoy
— (by ({3 and Proposition 22I8])
2 Cto"potox A 2 C —(to"x)otoy
= { by Proposition 2212T])
z C tox Mior Loy
= (by 9] and Proposition R9I91)
z C tox Atoy
5. r =tox A —tox
= { by Proposition 22II8])
tox = to(tox A—tox) A —tox = —to(tox A —tox)
— (by Corollary BoJ4] and Propositions R22J7]and m>
tox =tox A0 A —tox =0M ~tox
= (by Corollary BoI31)
true

6. Suppose "z C t.

to(x Ay)
= { by Corollaries B0I2]and B0¥A])
tox A to-"xoy
(by hypothesis "z C ¢ so 0 C ¢to="z by Proposition 2219])

tox [0
= { by Corollary BOI3])

tox

7. Suppose ="z C t.

to(xz Ay)
= (by Corollary B0H]and Proposition 29121
toxoxr Atoy
= { by hypothesis ="z C ¢ so 0 C ¢z by Proposition 22191)
0Rtoy
= { by Corollay [B0I31)
toy

30

8. Suppose "zoy = Tyozx.

10.

11.

12.

rRAy=yfx
= (by Proposition R2]18]and ({@9])

Tzo(x Ay) = "zo(y An) A —"zo(zAy) = -"Tzo(yAz)
= (by (1 and Corollaries B0I6) BoI7]and Bod4l)

Twox = "woy A "wox A —"zoy = -"zoy A -"zox
— (by Propositions R9R2]and 2919])

z="Tzoy Ay x A “"zoy =-"Tzoy A0

= { by Corollary B0I31)
z="zoy A x A true
— (by hypothesis)

z ="yox A, x

= (by BT and (B8])

true
Moy =0

— { by Propositions R9411][29441land 221101)
"oy =0 A "yoz =0

= (logic)

”T];uy = rrynx

TP
= (by @)
T P T
= (by B8))
x
zRAyLCx
= (by [@9])
ARy Cx
= (by Proposition 22122])
2 C"pox Ay C ""xox
= { by Propositions R2982]and 2919])
rCzAyLO
= (by B3])
true
(xAy)Az=2A(yAz)
= (by Proposition R2I181)

31

Tro((xAy)Az) ="zo(x A (yAz)) A
=Tro((zFy)Az) = ="zo(x A (yA2))

— { by Corollary BOIT]z Ay C 2 and thus "(z Ay) C "x
by Proposition B9II] then apply Corollary BOGltwice
and Corollary B0dZJonce)

Tro(xAy) ="eox A —"zo((zFy)Az) = -"zo(yf2)

— { by Corollary B0I61)

true A —"zo((zFy)Az) = -"ro(yA2)
— { by Corollary B0¥A)

"o (zAy) A -"roz = 2"goy A -"roz
— { by Corollary BOI7])

true

x4 (yAz)
= (by @)

z U (yAry 2)
= (by @3])

(xUy) A (xU2)
= (by (BZ) and Proposition 2161

Tyo(x Uy) Ar ~"yo(z U 2)
= { by Corollary B0I51)
Tyo ("yo(z Uy) Fny ="yo(z U 2)) A ="y (Tys(z Uy) Ag, —"yo(z U 2))
= (by I and Propositions R2IT]and 22191)
("yo(zUy) Am 0) A (0Fn —"yo(z U 2))
= { by (39) and Propositions R2J5]and R2171)
Tyo(zUy) A =Tys(zU2)
= (by Corollaries B3land BOIL] and Boolean algebra)
Tye(zdy) A ~(w L y)e"y=(z U 2)
(by B9, @8] and Propositions o] R2I1022151])
(“_ym(;p u y) H”‘xl:l”‘y 0) M (0 F‘“’a:Q“’y ﬁﬂ_ym(g; = Z))
(by (I and Propositions ROI13] 2217] 219) R21101)

Tys (Twa"ys (2 Uy) s —ys(z U 2)) B

—\Wyn rxnw D(.I‘ [y) f:h,—z\zjn—y _\Wyﬂ(ﬂi U Z))

