
Universit�e de Montr�eal

Demand-Driven Type Analysis

for Dynami
ally-Typed Fun
tional Languages

par

Danny Dub�e

D�epartement d'informatique et de re
her
he op�erationnelle

Fa
ult�e des arts et des s
ien
es

Th�ese pr�esent�ee �a la Fa
ult�e des �etudes sup�erieures

en vue de l'obtention du grade de Ph.D.

en Informatique

Août, 2002

, Danny Dub�e, 2002

Universit�e de Montr�eal

Fa
ult�e des �etudes sup�erieures

Cette th�ese intitul�ee:

Demand-Driven Type Analysis

for Dynami
ally-Typed Fun
tional Languages

pr�esent�ee par:

Danny Dub�e

a �et�e �evalu�ee par un jury
ompos�e des personnes suivantes:

Gilles Brassard

pr�esident-rapporteur

Mar
 Feeley

dire
teur de re
her
he

Alain Tapp

membre du jury

Matthias Felleisen

examinateur externe

Gilles Brassard (par interim)

repr�esentant du doyen de la FES

R�esum�e

Nous pr�esentons une nouvelle analyse de types destin�ee aux langages typ�es dynami-

quement qui produit des r�esultats de grande qualit�e �a un
oût qui la rend utilisable en

pratique. Bien que statique, l'analyse est
apable de s'adapter aux besoins de l'optimiseur

et aux
ara
t�eristiques du programme �a
ompiler. Le r�esultat est un analyseur qui se modi�e

rapidement pour être en mesure de mieux e�e
tuer son travail sur le programme. Des tests

d�emontrent que notre appro
he peut user de passablement d'intelligen
e pour permettre la

r�ealisation de
ertaines optimisations.

L'analyse est adaptable par
e qu'elle est e�e
tu�ee �a l'aide d'un
adre d'analyse pa-

ram�etrisable qui peut produire des instan
es d'analyses �a partir de mod�eles abstraits. Ces

mod�eles abstraits peuvent être rempla
�es au
ours de l'analyse du programme. Plusieurs pro-

pri�et�es du
adre d'analyse sont pr�esent�ees et d�emontr�ees dans
e do
ument. Parmi
elles-
i,

on retrouve la garantie de terminaison asso
i�ee �a toute instan
e d'analyse produite �a l'aide

du
adre, la
apa
it�e d'analyser parfaitement tout programme qui se termine sans erreur et

la
apa
it�e d'imiter plusieurs analyses
onventionnelles.

Les modi�
ations apport�ees au mod�ele abstrait en fon
tion des besoins de l'optimiseur le

sont grâ
e �a l'utilisation de demandes et de r�egles de traitement des demandes. Les demandes

d�e
rivent des requêtes pour la d�emonstration de propri�et�es jug�ees utiles �a l'optimiseur.

Les r�egles de traitement permettent la tradu
tion de demandes d�e
rivant les besoins de

l'optimiseur en des dire
tives pr�e
ises de modi�
ations au mod�ele abstrait. Chaque dire
tive

de modi�
ation du mod�ele peut apporter une aide dire
te �a l'optimiseur par
e que les

r�egles de traitement font en sorte que des demandes justi��ees sont transform�ees en d'autres

demandes justi��ees.

Une appro
he d'analyse sur demande
ompl�ete bas�ee sur le pattern-mat
hing est d�e
rite

iv

et a �et�e implant�ee. Le prototype implantant
ette appro
he a d�emontr�e le potentiel
onsid�e-

rable de nos travaux. Il faudra en
ore e�e
tuer d'autres re
her
hes avant qu'on puisse utiliser

ouramment notre appro
he dans les
ompilateurs. C'est toutefois
ompr�ehensible si on

onsid�ere que tous nos travaux, outre les id�ees li�ees aux analyses statiques
onventionnelles,

sont une
ontribution originale.

Mots-
l�es : analyse sur demande | analyse adaptable | analyse statique | analyse de

types | te
hniques de
ompilation | optimisation de programmes

Abstra
t

We present a new stati
 type analysis for dynami
ally-typed languages that produ
es high

quality results at a
ost that remains pra
ti
able. The analysis has the ability to adapt

to the needs of the optimiser and to the
hara
teristi
s of the program at hand. The

result is an analyser that qui
kly transforms itself to be better equipped to atta
k the

program. Experiments show that our approa
h
an be pretty
lever in the optimisations

that it enables.

The analysis is adaptable be
ause it is a

omplished using a parametri
 analysis frame-

work that
an instantiate analyses by building them from abstra
t models. The abstra
t

models
an be
hanged during the analysis of the program. Many properties of the analysis

framework are presented and proved in the dissertation. Among whi
h there is the guar-

antee of termination of any analysis instan
e it produ
es, the
apa
ity to analyse perfe
tly

well error-free terminating programs, and the ability to mimi
 many
onventional stati

analyses.

Modi�
ations to the abstra
t model in response to the needs of the optimiser are realised

through the use of demands and demand pro
essing rules. Demands express a request for

the demonstration of a property deemed useful to the optimiser. The pro
essing rules

allow demands that dire
tly express the needs of the optimiser to be translated into pre
ise

proposals of modi�
ations to the abstra
t model. Ea
h modi�
ation to the model that is

proposed is potentially dire
tly helpful to the optimiser be
ause the pro
essing rules ensure

that pertinent demands are translated into other pertinent demands.

A
omplete approa
h of demand-driven analysis based on pattern-mat
hing is exposed

and has been implemented. The prototype implementing the approa
h has demonstrated

that our work has great potential. Further resear
h has to be
ondu
ted to make the method

vi

usable in everyday
ompilers. Still, this is understandable,
onsidering that our whole work,

ex
ept the notions related to
onventional stati
 analysis, is original material.

Key-words: demand-driven analysis | adaptable analysis | stati
 analysis | type anal-

ysis |
ompilation te
hniques | program optimisation

Contents

1 Introdu
tion 1

1.1 A Gentle Introdu
tion . 1

1.2 Some More Pre
isions . 3

1.3 Sket
h of a Solution . 8

1.4 Plan . 11

2 De�nition of the Problem 13

2.1 Obje
tive . 13

2.2 Language . 14

2.3 Generality of the Obje
tive . 16

3 Analysis Framework 21

3.1 Instantiation of an Analysis . 22

3.1.1 Framework Parameters . 23

3.1.2 Analysis Results . 26

3.1.3 An Example of Use of the Analysis Framework 29

3.2 Internal Fun
tioning of the Framework . 31

3.2.1 Evaluation Constraints . 31

viii CONTENTS

3.2.2 Safety Constraints . 37

3.3 Termination of the Analysis . 38

3.4 A Colle
ting Ma
hine . 39

3.4.1 Well-De�nedness of Ca
he Entries 41

3.5 Conservativeness of the Analysis . 46

3.5.1 A

essory De�nitions . 46

3.5.2 Conservative Mimi
king of the Evaluation 47

3.5.3 Conservativeness Regarding Dynami
 Type Tests 58

3.6 Theoreti
al Power and Limitations of the Analysis Framework 59

3.6.1 Programs Terminating Without Error 60

3.6.2 Unde
idability of the \Perfe
tly Analysable" Property 65

3.7 Flexibility in Pra
ti
e . 72

4 Demand-Driven Analysis 77

4.1 A Cy
li
 Pro
ess . 77

4.2 Generation and Propagation of Demands 79

4.3 A Demand-Driven Analysis Example . 81

4.4 Preliminary Analysis . 86

4.5 Model-Update, Re-Analysis Cy
le . 86

4.6 Dis
ussion . 93

5 Pattern-Based Demand-Driven Analysis 95

5.1 Pattern-Based Modelling . 96

5.1.1 Representation of the Abstra
t Values and Contour 96

CONTENTS ix

5.1.2 Models . 100

5.1.3 Demands . 118

5.2 Demand Pro
essing . 124

5.2.1 Bound Demands . 125

5.2.2 Never Demands . 126

5.2.3 Bad Call Demands . 127

5.2.4 Split Demands . 128

5.2.5 Call Site Monitoring . 138

5.2.6 Split-Couples Fun
tion . 139

5.2.7 Remarks . 149

5.3 Complete Approa
h . 150

5.4 Example of Demand-Driven Analysis . 154

5.5 Development of the Prototype . 162

5.5.1 Resolution-Like Pro
essing of Demands 162

5.5.2 Model-Update Sele
tion and Re-Analysis Cy
le 165

5.6 Dis
ussion . 166

6 Experimental Results 169

6.1 Current Implementation . 169

6.2 Test Methodology . 171

6.2.1 What is Measured ? . 171

6.2.2 Ben
hmarks . 172

6.3 Results . 177

x CONTENTS

7 Con
lusions 183

7.1 Contributions . 183

7.2 Related Work . 184

7.3 Future Work . 185

7.3.1 On the Pattern-Based Analysis . 185

7.3.2 Alternate Modelling . 187

7.3.3 Extensions . 188

7.3.4 Demand Propagation Cal
ulus . 190

A Ben
hmarks xxv

A.1 Sour
e of the
dr-safe Ben
hmark . xxv

A.2 Sour
e of the loop Ben
hmark . xxv

A.3 Sour
e of the 2-1 Ben
hmark . xxvi

A.4 Sour
e of the map-easy Ben
hmark . xxvi

A.5 Sour
e of the map-hard Ben
hmark . xxvi

A.6 Sour
e of the fib Ben
hmark . xxvi

A.7 Sour
e of the g
d Ben
hmark . xxvii

A.8 Sour
e of the tak Ben
hmark . xxvii

A.9 Sour
e of the n-queens Ben
hmark . xxvii

A.10 Sour
e of the a
k Ben
hmark . xxviii

A.11 Sour
e of the SKI Ben
hmark . xxviii

A.12 Sour
e of the
hange Ben
hmark . xxx

A.13 Sour
e of the interp Ben
hmark . xxxi

CONTENTS xi

A.14 Sour
e of the
ps-QS-s Ben
hmark . xxxiv

A.15 Sour
e of the
ps-QS-m Ben
hmark . xxxvi

xii CONTENTS

List of Tables

6.1 Experimental results . 178

6.2 The e�e
t of the size of a program on the analysis 180

6.3 The e�e
t of the inputs on the analysis times 181

xiv LIST OF TABLES

List of Figures

2.1 Mini-language syntax . 15

2.2 Mini-language semanti
s . 15

3.1 Instantiation parameters of the analysis framework 23

3.2 Analysis results of the framework . 26

3.3 Evaluation
onstraints . 33

3.4 Safety
onstraints . 38

3.5 Semanti
s of the
olle
ting ma
hine . 40

3.6 Fun
tion
omputing the set of sub-expressions 41

3.7 Fun
tion
omputing the set of immediate sub-expressions 42

5.1 Syntax of the modelling patterns . 98

5.2 De�nition of the
onforman
e relation . 99

5.3 Algorithm for the
onforman
e relation between modelling patterns 100

5.4 Implementation of the pattern-mat
hers 107

5.5 Algorithm for pattern-mat
hing . 108

5.6 Syntax of the split patterns . 110

5.7 Simpli�
ation of split patterns . 112

xvi LIST OF FIGURES

5.8 Example of simpli�
ation of a split pattern 113

5.9 Generation of pattern-mat
her update requests to ensure
onsisten
y . . . 113

5.10 Example of an update request and the sub-requests generated for
onsisten
y 114

5.11 Sli
ing of split patterns . 115

5.12 Example of the sli
ing of a split pattern 115

5.13 Extension of the de�nition of
onforman
e between modelling and split pat-

terns . 116

5.14 Algorithm for the upgrade of inspe
tion points in pattern-mat
hers 117

5.15 Example of the upgrade of a pattern-mat
her 119

5.16 Syntax of the demands . 120

5.17 Algorithm for the \is spread on" relation 120

5.18 De�nition of the \have a non-empty interse
tion" relation 121

5.19 De�nition of the interse
tion operator between patterns 137

5.20 Example of
ouples to separate . 141

5.21 Example of a na��ve separation . 142

5.22 Example of a more
lever separation . 142

5.23 Implementation of the Split-Couples fun
tion 143

5.24 Example of
omputation made by Split-Couples 148

5.25 Algorithm for the demand-driven analysis 155

6.1 Translation of letre
-expressions . 173

6.2 Translation from the S
heme subset to the extended mini-language 175

6.3 Unrolling of the a
k ben
hmark . 181

Remer
iements

Je tiens �a remer
ier ma
opine, Marie-Lisa. Elle a toujours �et�e en
ourageante et a su

m'apporter la motivation n�e
essaire. Mer
i �a mes parents, ma soeur et son mari. Tous m'ont

a

ompagn�e dans mon
heminement et ont
onstitu�e un milieu r�e
onfortant durant tous les

moments, heureux et p�enibles.

Je tiens par-dessus tout �a remer
ier mon dire
teur de th�ese, Mar
 Feeley, pour son

support, tant moral que �nan
ier et te
hnique. Il a su être aussi patient qu'il fallait l'être

ave
 moi. Il a toujours
ru en moi, plus que je ne pouvais
roire en moi-même. Il m'a toujours

t�emoign�e un grand respe
t, même quand j'�etais une peste d'entêtement.

Mer
i �a toute la grande famille au
omplet, �a mes amis et �a mes
amarades �a l'�e
ole.

Tout parti
uli�erement : Odi pour m'avoir aid�e �a garder la forme et dont la
ompagnie est

toujours agr�eable ; S�ebastien pour être M. Divertissement en personne ; Mohamad qui m'a

apport�e une authentique aide et ave
 qui j'allais noyer ma d�eprime dans la
af�eine ; Diane

qui a insist�e ave
 tellement d'�energie pour que je
ompl�ete mon do
torat ; le tr�es
onstant (et

omique) Mario ; Dominique ; Martin ; Wissam ; Fernanda ;

�

Eri
 ;

�

Etienne et Jean-Fran�
ois

qui ont �et�e si tannants et qui ont subi mes foudres tellement souvent (\Danny, t'es pas

parlable !") ; et Fran�
ois qui m'a aid�e �a d�e
ouvrir ma vraie nature de di
tateur.

L'aide �nan
i�ere des organismes subventionnaires CRSNG et FCAR m'a �et�e pr�e
ieuse.

Elle n'a pas �et�e vaine, apr�es tout.

xviii REMERCIEMENTS

Chapter 1

Introdu
tion

1.1 A Gentle Introdu
tion

Very high quality type analysis
an be performed on programs written in a dynami
ally-

typed fun
tional language while maintaining
ontrol over the analysis time. A quality type

analysis is a
hieved by using a \
lever" adaptive analysis method
alled demand-driven

analysis. Although the method does not
ome from traditional arti�
ial intelligen
e, it

allows the analysis to adapt to the
hara
teristi
s of the program at hand in ways that seem

rather intelligent. But all this is quite vague, so let us pro
eed from the beginning.

Program analyses that are used for optimisation purposes are always stret
hed between

two
ontradi
tory goals: quality and eÆ
ien
y. Indeed, the user of a
ompiler wants the

ompiler to produ
e the best possible
ode while taking the least possible time to do so.

Unfortunately, these desires are in
ompatible.

Roughly speaking, in the
ase of type analysis, two kinds of analyses exist, depending

on whi
h goal is
onsidered to have priority. Fast analyses aim the eÆ
ien
y of the analysis

while heavy analyses aim the quality of the generated
ode. The fast ones feature reasonable

analysis times and obtain results of a fair quality. The heavy ones inspe
t the program very

losely and do not feature reasonable analysis times. Commonly used
ompilers that perform

some type analysis use a fast one be
ause the heavy ones are too
ostly in pra
ti
e.

Of
ourse, the user's desire to have his
ake and eat it too is unrealisti
 but a relaxed

2 CHAPTER 1. INTRODUCTION

version is still interesting. What we are interested in is a type analysis of very high quality

that
an be performed within times that remain pra
ti
al. In our opinion, an analysis

featuring pra
ti
al times is
ru
ial if we want our type analysis or a derivative to eventually

be applied in some routinely used
ompiler. Despite the fa
t that our goal is relaxed, it still

seems to be a na��ve, \spoiled
hild's" desire. It seems to disregard the apparently strong

relation between quality and eÆ
ien
y that years of resear
h in type analysis have outlined.

Until now, this empiri
al relation has brought the user to expe
t a
ertain
ost for a
ertain

quality. Our
hildish desire lies in the high-quality part of the spe
trum while in
urring a

ost that is well under the one that the quality-eÆ
ien
y relation suggests. Is it reasonable

to aim at su
h a goal?

We believe it is reasonable be
ause a small amount of
leverness often pays o� more

than a lot of brute for
e. This is so in many aspe
ts of real life and in
omputer s
ien
e,

too. For example, during a war, the army with the greatest number of soldiers and the

best equipment does not ne
essarily defeat its enemy if it is poorly dire
ted. In
omputer

s
ien
e, an O(n log n) algorithm
an outperform an O(n

2

) algorithm, even if the latter is

run on a
omputer that is faster by orders of magnitude. However, dis
overing the better

algorithm requires
areful thought.

But what
lever thing
ould be done about type analysis? This thesis has its origins in

an inno
ent sounding remark by my supervisor, roughly paraphrased as: \It would be ni
e

to have an analysis that is very powerful but that uses its power only as mu
h as needed by

the optimiser to perform its job." We all know something that has this kind of behaviour;

that is, something powerful but always trying to do as little as possible: a human. Let us

imagine an optimising
ompiler where the type analysis would be done by a human; say,

Mr. D. Let us des
ribe the way Mr. D would pro
eed in analysing a program.

Mr. D would use his intelligen
e to perform the analysis. And he would perform a very

good one. Indeed, he wants to help the
ompiler to produ
e highly optimised
ode. But he

would use his intelligen
e mostly where it would really help the optimiser. That is, Mr. D is

lazy. If an easy
he
k allows the optimiser to improve a parti
ular pie
e of
ode, Mr. D will

not waste his time by making a
omplex proof involving the full extent of his mathemati
al

knowledge.

The mental work performed by Mr. D
an be divided in two parts: raw program analysis

and reasoning about the task of analysing the program. The raw analysis part is essentially

1.2. SOME MORE PRECISIONS 3

similar to what
onventional analyses do. On the other hand, he does the reasoning part by

inspe
ting the program, by looking at the analysis results, by inventing new raw analyses,

by sear
hing for the right invariants, et
. The raw analysis part
an be done by hand or by

writing an algorithm and running it on a ma
hine. It does not matter how it is done. It is

me
hani
al work, anyway. But Mr. D is able to do the reasoning part only be
ause he is

intelligent and understands what he is doing.

To summarise Mr. D's work, we would say that he is intelligent, he is lazy, and he knows

what he is doing. He is able to analyse the program while he is also able to elaborate

strategies about the way he should analyse the program. The demand-driven analysis

approa
h that we introdu
e in this dissertation is inspired by the
lever behaviour of Mr. D.

Our approa
h features the same division of the work into a raw analysis part and a reasoning

part. The reasoning part is able to modify the way raw analysis is done. The approa
h

features laziness as the reasoning part is goal-driven: it takes
are of the needs of the

optimiser and only of these; any modi�
ation to the way raw analysis is done derives from

those needs. Up to this point, our approa
h seems to a
t exa
tly as Mr. D. But, as expe
ted,

there is a di�eren
e and it lies in the fa
t that our approa
h does not understand what it

is doing. It is only a
ombination of numerous deterministi
 algorithms and it does not

exhibit any sign of learning or understanding whatsoever. Nevertheless, experiments have

shown that it exhibits
onsiderable
leverness in the exe
ution of its task. This is satisfying

as only intelligen
e is required, not
ons
iousness.

1.2 Some More Pre
isions

The purpose of our type analysis is to help the optimiser to remove unne
essary dynami

safety type tests from the exe
utable. The
ode resulting from the
ompilation of a program

written in a dynami
ally-typed language in
ludes dynami
 safety type tests in the
ode of

many primitive operations. For example, let us
onsider the following S
heme

1

expression:

(
ar x). This expression extra
ts the obje
t in the �rst �eld of the pair
ontained in `x',

provided `x' really
ontains a pair. Sin
e S
heme is dynami
ally-typed, `x'
ould poten-

tially
ontain obje
ts of any type, depending on the
omputations done by the program.

Consequently, the `
ar' fun
tion must perform a safety type tests before it
an extra
t the

1

For a referen
e to the S
heme language, see [51℄.

4 CHAPTER 1. INTRODUCTION

ontents of the �rst �eld. Safety tests guarantee that the exe
ution of the program pro
eeds

safely.

If no test were performed before `
ar' did the extra
tion, the extra
tion
ould trigger

an illegal operation at the hardware or operating system level and an abnormal termination

of the program would o

ur. Or the illegal extra
tion
ould go undete
ted and
ause a

orruption of the data of the program, leading to potentially disastrous
onsequen
es. High-

level languages su
h as S
heme are designed with safe exe
ution in mind. Consequently, it

is natural to in
lude su
h dynami
 safety tests in the exe
utable.

Of
ourse, these safety tests in
ur a penalty in the eÆ
ien
y of the exe
utable program.

So it is perfe
tly understandable to want to avoid the added ineÆ
ien
y. A
ommon way

to do so
onsists in telling the
ompiler to omit the in
lusion of those tests. All potentially

illegal operations made by the exe
utable program then go un
he
ked and result in low-

level
rashes or program misbehaviour in
ase of an error. In this work, we
hoose not to

onsider this \solution". We prefer to insist on keeping the safety of the exe
ution and

turn to another option: safe optimisations. For some operations made by the program, the

ompiler may be able to determine that they
an never go wrong. Safe optimisations
an

be enabled only in these
ases. For example, the (
ar x) expression need not in
lude a

dynami
 safety test if the
ompiler is able to determine that `x'
annot
ontain anything else

than pairs. The demonstrations needed to trigger safe optimisations are obtained through

the use of stati
 analysis.

But what is a stati
 analysis? It is the gathering of informations about the exe
ution

of the program. The nature of the informations that are gathered depends on what the

optimiser needs to perform its task. They may relate to the heap-spa
e usage, the liveliness

of the obje
ts at run-time, the may-alias information, or something else. In this work,

the informations that interest us is the type of the values involved in the
omputations

done by the program. What is parti
ular to stati
 analyses is the method that is used

to gather the informations: a phony exe
ution of the program or some other pro
ess that

does not involve its real exe
ution. It is mandatory to avoid the real exe
ution be
ause

its duration is unknown (and possibly in�nite). On the other hand, the phony exe
ution

requires the manipulation of phony values only for a bounded number of steps. So it is fast

(and predi
table) enough to be a part of a
ompilation. The reader may �nd numerous

examples of stati
 analyses in [3℄.

1.2. SOME MORE PRECISIONS 5

Despite the fa
t that the stati
 exe
ution is phony, it is designed in su
h a way that

it has a mathemati
al
onne
tion to the real exe
ution. Consequently, the results of the

phony exe
ution
onstitute the desired informations about the real exe
ution. In general,

the informations are only approximations of what
ould be observed if the program were

really run. Moreover, in order to be useful to the optimiser, these informations have to be

onservative.

When we say that the gathered informations have to be
onservative, it means that they

must take into a

ount at least all possible behaviours of the program. But why is it \at

least" and not \at most" or \the best approximation of"? Be
ause of the nature of typi
al

optimisations. Optimisations, su
h as the removal of safety type tests, require a parti
ular

property to be true for all possible exe
utions of the program. Consequently, if the property

is true for all behaviours listed in the des
ription, then it has to be true for all
on
rete

behaviours of the program. For example, if the analysis says that `x'
an
ontain nothing

else than pairs, then, during the
on
rete exe
ution of the program, it is
ertain that `x'

ontains a pair (at least, if `x' ever
omes to existen
e) and (
ar x)
an be optimised.