= (by Proposition R913]and Corollary BoJ5])
Moy (x UYy) Agln, ~"ye"zaze(x U 2)

= (by Corollary B0ITTand Boolean algebra)

ey (2 U y) Fiiey (72 M=) oo (@ U 2)

32

= (by Proposition 29d13]and Corollary B0JT1)
(l’ 4 y) Iz‘"‘:vl:l"’y _‘(H_‘T Y ”_y)ﬂ(l’ = Z)
= { by Proposition 22J61)
(.’17 d y) ':|ﬂ‘.r|=|"‘y (SC o Z)
(by @ and (@s])
(xUy) A (xFA2)
14. Mz Ay)
= (by @9)
" Frz)
= (by Proposition R9J12])
T P "y

- (by (@3] and Proposition 29131)

T 71 My
15. Suppose "zoy = 0.

(xAy)oz
= (by [@9])
(2 Fry y)oz
(by @D)
2oz A yoz
= { by Corollary B0OI5])
"ro(xoz A yoz) A —"zo(zoz Ag yoz)
{ by (1], the assumption and Propositions 2912] 2919])
(202 A 0) A (0 Fr 2"zoyo2)

(by B9 and Propositions R215] oR2) R2171)

roz A ﬁﬂ_xun_yuyuz

= (by the assumption and Boolean algebra, ="xc"y = Ty,
and by Proposition R9P2])
roz A yoz 0

Remark 31. By Corollary BOII1] 2 Ay C 2. In general, 2 Ay C y does not hold.
Take the relations x = {(0,0)} and y = {(0,1)} as a counter-example.

By Corollary BUI3]and Definition @1J, (z Ay) Uz = (z U 2) A (y U 2).
However, (r Uy) Az = oAz UyA z is false in general. Take the relations
x = {(0,0)}, y = {} and z = {(0,1)} as a counter-example. Furthermore, the
equality (zFy)oz = zozFAyoz is also false in general (compare with [{@0Q]). Take
the relations « = {(0,0), (0,1),(1,0),(1,1)}, y = {(0,1),(1,1)} and z = {(1,1)}

as a counter-example.

33

Remark 32. In the sequel, some transformations based on Corollaries 23]and BOJ
[[are simply justified by invoking “Boolean algebra”.

In KAD, it can be shown that the set of tests is maximal in the sense that,
if an element s has a complement relative to 1, then it is a test [@II1]. In KAD,
we say that an element y is the complement of x relative to 1 iff x +y =1 and
z-y = 0. In DAD, there are two possible definitions for the notion of complement
relative to 1.

Definition 33. We say that

1. x is the U-complement of y relative to 1 iff t Ay =1 and x Uy = 0;
2. x is the o-complement of y relative to 1 iff t Ay =1 and zoy = 0.

These definitions are asymmetric, because x Ay and zoy need not be equal
to yFAx and yoz, respectively, but, as simply follows from the following theorem,
it nevertheless turns out that the two definitions are both equivalent to x Fy =
yFAxz =1 A 2oy = yoxr = 0. The theorem also shows that the maximality result
of KAD also holds in DAD.

Theorem 34. Let D = (Ap, Bp,U,0,%,0,1,7,,") be a DAD and let x,y €
Ap.

rRy=1=—= "z =12.

zRy=1AzUy=0 = Ty=y.

x is the U-complement of y iff y is the U-complement of x.

x is the o-complement of y iff © is the U-complement of y.

x is the o-complement of y iff y is the o-complement of x.

"t =2 <= z € Bp.

The set Bp consists of all the elements that have a (U or o)-complement
relative to 1.

RS G ot =

Proof.
1. Using the hypothesis, ([26), Corollary B0J6land Proposition R912] we get
"r=Tpo(zAy) ="z =u0 .

2. Assume v Ay =1 and z Uy = 0. We show Ty = y.

"y
- { by hypothesis and 28])
Tyo(zAy)
= (by Corollary B0JJand Proposition 2921
-

yo"zox A Tyoy

— (by Propositions R9R]and R21R])

("y U z)ox Ay

34

(by @3))
Mz Uy)ox Ay
= (by hypothesis and Proposition 2913])
Oox Ay

(by (@3] and Corollary Bol3])

Y

. Assume that z is the U-complement of 3. Then "z = z and "y = y by
Definition B3I Jand Theorems B4 land B412] Thus, by Corollary B0Iland
the hypothesis,

yArx="yATr="rATy=a2Ry=1.

By the assumption z Uy = 0 and @I, y Uz = 0 and hence y is a L-
complement of by Definition B31]

The reverse implication holds by symmetry.

. We have to show Ay =1 A zoy=0 <= zAy=1A xUy = 0. Assuming
xRy =1, we show zoy =0 < zUdy =0.

zoy =0

= { by Proposition ROIT])
(zoy) =0

= (by @D)
ToaTy) = 0

— { by Proposition ROITTI)
zoy =0

= (by the assumption and Theorem B4IL])
Tra™y =0

= { by Proposition R2R])
Tr U™y =0

= (by @3))
MzUy)=0

= { by Proposition ROITTI)
zUy=0

. This follows directly from Theorems B4l3]land B414]

. The implication = follows by the typing of ™ (Definition 4]. The other
implication follows from Proposition 2913]

. This is a simple consequence of Definition B3]and the other parts of this
theorem. O

35

Since LU-complementation and o-complementation are equivalent, we can sim-
ply say that an element z is the complement of y relative to 1. Because an ele-
ment x and its complement belong to the Boolean algebra Bp, the complement
of = is unique. This justifies defining x as “the” complement of y instead of “a”
complement of y in Definition B3]

4 Definition of Angelic Operators in DAD

Our goal in this section is to define angelic operators from demonic ones, as
was done when going from the angelic to the demonic universe (Sectionm. This
is done in order to study transformations between KAD and DAD (Sections [5]
and @ We add a subscript D to the angelic operators defined here, to denote
that they are defined by demonic expressions. We start with the angelic partial
order <p.

Definition 35 (Angelic refinement). Let x,y be elements of a DAD. We say
that x <p y when the following two properties are satisfied.

"y
x

I 17

T
oy (51)

Proposition BZ]below states that <p is a partial order. Moreover, it gives
a formula using demonic operators for the angelic supremum with respect to
this partial order. In order to demonstrate this theorem, we need the following
lemma.

Lemma 36. The function

f cAp X Ap — Ap
(z,y) — (xUy) A ="yox A -"zoy

satisfies the following four properties for all x,y,z € Ap. Note that [is well
defined by Corollary 30112

1. Tf(z,y) =" Ay

2. f(x,x)==x

3 f(z,y) = f(y,x)

4- [, f(y,2)) = f(f(z,y),2)

Proof.
L. "fz,y)
= (by hypothesis)
"((zyy) A ="ysz A ~"zoy)
= (by Corollary BolIT41)

Mz Uy) A "(=Tyoz) A (="zoy)

36

(by (8], Proposition 228]and Proposition 29¥])
Moy A ="yoTz A —"zoy
= (by Corollaries R3land BOIT] and Boolean algebra)
Tx A Ty
fa,)
= (by hypothesis)
(xUz) A -"gox A —"zox
= { by Proposition 29d9]and @5])
(xdz)A0OAO0
= (by Corollary BoI3land 2])
x

f(z,y)
= (by hypothesis)
(xUy) A ="yox A —"zoy
= { by 1] and Corollaries B0d9]and B0OIR] since
”_(ﬁn_yumﬁ”_(ﬁ”_xuy) = ﬁ”?gu“_xuﬁ”_xun_y =0
by Propositions B9]and B2191)
(yUdzx) A ="zgoy A ="yox
= (by hypothesis)

fly,x)
. We first show x U toy = to(z Uy) (true for all 2,y and all tests t).

zUtoy
- { by Propositions R29I3]and 2934])
n‘mutg ”_yu ((p Ll to y)
(by 7] and Propositions R217] R21101)
Trotoyo (U y)
— { by Propositions R2410]and 291131)
to(zUy)

The main derivation follows. It repeatedly invokes Corollaries B0IRland [3019]
Using (@ and Propositions R218land R9J4] it is easy to check the operands

of the various [operators are pairwise disjoint, so that the condition "zo"y

of Corollary B0I0lis satisfied. This is what allows permuting the operands.