In opposition to the
onservativeness of the analysis results, there is the need of the

optimiser for results that are as useful as possible. It is
lear that obtaining a
onservative

analysis is easy. We only need to write an analysis that pretends that anything may happen

during the exe
ution. Note that these analysis results are
ertainly
onservative. However,

the analysis results thus produ
ed would not be useful as the property allowing optimisations

to be performed would not be true in general (a

ording to the results). For example, if the

type analysis blindly determines that `x' potentially
ontains obje
ts of any type (whi
h is

true), then the optimisation of (
ar x)
annot be performed.

Essentially, the best interest of the analyser is to overestimate the des
ription as little

as possible while it must imperatively avoid underestimating the des
ription. Redu
ing the

overestimation as mu
h as possible requires in
reasing the
omputational e�ort put into the

analysis. However, an in
rease in the
omputational e�ort means that the
ompilation time

in
reases, too. It is
lear that
hoosing a
ompromise between the quality of the des
ription

(the smallness of its overestimation) and the
ompilation times is a diÆ
ult
hoi
e.

This diÆ
ulty in the
hoi
e of an analysis, in parti
ular in the
hoi
e of a type analysis,

makes the
onventional type analyses inappropriate almost all the time. Let us explain our-

selves. When a parti
ular program is analysed, the analysis may be too
oarse, produ
ing

6 CHAPTER 1. INTRODUCTION

results that are too overestimated to be really useful to the optimiser. Or it may be too

strong and time would be wasted be
ause suÆ
iently a

urate results
ould have been pro-

du
ed by a mu
h more eÆ
ient analysis. Surprisingly, the analysis may sometimes be both

too
oarse and too strong at the same time for the program at hand. This is the
ase when

parts of the programs are easier to analyse than others. That is, the diÆ
ulty of produ
ing

analysis results a

urate enough to trigger the optimisation of
ertain expressions may be

mu
h greater than for other expressions. This fa
t is made obvious by an example. Suppose

that our (
ar x) expression o

urs in two pla
es in the program. The �rst o

urren
e is

in expression (if (pair? x) (
ar x) ...)

2

and the se
ond is in (let ((x (get-lost

foo bar))) (
ar x)). Suppose that the get-lost fun
tion is extremely
omplex. Then

a heavy
onventional analysis
ould well be both too strong and too
oarse for the program

at the same time.

The fundamental reason behind the inappropriateness is that
onventional analyses use

a �xed abstra
t model. We need to introdu
e the meaning of the \abstra
t model" term.

We mention just above that an analysis is done by performing a phony exe
ution of the

program. This phony exe
ution is often performed using abstra
t interpretation.

3

During

the abstra
t interpretation of a program, phony values are manipulated, instead of
on
rete

values as in
on
rete interpretation. These phony values are
alled abstra
t values. Also,

during abstra
t interpretation, expressions are evaluated in phony
ontexts, not in
on
rete

ontexts (lexi
al environment,
urrent
ontinuation, et
). An important di�eren
e between

on
rete values and phony values is that, while
on
rete values are de�ned by the language,

the de�nition of the phony values has to be
hosen by the implementer of the analysis. A

short introdu
tion to abstra
t interpretation is given in [19℄.

Taken together, the values and
ontexts that are to be used by an analysis,
onstitute

the abstra
t model. Roughly speaking, the abstra
t model indi
ates under whi
h simplisti

point of view the exe
ution of the program is going to be modelled. Sin
e
onventional anal-

yses use a �xed abstra
t model, this point of view
annot
hange and it leads immediately

to the inappropriateness of the analyses. Sin
e the inappropriateness of the
onventional

analyses
omes from the �xedness of the abstra
t model behind them, then
learly the

solution is to use some adaptive abstra
t model.

2

The pair? fun
tion is a predi
ate that tests whether its argument is a pair or not.

3

Not all stati
 analyses are done using abstra
t interpretation. There are other kinds of stati
 analyses.

Nevertheless, in all
ases, there is an abstra
t model behind the analysis.

1.2. SOME MORE PRECISIONS 7

A dire
t
onsequen
e of the goal-driven nature of our type analysis is that the analyser

and the optimiser must
ollaborate. This
ollaboration ne
essarily
omprises two elements.

First, the needs of the optimiser have to be expressed in some way. Se
ond, the analyser

has to rea
t in a positive way to the needs expressed by the optimiser. The �rst element

is quite simple. The property required for a parti
ular optimisation to get enabled is well-

de�ned and, usually, relatively easy to formalise. It is suÆ
ient to
hoose some formalism

in whi
h the needs
an be expressed. We illustrate the elements with our running example.

In the hope of removing the safety type test in expression (
ar x), the optimiser expresses

its need by emitting a request like: \I would like to see a demonstration that `x'
an only

ontain pairs." The analyser then has to do its best to ful�l the need of the optimiser.

The se
ond element, however, is diÆ
ult and it is the
ore of our work. For the analyser,

to be able to take
are of the needs of the optimiser means that it must be able to dete
t

when the analysis
urrently performed does not allow an optimisation to be enabled and,

if it is the
ase, to adapt the analysis with the intention to enable the optimisation. In

order to have an analyser
apable of doing so, two new elements have to be provided. First,

the analyser must have the ability to
hange the analysis it performs while the
ompiler is

pro
essing the program. That is, the analyser has to be able to
hange the abstra
t model

behind the analysis at will. Se
ond, a de
ision pro
edure has to be in
luded in the analyser

to let it determine how the abstra
t model ought to be modi�ed. Indeed, a lot of freedom

is granted to the analyser by the adaptivity of the abstra
t model and this freedom must

not be used mindlessly. The �rst element
an be realised without too mu
h diÆ
ulty but

the se
ond remains quite a
hallenge. Clearly, the se
ond element is the one that seems to

require understanding and intelligent reasoning. Nonetheless, the demand-driven analysis

that we propose possesses the desired
exibility and adaptivity.

Now that we have a more pre
ise des
ription of the requirements for the analyser, es-

pe
ially those
on
erning its adaptivity, we
ome ba
k to our goal for the quality expe
ted

from the analyser. We do not simply expe
t a high-quality analysis at a pra
ti
al
ost,

where the quality is
omparable to that of the heavy analyses. We expe
t an even higher

quality. Our expe
tations are justi�ed by the adaptivity of the analyser. By its adaptivity,

the analyser ought to spend the minimum of e�ort to enable the easy optimisations and

invest more time on harder optimisations. Ea
h optimisation ought to be taken
are of using

an e�ort
orresponding to its diÆ
ulty. Sin
e the spe
trum of the diÆ
ulty of optimising

the various expressions of the programs is typi
ally very wide, the analyser is able to trigger

8 CHAPTER 1. INTRODUCTION

the optimisation of a maximum of expressions for the time it
onsumes. On the other hand,

fast
onventional analyses only trigger the optimisation of the easy expressions. Heavy ones

may waste huge amounts of resour
es on easy and intermediate expressions by applying an

ill-adapted tedious pro
edure that is nevertheless too weak for the slightly more diÆ
ult

expressions. The demand-driven analyser, by its reasoning about the needs of the optimiser

and the strategies it elaborates, ought to �nd the spe
i�
 modi�
ations to the analysis that

are ne
essary to trigger the optimisation of the more diÆ
ult expressions. In other words, it

ought to trigger the optimisation of more diÆ
ult expressions be
ause it is able to produ
e

a \well-tailored" analysis.

1.3 Sket
h of a Solution

Before we present a qui
k overview of the solution, we need to
ome ba
k to the optimisation

that interests us. We
on
entrate on the elimination of dynami
 safety type tests. The other

type tests do not interest us. Those in
lude the expli
it tests written by the programmer

himself, su
h as the one in expression (if (pair? x)), and the impli
it ones that

are not related to safety, su
h as the type tests performed by the garbage
olle
tor when it

traverses the heap-allo
ated obje
ts. The di�eren
e between the safety tests and the others

is that the out
ome of the safety tests is highly predi
table. In fa
t, during the exe
ution

of a bug-free program, all safety type tests have a positive out
ome. On the other hand,

the expli
it tests are pre
isely inserted by the programmer be
ause he wishes these tests

to be performed. Then it is reasonable to assume that these tests have an a
tive purpose

and that they result in both out
omes. Consequently, these tests are rarely redundant. The

safety tests, on the
ontrary, are in most
ases redundant and
an be removed (if identi�ed

as su
h). They are a more valuable target for the analyser.

Not only are the safety type tests a valuable target, but their high predi
tability forms

the basis of the reasoning made by the demand-driven analysis. The analyser
on
entrates

on the needs of the optimiser that it
onsiders to be plausibly realisable. The other needs

of the optimiser are not less legitimate but there is no eviden
e that they have a reasonable

han
e of being realisable and they provide no
lue on how to elaborate an analysis strategy

to enable them. For example, let us
onsider
all (f x) and suppose that the optimiser

is able to improve the
ode produ
ed for a
all when only one fun
tion
an possibly be

1.3. SKETCH OF A SOLUTION 9

invoked there (e.g. by repla
ing the generi
 invo
ation sequen
e by a dire
t
all). The need

of the optimiser
onsists in obtaining the
on�rmation that `f'
ontains only one parti
ular

fun
tion. It is a noble request as it would be pro�table to the
ode if the
on�rmation
ould

be obtained. However, there is no indi
ation that `f'
ontains only one parti
ular fun
tion.

In fa
t, fun
tional languages are notable for using higher-order fun
tions. So it would be

perfe
tly normal to see `f'
ontain di�erent fun
tions during the exe
ution of the program.

On top of the low plausibility of this need, there is the te
hni
al problem that this need

provides no
ue to the demand-driven analyser on how to answer it su

essfully.

Now we give an overview of the way we obtain an analyser that is adaptive and that is

able to reason about the way to modify the analysis it performs. The analyser is adaptive

be
ause it uses an analysis framework instead of a �xed analysis. Roughly speaking, the

analysis framework is the shell of an analyser. It
ontains all the usual me
hanisms needed

by an analyser. However, it does not in
lude an abstra
t model. The framework has a

parameter through whi
h it re
eives an abstra
t model. When passed an abstra
t model

and a program, it performs the type analysis pres
ribed by the model on the re
eived

program. The output of the framework is the analysis results. The latter are exa
tly those

that would be obtained if a true analyser in
orporating the given abstra
t model would have

been used on the program.

The analysis framework has many useful properties. Any analysis that it instantiates

(through the re
eption of an abstra
t model) is guaranteed to terminate and is
onservative.

The framework is able to mimi
 the behaviour of many
onventional analyses. It is very

powerful: given a bug-free program and an appropriate model, it produ
es analysis results

that allows the optimiser to remove all safety type tests. Unfortunately, it is generally

unfeasible to de
ide if an \appropriate" model exists.

As to the reasoning pro
edure that elaborates new analysis strategies a

ording to the

needs of the optimiser, we have two options. Either we
reate a (good old) AI program, or

we
reate a heuristi
 based on a limited set of simple and me
hani
al rules. In all
ases,

the best that
an be done is to obtain a heuristi
 sin
e the optimisation problem toys with

unde
idable properties. We
hoose the me
hani
al rules. We give the reasons behind this

hoi
e in the next
hapter.

The abstra
t models that we use are based on patterns. The patterns are similar to those

10 CHAPTER 1. INTRODUCTION

found in languages that in
lude pattern-mat
hing, su
h as Haskell,

4

ML,

5

and Prolog.

6

At

the heart of the reasoning pro
edure used in the demand-driven analysis, there are. . . the

demands. Broadly speaking, demands are requests for the demonstration of fa
ts that are

deemed useful to the optimiser. The demands dire
tly
onstitute the formalism in whi
h

the needs of the optimiser are expressed. But they also express other, indire
t requests

whi
h are produ
ed through the reasoning pro
ess. For example, apart from the syntax,

the request of the optimiser \I would like to see a demonstration that `x'
an only
ontain

pairs." that we mention above is in fa
t a demand.

The demands by themselves are not an a
tive
omponent of our approa
h. Demand

pro
essing rules form the engine of the reasoning pro
ess. They translate existing demands

into new ones with the intent to elaborate a strategy on how to modify the analysis. The

reasoning obtained through the pro
essing of demands is reminis
ent of the resolution al-

gorithm used by Prolog. Our demand pro
essing rules
ome, shall we say, from the top of

our hat. They are not perfe
tly arbitrary, however. They are relatively simple rules that

make a lot of sense and they obey two prin
iples that we only mention here: suÆ
ien
y and

ne
essity. These prin
iples are responsible for the
leverness shown by the analyser and for

keeping the analyser from letting the analysis degenerate to a heavy, impra
ti
al one.

Globally, the demand-driven analysis is a
y
le made of two phases. One phase
onsists

in analysing the program using the
urrent abstra
t model (raw analysis). The other
onsists

in modifying the abstra
t model through demand pro
essing (reasoning). If all the safety

tests are eventually removed, the
y
le ends. In the other
ase, the
y
le would not end

were it not for a time limit pla
ed by the user on the
omputational resour
es allotted to

the analysis. This unusual approa
h is
onsistent with our view that more pre
ise results

are expe
ted from the analyser if it is given more time. At least, is makes as mu
h sense to

let an analyser work for a spe
i�ed amount of time as it does to let an analyser work for an

a priori unknown amount of time up to the
ompletion of its algorithm. In either
ase, the

user has no guarantee on the extent of the optimisations. Having a limit on the time taken

by the analysis is even more user-friendly. Moreover, the limit on the resour
es need not

ne
essarily be wall-
lo
k time. It may be spa
e or the number of logi
al steps performed by

the demand-driven analysis. Interestingly, this last measure has some kind of deterministi

4

For a referen
e to the Haskell language, see [28℄.

5

For a referen
e to the ML language, see [44℄.

6

For a referen
e to the Prolog language, see [50℄.

1.4. PLAN 11

relation with the quality of the exe
utable
ode that results from the
ompilation (this is

dis
ussed in Se
tion 6.1).

1.4 Plan

In Chapter 2, we explain in detail the problem that we atta
k. We pre
isely des
ribe the

optimisation for whi
h the type analysis shall gather information. We introdu
e a mini-

language similar to a kind of S
heme that is simpli�ed almost down to a �-
al
ulus. We

present its syntax and semanti
s. We bring justi�
ation for the sele
tion of our goal.

Chapter 3 presents the analysis framework. It �rst gives a des
ription of the use of the

framework. That is, the parameters (the abstra
t model) and the analysis results that it

produ
es. It then gives a pre
ise des
ription of its implementation. Finally, many properties

of the analysis framework are demonstrated. Namely: that any analysis it instantiates

always terminates; that the analysis is
onservative; that it is powerful, as any error-free

terminating program
an be analysed perfe
tly well using an appropriate model, i.e. all safety

tests
an be removed from the program; that, unfortunately, it is generally impossible to

�nd su
h a model when it exists; that, in pra
ti
e, it is very
exible sin
e it
an mimi
 many

onventional stati
 analyses.

In Chapter 4, we give a sket
h of what a demand-driven analysis should be, but without

giving a pre
ise spe
i�
ation. We propose a
y
li
 approa
h where the program is �rst

analysed, then the stati
 analysis is improved, then the program is analysed again, et
. An

impre
ise de�nition of demands and pro
essing rules is given. Some notions that help to

reate a reasonable demand-driven analysis are presented. Namely, the ne
essity and the

suÆ
ien
y prin
iples. An extensive example is used to better explain the prin
iples behind

the approa
h.

In Chapter 5, we propose a
on
rete implementation of a demand-driven analysis that is

based on patterns. The
hapter in
ludes a
omplete des
ription of pattern-based modelling,

from the representation of abstra
t values to the elaboration of an abstra
t model to be

fed to the analysis framework, of the syntax and meaning of the demands, of the demand

pro
essing rules, and of the main algorithm
ontrolling the analysis. An example illustrates

the working of the whole pro
ess. A brief history of the development of our
urrent prototype

12 CHAPTER 1. INTRODUCTION

implementing the demand-driven analysis is presented.

Chapter 6 evaluates our prototype through many experiments. A brief des
ription of

ea
h of the ben
hmarks used in the experiments is given. The methodology used is presented

and justi�ed.

Chapter 7 summarises our
ontributions, makes a qui
k survey of the (not so) related

work in demand-driven analysis, and, most importantly, presents some future work.

Chapter 2

De�nition of the Problem

2.1 Obje
tive

We intend to develop an adaptable type analysis for a dynami
ally-typed language. The

language is presented below. Basi
ally, it is a minimalist appli
ative fun
tional language that

in
ludes three types:
losures, pairs and the Boolean false (#f). To keep things simple, the

programs should be
losed. That is, they should have no free variables. Also,
ompilation

is done on whole programs at on
e.

Some operations of the language require dynami
 safety type tests. For example, before

performing the extra
tion of the
ar-�eld of an obje
t, a
he
k must be made to ensure that

it is truly a pair. At least, it is the
ase if safe exe
ution of the program is desired. Indeed,

we work under the
ontext of safe exe
ution. Under the
ontext of non-safe exe
ution, the

problem of eliminating safety dynami
 type tests would no longer exist. Additionally, if

the optimiser were to trust annotations given by the programmer, the
ontext would also

be that of non-safe exe
ution. We are interested in safe exe
ution, so no external sour
e of

information is trusted.

A na��ve
ompilation of the programs would require the in
lusion of
ode to perform

safety tests at run time everywhere a hazardous operations is made. However, optimising

ompilers try to generate more eÆ
ient
ode by performing a stati
 analysis on the programs

to dis
over eviden
e that some or all of the dynami
 tests
an be safely removed. Our

analysis intends to a
hieve this task.

14 CHAPTER 2. DEFINITION OF THE PROBLEM

The following se
tions �rst present the fun
tional language to analyse. A detailed pre-

sentation of both the syntax and the semanti
s of the language is given. Then there is a

dis
ussion about the generality of the quite spe
i�
 analysis task that we have
hosen.

2.2 Language

Figure 2.1 presents the syntax of our small appli
ative fun
tional language. It does not have

a name but we will often refer to it as the mini-language. Expressions in the mini-language

are labelled. The labels are used to give a unique \name" to the expressions. For example,

it allows us to refer to a parti
ular expression as e

12

instead of having to write it verbatim

everywhere. We use numeri
al labels throughout this text.

The mini-language provides fun
tions, pairs, and the Boolean `#f'. As in S
heme,

anything ex
ept `#f' is
onsidered to be a true Boolean value when the `if' expression

tests its �rst sub-expression. The `pair?' expression provides a way to distinguish between

pairs and the other obje
ts. Depending on whether its argument is a pair or not, it returns

either the pair itself or `#f', respe
tively. Finally, evaluation of sub-expressions generally

pro
eeds from left to right. This parti
ularity
ould make a di�eren
e if one of the sub-

expressions loops and the other leads to an error, but it
annot when the program eventually

terminates. The rest of the semanti
s of the language is fairly standard: the `if' expression

�rst evaluates the test and then only one of its two bran
hes; the body of the �-expression

is evaluated only when the fun
tion is eventually
alled; the other expressions evaluate all

of their sub-expressions.

Only three of the nine kinds of expressions require a dynami
 safety test. We do not

in
lude pair?-expressions in these three as their purpose is not safety and there is no reason

to expe
t their result to always be true (or false). Expressions a

essing pairs, namely `
ar'

and `
dr', must ensure that the obje
ts that they are about to a

ess are truly pairs. Calls

must ensure that the obje
ts returned by the evaluation of the �rst sub-expression are truly

fun
tions. The task of our type analysis is to give the optimiser the opportunity to remove

as many safety
he
ks as possible among those introdu
ed by these expressions.

The detailed semanti
s of the language are presented in Figure 2.2.

1

Semanti
 domain

1

The

_

[operator is the disjoint union. Its results is the union of its two argument sets but it is de�ned

2.2. LANGUAGE 15

Exp := #f

l

l 2 Lab

j x

l

x 2 Var; l 2 Lab

j (

l

e

1

e

2

) l 2 Lab; e

1

; e

2

2 Exp

j (�

l

x: e

1

) l 2 Lab; x 2 Var; e

1

2 Exp

j (if

l

e

1

e

2

e

3

) l 2 Lab; e

1

; e

2

; e

3

2 Exp

j (
ons

l

e

1

e

2

) l 2 Lab; e

1

; e

2

2 Exp

j (
ar

l

e

1

) l 2 Lab; e

1

2 Exp

j (
dr

l

e

1

) l 2 Lab; e

1

2 Exp

j (pair?

l

e

1

) l 2 Lab; e

1

2 Exp

Lab := Labels

Var := Variables

Figure 2.1: Mini-language syntax

Val

"

:= Err

_

[Val

Err := Errors

Val := ValB

_

[ValC

_

[ValP

ValB := f#fg Booleans

ValC := f
los((�

l

x: e

1

); �) j (�

l

x: e

1

) 2 Exp; � 2 Envg Closures

ValP := fpair(v

1

; v

2

) j v

1

; v

2

2 Valg Pairs

Env := Var! Val

E : Exp! Env! Val

"

Evaluation fun
tion

E [[#f

l

℄℄ � = #f

E [[x

l

℄℄ � = � x

E [[(

l

e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �) (�v

1

: C (E [[e

2

℄℄ �) (A v

1

))

E [[(�

l

x: e

1

)℄℄ � =
los((�

l

x: e

1

); �)

E [[(if

l

e

1

e

2

e

3

)℄℄ � = C (E [[e

1

℄℄ �) (�v: v 6= #f ? E [[e

2

℄℄ � : E [[e

3

℄℄ �)

E [[(
ons

l

e

1

e

2

)℄℄ � = C (E [[e

1

℄℄ �) (�v

1

: C (E [[e

2

℄℄ �) (�v

2

: pair(v

1

; v

2

)))

E [[(
ar

l

e

1

)℄℄ � = C (E [[e

1

℄℄ �) (�v: v = pair(v

1

; v

2

) ? v

1

: error)

E [[(
dr

l

e

1

)℄℄ � = C (E [[e

1

℄℄ �) (�v: v = pair(v

1

; v

2

) ? v

2

: error)

E [[(pair?

l

e

1

)℄℄ � = C (E [[e

1

℄℄ �) (�v: v 2 ValP ? v : #f)

A : Val! Val! Val

"

Apply fun
tion

A f v = f =
los((�

l

x: e

1

); �) ? E [[e

1

℄℄ �[x 7! v℄ : error

C : Val

"

! (Val! Val

"

)! Val

"

Che
k fun
tion

C v k = v 2 Err ? v : k v

Figure 2.2: Mini-language semanti
s

1

16 CHAPTER 2. DEFINITION OF THE PROBLEM

Val

"

ontain evaluation results, whi
h are either normal values or error values. We do not

expli
itly de�ne the error values. Normal values (or simply, values) are the Boolean, from

ValB,
losures, from ValC, or pairs, from ValP. A
losure is a
onstru
tor
ontaining a

�-expression and the de�nition lexi
al environment. Note that pairs and environments
an

only
ontain values, not error values.

The evaluation fun
tion
omputes the value of an expression in a
ertain lexi
al environ-

ment. It makes extensive use of the
he
k fun
tion C to verify whether the values obtained

during the evaluation of sub-expressions are normal. C takes an evaluation result and a

ontinuation. It immediately returns the evaluation result if it is an error, otherwise it

passes it to the
ontinuation, whi
h does the rest of the
omputation. The apply fun
tion

A takes
are of the details of the invo
ation of a
losure on an argument. The spe
i�
ation

of the evaluation fun
tion E itself is quite straightforward.

Note the situations in whi
h an error
an o

ur: in the a

ess to the
ar- or
dr-�eld

and in a
all. Evaluation of the other expressions is always safe, barring the o

urren
e of

an error in the evaluation of a sub-expression.

2.3 Generality of the Obje
tive

Despite the fa
t that the obje
tive of our resear
h is done on type analysis, namely the

removal of dynami
 safety type tests, we expe
t the resear
h to have a mu
h broader impa
t.

We present a few reasons to support our belief.

The mini-language is appli
ative; that is, the argument expression is
ompletely evalu-

ated before the
losure is invoked with the result. However, that does not mean that the

s
ope of our resear
h is limited to appli
ative languages. We
ould aim at the same obje
tive

while using a lazy language. The task of type analysis would be similar in su
h a language.

The
hoi
e of a type analysis is a reasonable one, too, as performing a good type analysis

in a dynami
ally-typed language is not less diÆ
ult than performing some other analysis.

Instan
es of analyses in
lude es
ape analyses [53℄, referen
e
ounting analyses [35℄, numeri
al

range analyses [26, 27, 41, 48℄, and representation analyses [54, 32, 33℄. In all
ases, relatively

simple analysis methods
an lead to relatively good analysis results. However, doing an

only it the two sets are disjoint.

2.3. GENERALITY OF THE OBJECTIVE 17

optimal job, that is, obtaining results that allow the optimiser to do the best job possible,

is un
omputable as all the desired properties depend on the a
tual
omputations done be

the program.

Note that our real goal is not ne
essarily to obtain the best possible method to remove

dynami
 type tests in the
ode generated by
ompilers. We also want to study the eÆ
ien
y

of a demand-driven approa
h as a mean to drive an adaptive analysis intelligently. Non-

adaptive methods
learly have intrinsi
 limitations that are more or less easily en
ountered.

On the
ontrary, adaptive methods
an push these limitations mu
h farther. However, there

has to be some me
hanism to guide the adaptations. As will be presented in the following

hapters, type analysis of the programs is performed using an adaptable analysis framework

and a demand-driven approa
h provides the means to translate the needs of the optimiser

(the task of removing safety tests) into pre
ise dire
tives on how to adapt the analysis of

the program to obtain analysis results that are more useful to the optimiser. Although the

demand-driven approa
h that we develop in this resear
h is quite spe
i�
 and the idea of

being demand-driven is quite general, su

ess in our parti
ular proje
t would bring eviden
e

that the general idea
an be useful.

The restri
tion to whole program
ompilation is not a mandatory one. In a
on
rete

implementation, our type analysis
ould be adapted to support separate
ompilation while

guaranteeing
omplete safety. However, a
ertain
ooperation from the programmer would

be required. First, the program would have to be separated in module. This way, no

mutation of a variable
ould be done from another module (if the language in
ludes side-

e�e
ts). Se
ond, the programmer would have to give type annotations for all variables

that are exported out of a module. The importation of a module into a module under

ompilation would make these annotations available to the
ompiler. The more pre
ise

these annotations, the higher the quality of the analysis results for the module, and the

higher the quality of the exe
utable
ode. In order to ensure safety of the evaluation of

the program, the
ompilation of ea
h module would in
lude a veri�
ation that the module

onforms to the given annotations and, at run time, before the start of the normal evaluation

of the program, the exe
utable would perform a veri�
ation to ensure that ea
h importing

module has seen the same annotations than those truly de
lared in ea
h imported module.

The restri
tion to a language without input/output is not mandatory either. We
hose

not to
onsider I/O be
ause it does not add any interesting problem from the point of

18 CHAPTER 2. DEFINITION OF THE PROBLEM

view of the type analysis. It is
lear that the ability to write data does not
hange what

the programs
ompute and it would not interfere with the type analysis. So output is not

interesting. It is less
lear that the ability to read data is also uninteresting. Indeed, the

data that are read have an impa
t on the
omputations that programs perform. They

introdu
e an un
ertainty fa
tor in the
omputations. However, this un
ertainty is quite

easy to manage: a (read) expression may return any value that the language's spe
i�
ation

allows as a valid input value. For example, the spe
i�
ation
ould say that (read) returns

a value made of pairs and Booleans every time it is evaluated. Consequently, any attempt

by the type analysis to obtain pre
ise type information about the possible value of (read)

plainly fails.

Clearly, a type analysis is useful in the
ompilation of dynami
ally-typed languages.

But it may seem useless for stati
ally-typed languages su
h as ML or Haskell. However,

it is not the
ase. The main reason is that these languages both provide algebrai
 types.

An algebrai
 type may in
lude many
onstru
tors. For example, in Haskell, list types are

algebrai
 types in
luding two
onstru
tors: `[℄' of arity 0 for the empty list and `:' of arity

2 for the pairs. The programmer
an de�ne a fun
tion taking lists as an argument and

use pattern-mat
hing with a pattern for only one of the two
onstru
tors. If the fun
tion

is passed a list built using the other
onstru
tor, an error o

urs. For example, an error

a
tually o

urs if the head or the tail is extra
ted from an empty list. The inspe
tion of the

argument is a kind of safety dynami
 test as the typing of the program
annot guarantee

that only the expe
ted
onstru
tor(s) will be passed. A type analysis su
h as ours would

be required in order to remove as many of those tests as possible. If we reverse the point

of view, programs in our mini-language
an be
onsidered to be stati
ally typable using

a unique type that in
ludes three
onstru
tors. The uniqueness of this hypotheti
al type

makes the stati
 typing trivial and leaves all veri�
ations relative to the
onstru
tors to the

run time.

Obje
t-oriented languages
ould also bene�t from an adaptation of our type analysis.

The exa
t instantiation
lass of an obje
t
an be seen as a
onstru
tor. The
lass of a de-

lared variable
an be seen as an algebrai
 type in
luding all the
onstru
tors
orresponding

to its sub-
lasses. Moreover, the
ase where a variable does not referen
e any obje
t, that

is, when its value is null,
an be seen as
orresponding to an additional `null'
onstru
tor.

Despite the fa
t that our type analysis
ould be applied to a variety of languages,

2.3. GENERALITY OF THE OBJECTIVE 19

we de
ided to use this parti
ular appli
ative dynami
ally-typed fun
tional mini-language

be
ause it is the kind of language that needs and stresses type analysis the most. First,

programs written in dynami
ally-typed languages typi
ally need more safety type tests than

those in stati
ally-typed languages. Se
ond, fun
tional programs have a tenden
y to have

a more
omplex
ontrol-
ow be
ause of the use of higher-order fun
tions. So our mini-

language (whi
h is similar to S
heme) is parti
ularly
hallenging for a type analyser.

Finally, demand-driven analysis
ould be useful in the �eld of dynami

ompilation,

or just-in-time
ompilation. Of
ourse, it would have to operate within relatively limited

resour
es, espe
ially in time. But the advantage is that analysis would operate while the

program runs and pro�ling statisti
s about the real exe
ution would be available.

20 CHAPTER 2. DEFINITION OF THE PROBLEM

Chapter 3

Analysis Framework

This
hapter presents the analysis framework and numerous properties related to it. The

analysis framework, by itself, is not a
omplete stati
 analysis for programs drawn from the

synta
ti
 domain Exp. An abstra
t model has to be provided to the framework in order to

reate an instan
e of analysis. Re
all that the abstra
t model spe
i�es what the phony values

and phony evaluation
ontexts are when a phony exe
ution of the program is performed.

From now on, we designate phony values as abstra
t values and phony
ontexts as
ontours.

The abstra
t model takes the form of a few framework parameters. This parameterisation

of the analysis framework brings the mutability of the analysis that we need. Indeed, the

framework has a great
exibility as will be made apparent by results in this
hapter.

We start the presentation of the analysis framework by des
ribing its external behaviour,

that is, the des
ription of its parameters and that of the results of an analysis instan
e. Next,

we present the fun
tioning of the framework. The rest presents di�erent properties of the

framework. The �rst one is the fa
t that any analysis instantiated from the framework

always terminates. Next, a
olle
ting ma
hine is introdu
ed. The ma
hine
omputes the

same result as the standard semanti
s for the mini-language but it also produ
es a
a
he

ontaining the details of the
omputation. With the help of the
olle
ting ma
hine, we

demonstrate that the analysis instan
es are
onservative, that is, the results they produ
e

represent at least all the
on
rete
omputations made during the
on
rete evaluation. Next,

we show that for any program that terminates without error, there exists an abstra
t model

showing that all dynami
 type tests
an safely be removed. We also show that, unfortunately,

it is unde
idable to determine if su
h a model a
tually exists for an arbitrary program. We

22 CHAPTER 3. ANALYSIS FRAMEWORK

end the
hapter by illustrating the
exibility of the framework by giving abstra
t models

with whi
h it is possible to imitate many known analyses.

A kind of analysis framework was previously presented by Ashley and Dybvig in [11℄. It

is parameterised by two modelling fun
tions: one that
ontrols the a

ura
y of the analysis

by splitting abstra
t evaluation
ontexts and one that
ontrols the speed of the analysis by

performing widening on stores. In simple words, widening is some sort of \exaggeration" of

the abstra
t values to help the analysis results to rea
h a stable state faster. Their analysis

framework does not o�er the subtlety that ours does. Both parameters have a global e�e
t

on the analysis. We
onsider them to be too
oarse for our appli
ation. Also their framework

handles mutable variables and data stru
tures. This adds unne
essary
omplexity sin
e our

language is purely fun
tional.

3.1 Instantiation of an Analysis

Before we present the pro
ess of instantiating an analysis for a program, we need to mention

the existen
e of a few restri
tions imposed on the program itself. Let e

l

0

2 Exp be the

program to analyse. First, the framework requires the program to be �-
onverted. That

is, ea
h variable in the program must have a distin
t name. This restri
tion poses no

big problem sin
e, for a program having variables with the same name, a simple renaming

remedy to the situation. Se
ond, the program must in
lude proper labelling, that is, all labels

have to be distin
t. It is vital to uniquely identify ea
h expression in the program in order

to analyse it properly. On
e again, there is no problem there sin
e labels are an arti�
ial

reation, anyway. They are introdu
ed for analysis purpose only. Third, the program has

to be
losed, that is, it must not have free variables. This restri
tion is
losely related to

our
hoi
e not to provide input/output operations in the mini-language (see Se
tion 2.3).

Now, if we suppose we have an appropriate program e

l

0

, the analysis of e

l

0

using an

abstra
t modelM is denoted by

R = FW(e

l

0

;M)

where FW is the analysis framework re
eiving a program and a model, and returning analysis

results R. We �rst des
ribe the abstra
t model. Then the analysis results are presented.

3.1. INSTANTIATION OF AN ANALYSIS 23

M = (ValB; ValC; ValP; Cont;

^

k

0

;

; p
;
all)

ValB 6= ; Abstra
t Booleans

ValC 6= ; Abstra
t
losures

ValP 6= ; Abstra
t pairs

Cont 6= ; Contours

^

k

0

2 Cont Main
ontour

 : Lab� Cont ! ValC Abstra
t
losure
reation

p
 : Lab� Val � Val � Cont ! ValP Abstra
t pair
reation

all : Lab� ValC � Val � Cont ! Cont Contour sele
tion

where Val := ValB

_

[ValC

_

[ValP

subje
t to jVal j+ jContj <1

Figure 3.1: Instantiation parameters of the analysis framework

3.1.1 Framework Parameters

The abstra
t model, formed by framework parameters, is presented in Figure 3.1.

1

The

model in
ludes abstra
t values, abstra
t
ontours, and abstra
t evaluation fun
tions.

The abstra
t values in
lude Booleans (ValB),
losures (ValC), and pairs (ValP). ValB,

ValC, and ValP are �nite, non-empty sets. That is, these abstra
t domains must be �nite

in order to guarantee that the abstra
t evaluation of the program always uses a �nite

amount of resour
es. And they must be non-empty in order to have at least one abstra
t

representative for the
on
rete values of ea
h type. The three sets must be mutually disjoint,

as it is expressed by the use of the disjoint union operator (

_

[). The set of abstra
t values Val

is the union of the three sets. As soon as three sets
onform to the mentioned
onstraints,

they
an be
onsidered as legal abstra
t value domains. Nothing spe
ial is required of the

abstra
t values themselves. Their type
omes from the fa
t that they belong to one (and

only one) of the three sets.

The abstra
t
ontours are given by the set Cont. It must be a �nite, non-empty set.

No other restri
tion applies to the abstra
t
ontours. Contours are abstra
t representatives

for
on
rete evaluation
ontexts. A
on
rete evaluation
ontext des
ribes the
ir
umstan
es

in whi
h an expression gets evaluated. It in
ludes the
urrent lexi
al environment that is

visible by the expression. It also in
ludes the identity of the
aller to the
losure whi
h led

1

In this
hapter, we put a hat (̂) on the abstra
t entities to distinguish them from the
on
rete ones.

24 CHAPTER 3. ANALYSIS FRAMEWORK

to the
urrent evaluation, the
aller of the
aller, et
. The
ontext usually has an impa
t

on the value of an expression. For instan
e, an expression may produ
e di�erent values

when evaluated in di�erent lexi
al environments during
on
rete interpretation. Similarly,

this expression may produ
e di�erent abstra
t values when evaluated in di�erent
ontours

during abstra
t interpretation.

Ea
h abstra
t
ontour represents a
ertain fra
tion of all possible evaluation
ontexts.

The abstra
t evaluation of an expression e

l

in a
ontour

^

k must summarise everything

that
ould happen during the
on
rete evaluation of e

l

in any evaluation
ontext that is

represented by

^

k. For example, if e

l

evaluates to a pair in a
ertain evaluation
ontext and

to a
losure in another
ontext, and that both evaluation
ontexts are abstra
ted by

^

k, then,

during abstra
t evaluation in
ontour

^

k, e

l

will evaluate to at least an abstra
t pair and an

abstra
t
losure, the last two being abstra
t
ounterparts of the
on
rete values returned

by e

l

.

Parameter

^

k

0

is the
ontour in whi
h the program (the top-level expression e

l

0

) is to be

abstra
tly evaluated. Ex
ept for that spe
ial use,

^

k

0

is an ordinary
ontour.

When a �-expression is abstra
tly evaluated, an abstra
t
losure must be produ
ed.

Similarly for a
ons-expression. However, the analysis framework does not de
ide by itself

whi
h
losure or whi
h pair should be returned. This is where the
losure
reation fun
tion

(

) and the pair
reation fun
tion (p
)
ome into play. Fun
tion

hooses the abstra
t

losure from ValC that should be returned based on the �-expression and the
urrent
on-

tour. Fun
tion p
 does the same but has also the possibility to base its de
ision on the two

values that go into the abstra
t pair. We explain in the next se
tions what it means to

produ
e a value that
ontains other values. p
 may
hoose the abstra
t pair in fun
tion of

the label of the
ons-expression, or in fun
tion of the
ontour, or in fun
tion of the type of

the value that goes in the
dr-�eld of the pair, or, in general, a

ording to a
ombination

of strategies. As long as

 returns an element of ValC and p
 returns an element of ValP,

everything works.

The possibility of spe
ifying ValC and ValP
ontributes to the
exibility of the frame-

work but it is espe
ially be
ause of the existen
e of the

 and p
 fun
tions that the frame-

work is very
exible. It is also be
ause of the
all fun
tion that we des
ribe below.

One might worry about the fa
t that there is no b
 fun
tion (no Boolean
reation fun
-

3.1. INSTANTIATION OF AN ANALYSIS 25

tion). Indeed, Booleans are produ
ed by the evaluation of the false
onstant and sometimes

by pair?-expressions. There
ould have been a b
 fun
tion. However, we do not see the

utility of su
h a fun
tion as there is just one
on
rete Boolean. What would be the bene�t

of
hoosing one abstra
t Boolean over another one sin
e they all represent the same
on-

rete Boolean? We believe there is none. But why do we allow ValB to have more than

one element in the �rst pla
e? In fa
t, there is no advantage, but there is no problem in

doing so, either. The de
ision of having no b
 fun
tion
ould be
hanged in the future if

something indi
ates that it would be bene�
ial. The
urrent treatment of Boolean
reation

by the framework is that ea
h time an abstra
t Boolean is to be produ
ed, the whole ValB

set is returned.

The last framework parameter is the
all fun
tion. This fun
tion sele
ts
ontours in

whi
h expressions are evaluated. It is not used before the evaluation of ea
h individual

expression but only before the whole body of a
losure. A (possibly) new
ontour is sele
ted

ea
h time a
losure is
alled. Indeed, when an abstra
t
losure
̂ is invoked on argument

v̂ in
all expression (

l

e

l

1

e

l

2

) and in
ontour

^

k, the body of
̂ gets evaluated in
ontour

all(l;
̂; v̂;

^

k). Hen
e, the
all fun
tion
ontributes greatly to the
exibility of the analysis

framework as di�erent
ontours
an be sele
ted, depending, of
ourse, on the invoked
losure

but also on the argument, on the label of the
all expression where the invo
ation o

urs,

and on the
ontour in whi
h this invo
ation o

urs. The resulting
exibility allows our

framework to have
ontours that may be
all-
hains or that may be abstra
t representatives

of the lexi
al environment, et
. Examples of various uses of the
all fun
tion
an be found

in Se
tion 3.7.

In order to be a legal model for the analysis of a program e

l

0

,M has to obey to a last

onstraint. The three
reation (or sele
tion) fun
tions have to be de�ned on the part of their

from-set that
overs at least every possible argument passed by the analysis framework. That

is, their domain must
over at least every possible argument. The fun
tions are not required

to be de�ned on their whole from-set as the label argument poses a problem. Presumably,

Lab is an in�nite set and the rest of the spe
i�
ation of models manipulates only �nite sets.

So now we present the part of the from-set that must be
overed by ea
h fun
tion. Let us

denote by 4(e

l

0

) the set of labels in program e

l

0

.

2

Closure
reation fun
tion

 has to be

de�ned at least on 4(e

l

0

) � Cont. Pair
reation fun
tion p
 has to be de�ned at least on

2

The 4 fun
tion is formally de�ned in Se
tion 3.4.1.

26 CHAPTER 3. ANALYSIS FRAMEWORK

R = (�; �;
; Æ; �; �; �)

Value of e

l

in k: �

l;

^

k

�Val l 2 Lab,

^

k2 Cont

Contents of x when bound in

^

k: �

x;

^

k

�Val x2 Var,

^

k2 Cont

Return value of
̂ with body in

^

k:

̂;

^

k

�Val
̂ 2 ValC,

^

k2 Cont

Flag indi
ating evaluation of e

l

in

^

k: Æ

l;

^

k

�Val l 2 Lab,

^

k2 Cont

Creation
ir
umstan
es of
̂: �

̂

�Lab� Cont
̂ 2 ValC

Creation
ir
umstan
es of p̂: �

p̂

�Lab� Val � Val � Cont p̂ 2 ValP

Sele
tion
ir
umstan
es of

^

k: �

^

k

�Lab� ValC � Val � Cont

^

k2 Cont

Figure 3.2: Analysis results of the framework

4(e

0

)�Val �Val �Cont. And
ontour sele
tion fun
tion
all has to be de�ned at least on

4(e

0

)� ValC � Val � Cont.

We
ould relax this last
onstraint on the domain of the abstra
t
reation fun
tions a

little more. For instan
e, the label passed to

an only be that of a �-expression. For p

and
all, the label
an only be that of a
ons-expression and a
all expression, respe
tively.

However, spe
ifying the minimal domains that way would be unne
essarily heavy. Anyway,

the given spe
i�
ation does not pose a real problem as, for example,

 may return any

element of ValC it wishes if the argument label is not one of a �-expression; it does not

matter.

3.1.2 Analysis Results

The analysis results R of the analysis of program e

l

0

using model M are des
ribed in

Figure 3.2. R takes the form of seven matri
es of abstra
t variables. Ea
h matrix
ontains

a
ertain kind of information. In fa
t, it is dire
tly with these matri
es that the framework

does the analysis of programs.

We des
ribe the
ontents of ea
h matrix. Essentially, the �rst four matri
es are the

analysis results that are normally
onsidered as the most interesting, espe
ially the �rst.

The last three are rather intended for internal purpose.

The � matrix indi
ates the set of values to whi
h ea
h expression evaluates to in ea
h

ontour. Typi
ally, there are many entries that remain empty after the analysis, be
ause,

for example, there is some dead
ode in the program or, by the way the model is built, some

3.1. INSTANTIATION OF AN ANALYSIS 27

expressions simply do not get evaluated in
ertain
ontours.

The � matrix indi
ates the values that ea
h variable of e

l

0

, in ea
h
ontour, may
ontain.

Note how the entries in this matrix require e

l

0

to be �-
onverted. Identi
al names for

di�erent variables would produ
e pollution in the results as the values of all variables sharing

a
ertain name would also share their
ontents. The meaning of an abstra
t variable like

�

x;

^

k

is quite subtle. It is not ne
essarily equivalent to the result of a referen
e to x in
ontour

^

k. This would be ill-de�ned as there is no dire
t relation between the
ontour that prevails

when x is (abstra
tly) bound to a value and the
ontour that prevails when x is referen
ed.

The referen
e may o

ur inside of the body of a
losure originating from a �-expression that

is in the s
ope of x. Remember that the
ontour possibly
hanges during ea
h invo
ation.

The abstra
t variable �

x;

^

k

represents the value of variable x if x is the parameter of some

losure
̂ and if, for every invo
ation where
̂ gets
alled on a
ertain value,
ontour

^

k is the

one that is pres
ribed by
all for the given situation. For example,
onsider the following

program ex
erpt:

. . .

(

1

e

2

e

3

)

. . .

(�

4

x: (�

5

y: x

6

))

. . .

Suppose that during evaluation of
all e

1

in
ontour

^

k, a
losure
̂,
oming from �-expression

e

4

, gets
alled on some value v̂, and that
all(1;
̂; v̂;

^

k) =

^

k

0

. Then, it follows that v̂ 2 �

x;

^

k

0

.

Now, suppose that a
losure originating from �-expression e

5

gets
alled and that its body

is evaluated in
ontour

^

k

00

. Then, the referen
e to x in e

6

in
ontour

^

k

00

will in
lude the

ontents of �

x;

^

k

0

(and not of �

x;

^

k

00

) be
ause

^

k

0

is the
ontour in whi
h x was bound.

The
 matrix indi
ates the values returned by the
losures. Abstra
t variable

̂;

^

k

ontains the values returned by
losure
̂ when its body has been evaluated in
ontour

^

k.

The Æ matrix indi
ates in whi
h
ontours ea
h expression gets evaluated. Ea
h entry

of the matrix a
ts as a
ag. If Æ

l;

^

k

is non-empty, then expression e

l

gets evaluated in

ontour

^

k, otherwise, it is not. The a
tual
ontents of these abstra
t variables are not

important. The role of the Æ matrix is to help the framework to generate analyses that

are not too
onservative. Analyses should always be
onservative, but it should avoid

28 CHAPTER 3. ANALYSIS FRAMEWORK

unne
essary pollution of the results as mu
h as possible. This is parti
ularly true in the

ase of our framework. Arbitrary
ontour de�nition through parameters typi
ally
auses

the instantiation of analyses that in
lude very dis
riminating
ontours. Dis
riminating

ontours
an mimi

on
rete evaluation
ontexts with high �delity and most expressions

may get evaluated in only a small fra
tion of the
ontours. So it is important to avoid

propagation of values from the expressions that are not supposed to be evaluated.

The �, �, and � matri
es are logs of the
reation and sele
tion of abstra
t values and

ontours by the

, p
, and
all fun
tions. They re
ord the
ir
umstan
es under whi
h values

and
ontours are
reated and sele
ted. Let us illustrate their usage with the
ase of the

� matrix. For ea
h abstra
t pair, the � matrix logs whi
h quadruples were e�e
tively used

in the
reation of the pair. Note that a pair p̂
ould be
reated when any quadruple from

p

�1

(p̂) is passed to p
. But that does not mean that, during the analysis, pair p̂ really

got
reated under all the
ir
umstan
es present in p

�1

(p̂). The exa
t set of
ir
umstan
es

that were prevailing when p̂ was
reated during the analysis are logged in �

p̂

. The three

log matri
es are very helpful in helping to redu
e the propagation of super
uous values

throughout the analysis results.

� Abstra
t variable �

̂

ontains all
ouples that lead to the
reation of
̂, ea
h being

formed by a label and a
ontour.

� Abstra
t variable �

p̂

ontains all quadruples that lead to the
reation of p̂, ea
h begin

formed by the label of the
ons-expression, the two values to
ons together, and the

ontour that was prevailing during that
reation.