[z, f(y,2))
- { by hypothesis and Lemma B6IT])

(xU((yUz) A =20y A ="yaz)) A
=("y A "oz A ="zo((yUz) A —"zoy A ="Tyoz)

37

= { by Corollaries BOIT3) B0 23] BMT] and Boolean algebra)
(xUyUz) A (xU="zoy) A (zU-"yoz) A
=Tyo=zop A ="zo(yU2) A ="wo-"20y A ="zo="yoz

= { see the previous derivation and Corollaries BOIRI30101)
(xUyUz) A -"2e(zUy) A ="yo(zUz) A ="zo(yUz) A

ﬁ@m—\n’zux il —\n’gcm—\”’zmy il ﬁrjjuﬁr@mz

(by @1, @8], Propositions R2I10]and 2914]
Corollaries B0I8land B0I9] and Boolean algebra)

(zUzUy) A ="yo(zUz) A -"zo(zUy) A ="zo(zUy) A
—Tzo=yoz A —~"T20=Tyor A ="20-"zoy

= (see the previous derivation and Corollaries B0IR][B019])
(zUzUy) A (zU-"yoz) A (zU-"zoy) A —"zo-"Tyoz A
Zo(xUy) A ="zo="yox A ="20-"zoy

= { by Corollaries BOII3) B0I] R3] B0ITand Boolean algebra)
(zU((zUy) A ="yoz A ="zoy)) A —("z A "y)oz A
Teo((wUy) A ~ox A ~Troy)

= { by hypothesis and Lemma B6IT1)
[z f(z,y))

= (by Lemma B6I31)

f(f(xvy)az) O

Proposition 37 (Angelic choice). The angelic refinement of Definition [35]
satisfies the following three properties.

1. For all z, 0 <p x.
2. For all x,y,

t<py <= flz,y) =y,
where f is the function defined in Lemmal36]

3. <p is a partial order. Letting x 4+p y denote the supremum of x and y with
respect to <p, we have

Proof.

1. Let = be any element of a DAD. From Proposition R9I11] we have ™ = 0,
hence "x C "0. Also, "0oxz = 0, so 0 C "0oz. The last two refinements are
those from Definition B5] so 0 <p z.

2. fz,y) =y
= { by Propositions R21I]] 2912] R9191)
Tyof(z,y) =y A "yofa,y) =0

— (by Propositions R2118]R9R] and @3])

38

"walys f(2,y) = "zoy A Tze-lys f(z,y) =0 A
—Twoys f(z,y) = ~woy A ~Tze-Tys f(z,y) =0
= { by definition of f, Corollaries B0¥]B0IBland Propositions
b210] Po12] 2919] POIT31)

Txm“@m(xlzjy):”_xuy A ="yoxr =0 A ="zoy = -"zoy A 0=0

— (by Propositions 227]and ROIT31)
Tro(xUy) ="zoy A ="yox =0
— { by ([T, Proposition 292]and Proposition ROITT])

{ by @Z) and Propositions R912] P T]and R9I4])
2 U Tpoy =Tpoy A STyo"r =0
= (by Proposition R9IR1)
U "oy =Twoy A Ty C 2
= (by (BQ) and by Definition [B5])
rT<py

3. It follows from the previous point of the present theorem and by the fact
that f is reflexive, symmetric and transitive (see Lemma [36]. O

The following expected properties are a direct consequence of Lemma B6land
Proposition B7]

(x4py)+p 2z = x+4p (¥ +p 2)
T+pyY = yY+p T
r4+pr =

O4+pxr =2

We now turn to the definition of angelic composition. But things are not as
simple as for <p or +p. The difficulty is due to the asymmetry between left and
right caused by the difference between axioms (0] and (L], and by the absence
of a codomain operator for “testing” the right-hand side of elements as can be
done with the domain operator on the left. Consider the two relations

Q ={(0,0),(0,1),(1,2),(2,3)} and R ={(0,0),(2,2)} .