� Abstra
t variable �

^

k

ontains all quadruples that lead to the sele
tion of

^

k as a
ontext

for the evaluation of the body of a
losure, ea
h being formed by the label of the
all

expression, the
losure that was invoked, the value that was passed, and the
ontour

that was prevailing during the
all.

Note that, from the point of view of the framework, the fa
t that p̂ has some
ontents
omes

from the fa
t that �

p̂

ontains some quadruples, and not from the fa
t that p̂ is a
tually

denoted in ValP by P , pair(v

1

; v

2

), or even |. The presentation of the internal fun
tioning

of the framework in the next se
tion show the intensive use of the log variables.

3.1. INSTANTIATION OF AN ANALYSIS 29

3.1.3 An Example of Use of the Analysis Framework

To illustrate the use of the analysis framework, we present the analysis of a little program

using a simple model. Here is the program:

e

0

= (
ar

0

(
dr

1

(
ons

2

#f

3

(
ons

4

#f

5

#f

6

))))

Note that we avoid
alls in the example as the me
hani
s for analysing fun
tions and
alls

is quite involving. We
hoose the simplest legal model for the analysis of e

0

:

M = (ValB; ValC; ValP; Cont; K;

; p
;
all) where

ValB = f#fg

ValC = fCg

ValP = fPg

Cont = fKg

(l;

^

k) = C

p
(l; v̂

1

; v̂

2

;

^

k) = P

all(l;

^

f; v̂;

^

k) = K

The model
ontains a single abstra
t value of ea
h type and a single abstra
t
ontour.

Naturally, there is no freedom left in the
hoi
e of the three
reation fun
tions. Here are

the analysis results that we obtain from the analysis FW(e

0

;M):

R = (�; �;
; Æ; �; �; �) where

�

0;K

= f#fg �

1;K

= f#f; Pg �

2;K

= fPg �

3;K

= f#fg

�

4;K

= fPg �

5;K

= f#fg �

6;K

= f#fg

C;K

= ;

Æ

0;K

= f#fg Æ

1;K

= f#fg Æ

2;K

= f#fg Æ

3;K

= f#fg

Æ

4;K

= f#fg Æ

5;K

= f#fg Æ

6;K

= f#fg

�

C

= ;

�

P

= f(2; #f; P; K); (4; #f; #f; K)g

�

K

= ;

Here is the signi�
ation of the results. We keep the des
ription of the � matrix for the end.

Note that the � matrix is degenerated as there is no variable in e

0

. The
 matrix has only

30 CHAPTER 3. ANALYSIS FRAMEWORK

one entry. It says that
losure C returns nothing when its body is evaluated in
ontour

K. It is be
ause C never gets
reated in the �rst pla
e, as is expressed by the � matrix.

The Æ matrix
ontains an entry per expression and it shows that all the expressions are

evaluated in
ontour K. The fa
t that their
ontent is f#fg is not important, only that it

is not empty. The � matrix indi
ates that K gets sele
ted in no
ir
umstan
e. There are

no
alls, of
ourse. The (ne
essary) use of K as the main
ontour is not
onsidered by the

framework to be a
ontour sele
tion.

Now, we
ome to the interesting part of the results. Let us �rst
omment the
ontents

of the � matrix. It indi
ates that pair P got
reated under two
ir
umstan
es. One by e

4

in

ontour K and using two Booleans. The other one by e

2

in
ontour K and using a Boolean

and P itself. Intuitively, this is
redible. But, as will be made
lear in the next se
tion,

these
ir
umstan
es originate from the intera
tion between entries of the � and � matri
es.

We
omplete the example by des
ribing the
ontents of the �-matrix. Entries for e

3

, e

5

,

and e

6

only
ontain #f. This is the only possible result for the evaluation of the
onstant

false. Also, entries for e

2

and e

4

ontain pair P . A pair is the only result a
ons-expression

ould provide and there is only one abstra
t pair. Abstra
t variable �

1;

^

k

ontains two values:

a Boolean and a pair. Note that, during a
on
rete evaluation, only a pair
ould be the

result for the evaluation of e

1

. This is an example where analysis results
ontains super
uous

values that do not
orrespond to anything in the
on
rete evaluation. This is
aused by the

onservativeness of the analysis. The values in �

1;

^

k

are the result of the extra
tion of the

dr-�eld of P . The extra
tion pro
eeds by taking the third �eld of all quadruples in �

P

.

This explains the presen
e of the two values in �

1;

^

k

. The value in �

0;

^

k

is the result of the

extra
tion of the
ar-�eld and also by the �ltering of non-pairs among the values returned

by the sub-expression e

1

. The framework does not try to perform some kind of
ar-�eld

extra
tion on #f, but only on P .

Note, however, that the presen
e of a non-pair in �

1;

^

k

would for
e a
ompiler to in
lude

a dynami
 type test in the generated
ode for e

0

in order to keep the operations safe. That

has to be so, unless it did another analysis with a more pre
ise model and managed to show

that only pairs
an result from the evaluation of e

1

.

Note also how the log variable � helped us in obtaining more pre
ise results. If p

�1

(P)

were to be used instead of �

P

, the values of expressions e

0

and e

1

would in
lude Val entirely.

3.2. INTERNAL FUNCTIONING OF THE FRAMEWORK 31

3.2 Internal Fun
tioning of the Framework

Essentially, the analysis framework works by performing an abstra
t interpretation of the

program. The analysis is done in two steps. First, a set of
onstraints is generated. These

onstraints involve the abstra
t variables mentioned above (�

l;

^

k

, et
.). The
onstraints

that are generated in order to perform the analysis are the evaluation
onstraints. Their

name
omes from the fa
t that their goal is to simulate the evaluation of the program.

The se
ond step
onsists in solving these
onstraints. Contrarily to what is done in [29℄, no

transformation or
reation is performed on the
onstraints themselves but, instead, abstra
t

values are propagated in the abstra
t variables until all the
onstraints are satis�ed.

In the rest of the se
tion, we �rst present the generation of the evaluation
onstraints.

We do not present an algorithm for solving the
onstraints as it is a simple, me
hani
al

pro
ess. As is
ommon with the resolution of systems of
onstraints between sets, there

are typi
ally many solutions to the system. The one that is interesting is the least solution

sin
e the analysis ought to avoid the propagation of super
uous values as mu
h as possible.

Then we present the generation of safety
onstraints. These
onstraints are not a part

of the analysis. However, their purpose is to provide a systemati
 way to verify whi
h opti-

misation's are enabled by the analysis results. That is, if all safety
onstraints are satis�ed

for a parti
ular expression, then the
ode generated by the
ompiler for this expression need

not in
lude any dynami
 safety type test.

3.2.1 Evaluation Constraints

The set of evaluation
onstraints that the analysis framework generates for a program e

l

0

2

Exp and abstra
t modelM, where

M = (ValB; ValC; ValP; Cont; k

0

;

; p
;
all),

is presented in Figure 3.3. Note that, ex
eptionally for this �gure, we omit putting a hat

(̂) on the abstra
t values and
ontours. The equations are already loaded enough without

it. And no
on
rete value is manipulated by the framework, anyway. The set of
onstraints

in
ludes a spe
ial
onstraint `Æ

l

0

;k

0

� ValB', used to start the abstra
t interpretation, and,

for ea
h
ontour k and ea
h expression e

l

in the program, a set of
onstraints simulating

32 CHAPTER 3. ANALYSIS FRAMEWORK

the (eventual) evaluation of e

l

in k. This
onstraint generator may seem very
omplex a

priori, so we explain the meaning of the
onstraints generated for ea
h kind of expression.

The
omplexity of the
onstraints generated for ea
h kind of expression vary wildly and so

we try to order the presentation from that of the simplest kind to that of the most diÆ
ult.

Let us start with the
ase of the
onstant false expression; i.e. let e

l

= #f

l

. Anytime e

l

is evaluated, its value is #f. The
onstraint that is generated expresses just that. If Æ

l;k

6= ;,

that is, if e

l

gets evaluated, then �

l;k

� ValB. During the des
ription of the abstra
t model,

we mentioned that we did not in
lude a
reation fun
tion for the Booleans. This is apparent

here as the whole set of abstra
t Booleans is poured into the value of the expression, that

is, in �

l;k

. Note that, for expression #f

l

and for all subsequent expressions, great
are has

been taken to ensure that they do not produ
e values if they do not get evaluated.

We
ontinue with the pair?-expression; i.e. let e

l

= (pair?

l

e

l

1

). Here, e

l

has a sub-

expression and some \pipes" have to be installed in order to
oordinate the evaluation of e

l

1

with that of its parent. Let us sket
h the
on
rete evaluation of e

l

step by step and
ompare

it with the generated
onstraints. The �rst thing e

l

does is to trigger the evaluation of its

sub-expression. This is expressed by the
onstraint Æ

l

1

;k

� Æ

l;k

. When the evaluation of e

l

1

is
ompleted, the type of the resulting value is
he
ked. If the value is a pair, e

l

returns

it dire
tly. So the next
onstraint does the equivalent operation. The idea is that, if an

abstra
t pair represents a
on
rete pair returned by e

l

1

, then the same abstra
t pair also

represents the
on
rete pair returned by e

l

. If the value is not a pair, then #f is returned

by e

l

. This is expressed by the last
onstraint. So, during the abstra
t evaluation of e

l

in a

parti
ular
ontour k, both the pair and the non-pair
ases
an o

ur
on
urrently. This is

typi
al in abstra
t interpretation.

We remain in pair-related
ases and
onsider the
ons-expression: i.e. let e

l

= (
ons

l

e

l

1

e

l

2

). The �rst
onstraints express the fa
t that both sub-expressions have to be evaluated

when e

l

is. Instead, of
reating one pair as during
on
rete interpretation, possibly many

abstra
t pairs may have to be
reated as ea
h sub-expression may produ
e more than one

value. The last
onstraints
reate pairs for ea
h
ombination of values. The pair is
reated

with the help of the p
 fun
tion. Moreover, the
ir
umstan
es prevailing when ea
h pair is

reated are logged in the appropriate � matrix entry. The logging of these informations is

required for the a

ess to the �elds of the pairs.

Let us
onsider the
ar-expression; i.e. let e

l

= (
ar

l

e

l

1

). Basi
ally, the evaluation steps

3.2. INTERNAL FUNCTIONING OF THE FRAMEWORK 33

Evaluation
onstraints for program e

l

0

are:

[

k2Cont

E [[e

l

0

℄℄ k [fÆ

l

0

;k

0

� ValBg ;

where

E [[#f

l

℄℄ k = fÆ

l;k

6= ;) �

l;k

� ValBg

E [[x

l

℄℄ k = fÆ

l;k

6= ;) �

l;k

� ref(x; l; k)g

E [[(

l

e

l

1

e

l

2

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [E [[e

l

2

℄℄ k [

8

>

<

>

:

�

x;k

0

3 v;

�

l;k

�

;k

0

;

�

k

0

3 (l;
; v; k)

 2 �

l

1

;k

\ ValC; v 2 �

l

2

;k

;

k

0

=
all(l;
; v; k);

(l

0

; k

00

) 2 �

; e

l

0

= (�

l

0

x: e

l

00

)

9

>

=

>

;

E [[(�

l

x: e

l

1

)℄℄ k =

n

Æ

l;k

6= ;) �

l;k

3

(l; k) ^ �

(l;k)

3 (l; k)

o

[

fÆ

l

1

;k

� �

x;k

g [E [[e

l

1

℄℄ k [

f

;k

� �

l

1

;k

j
 2 ValC; (l; k

0

) 2 �

g

E [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

fÆ

l

2

;k

� �

l

1

;k

\ (ValC [ValP)g [

fÆ

l

3

;k

� �

l

1

;k

\ ValBg [E [[e

l

2

℄℄ k [

E [[e

l

3

℄℄ k [f�

l;k

� �

l

2

;k

[�

l

3

;k

g

E [[(
ons

l

e

l

1

e

l

2

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [E [[e

l

2

℄℄ k [

(

�

l;k

3 p;

�

p

3 (l; v

1

; v

2

; k)

v

1

2 �

l

1

;k

; v

2

2 �

l

2

;k

;

p = p
(l; v

1

; v

2

; k)

)

E [[(
ar

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

n

�

l;k

3 v

1

p 2 �

l

1

;k

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

E [[(
dr

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [

n

�

l;k

3 v

2

p 2 �

l

1

;k

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

E [[(pair?

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [E [[e

l

1

℄℄ k [f�

l;k

� �

l

1

;k

\ ValPg [

f�

l

1

;k

\ (ValB [ValC) 6= ;) �

l;k

� ValBg

ref(x; l; k) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ref(x; l

0

; k); if e

l

0

6= (�

l

0

y: e

l

)

�

x;k

; if e

l

0

= (�

l

0

x: e

l

)

[

k

0

ref(x; l

0

; k

0

); otherwise =� e

l

0

= (�

l

0

y: e

l

), where y 6= x �=

for (l

00

;
; v; k

00

) 2 �

k

;

(l

0

; k

0

) 2 �

where l

0

= parent(l)

Figure 3.3: Evaluation
onstraints

34 CHAPTER 3. ANALYSIS FRAMEWORK

that are simulated by the
onstraints are the triggering of the evaluation of e

l

1

and then,

for ea
h pair thus obtained, the extra
tion of the
ar-�eld. The
ontents of the
ar-�eld

is
omputed by looking into the pair log (�) to re
over the
ir
umstan
es leading to the

reation of the pairs. The se
ond
omponent of ea
h quadruple
ontains the value intended

for the
ar-�eld of a pair. Aside from the extra
tion issue, a point worth mentioning is the

treatment of the non-pair results
oming from the sub-evaluation. The
onstraints simply

ignore the non-pair values. This may seem strange as, in the
on
rete interpretation, a non-

pair value would
ause an error. However, in the design of the framework, we have
hosen

to simulate only the non-erroneous
omputations by the evaluation
onstraints. But, as will

be made
lear below, there are safety
onstraints that pre
isely have the veri�
ation of the

\pairness" of the results
oming from e

l

1

as a task. Moreover, propagating abstra
t error

values would be a waste of resour
es as there frequently are errors o

urring somewhere

during the abstra
t evaluation. An error value appearing as result from the evaluation of

an expression would not be very meaningful, anyway: \An error possibly o

urred during

the evaluation of e

l

."

The explanations for the
dr-expression are similar.

Now we turn to the
onditional; i.e. let e

l

= (if

l

e

l

1

e

l

2

e

l

3

). The interesting
hara
teristi

of the
onditional is the fa
t that the last two sub-expressions get evaluated or not depends

on the value of the test. The abstra
t interpretation of e

l

goes like this. The evaluation of

e

l

1

is triggered. Then the evaluation of e

l

2

is triggered if some true value
omes from e

l

1

and the evaluation of e

l

3

is triggered if some false value
omes from e

l

1

. The evaluation of

both (or even none) may be triggered. Finally, the value of e

l

is the union of the values of

e

l

2

and e

l

3

. These
onstraints are an example that the value of a Æ entry may depend on

the value of an � entry.

The three kinds of expression that remain are all related to
losures and invo
ations.

Let us
onsider the �-expression; i.e. let e

l

= (�

l

x: e

l

1

). The
onstraints generated for e

l

are divided in two groups: the ones related to the evaluation of the �-expression itself and

the ones related to the invo
ation of
losures originating from e

l

. The
onstraints of the

�rst group simply verify whether e

l

gets evaluated in
ontour k and, if so,
reate a
losure

using

 and log its
reation. Note that di�erent �-expressions
ould produ
e the same

abstra
t
losure. However, the � matrix logs the origins of all
losures. The
onstraints of

the se
ond group dire
t the evaluation of the body when a
losure originating from e

l

is

3.2. INTERNAL FUNCTIONING OF THE FRAMEWORK 35

invoked. First, the evaluation of e

l

1

in k is triggered if the parameter is bound to any value

in
ontour k. After e

l

1

is evaluated, the values it produ
es are
opied as the return value of

the
losures (

;k

) originating from e

l

. These
losures may have been
reated in any
ontour,

but the thing that matters is that their body gets evaluated in k. Note that there is no

logi
al
onne
tion between the
ontour in whi
h e

l

is evaluated and the
ontour in whi
h

e

l

1

is evaluated. A
ontour sele
tion using
all o

urs during ea
h invo
ation. Nevertheless,

both groups of
onstraints are generated together as the
onstraint generator produ
es the

onstraints for the evaluation in
ontour k for the whole program at on
e.

We
ontinue by des
ribing the
onstraints generated for a
all; i.e. let e

l

= (

l

e

l

1

e

l

2

). The

triggering of the evaluation of the sub-expressions is routine, now. However, the invo
ation

is more interesting. An invo
ation o

urs for all
ombinations of a
losure

oming from e

l

1

and an argument v
oming from e

l

2

. Note that non-
losures
oming from e

l

1

are ignored.

The
ontour k

0

in whi
h the body ought to be evaluated is sele
ted using
all. Then, the

parameter that has to be bound to the argument is lo
ated by sear
hing for the origins of

in the
losure log �. Note that there
ould be more than one parameter for abstra
t
losure

 sin
e di�erent �-expressions may produ
e
. The
onstraints then simulate the binding of

the parameter to v in
ontour k

0

, the
ontribution of the return value of
 to the value of

e

l

, and the logging in � of the
ir
umstan
es in whi
h k

0

got sele
ted.

The last kind of expression is the variable referen
e; i.e. let e

l

= x

l

. It may seem

surprising that we des
ribe the
onstraints related to this inno
ent-looking expression at

the end, but the referen
e is really not a trivial matter. Note that the framework does not

maintain an expli
it abstra
t representative for the lexi
al environment. Also, remember

that the abstra
t variable �

x;k

does not represent the value of a referen
e to x in
ontour k.

So the
onstraint generated for e

l

involves the use of the `ref' fun
tion. This fun
tion does

the ne
essary work to gather the values to whi
h x
ould be bound to when the referen
e

is made at label l in
ontour k. Essentially, `ref' sear
hes for the binging site of x by

limbing in the syntax tree of the program. This is why it
omputes the label l

0

of the

parent expression.

3

Most of the steps made during the
limb are simple, ex
ept when it

goes through a �-expression. Remember that there is no simple
onne
tion between the

ontour in whi
h a
losure body exe
utes and the
ontour in whi
h its native �-expression

was evaluated. The value of ref(x; l; k) depends on e

l

0

. There are three
ases.

3

The parent expression always exists be
ause the program is
losed. The main expression e

l

0

has no

parent, but it is in the s
ope of no variable either, so a referen
e
annot o

ur there.

36 CHAPTER 3. ANALYSIS FRAMEWORK

1. If e

l

0

is not a �-expression, then a referen
e to x from e

l

in
ontour k has to give the

same results as one from e

l

0

.

2. If e

l

0

is a �-expression and its parameter is x, then the
limb has
ome to an end. The

value of ref(x; l; k) is exa
tly �

x;k

.

3. Otherwise, e

l

0

is a �-expression and its parameter is not x. Let us suppose that the

parameter is y. The value of ref(x; l; k) is the value of a referen
e to x from e

l

0

in

the
ontext in whi
h it was evaluated. The
ontour in whi
h e

l

0

was evaluated is not

ne
essarily k. More than that, it may not be unique. In fa
t, any
ontour k

0

in whi
h

e

l

0

has got evaluated, having resulted in a
losure
, whi
h has in turn been invoked in

some
ir
umstan
es, leading to the evaluation of e

l

in
ontour k, should be
onsidered.

This is exa
tly what is expressed in the third
ase of the de�nition of `ref'. Closures

involved in the sele
tion of
ontour k are �rst sear
hed for in the � matrix. Only

those originating from e

l

0

are
onsidered, sin
e `ref' performs a
limb in the syntax

tree. Ea
h of those
losures has been
reated in some
ontour k

0

, a

ording to log �.

So the referen
e to x
ontinues at e

l

0

in ea
h su
h
ontour k

0

and then the union of

their result is taken.

Now that the
onstraints for ea
h kind of expression have been des
ribed, there remains

the `Æ

l

0

;k

0

� ValB'
onstraint. This
onstraint ensures that the abstra
t interpretation of

e

l

0

e�e
tively happens. Otherwise, the minimal solution to the evaluation
onstraints would

onsist in leaving all abstra
t variables empty.

Example of Evaluation Constraints

We
ome ba
k on the example of Se
tion 3.1.3 and give the evaluation
onstraints for the

same program

e

0

= (
ar

0

(
dr

1

(
ons

2

#f

3

(
ons

4

#f

5

#f

6

))))

and the same modelM. Fortunately, the use of a single
ontour helps in keeping the size

of the
onstraints moderate. Here they are:

fÆ

1;K

� Æ

0;K

g

[fÆ

2;K

� Æ

1;K

g

[fÆ

3;K

� Æ

2;K

; Æ

4;K

� Æ

2;K

g

3.2. INTERNAL FUNCTIONING OF THE FRAMEWORK 37

[fÆ

3;K

6= ;) �

3;K

� ValBg

[fÆ

5;K

� Æ

4;K

; Æ

6;K

� Æ

4;K

g

[fÆ

5;K

6= ;) �

5;K

� ValBg

[fÆ

6;K

6= ;) �

6;K

� ValBg

[

8

<

:

�

4;K

3 p v

1

2 �

5;K

; v

2

2 �

6;K

�

p

3 (4; v

1

; v

2

; K) p = p
(4; v

1

; v

2

; K)

9

=

;

[

8

<

:

�

2;K

3 p v

1

2 �

3;K

; v

2

2 �

4;K

�

p

3 (2; v

1

; v

2

; K) p = p
(2; v

1

; v

2

; K)

9

=

;

[

n

�

1;K

3 v

2

p 2 �

2;K

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

[

n

�

0;K

3 v

1

p 2 �

1;K

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

[fÆ

0;K

� ValBg

3.2.2 Safety Constraints

To verify whi
h dynami
 type tests are still required on
e the analysis results are
omputed,

one
an
onfront the latter to the safety
onstraints. Three kinds of expression may require

dynami
 type tests:
alls and
ar- and
dr-expressions. A dynami
 test may have to be

in
luded to
he
k the value returned by their �rst sub-expression. Figure 3.4 presents the

safety
onstraints generated for a program e

l

0

using a modelM. These
onstraints are very

simple and we do not give more details on their meaning.

An expression is safe and does not have to
omprise a dynami
 type test if the safety

onstraints on the value of its �rst sub-expression (if there are any) are satis�ed for all

ontours k 2 Cont.

A program is analysed perfe
tly well using modelM if all safety
onstraints are satis�ed.

In other words, if the system of
onstraints obtained by joining both evaluation and safety

onstraints has a solution. A program is analysable perfe
tly well if there exists a modelM

su
h that e

l

0

is analysed perfe
tly well usingM.

If we
ome ba
k to our running example, generating the
onstraints and
onfronting

them to the analysis results would reveal that e

0

must in
lude a dynami
 type test to

ensure that it always operates on pairs, but e

1

does not have to.

38 CHAPTER 3. ANALYSIS FRAMEWORK

Safety
onstraints for program e

l

0

are:

[

k2Cont

S [[e

l

0

℄℄ k;

where

S [[#f

l

℄℄ k = ;

S [[x

l

℄℄ k = ;

S [[(

l

e

l

1

e

l

2

)℄℄ k = f�

l

1

;k

� ValCg [S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k

S [[(�

l

x: e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

S [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k = S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k [S [[e

l

3

℄℄ k

S [[(
ons

l

e

l

1

e

l

2

)℄℄ k = S [[e

l

1

℄℄ k [S [[e

l

2

℄℄ k

S [[(
ar

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [S [[e

l

1

℄℄ k

S [[(
dr

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [S [[e

l

1

℄℄ k

S [[(pair?

l

e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

Figure 3.4: Safety
onstraints

3.3 Termination of the Analysis

The following theorem establishes that an analysis instan
e obtained from the analysis

framework (using a legal model) always terminates.

Theorem 3.1 An analysis performed by the evaluation
onstraints always �nishes.

Proof 3.1 First, observe that ea
h evaluation
onstraint
an be rewritten as a set of

onstraints, ea
h
onstraint having the form:

I

1

^ : : : ^ I

n

) I

0

where ea
h I

i

, 0 � i � n, is a simple membership
ondition (for example, p

3

2 �

l;k

). It

follows that the saturation of all abstra
t variables (for example, �

l;k

= Val)
onstitutes

a trivial solution to the evaluation
onstraints. So �nding the minimum solution to the

onstraints is guaranteed to �nish sin
e there is only a �nite number of values that
an be

put in ea
h abstra
t variable. 2

3.4. A COLLECTING MACHINE 39

As an example, the evaluation
onstraints for expression #f

l

in
ontour k
an be trans-

formed in the following way:

E [[#f

l

℄℄ k = fÆ

l;k

6= ;) �

l;k

� ValBg

7!

E [[#f

l

℄℄ k = fv

1

2 Æ

l;k

) v

2

2 �

l;k

j v

1

2 Val ; v

2

2 ValBg

3.4 A Colle
ting Ma
hine

The establishment of many properties of the framework requires us to introdu
e a
olle
ting

ma
hine for the mini-language. So Figure 3.5 presents the semanti
s of a
olle
ting ma
hine.

The
olle
ting ma
hine essentially does the same
omputations as those performed during

an ordinary evaluation ex
ept that it also builds a
a
he
ontaining a detailed des
ription

of every step of the
omputations. For ea
h evaluation of an expression in a parti
ular

evaluation
ontext, a pre-entry and a post-entry are logged into the
a
he. Con
rete
ontours

are used by the
olle
ting ma
hine in order to designate ea
h evaluation
ontext met during

the evaluation of the program.

Let us
omment on Figure 3.5. First, the
ontours are represented by �nite strings of

labels. The labels in a parti
ular
ontour are those of the
all expressions through whi
h

invo
ations were done that led to the evaluation
ontext designated by the
ontour. For

example, the main expression of the program is evaluated in
ontour �. If
losure

1

is

invoked from
all expression e

l

1

during the evaluation of the main expression, its body is

evaluated in
ontour l

1

. In turn, if (another)
losure

2

is invoked from
all expression e

l

2

during evaluation of the body of

1

, the body of

2

is evaluated in
ontour l

1

l

2

. And so

on. We show below that this de�nition of
on
rete
ontours is suÆ
ient to unambiguously

designate ea
h evaluation
ontext.

Se
ond, a
a
he (of type Ca
he) is a set of entries. Ea
h entry is either a pre-entry,

i.e. a member of PreEnt, or a post-entry, i.e. a member of PostEnt. Pre-entry pre(l; k; �)

indi
ates what lexi
al environment � was present when expression e

l

got evaluated in
ontour

k. Post-entry post(l; k; v) indi
ates the value (or error value) v to whi
h expression e

l

has

evaluated to in
ontour k.

The semanti
s of the
olle
ting ma
hine is very similar to the standard semanti
s of the

40 CHAPTER 3. ANALYSIS FRAMEWORK

Val

"

:= Err

_

[Val

Err := Errors

Val := ValB

_

[ValC

_

[ValP

ValB := f#fg Booleans

ValC := f
los((�

l

x: e); �) j (�

l

x: e) 2 Exp; � 2 Envg Closures

ValP := fpair(v

1

; v

2

) j v

1

; v

2

2 Valg Pairs

Env := Var! Val

Cont := Lab

�

Contours

Ca
he := 2

Entry

Entry := PreEnt

_

[PostEnt

PreEnt := fpre(l; k; �) j l 2 Lab; k 2 Cont; � 2 Envg

PostEnt := fpost(l; k; v) j l 2 Lab; k 2 Cont; v 2 Val

"

g

E : Exp! Env! Cont! Val

"

� Ca
he Main evaluation fun
tion

E [[e

l

℄℄ � k = let (v; �) = E

0

[[e

l

℄℄ � k in

(v; � [fpre(l; k; �); post(l; k; v)g)

E

0

: Exp! Env! Cont! Val

"

�Ca
he Auxiliary eval. fun
tion

E

0

[[#f

l

℄℄ � k = (#f; ;)

E

0

[[x

l

℄℄ � k = (� x; ;)

E

0

[[(

l

e

1

e

2

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v

1

: C (E [[e

2

℄℄ � k) (A l k v

1

))

E

0

[[(�

l

x: e

1

)℄℄ � k = (
los((�

l

x: e

1

); �); ;)

E

0

[[(if

l

e

1

e

2

e

3

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v 6= #f ? E [[e

2

℄℄ � k : E [[e

3

℄℄ � k)

E

0

[[(
ons

l

e

1

e

2

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v

1

: C (E [[e

2

℄℄ � k) (�v

2

: (pair(v

1

; v

2

); ;)))

E

0

[[(
ar

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v = pair(v

1

; v

2

) ? (v

1

; ;) : (error; ;))

E

0

[[(
dr

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v = pair(v

1

; v

2

) ? (v

2

; ;) : (error; ;))

E

0

[[(pair?

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v 2 ValP ? (v; ;) : (#f; ;))

A : Lab! Cont! Val! Val! Val

"

� Ca
he Apply fun
tion

A l k v

1

v

2

= (v

1

=
los((�

l

0

x: e

1

); �))

? E [[e

1

℄℄ �[x 7! v

2

℄ kl

: (error; ;)

C : Val

"

� Ca
he! (Val! Val

"

� Ca
he)! Val

"

� Ca
he Che
k fun
tion

C (v

1

; �

1

) k = v

1

2 Err ? (v

1

; �

1

)

: let (v

2

; �

2

) = k v

1

in

(v

2

; �

1

[�

2

)

Figure 3.5: Semanti
s of the
olle
ting ma
hine

3.4. A COLLECTING MACHINE 41

4 : Exp! 2

Exp

4(#f

l

) = f#f

l

g

4(x

l

) = fx

l

g

4((

l

e

1

e

2

)) = f(

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((�

l

x: e

1

)) = f(�

l

x: e

1

)g [4(e

1

)

4((if

l

e

1

e

2

e

3

)) = f(if

l

e

1

e

2

e

3

)g [4(e

1

) [4(e

2

) [4(e

3

)

4((
ons

l

e

1

e

2

)) = f(
ons

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((
ar

l

e

1

)) = f(
ar

l

e

1

)g [4(e

1

)

4((
dr

l

e

1

)) = f(
dr

l

e

1

)g [4(e

1

)

4((pair?

l

e

1

)) = f(pair?

l

e

1

)g [4(e

1

)

Figure 3.6: Fun
tion
omputing the set of sub-expressions

mini-language. The major di�eren
e lies in the instrumentation that insert entries in the

a
he. The semanti
 equations are divided in the de�nition of the main evaluation fun
tion

E and that of the auxiliary fun
tion E

0

. E

0

is essentially similar to the standard semanti

fun
tion. E provides the instrumentation for re
ording the evaluation steps and leaves the

a
tual
omputations to E

0

. Note also how the apply fun
tion A updates the
ontour when

the invo
ation of a
losure o

urs. The label of the
urrent
all expression is appended

at the end of the
urrent
ontour. The body of the
losure is evaluated in this extended

ontour.

3.4.1 Well-De�nedness of Ca
he Entries

Now, we need to demonstrate that
a
he entries are properly re
orded in the
a
he. In

parti
ular, that there is no ambiguity or
on
i
t between entries. The fa
t that pre- and

post-entries are added in the
a
he for ea
h evaluation of an expression is obvious. The fa
t

that at most one pre-entry and one post-entry are added in the
a
he for the evaluation of

an expression under a
ertain
ontour is less obvious. Pre
isely, there should be at most

one pre-entry (post-) for ea
h expression and
ontour pair. In order to show this fa
t, we

�rst introdu
e some notation, then
hara
terise the
ontents of the
a
he returned by a
all

to E, and �nally show that there
annot be a
on
i
t between entries.

Figures 3.6 and 3.7 de�ne fun
tions 4 and 4, respe
tively. Fun
tion 4 returns the

set of sub-expressions of a parti
ular expression. Fun
tion 4 returns the set of immediate

sub-expressions. The immediate sub-expressions of e

l

are the ones that
ould be evaluated

42 CHAPTER 3. ANALYSIS FRAMEWORK

4 : Exp! 2

Exp

4(#f

l

) = f#f

l

g

4(x

l

) = fx

l

g

4((

l

e

1

e

2

)) = f(

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((�

l

x: e

1

)) = f(�

l

x: e

1

)g

4((if

l

e

1

e

2

e

3

)) = f(if

l

e

1

e

2

e

3

)g [4(e

1

) [4(e

2

) [4(e

3

)

4((
ons

l

e

1

e

2

)) = f(
ons

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((
ar

l

e

1

)) = f(
ar

l

e

1

)g [4(e

1

)

4((
dr

l

e

1

)) = f(
dr

l

e

1

)g [4(e

1

)

4((pair?

l

e

1

)) = f(pair?

l

e

1

)g [4(e

1

)

Figure 3.7: Fun
tion
omputing the set of immediate sub-expressions

if e

l

were evaluated, but without going through a
losure invo
ation. For example, if

e

l

= (

l

: : : (�

l

0

x: (

l

00

: : : e

l

000

: : :)) : : :)

then if e

l

000

is evaluated while e

l

is evaluated, it is ne
essarily through a
losure invo
ation.

That implies that e

l

000

is not an immediate sub-expression of e

l

. The di�eren
e between

the implementation of 4 and 4 only lies in the treatment of �-expressions. The de�nition

of 4 is purely synta
ti
 and does not try to determine if a sub-expression may really be

evaluated.

We will not distinguish between the expressions and their labels in the use of 4 and 4.

They
ould as well have type Lab! 2

Lab

, or Exp! 2

Lab

, et
.

The following theorem
hara
terises the entries that may appear in a
a
he returned by

the
olle
ting ma
hine.

Theorem 3.2 Let e

0

2 Exp be a program and e

l

2 4(e

0

), a sub-expression. Also, let

(v; �) = E [[e

l

℄℄ � k. All entries in
a
he � have the form pre(l

0

; k

0

; �

0

) or post(l

0

; k

0

; v

0

)

where

�

k

0

= k ^ l

0

2 4(l)

�

_

�

k

0

= kl

00

k

00

^ l

00

2 4(l)

�

What the theorem means is that all
ontours met during evaluation of e

l

have k as a

pre�x. Cases where pre
isely k was met involve immediate sub-expressions of e

l

. And in

ases where an extension of k was met, the label used to extend k for the �rst time is one

belonging to an immediate sub-expression of e

l

.

3.4. A COLLECTING MACHINE 43

Proof 3.2 We prove the property by indu
tion on the number of uses of the fun
tion E in

the
omputation of E [[e

l

℄℄ � k. The proof is easy and a
omplete one would be too lengthy.

We only
over a few
ases.

Basis. E [[e

l

℄℄ � k is
omputed with one use of E. Ne
essarily, e

l

= #f

l

, e

l

= x

l

, or

e

l

= (�

l

x: e

l

0

). Then:

� = fpre(l; k; �);post(l; k; v)g

Clearly, both entries in � have the desired form as they
ontain the
ontour k and l 2 4(l).

Indu
tion hypothesis. Let us suppose that entries in � have the desired form if E [[e

l

℄℄ � k is

omputed in at most n

0

uses of E.

Indu
tion step. E [[e

l

℄℄ � k is
omputed in n

0

+ 1 uses of E. Ne
essarily, e

l

is one of:

8

<

:

(

l

e

l

1

e

l

2

); (if

l

e

l

1

e

l

2

e

l

3

); (
ons

l

e

l

1

e

l

2

);

(
ar

l

e

l

1

); (
dr

l

e

l

1

); (pair?

l

e

l

1

)

9

=

;

As it is the most
omplex and,
onsequently, a good representative, we present the
ase

where e

l

= (

l

e

l

1

e

l

2

).

The �rst sub-
ase o

urs when E [[e

l

1

℄℄ � k = (v

1

; �

1

) where v

1

2 Err. It follows that

� = fpre(l; k; �);post(l; k; v

1

)g [�

1

Note that E [[e

l

1

℄℄ � k is
omputed with n

0

uses of E. So, by indu
tion hypothesis, ea
h entry

in �

1

is of the form pre(l

0

; k

0

; �

0

) or post(l

0

; k

0

; v

0

) where

�

k

0

= k ^ l

0

2 4(l

1

)

�

_

�

k

0

= kl

00

k

00

^ l

00

2 4(l

1

)

�

Sin
e 4(l

1

) � 4(l), we
an
on
lude that ea
h entry in � has the desired form.

The se
ond sub-
ase o

urs when E [[e

l

1

℄℄ � k = (v

1

; �

1

) where v

1

2 Val, E [[e

l

2

℄℄ � k =

(v

2

; �

2

), and either v

2

2 Err or v

1

62 ValC. It follows that

� = fpre(l; k; �);post(l; k; error)g [�

1

[�

2

Again, by indu
tion hypothesis, entries in �

1

and �

2

have the desired form (relatively to l

1

and l

2

, respe
tively), and we
an
on
lude that entries in � all have the desired form.

44 CHAPTER 3. ANALYSIS FRAMEWORK

The last sub-
ase o

urs when

E [[e

l

1

℄℄ � k = (
los((�

l

4

x: e

l

3

); �

1

); �

1

);

E [[e

l

2

℄℄ � k = (v

2

; �

2

) where v

2

2 Val, and

E [[e

l

3

℄℄ �

1

[x 7! v

2

℄ kl = (v

3

; �

3

):

It follows that

� = fpre(l; k; �);post(l; k; v

3

)g [�

1

[�

2

[�

3

On
e again, the indu
tion hypothesis
an be used to determine that entries in �

1

have the

desired form relatively to l

1

and k, entries in �

2

have the desired form relatively to l

2

and

k, and entries in �

3

have the desired form relatively to l

3

and kl. Note that all
ontours

found in entries of �

3

have k as a stri
t pre�x. We
an
on
lude that all entries in � have

the desired form. 2

With the help of this theorem, we
an show that the
ontours unambiguously designate

the various evaluation
ontexts in whi
h expressions are evaluated in the
olle
ting ma
hine.

In other words, that ea
h distin
t evaluation of a parti
ular expression o

urs in a distin
t

ontour.

Theorem 3.3 Let e

0

2 Exp be a program, and let (v

0

; �

0

) = E [[e

0

℄℄ � �. We have that

8l

0

2 Lab; k

0

2 Cont:

jfpre(l

0

; k

0

; �) 2 �

0

j � 2 Envgj = jfpost(l

0

; k

0

; v) 2 �

0

j v 2 Val

"

gj � 1

Proof 3.3 We make the demonstration by indu
tion on the number of uses of E ne
essary

to
ompute (v; �) = E [[e

l

℄℄ � k where e

l

2 4e

0

, � 2 Env, and k 2 Cont. For brevity, we

onsider only a few
ases.

Basis. If E [[e

l

℄℄ � k is
omputed with one use of E, verifying the property is trivial.

Indu
tion hypothesis. Suppose that the desired property is true for � when the number of

uses of E is at most n

0

.

Indu
tion step. E [[e

l

℄℄ � k is
omputed in n

0

+ 1 uses of E. Then e

l

has to be one of six

kinds of expressions. As it is the most
omplex, we
hoose the
ase where e

l

= (

l

e

l

1

e

l

2

) as

3.4. A COLLECTING MACHINE 45

a representative. Also, we restri
t ourselves to the sub-
ase where

E [[e

l

1

℄℄ � k = (
los((�

l

4

x: e

l

3

); �

1

); �

1

);

E [[e

l

2

℄℄ � k = (v

2

; �

2

) where v

2

2 Val, and

E [[e

l

3

℄℄ �

1

[x 7! v

2

℄ kl = (v

3

; �

3

):

It follows that

� = �

+

[�

1

[�

2

[�

3

where �

+

= fpre(l; k; �);post(l; k; v)g

The desired property holds for all
a
he parts �

1

, �

2

, and �

3

as ea
h of the three sub-

evaluations uses E less than n

0

times and
onsequently the indu
tion hypothesis applies. So

it is easy to �rst
onvin
e oneself that

8l

0

2 Lab; k

0

2 Cont:

h

9�

0

2 Env: pre(l

0

; k

0

; �

0

) 2 � if and only if 9v

0

2 Val: post(l

0

; k

0

; v

0

) 2 �

i

What remains to be shown is either the non-existen
e or the uniqueness of the pre-

entry for a parti
ular expression e

l

0

and
ontour k

0

. Similarly for the post-entries. As the

arguments for both kinds of entries are almost the same, the rest of the demonstration

onsiders only pre-entries.

Now, to make the theorem false, we would have to �nd two
on
i
ting pre-entries in

�. That is, pre(l

0

; k

0

; �

0

), pre(l

0

; k

0

; �

00

) 2 � su
h that �

0

6= �

00

. The two pre-entries
annot

ome from only one of the
a
he parts �

+

, �

1

, �

2

, and �

3

as �

+

introdu
es only one pre-

entry and the others have been given to us by the indu
tion hypothesis. Let us enumerate

the di�erent possibilities for the sour
e of the two pre-entries and show that ea
h possibility

leads to a
ontradi
tion.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

1

, then l

0

= l, k

0

= k, and it implies that

l 2 4(l

1

). Contradi
tion.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

2

, then, similarly, it implies that l 2 4(l

2

).

Contradi
tion.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

3

, then k

0

would have to be equal to k and

have k as a stri
t pre�x at the same time. Contradi
tion.

46 CHAPTER 3. ANALYSIS FRAMEWORK

If pre(l

0

; k

0

; �

0

) 2 �

1

and pre(l

0

; k

0

; �

00

) 2 �

2

, then there are two
ases. Either k

0

= k

and l

0

2 4(l

1

) \ 4(l

2

) = ;. Contradi
tion. Or k

0

= kl

00

k

00

where l

00

2 4(l

1

) \ 4(l

2

) = ;.

Contradi
tion.

If pre(l

0

; k

0

; �

0

) 2 �

1

and pre(l

0

; k

0

; �

00

) 2 �

3

, then k

0

= klk

00

and it implies that l 2 4(l

1

).

Contradi
tion.

Finally, if pre(l

0

; k

0

; �

0

) 2 �

2

and pre(l

0

; k

0

; �

00

) 2 �

3

, then, similarly, it implies that

l 2 4(l

2

). Contradi
tion. 2

3.5 Conservativeness of the Analysis

An essential property about our analysis framework is that any analysis instan
e that it

produ
es is
onservative. In short, the analysis results always for
e the optimiser to in
lude

at least all the truly required dynami
 type tests, and so, no matter what the abstra
t model

is. This property is to be established as the �nal result of this se
tion and it is derived

from the main theorem saying that an analysis instan
e mimi
s
onservatively the
on
rete

evaluation of the program. Before we present both, we �rst introdu
e many de�nitions and

notations helping in the next proofs.

3.5.1 A

essory De�nitions

Let e

0

2 Exp be the program to analyse. Let M = (ValB; ValC; ValP; Cont;

^

k

0

;

; p
;

all) be the abstra
t model. We will denote the analysis results by R. Formally,

R = (�; �;
; Æ; �; �; �) = FW(e

0

;M)

As the proof of
onservativeness mentions both
on
rete and abstra
t values, a hat marks

the abstra
t values.

We de�ne the abstra
t environment fun
tion �̂ this way:

�̂ : Lab� Cont ! Var! 2

Val

�̂(l;

^

k)(x) = ref(x; l;

^

k)

3.5. CONSERVATIVENESS OF THE ANALYSIS 47

That is, it returns the abstra
t lexi
al environment visible from expression e

l

in
ontour

^

k.

Next, we de�ne the \is abstra
ted by" relation. We denote the relation by the % glyph.

This relation is de�ned in terms of the abstra
t model and parts of the analysis results.

These equations de�ne when a
on
rete value is
onsidered to be abstra
ted by an abstra
t

value:

#f % v̂, if v̂ 2 ValB

los((�

l

x: e); �)% v̂, if v̂ 2 ValC and 9(l;

^

k) 2 �

v̂

: �% �̂(l;

^

k)

pair(v

1

; v

2

)% v̂, if v̂ 2 ValP and 9(l; v̂

1

; v̂

2

;

^

k) 2 �

v̂

: v

1

% v̂

1

^ v

2

% v̂

2

The relation % on values basi
ally veri�es that an abstra
t value has at least the same

behaviour as the
on
rete one. There are no spe
ial
onditions for Booleans. The
onditions

for pairs verify that appropriate values
an be extra
ted from the
ar- and
dr-�elds of

the abstra
t pair. The
onditions for
losures verify that the right �-expression
an be

re
overed with an appropriate lexi
al environment. This last test
onsists in testing if an

abstra
t lexi
al environment abstra
ts a
on
rete lexi
al environment. We de�ne the %

relation on environments as:

�% �̂(l;

^

k), if 8x 2 Dom(�): 9v̂ 2 �̂(l;

^

k): �(x)% v̂

Now, with the help of the % relation de�ned on values and lexi
al environments, we

an formally explain what it means for analysis results to mimi

onservatively the
on
rete

evaluation of a program. The relation also relates
a
hes and analysis results
onditional to

the provision of a
ontour abstra
tion fun
tion.

�%

a

R if

a : Cont! Cont

V

h

8pre(l; k; �) 2 �: Æ

l;a(k)

6= ; ^ �% �̂(l; a(k))

i

V

h

8post(l; k; v) 2 �: (9v̂ 2 �

l;a(k)

: v % v̂) _ v 2 Err

i

3.5.2 Conservative Mimi
king of the Evaluation

Before we pro
eed with the main theorem, we introdu
e this little lemma. We do not prove

it as qui
k examination of the semanti
s of the
olle
ting ma
hine is suÆ
ient to
onvin
e

oneself that it is true.

48 CHAPTER 3. ANALYSIS FRAMEWORK

Lemma 3.4 Let e

l

2 Exp, � 2 Env, and k 2 Cont:

E [[e

l

℄℄ � k = (v; �)) post(l; k; v) 2 �

The following theorem
onstitutes the main part of the demonstration that any analysis

instan
e
oming from the framework is
onservative. The proof follows.

Theorem 3.5 Let e

l

0

2 Exp be a program and let e

l

2 4(e

l

0

). Let the model M be (ValB;

ValC; ValP; Cont;

^

k

0

;

; p
;
all). Let R = FW(e

l

0

;M) be the analysis results for e

l

0

.

E [[e

l

℄℄ � k = (v; �) ^ Æ

l;

^

k

6= ; ^ �% �̂(l;

^

k)

) 9a : Cont! Cont:

�

�%

a

R ^ a(k) =

^

k

�

The theorem says that the
on
rete evaluation of an expression in some evaluation
on-

text has an abstra
t
ounterpart as long as the expression is evaluated in an appropriate

abstra
t evaluation
ontext. The a fun
tion provided by the theorem is the
ontour ab-

stra
tion fun
tion and it indi
ates to whi
h abstra
t
ontour ea
h
on
rete
ontour should

be mapped to. The theorem applies only if an appropriate abstra
t evaluation
ontext is

found. That is, it applies only if there is an abstra
t
ontour in whi
h e

l

gets evaluated and

in whi
h the lexi
al environment abstra
ts �. This may seem to weaken the theorem, but

note that we do not require E [[e

l

℄℄ � k to be an a
tual part of the
on
rete evaluation of

the whole program. It will qui
kly be
ome apparent in the proof that, if E [[e

l

℄℄ � k is an

a
tual part of the whole evaluation, then there will exist an abstra
t
ontour

^

k in whi
h e

l

is evaluated within an appropriate abstra
t lexi
al environment.