The angelic composition of @ and R is @Q-R = {(0,0), (1,2)}, while their demonic
composition is Qe R = {(1,2)}. There is no way to express @ - R only in terms of
Qo R. What we could try to do is to decompose @ as follows using the conditional

Q=Q"RAQ~"RA (Q1UQ2) ,

where Q1 = {(0,0)} and Q2 = {(0,1)}. Note that Q="R = {(1,2)} and Q=-"R =
{(2,3)}, so that the domains of the three operands of A are disjoint. The effect
of A is then just union. With these relations, it is possible to express the angelic
composition as @ - R = Qo R A Q1oR. Now, it is possible to extract Q1 L Q)2

39

from Q, since Q1 U Qs = ="(Qo"R)o-"(Qo—-"R)oQ. The problem is that it is
not possible to extract @1 from @7 U @s. On the one hand, Q1 and Q)2 have the
same domain; on the other hand, there is no test ¢ such that @1 = (Q1 L Q2)ot.
This is what leads us to the following definition.

Definition 38. Let t be a test. An element x of a DAD is said to be t-decom-
posable iff there are unique elements x; and x—; such that

x = xot A xo—t A (s Uxy) , (52)
vy = "xy = —"(wot)o-"(zo—t)s"z | (53)
xr; = x¢ot (54)
Ty = Tyo—t . (55)

And x is said to be decomposable iff it is t-decomposable for all tests t.

It is easy to see that all tests are decomposable. Indeed, the (unique) ¢-
decomposition of a test s is

s=sot A ss—t A (0LO) . (56)

Remark 39. The domains "(xot), "(xo—t) and "x; (or "r—;) obtained by decom-
posing z as in Definition B8Jare pairwise disjoint. That "z; and "z_; are disjoint

from "(xot) and "(zo—t) is obvious from (B3]. By Propositions ROIT4] P219] @5]
and Proposition 2913]

Mxot)a™(zo—t) = (zoto—t) = (200) ="0=0 ,
so that "(zot) and "(zo—t) are disjoint as well. Moreover,
Ty = Mzot) A" (wo—t) A"xy
since

Mzot) A "(wo—t) A Tzy
= (by G3])

Mzot) A "(wo—t) A —"(zot)o-"(xo~t)s"z
= (by Boolean algebra)

Mzot) A "(xo—t) A "
= { by Proposition ROII01)

T .

This disjointness is often used in applications of Corollaries B0IR] B0I9]and

One may wonder whether there exists a DAD with non-decomposable ele-
ments. The answer is yes. The following nine relations constitute such a DAD,

40

with the operations given (they are the standard demonic operations on rela-
tions), omitting M,. The set of tests is {0,s,t,1}.

(38) () () -G

N R O R (R R B
0 1 1 1 0 0 1 1
U0stlabcde cl0stlabcde X m -
0/000000000 0[000000000 0[0 oo of1
s{0s0ssdddO s[0s0ssdddO s|s s|s s|t
tl00tteteOe tl00ttetele tt tt tls
1l0stlabcde 1l0stlabcde 1|1 1|1 1]0
al0seaaccde al0s0aaccdO ala all
bj0dtbcbcde bl0OtbcbcOe blb b1
cl0deccccde cl000cccc0O0 clc c|l
d0d0dddddo dl000ddddo0o0 d|0 d|s
el00eeeeele el000eeeel0 el0 elt

The demonic refinement ordering corresponding to U is represented in the fol-
lowing semilattice.

d/O\e
VAVAY
N/ \b/

\/

The elements a, b,c,d and e are not decomposable. For instance, to decompose
¢ with respect to s would require the existence of relations

10 0 1
(o) = ()

Definition 40 (Angelic composition). Let x and y be elements of a DAD
such that x is decomposable. Then the angelic composition p is defined by

which are not there.