Proof 3.5 We prove the theorem by indu
tion on the number of uses of E in the evaluation

E [[e

l

℄℄ � k. To have a more pre
ise argumentation, we de�ne the following property P :

P (n) : E [[e

l

℄℄ � k is
omputed in at most n uses of E ^

E [[e

l

℄℄ � k = (v; �) ^ Æ

l;

^

k

6= ; ^ �% �̂(l;

^

k)

) 9a : Cont! Cont:

�

�%

a

R ^ a(k) =

^

k

�

Basis. We must show that P (1) is satis�ed. So we only need to
onsider
ases where

E [[e

l

℄℄ � k is
omputed in exa
tly one use of E. The only expressions that
an get evaluated

3.5. CONSERVATIVENESS OF THE ANALYSIS 49

in one use of E are the false
onstant, the variable referen
e, and the �-expression. Let us

examine ea
h
ase in turn.

First
ase: e

l

= #f

l

. We have that:

1. E [[e

l

℄℄ � k = (#f; �) where � = fpre(l; k; �);post(l; k; #f)g, by the
olle
ting ma
hine

semanti
s;

2. let us de�ne a : Cont! Cont as [k 7!

^

k℄; that is, it is only de�ned in k and a(k) =

^

k;

3. Æ

l;a(k)

6= ;, be
ause Æ

l;

^

k

6= ; and the de�nition of a;

4. �% �̂(l; a(k)), be
ause �% �̂(l;

^

k) and by def. of a;

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 3 and 4;

6. 9v̂

0

2 �

l;a(k)

: #f % v̂, be
ause Æ

l;

^

k

6= ; implies �

l;

^

k

� ValB, by the evaluation

onstraints of the analysis;

7. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 6;

8. �%

a

R, by 5 and 7.

So, �%

a

R where a(k) =

^

k.

Se
ond
ase: e

l

= x

l

. We have that:

1. E [[e

l

℄℄ � k = (� x; �) where � = fpre(l; k; �);post(l; k; � x)g, by the
olle
ting ma-

hine semanti
s;

2. let a = [k 7!

^

k℄;

3. Æ

l;a(k)

6= ;;

4. �% �̂(l; a(k));

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

6. 9v̂

0

2 �̂(l;

^

k)(x): � x% v̂

0

, by 4;

7. 9v̂

0

2 �

l;a(k)

: � x% v̂

0

, be
ause Æ

l;

^

k

6= ; implies �

l;

^

k

� ref(x; l;

^

k) = �̂(l;

^

k)(x), by the

evaluation
onstraints, the de�nition of �̂, and 6;

50 CHAPTER 3. ANALYSIS FRAMEWORK

8. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 7;

9. �%

a

R.

So, �%

a

R where a(k) =

^

k.

Third
ase: e

l

= (�

l

x: e

l

1

). We have that:

1. E [[e

l

℄℄ � k = (
; �) where
 =
los((�

l

x: e

l

1

); �) and � = fpre(l; k; �);post(l; k;
)g;

2. let a = [k 7!

^

k℄;

3. Æ

l;a(k)

6= ;;

4. �% �̂(l; a(k));

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

6. �

l;

^

k

3

(l;

^

k) and �

(l;

^

k)

3 (l;

^

k), be
ause Æ

l;

^

k

6= ;, and by the evaluation
onstraints;

7.
%

(l;

^

k), be
ause

(l;

^

k) 2 ValC and by 6;

8. 9v̂

0

2 �

l;a(k)

:
% v̂

0

, by 6 and 7;

9. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 8;

10. �%

a

R.

So, �%

a

R and a(k) =

^

k.

For all three possible kinds of expressions, we obtained that � %

a

R for a fun
tion

a : Cont! Cont su
h that a(k) =

^

k. So P (1) is satis�ed.

Indu
tion hypothesis. Let us suppose that P (n� 1) is satis�ed for some n � 2.

Indu
tion step. Now, we must show that P (n) is also satis�ed. Note that we have to provide

a demonstration only for the
ases where E [[e

l

℄℄ � k is
omputed in exa
tly n uses of E as

the
ases for less than n uses are already
overed by the indu
tion hypothesis.

Sin
e n � 2, the only kinds of expressions that are possible for e

l

are pre
isely those

that were impossible in the indu
tion basis. In order to avoid starting with the diÆ
ult

all-expression
ase, we go through the kinds of expressions from the last to the �rst.

3.5. CONSERVATIVENESS OF THE ANALYSIS 51

First
ase: e

l

= (pair?

l

e

l

1

). The evaluation starts by
omputing E [[e

l

1

℄℄ � k = (v

1

; �

1

).

Three sub-
ases may o

ur: v

1

is an error, a pair, or a non-pair value.

Let us �rst
onsider the sub-
ase where v

1

2 Err. We have that:

1. E [[e

l

℄℄ � k = (v

1

; �) where � = fpre(l; k; �);post(l; k; v

1

)g [�

1

;

2. the
omputation of E [[e

l

1

℄℄ � k is done in less than n uses of E;

3. Æ

l

1

;

^

k

6= ; by the fa
t that Æ

l;

^

k

6= ; and the evaluation
onstraints;

4. � % �̂(l

1

;

^

k) be
ause: e

l

is not a �-expression, so ref(x; l

1

;

^

k) = ref(x; l;

^

k) (for any

x 2 Var in the lexi
al environment), and so, �̂(l

1

;

^

k) = �̂(l;

^

k);

5. �

1

%

a

R where a(k) =

^

k, be
ause of 2, 3, 4, and the indu
tion hypothesis;

6. Æ

l;a(k)

6= ;;

7. �% �̂(l; a(k));

8. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 1, 5, 6, and 7;

9. | 11. (non-existent)

12. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and the fa
t that

v

1

2 Err;

13. �%

a

R.

So, �%

a

R where a(k) =

^

k.

The se
ond sub-
ase o

urs when v

1

2 ValP. Here, we give only the reasoning steps that

must be
hanged from the proof of the �rst sub-
ase:

9. post(l

1

; k; v

1

) 2 �

1

, be
ause of the fa
t that E [[e

l

1

℄℄ � k = (v

1

; �

1

) and Lemma 3.4;

10. 9v̂

0

2 �

l

1

;

^

k

: v

1

% v̂

0

, by 5 and the fa
t that v

1

62 Err;

11. 9v̂

0

2 �

l;

^

k

: v

1

% v̂

0

, by 10, the fa
t that v

1

2 ValP (so v̂

0

2 ValP), and the evaluation

onstraints;

The third sub-
ase o

urs when v

1

2 ValB [ValC. The
hanges in the reasoning are:

52 CHAPTER 3. ANALYSIS FRAMEWORK

1. E [[e

l

℄℄ � k = (#f; �) where � = fpre(l; k; �);post(l; k; #f)g [�

1

;

11. 9v̂

00

2 �

l;

^

k

: #f % v̂

00

, by 10, the fa
t that v

1

2 ValB [ValC (so v̂

0

2 ValB [ValC),

and the evaluation
onstraints;

Sin
e all three sub-
ases are veri�ed, the
a
he resulting from the evaluation of a pair-

membership test expression is abstra
ted by the analysis results.

Se
ond
ase: e

l

= (
dr

l

e

l

1

). Again, the evaluation of e

l

starts by
omputing E [[e

l

1

℄℄ � k =

(v

1

; �

1

). The same three sub-
ases as those seen with the pair?-expression must be
on-

sidered. We skip the v

1

2 Err sub-
ase sin
e its treatment is almost identi
al as that of the

pair?-expression.

So we start by
onsidering the sub-
ase where v

1

= (v

0

1

; v

00

1

) 2 ValP. We have that:

1. E [[e

l

℄℄ � k = (v

00

1

; �) where � = fpre(l; k; �);post(l; k; v

00

1

)g [�

1

;

2. the
omputation of E [[e

l

1

℄℄ � k is done in less than n uses of E;

3. Æ

l

1

;

^

k

6= ; be
ause of the fa
t that Æ

l;

^

k

6= ; and the evaluation
onstraints;

4. � % �̂(l

1

;

^

k) be
ause: e

l

is not a �-expression, so ref(x; l

1

;

^

k) = ref(x; l;

^

k) (for any

x 2 Var in the lexi
al environment), and so, �̂(l

1

;

^

k) = �̂(l;

^

k);

5. �

1

%

a

R where a(k) =

^

k, be
ause of 2, 3, 4, and the indu
tion hypothesis;

6. Æ

l;a(k)

6= ;;

7. �% �̂(l; a(k));

8. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 1, 5, 6, and 7;

9. post(l

1

; k; v

1

) 2 �

1

, be
ause of the fa
t that E [[e

l

1

℄℄ � k = (v

1

; �

1

) and Lemma 3.4;

10. 9v̂

0

2 �

l

1

;

^

k

: v

1

% v̂

0

, by 5 and the fa
t that v

1

62 Err;

11. let p̂ 2 �

l

1

;

^

k

su
h that v

1

% p̂;

12. p̂ 2 ValP and 9(l

0

; p̂

0

; p̂

00

;

^

k

0

) 2 �

p̂

: v

0

1

% p̂

0

^ v

00

1

% p̂

00

, by 11;

13. p̂

00

2 �

l;

^

k

by 12 and the evaluation
onstraints;

14. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and 12;

3.5. CONSERVATIVENESS OF THE ANALYSIS 53

15. �%

a

R where a(k) =

^

k.

Note how the% relation is helpful in the reasoning. It determines that p̂ is an abstra
tion of

v

1

based on the observable behaviour of both values. Let us explain ourselves. The essen
e

of
on
rete value v

1

is that it is a pair, and it
ontains two values v

0

1

and v

00

1

in its �elds.

The essen
e of abstra
t value p̂ is that it is a pair and, a

ording to log variable �

p̂

, it has,

among other things, been formed by
onsing together p̂

0

and p̂

00

, that is, abstra
tions of v

0

1

and v

00

1

, respe
tively.

The third sub-
ase o

urs when v

1

2 ValB [ValC. We give only the modi�ed steps:

1. E [[e

l

℄℄ � k = (error; �) where � = fpre(l; k; �);post(l; k; error)g [�

1

;

9. | 13. (removed)

14. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and the fa
t that

the result is an error;

This ends the demonstration for
ase e

l

= (
dr

l

e

l

1

).

Third
ase: e

l

= (
ar

l

e

l

1

). Sin
e the reasoning is analogous to that for the
dr-

expression, we skip it entirely.

Fourth
ase: e

l

= (
ons

l

e

l

1

e

l

2

). The evaluation of one of the sub-expressions may lead

to an error. Moreover, the related sub-
ases are not really interesting and their demonstra-

tion
ould easily be done by adapting the one for the error sub-
ase in the pair?-expression

demonstration. So we
on
entrate immediately on the interesting sub-
ase where both sub-

expressions evaluate to normal values. Note that we will be a little more
on
ise in the

demonstration:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 Val;

2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k where v

2

2 Val;

3. E [[e

l

℄℄ � k = (p; �) where p = pair(v

1

; v

2

) and � = fpre(l; k; �);post(l; k; p)g[�

1

[�

2

4. the
omputation of ea
h of E [[e

l

1

℄℄ � k and E [[e

l

2

℄℄ � k uses E less than n times;

5. Æ

l

1

;

^

k

6= ; and Æ

l

2

;

^

k

6= ;;

54 CHAPTER 3. ANALYSIS FRAMEWORK

6. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

7. �

1

%

a

1

R and �

2

%

a

2

R, where a

1

(k) =

^

k and a

2

(k) =

^

k, by 4, 5, 6, and the indu
tion

hypothesis;

8. let a = a

1

a

2

; that is, a
ontains all the bindings that form both a

1

and a

2

; note

that there is
on
i
t in doing so; this is be
ause Theorem 3.2 guarantees us that

Dom(a

1

) \Dom(a

2

) = fkg and we know that a

1

(k) = a

2

(k) =

^

k;

9. �

1

%

a

R and �

2

%

a

R, by 7 and 8;

10. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 3, 9, and the theorem pre-

onditions;

11. E [[e

l

1

℄℄ � k = (v

1

; �

1

)) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

; let v̂

1

be that

value;

12. E [[e

l

2

℄℄ � k = (v

2

; �

2

)) post(l

2

; k; v

2

) 2 �

2

) 9v̂

0

2

2 �

l

2

;

^

k

: v

2

% v̂

0

2

; let v̂

2

be that

value;

13. let p̂ = p
(l; v̂

1

; v̂

2

;

^

k);

14. p̂ 2 �

l;

^

k

and (l; v̂

1

; v̂

2

;

^

k) 2 �

p̂

, by the evaluation
onstraints;

15. p% p̂, by 3, 11, 12, and 14;

16. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 3, 9, 14, and 15;

17. �%

a

R where a(k) =

^

k.

Fifth
ase: e

l

= (if

l

e

l

1

e

l

2

e

l

3

). There are many sub-
ases: the evaluation of the test

leads to an error, to a true value, or to a false value. The last two sub-
ases
an be further

subdivided depending on whether the evaluation of the bran
h that is taken leads to an

error on not. As in previous
ases, we skip the sub-
ase where the test evaluates to an error.

We
onsider the sub-
ases where the test evaluates to a true value. In the reasoning, we

take
are of the situations where the then-bran
h e

l

2

evaluates or not to an error. We have

that:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 ValC [ValP;

3.5. CONSERVATIVENESS OF THE ANALYSIS 55

2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k;

3. E [[e

l

℄℄ � k = (v

2

; �) where � = fpre(l; k; �);post(l; k; v

2

)g [�

1

[�

2

;

4. the
omputation of both E [[e

l

1

℄℄ � k and E [[e

l

2

℄℄ � k is done in less than n uses of E;

5. Æ

l

1

;

^

k

6= ; (note that we
annot say the same thing about Æ

l

2

;

^

k

yet);

6. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

7. �

1

%

a

1

R where a

1

(k) =

^

k, by 4, 5, 6, and the indu
tion hypothesis;

8. E [[e

l

1

℄℄ � k = (v

1

; �

1

)) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

, sin
e v

1

62 Err;

let v̂

1

be this value;

9. v̂

1

2 Æ

l

2

;

^

k

, be
ause of 8 whi
h implies that v̂

1

2 �

l

1

;

^

k

\ (ValC [ValP);

10. �

2

%

a

2

R where a

2

(k) =

^

k, by 4, 6, 9, and the indu
tion hypothesis;

11. let a = a

1

a

2

; note that a(k) =

^

k;

12. �

1

%

a

R and �

2

%

a

R;

13. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

14. E [[e

l

2

℄℄ � k = (v

2

; �

2

)) post(l

2

; k; v

2

) 2 �

2

) (9v̂

0

2

2 �

l

2

;a(k)

: v

2

% v̂

0

2

) _ v

2

2 Err

) (9v̂

0

2 �

l;a(k)

: v

2

% v̂

0

) _ v

2

2 Err, be
ause of 12 and evaluation
onstraints;

15. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err;

16. �%

a

R where a(k) =

^

k.

These are the modi�ed steps in the reasoning for the sub-
ases where the test evaluates

to false:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 ValB;

2. let (v

3

; �

3

) = E [[e

l

3

℄℄ � k;

3. E [[e

l

℄℄ � k = (v

3

; �) where � = fpre(l; k; �);post(l; k; v

3

)g [�

1

[�

3

;

4. the
omputation of both E [[e

l

1

℄℄ � k and E [[e

l

3

℄℄ � k is done in less than n uses of E;

6. �% �̂(l

1

;

^

k) and �% �̂(l

3

;

^

k);

56 CHAPTER 3. ANALYSIS FRAMEWORK

9. v̂

1

2 Æ

l

3

;

^

k

, be
ause of 8 whi
h implies that v̂

1

2 �

l

1

;

^

k

\ ValB;

10. �

3

%

a

3

R where a

3

(k) =

^

k, by 4, 6, 9, and the indu
tion hypothesis;

11. let a = a

1

a

3

; note that a(k) =

^

k;

12. �

1

%

a

R and �

3

%

a

R;

14. E [[e

l

3

℄℄ � k = (v

3

; �

3

)) post(l

3

; k; v

3

) 2 �

3

) (9v̂

0

3

2 �

l

3

;a(k)

: v

3

% v̂

0

3

) _ v

3

2 Err

) (9v̂

0

2 �

l;a(k)

: v

3

% v̂

0

) _ v

3

2 Err, be
ause of 12 and evaluation
onstraints;

Last
ase: e

l

= (

l

e

l

1

e

l

2

). There are numerous sub-
ases: one of the sub-expressions

evaluates to an error; the �rst one evaluates to a non-
losure; a
losure is invoked and its

body is evaluated, leading or not to an error. The �rst kind of sub-
ases is similar to sub-

ases present in all previous
ases. We skip them. The se
ond kind of sub-
ase is similar

to the one involving a
dr-expression and a non-pair. We skip it too. We only
onsider the

last kind of sub-
ases. Here is the reasoning:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

=
los((�

l

4

x: e

l

3

); �

0

);

2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k where v

2

2 Val;

3. let (v

3

; �

3

) = E [[e

l

3

℄℄ �

0

[x 7! v

2

℄ kl;

4. E [[e

l

℄℄ � k = (v

3

; �) where � = fpre(l; k; �);post(l; k; v

3

)g [�

1

[�

2

[�

3

;

5. the
omputation of ea
h of E [[e

l

1

℄℄ � k, E [[e

l

2

℄℄ � k, and E [[e

l

3

℄℄ �

0

[x 7! v

2

℄ kl requires

less than n uses of E;

6. Æ

l

1

;

^

k

6= ; and Æ

l

2

;

^

k

6= ;;

7. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

8. �

1

%

a

1

R and �

2

%

a

2

R, where a

1

(k) =

^

k and a

2

(k) =

^

k, by 5, 6, 7, and the indu
tion

hypothesis;

9. E [[e

l

1

℄℄ � k = (v

1

; �

1

)) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

as v

1

62 Err; let

̂ 2 �

l

1

;

^

k

\ ValC be that
losure;

10. E [[e

l

2

℄℄ � k = (v

2

; �

2

)) post(l

2

; k; v

2

) 2 �

2

) 9v̂

0

2

2 �

l

2

;

^

k

: v

2

% v̂

0

2

as v

2

62 Err; let

v̂

2

2 �

l

2

;

^

k

be that value;

3.5. CONSERVATIVENESS OF THE ANALYSIS 57

11. let

^

k

0

=
all(l;
̂; v̂

2

;

^

k);

12. 9

^

k

00

2 Cont: (l

4

;

^

k

00

) 2 �

̂

and �

0

% �̂(l

4

;

^

k

00

), be
ause v

1

%
̂;

13. v̂

2

2 �

x;

^

k

0

, by 9, 10, 11, 12, and the evaluation
onstraints;

14. Æ

l

3

;

^

k

0

6= ;, be
ause of 13 and the evaluation
onstraints;

15. v

2

% v̂

2

2 �

x;

^

k

0

= ref(x; l

3

;

^

k

0

) = �̂(l

3

;

^

k

0

)(x)) 9v̂

0

2 �̂(l

3

;

^

k

0

): v

2

% v̂

0

) 9v̂

0

2

�̂(l

3

;

^

k

0

): (�

0

[x 7! v

2

℄) x% v̂

0

;

16. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

4

;

^

k

00

): �

0

y% v̂

0

, by 12;

17. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

3

;

^

k

0

): �

0

y % v̂

0

, by 16 and the fa
t that �̂(l

3

;

^

k

0

)(y) �

�̂(l

4

;

^

k

00

)(y) (see the evaluation
onstraints);

18. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

3

;

^

k

0

): (�

0

[x 7! v

2

℄) y% v̂

0

, by 17;

19. �

0

[x 7! v

2

℄% �̂(l

3

;

^

k

0

), by 15 and 18;

20. �

3

%

a

3

R where a

3

(kl) =

^

k

0

, by 5, 14, 18, the indu
tion hypothesis;

21. let a = a

1

a

2

a

3

; there is no
on
i
t as Dom(a

1

) \ Dom(a

2

) = fkg, a

1

(k) = a

2

(k) =

^

k,

and Dom(a

3

) \ (Dom(a

1

) [Dom(a

2

)) = ;;

22. �

1

%

a

R, �

2

%

a

R, and �

3

%

a

R;

23. sin
e post(l

3

; kl; v

3

) 2 �

3

, we have that if v

3

62 Err, then v̂

3

2 �

l

3

;

^

k

0

su
h that v

3

% v̂

3

,

then v̂

3

2

̂;

^

k

0

� �

l;

^

k

;

24. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 4 and 22;

25. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 4, 22, and 23;

26. �%

a

R where a(k) =

^

k.

This
ompletes the
ase e

l

= (

l

e

l

1

e

l

2

), the proof that P (n) is satis�ed, and the whole proof

of Theorem 3.5. 2

58 CHAPTER 3. ANALYSIS FRAMEWORK

3.5.3 Conservativeness Regarding Dynami
 Type Tests

The
entral property, Theorem 3.5, shows that an analyser instan
e produ
ed by the frame-

work mimi
s
onservatively parts of the
on
rete evaluation, provided that
ertain
onditions

are met. The following theorem uses this property to show that an optimiser
an rely on

the analysis results produ
ed by the analyser.

Theorem 3.6 Let e

l

0

2 Exp be a program. Let (v

0

; �

0

) = E [[e

l

0

℄℄ � � be the
on
rete

evaluation result. LetM = (ValB; ValC; ValP; Cont;

^

k

0

;

; p
;
all) be the abstra
t model.

Let R = FW(e

l

0

;M) be the analysis results. Then we have that:

9post(l; k; v) 2 �

0

^ (
ar

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC) 9

^

k 2 Cont: �

l;

^

k

6� ValP

9post(l; k; v) 2 �

0

^ (
dr

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC) 9

^

k 2 Cont: �

l;

^

k

6� ValP

9post(l; k; v) 2 �

0

^ (

l

0

e

l

e

l

00

) 2 4(e

l

0

) ^ v 2 ValB [ValP) 9

^

k 2 Cont: �

l;

^

k

6� ValC

Essentially, it means that if v 2 Err and we
onfront R to the safety
onstraints, then

at least one of the safety
onstraints has to be violated. More a

urately, if it is expression

e

l

that evaluates to an illegal value, then there is a safety
onstraint
on
erning e

l

that gets

violated.

Proof 3.6 First, observe that in order to make the
on
rete evaluation to produ
e an

error, one the following three situations must o

ur: the sub-expression of a
ar- or a

dr-expression returns a non-pair, the �rst sub-expression of a
all expression returns a

non-
losure. Formally, we have that:

9post(l; k; v) 2 �

0

: (
ar

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC _

(
dr

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC _

(

l

0

e

l

e

l

00

) 2 4(e

l

0

) ^ v 2 ValB [ValP

Se
ond, using Theorem 3.5 it is easy to show that R abstra
ts the whole
on
rete

evaluation:

1. E [[e

l

0

℄℄ � � = (v

0

; �

0

);

2. Æ

l

0

;

^

k

0

6= ;, by the evaluation
onstraints;

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 59

3. � % �̂(l

0

;

^

k

0

), that is, the empty environment is abstra
ted by �̂(l

0

;

^

k

0

); this is imme-

diate sin
e � is not de�ned on any variable;

4. then �

0

%

a

R where a(�) =

^

k

0

, by 1, 2, 3, and Theorem 3.5.

Finally, we use this last result to obtain the desired property. In the
ase where

(
ar

l

0

e

l

) 2 4(e

l

0

), we have that:

post(l; k; v) 2 �

0

^ v 2 ValB [ValC

) 9v̂ 2 �

l;a(k)

: v % v̂ (sin
e v 62 Err)

) 9v̂ 2 �

l;a(k)

\ (ValB [ValC) (by def. of %)

) �

l;a(k)

6� ValP

Similarly in the other two
ases. 2

3.6 Theoreti
al Power and Limitations of the

Analysis Framework

Be
ause of its great
exibility, our analysis framework is a very powerful tool. In this

se
tion, we show that any program that terminates without error
an be analysed perfe
tly

well using the framework. What this means is that there exists an abstra
t model that,

when it is used to instantiate an analysis for the program, provides the demonstration that

all dynami
 type tests
an be removed. In the pre
eding se
tion, we already demonstrated

that any program that terminates with an error
annot be analysed perfe
tly well. That

is, for any abstra
t model, the analysis results that we obtain using it show that at least

one type test has to be left in the
ompiled program. As for the non-terminating programs,

there is no general result. Some
an be analysed perfe
tly well and some
annot. This is

parti
ularly interesting sin
e non-terminating programs do not run into an error (otherwise

they would terminate).

Additionally, we give the answer to another question. Sin
e any error-free terminating

program
an be analysed perfe
tly well and some non-terminating ones
an, too, it would

be interesting to be able to �nd an appropriate model ea
h time it exists. So a natural

question is: Is it possible to systemati
ally de
ide whether there exists an abstra
t model

M that, when used to analyse a program, provides analysis results that respe
t all safety

60 CHAPTER 3. ANALYSIS FRAMEWORK

onstraints? Se
tion 3.6.2 presents a demonstration that the problem is (unfortunately)

unde
idable. A by-produ
t of this demonstration is the provision of eviden
e that some

non-terminating programs
annot be analysed perfe
tly well.

3.6.1 Programs Terminating Without Error

Programs that terminate without error
an be analysed perfe
tly well. This result is pretty

easy to obtain sin
e: a terminating program evaluates
ompletely in a �nite number of

steps; so it manipulates a �nite number of values and evaluation o

urs in a �nite number

of
ontours; so we simply have to
reate an abstra
t model that
ontains pre
isely these

values and
ontours and in whi
h

, p
, and
all behave like in the
on
rete evaluation.

Theorem 3.7 Let e

l

0

2 Exp be a program. Let (v

0

; �

0

) = E [[e

l

0

℄℄ � �. Let us suppose

that v

0

62 Err. Then there exists an abstra
t model M su
h that the analysis results R =

FW(e

l

0

;M) satisfy all the safety
onstraints.

Proof 3.7 We build the abstra
t model this way:

M = (ValB; ValC; ValP; Cont;

^

k

0

;

; p
;
all) where

ValB = ValB

ValC = f?

C

g [fv 2 ValC j 9l 2 Lab: 9k 2 Cont: post(l; k; v) 2 �

0

g

ValP = f?

P

g [fv 2 ValP j 9l 2 Lab: 9k 2 Cont: post(l; k; v) 2 �

0

g

Cont = f?g [fk 2 Cont j 9l 2 Lab: 9� 2 Env: pre(l; k; �) 2 �

0

g

^

k

0

= �

(l;

^

k) =

8

<

:

; if e

l

= (�

l

x: e

l

1

) ^

^

k 6= ? ^ post(l;

^

k;
) 2 �

0

?

C

; otherwise

p
(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

p; if e

l

= (
ons

l

e

l

1

e

l

2

) ^ v̂

1

2 Val ^ v̂

2

2 Val ^

^

k 6= ?

^ post(l

1

;

^

k; v̂

1

) 2 �

0

^ post(l

2

;

^

k; v̂

2

) 2 �

0

^ post(l;

^

k; p) 2 �

0

?

P

; otherwise

all(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

<

>

>

>

:

^

kl; if e

l

= (

l

e

l

1

e

l

2

) ^ v̂

1

2 Val ^ v̂

2

2 Val ^

^

k 6= ?

^ post(l

1

;

^

k; v̂

1

) 2 �

0

^ post(l

2

;

^

k; v̂

2

) 2 �

0

? otherwise

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 61

There is a dummy
losure ?

C

and a dummy pair ?

P

added to the values manipulated by

the program. And there is a dummy
ontour ? added to the set of
ontours manipulated

by the program. They are introdu
ed to allow the abstra
t
reation fun
tions

, p
, and

all to be de�ned on their entire domain. Basi
ally,

, p
, and
all do exa
tly the same

omputations as those done in the
on
rete evaluation. However, for any tuple of arguments

that do not
orrespond to a situation found during the
on
rete evaluation, they return a

dummy answer. We will see later that the dummies do not diminish the power of the model

as a smallest �xed-point solution to the evaluation
onstraints does not in
lude dummies.

Note that

 and p
 are well-de�ned despite the fa
t that
 and p, respe
tively, are extra
ted

from the
a
he. This is a
onsequen
e of Theorem 3.3, whi
h guarantees that the post-entry

from whi
h
 or p is extra
ted is unique.

Some justi�
ation has to be given in order to ensure that the model is legal. First, it is

easy to verify that ValB, ValC, ValP, and Cont are �nite sets and that ValB, ValC, and

ValP are disjoint. Next,

^

k

0

is
learly a member of Cont as the program has been evaluated

in
ontour �.

, p
, and
all are de�ned on their entire domain.

 either returns ?

C

or

the value extra
ted from a post-entry. Sin
e the post-entry
ontains a value resulting from

the evaluation of a �-expression, it is
lear that the value is an element of ValC. So we
an

on
lude that the return value of

 is always in ValC. A similar reasoning applies to p
.

There remains to verify that
all's return value always lie in Cont.

In the
ase where
all returns ?, the veri�
ation is immediate. In the
ase where
all

returns a
ontour of the form

^

kl, we have to show that the
onditions
he
ked by
all are

suÆ
ient to imply that

^

kl 2 Cont. The reasoning is the following:

1.

^

k 6= ?

) 9l

0

2 Lab: 9� 2 Env: pre(l

0

;

^

k; �) 2 �

0

;

2. e

l

= (

l

e

l

1

e

l

2

), post(l

1

;

^

k; v̂

1

) 2 �

0

, post(l

2

;

^

k; v̂

2

) 2 �

0

) the
omputation of E [[e

l

℄℄ �

^

k is required in the global
omputation E [[e

l

0

℄℄ � �;

3.
omputation of E [[e

l

℄℄ �

^

k is required

)
omputation of E [[e

l

1

℄℄ �

^

k is required

) E [[e

l

1

℄℄ �

^

k = (v̂

1

; �

1

) for some
a
he �

1

� �

0

;

4.
omputation of E [[e

l

℄℄ �

^

k is required and v̂

1

2 Val

)
omputation of E [[e

l

2

℄℄ �

^

k is required

62 CHAPTER 3. ANALYSIS FRAMEWORK

) E [[e

l

2

℄℄ �

^

k = (v̂

2

; �

2

) for some
a
he �

2

� �

0

;

5. v

0

2 Val) v̂

1

2 ValC (otherwise there would have been an error and it would

ontradi
t the theorem hypothesis);

6. v̂

1

2 ValC and v̂

2

2 Val

)
omputation of E [[e

l

3

℄℄ �

0

[y 7! v̂

2

℄

^

kl is required where v̂

1

=
los((�y: e

l

3

); �

0

)

) pre(l

3

;

^

kl; �

0

[y 7! v̂

2

℄) 2 �

0

)

^

kl 2 Cont

Valid model M = (ValB; ValC; ValP; Cont;

^

k

0

;

; p
;
all) allows program e

l

0

to be

analysed perfe
tly well. To justify this
laim, we present an assignment to the abstra
t

variables that is a solution to the evaluation
onstraints and that also respe
ts the safety

onstraints. Here is the assignment:

�

l;

^

k

=

8

<

:

fvg; if

^

k 6= ? ^ post(l;

^

k; v) 2 �

0

;; otherwise

�

x;

^

k

=

8

>

>

>

<

>

>

>

:

fvg; if

^

k 6= ? ^

^

k =

^

k

0

l ^ e

l

= (

l

e

l

1

e

l

2

) ^

post(l

1

;

^

k

0

;
los((�

l

3

x: e

l

4

); �)) 2 �

0

^ post(l

2

;

^

k

0

; v) 2 �

0

;; otherwise

̂;

^

k

=

8

>

>

>

<

>

>

>

:

fvg; if
̂ 6= ?

C

^

^

k 6= ? ^
̂ =
los((�

l

x: e

l

1

); �) ^

post(l

1

;

^

k; v) 2 �

0

;; otherwise

Æ

l;

^

k

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

if

^

k = ? then

;

else if pre(l;

^

k; �) 2 �

0

then

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

if e

l

= e

l

0

then

f#fg

else let l

1

= parent(l); if e

l

1

= (�

l

1

x: e

l

) then

�

x;

^

k

else if e

l

1

= (if

l

1

e

l

2

e

l

e

l

3

) then

�

l

2

;

^

k

else if e

l

1

= (if

l

1

e

l

2

e

l

3

e

l

) then

�

l

2

;

^

k

else

Æ

l

1

;

^

k

else

;

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 63

�

̂

=

8

<

:

f(l; k) j e

l

= (�

l

x: e

l

1

) ^ k 2 Cont ^ post(l; k;
̂) 2 �

0

g; if
̂ 6= ?

C

;; otherwise

�

p̂

=

8

>

>

>

<

>

>

>

:

8

<

:

(l; v

1

; v

2

; k)

e

l

= (
ons

l

e

l

1

e

l

2

) ^ k 2 Cont ^

post(l; k; p̂) 2 �

0

^ p̂ = pair(v

1

; v

2

)

9

=

;

; if p̂ 6= ?

P

;; otherwise

�

^

k

=

8

>

>

>

<

>

>

>

:

8

<

:

(l; v

1

; v

2

; k)

e

l

= (

l

e

l

1

e

l

2

) ^ post(l

1

; k; v

1

) 2 �

0

^

post(l

2

; k; v

2

) 2 �

0

^

^

k = kl

9

=

;

; if

^

k 6= ?

;; otherwise

Clearly, matri
es �, �,
, �, �, and � are well-de�ned in terms of �

0

and be
ause of the

fa
t that post-entries post(l; k;) are unique (Theorem 3.3). The Æ matrix is well-de�ned,

too, be
ause it is mostly de�ned in terms of �

0

and the other matri
es. The only re
ursive

referen
es to Æ itself are non-
y
li
, sin
e we
an see the de�nition of an entry Æ

l;

^

k

as being

omputed as f(�

0

; �; �; Æ

parent(l);

^

k

) for some fun
tion f . Note that 8

^

k 2 Cont:j�

^

k

j � 1. Note

also that no abstra
t variable
ontains any of the dummies ?

C

, ?

P

, and ?.

Now, we have to verify that this assignment to the abstra
t variables respe
ts all the

evaluation
onstraints. We omit a
omplete veri�
ation as it would be too lengthy and it

would be almost
ompletely me
hani
al. The only point that is more diÆ
ult
onsists in

verifying that the
onstraints related to a variable referen
e are respe
ted. That is, we verify

that, for any variable referen
e e

l

= x

l

, Æ

l;

^

k

6= ;) �

l;

^

k

� ref(x; l; k).

We show by indu
tion on the depth of label l in the syntax tree that if pre(l; k; �) 2 �

0

and � x is de�ned, then ref(x; l; k) = f� xg.

Basis. Label l is at depth 0) l = l

0

) Dom(�) = ;.

Indu
tion hypothesis. Let us suppose that the desired property is respe
ted for any label l

of depth at most d.

Indu
tion step. Let pre(l; k; �) 2 �

0

where l is at depth d + 1. Let l

1

= parent(l). There

are two
ases. First
ase:

1. e

l

1

is not a �-expression

2.) pre(l

1

; k; �) 2 �

0

.

3. Suppose that � x is de�ned.

64 CHAPTER 3. ANALYSIS FRAMEWORK

4.) ref(x; l

1

; k) = f� xg by indu
tion hypothesis

5.) ref(x; l; k) = f� xg sin
e ref(x; l; k) = ref(x; l

1

; k).

Se
ond
ase:

1. e

l

1

= (�

l

1

x: e

l

)

2.) 9l

2

2 Lab:

e

l

2

= (

l

2

e

l

3

e

l

4

) ^ k = k

0

l

2

^ post(l

3

; k

0

;
los((�

l

1

x: e

l

); �

0

)) 2 �

0

^ post(l

4

; k

0

; v) 2 �

0

^ � = �

0

[x 7! v℄

3. There are two sub-
ases:

4. �rst sub-
ase:

(a) � x is de�ned

(b)) ref(x; l; k) = �

x;k

(�)

= fvg = f� xg (�) be
ause of the assignment to � variables

5. se
ond sub-
ase:

(a) Suppose � y is de�ned

(b)) ref(y; l; k) =

S

k

00

2K

ref(y; l

1

; k) where

K = fk

00

2 Cont j (l

2

;
; v; k

0

) 2 �

k

^ (l

1

; k

00

) 2 �

g

= fk

00

2 Cont j (l

1

; k

00

) 2 �

los((�

l

1

x: e

l

); �

0

)

g

(sin
e �

k

= f(l

2

;
los((�

l

1

x: e

l

); �

0

); v; k

0

)g)

= fk

00

2 Cont j post(l

1

; k

00

;
los((�

l

1

x: e

l

); �

0

)) 2 �

0

g

= fk

00

2 Cont j pre(l

1

; k

00

; �

0

) 2 �

0

g

(
)) 8k

00

2 K: pre(l

1

; k

00

; �

0

) 2 �

0

(d)) 8k

00

2 K: ref(y; l

1

; k

00

) = f�

0

yg

(e)) ref(y; l; k) = f�

0

yg = f� yg

Now that we know that all the evaluation
onstraints are respe
ted, there remains to do

the same with the safety
onstraints. That would be easy to verify sin
e, by
onstru
tion

of the assignment, the violation of a safety
onstraint dire
tly imply that the
on
rete

evaluation should have led to an error.

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 65

So this
on
ludes the proof, as we gave a model, with whi
h analysis results for the

program were obtained, and these results respe
t both the evaluation and the safety
on-

straints. So the program
ould be analysed perfe
tly well.

2

3.6.2 Unde
idability of the \Perfe
tly Analysable" Property

We demonstrate here that it is unde
idable to determine whether there exists an abstra
t

model that allows a program to be analysed perfe
tly well. In order to do so, we make a

redu
tion from the Universal Language for the Turing ma
hines to our problem. So, before

we state the theorem and give the proof, we introdu
e the de�nition of a Turing ma
hine,

its behaviour on an input, and the Universal Language.

Our model of Turing ma
hine has a tape that is in�nite in both dire
tions. It has a

su

ess state and a failure state. Exe
ution
an only stop be
ause the ma
hine has entered

one of these spe
ial states. It
annot stop be
ause of any kind of illegal operation like, for

example, letting the read/write head fall past the end of the tape (in the
ase of a ma
hine

with a semi-in�nite tape). The
omputation may last forever and the exe
ution may not

stop.

Formally, a Turing ma
hine M is a tuple (Q; �; �; Æ; #; q

0

; q

s

; q

f

) where:

� Q is a (�nite) set of states;

� � is the alphabet of the tape;

� � � � is the input alphabet;

� Æ : Q��! Q���fL;Rg is the fun
tion of transition, where L and R are dire
tions;

it is de�ned for every pair of arguments; given a
urrent state q 2 Q and the symbol

 2 � that is
urrently under the read/write head, (q

0

;

0

; d) = Æ(q;
) is a tuple giving

the new state, the symbol to be written at the
urrent position and the dire
tion in

whi
h the head must move;

� # 2 � is the blank symbol;

� q

0

2 Q is the start state;

66 CHAPTER 3. ANALYSIS FRAMEWORK

� q

s

2 Q is the \su

ess" state;

� q

f

2 Q is the \failure" state; q

f

6= q

s

.

The exe
ution of M on a word w 2 �

�

pro
eeds like this. At the beginning, the tape

ontains w surrounded by an in�nity of # in both dire
tions. The read/write head is

positioned on the �rst symbol of w. The state is set to q

0

. Then,
omputation is done

a

ording to Æ. Exe
ution stops if the ma
hine enters the state q

s

or q

f

. We say that M

a

epts w if exe
ution ends by having M to enter q

s

. We say that M refuses w if exe
ution

ends by having M to enter q

f

. Finally, we say that M loops on w if exe
ution never stops.

The Universal Language is de�ned as:

UL = f(M; w) 2 fTuring ma
hinesg � �

�

jM a

epts wg

It is well-known that UL is unde
idable. For example, see [34℄.

We
an now present the theorem.

Theorem 3.8 The following problem is unde
idable:

fe

l

2 Exp j 9M: e

l

is analysed perfe
tly well using model Mg

Proof 3.8 We prove the theorem by making a redu
tion of UL to our problem. That

is, if our problem were de
idable, then UL would be, too, leading to a
ontradi
tion. The

redu
tion is a transformation from a ma
hine-word pair (M; w) to a program e

l

0

su
h that

M a

epts w if and only if e

l

0

is analysable perfe
tly well.

The generated program simulates the exe
ution of M on w. If the exe
ution of the

ma
hine ends by entering q

s

, the program ends by evaluating the expression #f. If the

exe
ution of the ma
hine ends by entering q

f

, the program ends by evaluating the expression

(
ar #f),
ausing an error. If the exe
ution of the ma
hine never ends, the program's

evaluation lasts forever.

The tape is represented using two lists: one
ontaining the part of the tape on the right

of the head and another
ontains the reverse of the part of the tape on the left of the head.

Of
ourse, the lists
annot
ontain all the symbols appearing on their part of the tape. The

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 67

end of list represents an in�nity of blank symbols. The expli
itly represented parts of the

tape are lazily extended during the exe
ution. The
urrent state and the symbol under the

read/write head are passed around as parameters.

Moreover, two
ounters are maintained throughout the program evaluation. The value

of the �rst one is always 1 less than the value of the se
ond one. The program tests whether

this invariant is still true before ea
h step of the simulation. Of
ourse, the invariant is

always true. In the other (ne
essarily impossible)
ase, an error is generated by evaluating

(
ar #f). These two
ounters are used later in the proof.

We des
ribe the transformation from (M; w) to e

l

0

as a sequen
e of steps.

1. From a Turing ma
hine to a fun
tional program. We des
ribe this �rst step of trans-

formation using a number of
ompilation fun
tions denoted by `T

�

'.

T[[(M; v)℄℄ = let d = T

Æ

[[Æ℄℄ =� d : Q! �! Q� �� fL;Rg �=

let l = �k lt
s rt: lt = #f ? k #f `#' (
s:rt)

: k (
dr lt) (
ar lt) (
s:rt)

let r = �k lt
s rt: rt = #f ? k (
s:lt) `#' #f

: k (
s:lt) (
ar rt) (
dr rt)

=� l; r : (�

�

! �! �

�

! Val

"

)! �

�

! �! �

�

! Val

"

�=

letre
 s = �
1
2 q lt
s rt:

1 + 1 6=
2 ? (
ar #f) :

q = q

s

? #f :

q = q

f

? (
ar #f) :

let (q

0

;
s

0

; dir) = d q
s

(dir = L ? l : r) (s (
1 + 1) (
2 + 1) q

0

) lt
s

0

rt

s 0 1 q

0

#f T

s

[[w℄℄ T

rt

[[w℄℄

T

Æ

[[Æ℄℄ = �q
s: q = q

0

? T

0

Æ

[[Æ q

0

℄℄ :

q = q

1

? T

0

Æ

[[Æ q

1

℄℄ :

. . .

q = q

jQj�1

? T

0

Æ

[[Æ q

jQj�1

℄℄ :

#f =� ina

essible
ase �=

T

0

Æ

[[Æ q℄℄ =
s =

0

? T

00

Æ

[[Æ q

0

℄℄:

s =

1

? T

00

Æ

[[Æ q

1

℄℄:

68 CHAPTER 3. ANALYSIS FRAMEWORK

. . .

s =

j�j�1

? T

00

Æ

[[Æ q

j�j�1

℄℄:

#f =� ina

essible
ase �=

T

00

Æ

[[Æ q
℄℄ = (q

0

;

0

; dir

0

) =� where (q

0

;

0

; dir

0

) = Æ(q;
) �=

T

s

[[w℄℄ =

8

<

:

`#', if w = �

`
', if w =
w

0

T

rt

[[w℄℄ =

8

<

:

#f; if w = �

T

0

rt

[[w

0

℄℄; if w = aw

0

T

0

rt

[[w℄℄ =

8

<

:

#f; if w = �

`a':T

0

rt

[[w

0

℄℄; if w = aw

0

In the generated program: fun
tion `d' is the implementation of the transition fun
tion

Æ; fun
tions `l' and `r' update the tape when doing a transition to the left or to the

right, respe
tively; fun
tion `s' does a step in the simulation of the ma
hine; note that it

veri�es
ounters `
1' and `
2' before doing the step proper; variable `q' holds the
urrent

state; variables `lt', `
s', and `rt' hold the left part of the tape, the
urrent symbol,

and the right part of the tape, respe
tively; variable `k'
ontains the
ontinuation of

the exe
ution after an update of the tape.

2. Removal of synta
ti
 sugar. We remove tuple manipulation in the generated program

using these rules:

let (x; y; z) = e

1

e

2

7! let r = e

1

let x = (
ar r)

let y = (
ar (
dr r))

let z = (
ar (
dr (
dr r)))

e

2

(x; y; z) =� as a tuple
reation �= 7! x:y:z:#f

We also remove multi-argument fun
tions and
alls:

�x

1

x

2

: : : : e 7! �x

1

: �x

2

: : : : e

e

1

e

2

e

3

: : : 7! (e

1

e

2

) e

3

: : :

Re
ursive use of these last rules may be required.

3. Elimination of types spe
i�
 to the simulation of the Turing ma
hine. We repla
e

state, symbol, and dire
tion
onstants by numeri
al
ounterparts. Let us de�ne the

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 69

following
oding fun
tions:

T

Q

: Q! f0; : : : ; jQj � 1g bije
tive

T

�

: �! f0; : : : ; j�j � 1g bije
tive

T

fL;Rg

: fL;Rg ! f0; 1g bije
tive

We repla
e ea
h spe
ial
onstant by its
ode:

q =� 2 Q �= 7! T

Q

[[q℄℄ =� 2 N �=

 =� 2 � �= 7! T

�

[[
℄℄ =� 2 N �=

dir =� 2 fL;Rg �= 7! T

fL;Rg

[[dir℄℄ =� 2 N �=

4. Elimination of numbers. In turn, we transform arithmeti
al expressions and
onstants.

We transform the naturals into a unary representation based on lists. Here are the

rules:

e

1

6= e

2

? e

3

: e

4

7! e

1

= e

2

? e

4

: e

3

e

1

= e

2

=� not a binding! �= 7! ((eq e

1

) e

2

)

e + 1 7! (in
 e)

n =� 2 N �= 7! T

N

[[n℄℄

where:

T

N

[[n℄℄ =

8

<

:

#f; if n = 0

#f:T

N

[[n� 1℄℄; if n > 0

After the numeri
 operations and
onstants are removed, we apply this last rule on
e

to the whole program:

e 7! let in
 = �n: #f:n

letre
 eq = �n1: �n2: n1 ? (n2 ? ((eq (
dr n1)) (
dr n2))

: #f)

: (n2 ? #f : (#f : #f))

e

5. Removal of synta
ti
 sugar (again). We transform many synta
ti

onstru
ts into

base language
onstru
ts. Ea
h
onstru
t should be
ompletely eliminated before

ontinuing with the next.

70 CHAPTER 3. ANALYSIS FRAMEWORK

letre
 We remove letre
-expressions using the following rule:

letre
 v = (�x: e

1

)

e

2

7! let v = (Y (�v: (�x: e

1

)))

e

2

and add the de�nition of the Y
ombinator on
e to the whole program using this

rule:

e 7! let Y = �f: let g = (�h: (�z: ((f (h h)) z)))

(g g)

e

let We use this rule to remove let-expressions:

let v = e

1

e

2

7! ((�v: e

2

) e

1

)

onditional We repla
e the `� ? � : �'
onstru
t by a
onditional from the mini-

language:

e

1

? e

2

: e

3

7! (if e

1

e

2

e

3

)

ons We apply the following rule while taking
are of respe
ting the fa
t that the `:'

operator is right-asso
iative:

e

1

:e

2

7! (
ons e

1

e

2

)

6. �-
onversion and proper labelling. We make sure ea
h variable has a distin
t name

and add unique labels to all the expressions of the program.