rpy = xoy A xgyoy .
Proposition 41. Let x,y, z be decomposable elements of a DAD. Then,
1.1lpr=xpl=u,

2. O-Dl‘:ai'DO:O,

41

3. Mz py) ="wo="(zo"y)
4- o (yp2)="(zDYy) »2).
Proof.

1. Firstly, we show that xn = 0.

H_.Trq

= (by B3])

I'I’:Cﬁn_1

= (by B3])
n_il'_.n—lﬂﬁn_l

= { by Propositions R29B]and R2IIT] and 5])
0

So xrq = 0 by Proposition RQII1] Here is the desired derivation.

lpx

= (by Definition [40])
lox A lgox

= (by G4)

lox A Qox

= (by (6] and ([@25] and Corollary B0I3])

= { by @8] and Corollary BOI31)
2ol A0ol

= (see the previous derivation)
zol Axnol

= (by Definition [40])

{,I?-D].

2. Firstly, we show that xm = 0.

= (by @4)
T2ro"0

= (by Proposition R298]and 5])
0

So xry = 0 by Proposition R9I11] Here is the desired derivation.

42

0 ‘DT
= (by Definition [0])
Oox A Orox
(by B8])
Ooz A Oox
(by 3] and Corollary BOII0O])

{ by 8] and Corollary BOII0OI)
200 [020

= (see the previous derivation)

200 A xrmpe0
= (by Definition [0])

$~DO

3. Firstly, we need the following.

—Mzo="y)e"w & "(asy)

{ by Proposition 22I8]and Boolean algebra)

y) © "(@s"y) A "z T T(20Ty)
{ by Corollary 23] shunting and Proposition RO101)
0C "ze=y) U MxaTy) A true
{ by Propositions R28&8]and ROIT4])
0 C "(wsTyo="y)

II

(o=

II

!

— (by Proposition 2219])
0C ™

= (by Proposition R9JIT])
true

We are now ready to calculate the desired result.

(= py)
{ by Definition 0] Corollary B0I4]and {T])
(2a"y) A Mams"y)
(by @4))
Mza"y) A "
(by @3])
"(zoTy) A ~"(zoy)o-"(zs-"y)o"x
= (by Corollary R3land BoIl]and Boolean algebra)

43

(zay) A ~Mae-"y)e"
(by the previous derivation and Boolean algebra)

I'l_xD —|”_((L'D —|ﬂ_y)

(@D (yp2)
(by Proposition 411131)
Txmﬂ”_(xnﬁ(@m—\ﬂ_(yﬂﬁ“_z)))
(by De Morgan)
oo ~Tas (=1 A Tya—2)
(by Definition B&](Ty-decomposition of z)
"o ="((2a"y Az ="y A (2 Ua-g))e (=Y A T(y=="2)))
{ by Corollary B0dI5]and Remark [39])
T -Maa (< 7 Tyo—2)) A za—Tya (T A Tya2)) 1
(#ry U2y) (2"y A (ya2"2)))
(by Corollaries BOI7]B0J6]and Proposition 22171
Tzo=(xe Yo (yo-"2) Azo="y A (2n Uz) (-Ty A(ys"2)))
(by Propositions R2I8]and 29110])
"po"(2e(ya"2) Awe =Ty A (2n 4w)o(2"y A (y=-"2)))
(by Corollary B0JI4]and #Z])
Tro="(zeys—="z Azo-"y A (2m Uzn)s(="y A (ye—"2)))
(by @4, E5] and @8])
Tro ﬂn_(q,‘\jyu—\n_z il ,’L‘D—\n?g il
(zryeya (=Y A (yo2"2)) W aog e =Tye (2Ty A(y=-"2))))
(by Corollaries BOI7]B0J6]and Proposition R2171)
o -{Tzoye—T Aoy M (a2 Tyo ") U 2y 5))
(by B3])
Tro="(zoye—"Tz Azo-"y A (zro"(yo-"2) Uz _my))
{ by Corollary B0d[4]and #R])
"zo=("(zoye-"z) A Nwe="y) A ((2no"(y22"2)) U "2-r))
(since "z, = ", T M(2m,5"(