We
an make the following observations about the generated program e

l

0

. First, the only

expressions that may
ause an error are the two (
ar #f) expressions. By
onstru
tion of

the program, we know that the evaluation of the other expressions
annot go wrong.

Se
ond, the �rst (
ar #f) expression, although it would ne
essarily
ause an error if it

were evaluated, does not get evaluated in the �rst pla
e. It is obvious that
ounters `
1' and

`
2', after beginning with values 0 and 1, respe
tively, are ea
h in
remented by 1 after ea
h

simulation step. So the invariant
1 + 1 =
2 is true during the whole evaluation of e

l

0

.

Third, if M a

epts w, the evaluation of e

l

0

ends by returning #f as a result. By

3.6. THEORETICAL POWER AND LIMITATIONS OF THE FRAMEWORK 71

Theorem 3.7, it follows that there is a modelM allowing e

l

0

to be analysed perfe
tly well.

Fourth, in the opposite
ase, M refuses w by entering state q

f

. In this
ase, the se
ond

(
ar #f) expression gets evaluated and an error o

urs. By Theorem 3.6, there
annot be

a model allowing e

l

0

to be analysed perfe
tly well.

Fifth and last observation, ifM loops on w, the evaluation of e

l

0

never ends and no error

ever o

urs but, nevertheless, e

l

0

is not perfe
tly analysable. This fa
t is not ne
essarily

trivial to verify. We do not provide a
omplete and formal proof, we only give the following

reasoning:

1. Let us suppose that e

l

0

an be analysed perfe
tly well using modelM. Note that we

must have that jValPj <1 forM to be a legal model.

2. Note also that
ounters `
1' and `
2' go through all values in N and N� f0g, respe
-

tively, during the in�nite evaluation.

3. The following point is not dire
tly established by Theorems 3.5 and 3.6, but we will

stret
h the s
ope of these a little bit.

In our present
ase, the evaluation is in�nite, so our
olle
ting ma
hine would not

stop
omputing and there would be no
a
he returned by it. However, we
ould

de�ne a variant of the
olle
ting ma
hine to whi
h we pass an argument indi
ating

the maximum number of steps that the ma
hine should make. In the
ase of an in�nite

evaluation, we
ould obtain a
a
he des
ribing the beginning of the evaluation. On

top of it, we
ould adapt both theorems to make them able to handle partial
a
hes.

So, we suppose that we have results similar to those given by the theorems despite

the fa
t that the evaluation is in�nite.

Now, this is where the
ounters `
1' and `
2'
ome into play. Ea
h time the generated

program e

l

0

tests whether the invariant about
ounters `
1' and `
2' is still true, the

expression e

l

test

= (

l

test

(eq (in

1

l

1

))
2

l

2

) is evaluated. So there are an in�nity of

ontours k 2 Cont and n 2 N su
h that post(l

1

; k; T

N

[[n℄℄) and post(l

2

; k; T

N

[[n+ 1℄℄)

are in the
a
he.

4

4

We make a slightly abusive use of T

N

as it is supposed to produ
e
ode, not values. However, ea
h

instan
e of
ode generated by T

N

an only evaluate to a single value, no matter in whi
h environment or

ontour it is evaluated.

72 CHAPTER 3. ANALYSIS FRAMEWORK

4. Among the abstra
t pairs in ValP, there is ne
essarily one that is the abstra
tion of

more than one number (of more than one list of Booleans). Let p̂ 2 ValP be that

pair. Moreover, let m 6= n 2 N su
h that T

N

[[m℄℄% p̂ and T

N

[[n℄℄% p̂.

5. Let k 2 Cont su
h that post(l

1

; k; T

N

[[m℄℄) and post(l

2

; k; T

N

[[m+ 1℄℄) are in the

a
he. Let

^

k 2 Cont and p̂

0

2 ValP abstra
t k and T

N

[[m + 1℄℄, respe
tively. By our

\extended" Theorem 3.5, we know that p̂ 2 �

l

1

;

^

k

and p̂

0

2 �

l

2

;

^

k

. By the ambiguity of

what is abstra
ted by p̂, we
on
lude that the abstra
t evaluation of the test has to

in
lude the possibility that the test is negative, leading to the evaluation of (
ar #f).

More pre
isely, the abstra
t evaluation of e

l

test

in
ontour

^

k represents the test in
(m)

= m + 1 (whi
h is true and whi
h is expe
ted by
onservativeness) and the test

in
(n) = m + 1 (whi
h is false). So �

l

test

;

^

k

ontains an expe
ted abstra
t true value

(i.e. 2 ValC [ValP) and an abstra
t false value (i.e. 2 ValB).

6. Be
ause the test may apparently be false, the expression (
ar #f) is abstra
tly evalu-

ated in
ontour

^

k, leading to the violation of a safety
onstraint. Sin
e this reasoning

holds for an arbitrary model, we
on
lude that e

l

0

annot be analysed perfe
tly well.

This
on
ludes the proof that the generated program e

l

0

is analysable perfe
tly well if

and only if M a

epts w. Sin
e UL is unde
idable, it is impossible to always be able to

de
ide if there exists a model that allows an arbitrary e

l

0

to be analysed perfe
tly well. 2

3.7 Flexibility in Pra
ti
e

The
exibility of the analysis framework
an be illustrated in another way. The framework

is able to imitate many
onventional analyses.

For example, we
an de�ne models that produ
e analysis instan
es similar to polynomial

variants of Shivers' K-
fa [55, 61, 37℄. The proposed models are intended for the analysis

of program e

l

0

.

ValB = f#fg

ValC = f?

C

g [f�

l

^

k j l 2 4(l

0

) ^ e

l

is a �-expression ^

^

k 2 Contg

ValP = fPg

Cont = f

^

k 2 Lab

�

j j

^

kj � Kg

3.7. FLEXIBILITY IN PRACTICE 73

k

0

= �

(l;

^

k) =

8

<

:

�

l

^

k; if e

l

is a �-expression

?

C

; otherwise

p
(l; v̂

1

; v̂

2

;

^

k) = P

all(l; v̂

1

; v̂

2

;

^

k) = the longest suÆx of

^

kl in Cont

A
ontour is a
hain of the labels of the en
losing K sites where
alls o

urred that lead

to the
urrent evaluation. It is usually referred to as a
all
hain. By the de�nition of

Cont, there is only a polynomial number of abstra
t
ontours (relative to the size of the

program). There is also a polynomial number of values. Pairs are represented
oarsely

by a single abstra
t pair. Distin
t �-expressions produ
e distin
t
losures. Moreover, the

ontour in whi
h a
losure was
reated is
aptured by the
losure. It allows
losures to

behave di�erently depending on the evaluation
ontext in whi
h they were
reated. That

does not dire
tly
orrespond to remembering the lexi
al environment but, in favourable

ases, it a
ts as a good substitute.

Note that in the parti
ular
ase where K = 0, there is only one
ontour (�) for the whole

abstra
t evaluation and one
losure per �-expression.

By its equivalen
e with the 0-
fa, set-based analysis [29, 37℄ is also imitated by an

instantiation of an analysis using our framework.

More elaborate analyses
an also be imitated by the framework. The following example

is inspired from one in [37℄. To obtain a more pre
ise analysis, it is sometimes ne
essary

to distinguish
ontours by the type of the values that are manipulated by the program.

The advantage of
ontours based on types is that types
onstitute the information that is

really used in the
on
rete evaluation. That is, a program may test whether a parti
ular

value is a pair, but never tests whether the fun
tion body being evaluated was
alled from

expression e

l

. Contours dire
tly
onveying the really useful information normally improve

the analysis a

ura
y more than
ontours
onveying information that is, in the best of
ases,

only
orrelated to the useful information. Here is the de�nition of a model using type-based

ontours.

ValB = f#fg

ValC = f?

C

g [f�

l

^

k j l 2 4(l

0

) ^ e

l

is a �-expression ^

^

k 2 Contg

ValP = fPg

74 CHAPTER 3. ANALYSIS FRAMEWORK

Cont = f?g [

n

^

k 2 fb;
;pg

�

j j

^

kj � L

o

where L is the maximum number of variables

visible from any e

l

2 4(e

l

0

)

k

0

= �

(l;

^

k) =

8

<

:

�

l

^

k; if e

l

is a �-expression and

^

k 6= ?

?

C

; otherwise

p
(l; v̂

1

; v̂

2

;

^

k) = P

all(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

?; if

^

k = ? or v̂

1

62 ValC or v̂

2

= ?

C

else

b

^

k

0

; if v̂

1

= �

l

^

k

0

and v̂

2

2 ValB else

^

k

0

; if v̂

1

= �

l

^

k

0

and v̂

2

2 ValC else

p

^

k

0

; let v̂

1

= �

l

^

k

0

and v̂

2

2 ValP

The two main di�eren
es with this new model are the following. Contours are made

of type indi
ators instead of labels. And it is the
ontour
ontained in the invoked
losure

that is extended instead of the
ontour that prevails when the
all o

urs. The
ontour in

whi
h an expression is evaluated indi
ates the (top-level) type of the value to whi
h ea
h

variable in the environment is bound. The analysis instan
e obtained using this model has

exponential
omplexity in the size of the program. The worst
ase o

urs when the longest

lexi
al environment in the program
ontains a number of variables that is a signi�
ant

fra
tion of the size of the program.

Note that an abstra
t variable like �

l;

^

k

always exists, even if the number of variables

visible from e

l

and the number of indi
ators in

^

k do not mat
h. In su
h a
ase, a minimal

solution to the evaluation
onstraints always in
ludes the assignment �

l;

^

k

= ; be
ause the

expression never gets evaluated in that
ontour.

Despite its great
exibility, our framework has its limits. As an instan
e, the analy-

sis based on polymorphi
 splitting presented by Jagannathan and Wright [38℄
annot be

imitated by the framework. Polymorphi
 splitting is presented as a method of obtaining,

in abstra
t interpretation, an analogue to the let-polymorphism used in Hindley-Milner

polymorphi
 type inferen
e [43℄. Abstra
t
losures that are bound to a variable in a let-

expression re
eive a spe
ial treatment. First, their asso
iated
ontour is extended when they

are bound to the variable. Next, their
ontour is modi�ed by ea
h referen
e to the variable.

Moreover, two distin
t referen
es to the variable produ
e two di�erent modi�
ations to the

3.7. FLEXIBILITY IN PRACTICE 75

losure. This is
learly not feasible within our framework. In our
ase, a referen
e to a

variable
annot modify the value it is bound to, neither
an it modify a part of that value.

76 CHAPTER 3. ANALYSIS FRAMEWORK

Chapter 4

Demand-Driven Analysis

4.1 A Cy
li
 Pro
ess

Now that we have a pre
ise obje
tive and a powerful analysis framework, we propose a
oarse

sket
h of the demand-driven analysis. Demand-driven analysis should start by performing

a preliminary analysis for the program. The preliminary analysis is an inexpensive analysis

that provides relatively
oarse initial analysis results. Typi
ally, the preliminary analysis

results do not bring suÆ
ient eviden
e to let the optimiser to remove all dynami
 safety tests.

Demand-driven analysis then
ontinues with a model-update, re-analysis
y
le. A model-

update phase proposes and performs
hanges on the abstra
t model, based on the most

re
ent analysis results and on the dynami
 tests that are remaining. Instead of \updated",

we might as well say that the model has been re�ned. The re-analysis phase
omputes new

analysis results for the program using the new abstra
t model. This
y
le
ontinues until

there are no resour
es left for the analysis or all safety tests
ould be removed.

Of
ourse, this sket
h is very general and leads to many questions. We ask some questions

ourselves and bring answers to some of them immediately.

What
an one expe
t from the use of an updated, or re�ned, abstra
t model? Normally,

the updated model produ
es a more a

urate analysis instan
e. This more a

urate analysis

may provide analysis results
ontaining less super
uous values. And, with
han
e, these al-

low the optimiser to remove some additional safety tests. We use the term more informative

to des
ribe analysis results that
ontain less super
uous values.

78 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

While it is
lear that analysis results
ontaining less super
uous values do not automat-

i
ally imply that some additional safety tests
an be removed, it may not be obvious why

a more a

urate analysis does not ne
essarily lead to more informative results. We give an

example s
enario. Let a program e

l

0

be analysed using model M. Also, let ValP
ontain

only one pair. Let e

l

be some expression evaluating only to this pair. Now, for some reason,

a more pre
ise des
ription of the values to whi
h e

l

evaluates is required, and,
onsequently,

M is re�ned into M

0

su
h that ValP

0

ontains nine pairs. The nine pairs indi
ate the

types of the two values that are stored in the
ar- and
dr-�elds (three di�erent types

for the
ar-�eld and three for the
dr-�eld). Suppose that p
 is
hanged a

ordingly. A

re-analysis is done and suppose that the results obtained for e

l

0

using M

0

reveal that e

l

may evaluate to any of the nine pairs in ValP

0

. Then, in the pre
ise
ase of e

l

, the analysis

results are �ner but not more informative.

How
an the model be re�ned? In prin
iple, there is no problem at all if one wants

to re�ne a model sin
e a model is a simple
olle
tion of framework parameters and new

parameters
an easily be
hosen, as long as the new model is legal. Of
ourse, automati

updates of the model are more involving. It depends a lot on the modelling strategy. But it

is
learly feasible. Chapter 5 presents our proposal of a modelling strategy and the means

to update models automati
ally.

How should the modi�
ations to the model be
hosen? That is, among
hanges to ValP

and p
,
hanges to ValC and

,
hanges to Cont and
all, or some
ombinations of these,

whi
h should be the most helpful in removing safety tests? This is the most interesting

question. It is not obvious a priori as
omputations in the program to analyse
an be very

intri
ate. A
hange in the representation of pairs may help to obtain better information as

to whi
h fun
tions
an be invoked at a
ertain
all, whi
h in turn, may
ause one of these

fun
tions not to be passed the Boolean that
aused an error in the evaluation of its body.

Here are desirable
hara
teristi
s of the method that
hooses modi�
ations to the model.

Naturally, this method should be systemati
. Requiring the intervention of the user would

make it unusable. Also, it should tend to sele
t appropriate, or useful modi�
ations. To

expe
t guarantees that all sele
ted modi�
ations are useful is utopian, as the general task is

un
omputable. These reasons are generalities, but a more pra
ti
al
hara
teristi
, and an

important one, is that we want the method not to be
ome a large AI program, or an expert

system. We spe
ulate that an AI engine driving the model modi�
ations would probably

4.2. GENERATION AND PROPAGATION OF DEMANDS 79

obtain better results than a more simple and me
hanisti
 approa
h. However, we wish to

develop something that has at least some generi
ity, that
ould be adapted to other analyses

or to other languages. As we mention earlier, the real goal is more a proof of
on
ept than

an attempt to get the best possible type analysis. The next se
tion presents a proposal of

a method for the sele
tion of modi�
ations to the model.

4.2 Generation and Propagation of Demands

We propose a method for the sele
tion of modi�
ations to the model that is based on

demands. Roughly speaking, a demand is a request for the demonstration of a
ertain fa
t

or for the exe
ution of a
ertain a
tion. It is emitted be
ause there are good reasons to

believe that its a

omplishment would ultimately improve the analysis of the program. Also,

it is emitted be
ause there are reasons to believe that it does represent an a
tual fa
t (in

the
ase of a request for demonstration) and
onsequently that it might be a
hievable.

In a model-update phase, demands are �rst generated, then pro
essed, usually leading

to the emission of new, subordinate demands. We do not want to give in this
hapter a

omplete proposition as to pre
isely what demands are, how they are generated and how

they are pro
essed. A
omplete proposition is given in Chapter 5. Nevertheless, we present

many general ideas here.

The pro
essing of the demands is the pro
ess by whi
h the dire
t needs of the optimiser,

expressed as the initial demands, are ultimately translated into other demands that are

pre
ise indi
ations on the way to update the model.

The initial demands are generated at the start of the model-update phase and dire
tly

mirror the needs of the optimiser. For ea
h expression for whi
h a safety test seems to be

still required, a

ording to the
urrent analysis results, a demand is emitted asking for a

demonstration to be made to show that, in fa
t, the values manipulated by the expression

are all
orre
t ones and no test is required. For example, if a safety test seems to be required

for expression (
ar

l

e

l

1

) or (
dr

l

e

l

1

), a demand is generated to ask for a demonstration

that, in fa
t, e

l

1

may only evaluate to pairs. Clearly, the fa
t that a demand is emitted

implies that the
urrent results suggest that e

l

1

may evaluate to something else than pairs.

But the presen
e of the expression as it is suggests that the programmer believes that e

l

1

80 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

may only evaluate to pairs. The generation of the initial demands
ould hardly be a simpler

operation.

Demand pro
essing uses rules to determine what a
tions should be done in the hope of

ful�lling the request stated in the demand. The a
tions to perform depend on the kind of

demand to pro
ess and on the
ontext. The
ontext in
ludes the
urrent state of the model

and the
urrent analysis results. The existen
e of more than one kind of demands seems

inevitable.

The initial demands are all similar: they all ask to show that a
ertain expression may

only evaluate to pairs or to
losures. However, other kinds of demands
an be generated by

the pro
essing of the initial demands, and the pro
essing of their sub-demands, and that

of these new demands, et
. Even if di�erent sets of demands may be used for di�erent

demand-driven methods, some kinds of demands seem inevitable. For example, a demand

may ask for a demonstration that a parti
ular expression does not get evaluated at all.

Or, at least, not in
ertain
ir
umstan
es. Another example: a demand might ask for a

hange to the model in su
h a way that more pre
ise
ontours be introdu
ed to
ause a

ertain expression to evaluate only to pairs in a parti
ular
ontour, and only to Booleans in

another.

The pre
ise set of demands that is required to implement a model-update phase depends

on the way one models the values and
ontours, on the way one wants the demands to be

pro
essed (the pro
essing rules), on the kind of sub-demands the pro
essing rules produ
e,

et
.

Depending on the
ontext, the pro
essing of
ertain demands may lead to trivial su

ess,

or trivial failure, to a modi�
ation to the model, or, generally, to a
ombination of a
tions

on some auxiliary data stru
tures and the emission of new demands. Trivial su

ess o

urs

when, for example, the demand asks to show that an expression returns only pairs and that

the
urrent analysis results indi
ate that it is already the
ase. Trivial failure o

urs when,

for example, the demand asks to show that the main expression of the program does not

get evaluated, whi
h is simply false.

Sket
hes of pro
essing rules for typi
al demands are presented just after an informal

example of demand-driven analysis.

4.3. A DEMAND-DRIVEN ANALYSIS EXAMPLE 81

4.3 A Demand-Driven Analysis Example

We present an example of demand-driven analysis for a small program e

1

. It is not a
omplex

program and only one judi
ious modi�
ation to the basi
 abstra
t model will be suÆ
ient to

analyse it perfe
tly well. The model-update phase that is presented is not very
ompli
ated

but it still provides the opportunity to informally introdu
e some
onsiderations that are

fundamental in the development of a
omplete demand-driven approa
h.

The program to analyse is the following:

(

1

(�

2

f. (

3

f

4

(

5

f

6

(
ons

7

#f

8

#f

9

))))

(�

10

x. (if

11

x

12

(
ar

13

(pair?

14

x

15

))

(�

16

y. y

17

))))

Its evaluation does not
ause an error but it is designed to
ause
onfusion during a na��ve

analysis, as we see next. The initial model we use for the analysis of e

1

is:

M = (ValB; ValC; ValP; Cont; K;

; p
;
all)

ValB = f#fg

ValC = f�

2

; �

10

; �

16

g

ValP = fPg

Cont = fKg

(l; k) =

8

<

:

�

l

; if l 2 f2; 10; 16g

�

2

; otherwise

p
(l; v

1

; v

2

; k) = P

all(l; f; v; k) = K

The results that we obtain by analysing e

1

usingM are the following. We limit the presen-

tation of the results to that of the � matrix.

�

1;K

= f#f; �

16

g �

2;K

= f�

2

g �

3;K

= f#f; �

16

g �

4;K

= f�

10

g

�

5;K

= f#f; �

16

g �

6;K

= f�

10

g �

7;K

= fPg �

8;K

= f#fg

�

9;K

= f#fg �

10;K

= f�

10

g

�

11;K

= f#f; �

16

g �

12;K

= f#f; �

16

; Pg �

13;K

= f#fg �

14;K

= f#f; Pg

�

15;K

= f#f; �

16

; Pg �

16;K

= f�

16

g �

17;K

= ;

When looking at the results, it is immediately apparent that only one dynami
 safety test

82 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

is still needed. All
alls are safe sin
e �

2;K

, �

4;K

, and �

6;K

ontain only
losures. However,

the only other potentially erroneous expression, e

13

, still needs its safety test be
ause its

sub-expression, e

14

, may evaluate to something else than pairs. Closer inspe
tion of the

results shows that the two invo
ations of �

10

are merged together. For example, the values

it returns (i.e. �

11;K

) in
lude the abstra
tions for both values that are returned during

the
on
rete evaluation of the program. The parameter `x' (i.e. �

12;K

and �

15;K

)
ontains

abstra
tions for both arguments passed during the
on
rete evaluation, but it
ontains also

�

16

whi
h is \prematurely" returned by the �rst invo
ation and passed as an argument in

the se
ond invo
ation.

This �rst analysis is
onsidered to be the preliminary analysis of the whole demand-

driven approa
h. The model used in the preliminary analysis is generally very simple, like

in this example. The next step is a model-update phase, sin
e a safety test is still required

for the program. During the
ourse of the model-update phase, we �rst generate initial

demands and then pro
ess them.

There is only one safety test left so we generate only one initial demand. In fa
t, we

generate only one initial demand for the safety test be
ause there is only one
ontour, also.

The demand dire
tly mirrors the needs of the optimiser and we will denote it like this:

D

1

� show �

14;K

� ValP

A literal reading of the demand does not make sense. Clearly, with the
urrent model,

the
ontents of abstra
t variable �

14;K

are not restri
ted to pairs. But the intent is that

something should be done with M in order to eventually have that �

14;K

or, more likely,

spe
ialisations of �

14;K

to all lie inside of the given bound.

What
ould spe
ialisations of �

14;K

be? Variable �

14;K

represents the value of e

14

in any

possible evaluation
ontexts. This is be
ause
ontour K is unique and, as su
h, represents

all evaluation
ontexts. But a
hange to the model
ould introdu
e di�erent
ontours (e.g.

K

1

, K

2

, . . .). Ea
h of them would represent a distin
t subset the evaluation
ontexts. So

�

14;K

1

, �

14;K

2

, . . . would represent the value of e

14

in ea
h set of evaluation
ontexts.

Having said that, we
an interpret the demand as \do any ne
essary modi�
ations to the

model to have, for any
ontour K

0

that is a spe
ialisation ofK, the
onstraint �

14;K

0

� ValP

to be satis�ed". Note that the modi�
ations to the model need not ne
essarily introdu
e

spe
ialisations of K but
ould modify the representation of
losures or that of pairs to obtain

4.3. A DEMAND-DRIVEN ANALYSIS EXAMPLE 83

the desired e�e
t.

Now, let us turn to the pro
essing of D

1

. Ultimately, we want e

14

to return nothing else

than pairs. To
ontrol the value of an expression, one normally has to
ontrol the sour
e

of its value. e

14

is a pair?-expression, and the value of that kind of expression depends

solely on the value of its sub-expression. By the semanti
s of a pair?-expression, it would

be suÆ
ient to have e

15

to return only pairs. So we would generate this new demand:

D

2

� show �

15;K

� ValP

As will be made apparent when we will be involved in the design of pro
essing rules for

the demands, more than one strategy is usually available. For example, another suÆ
ient

a
hievement
onsists in proving that e

14

does not get evaluated at all, namely:

D

0

2

� show Æ

14;K

= ;

Consequently, it would not evaluate to any value, and the
ar-�eld extra
tion would
er-

tainly not operate on non-pairs. Is one of these two pro
essing methods better than the

other? Are there other ways to pro
ess D

1

?

The answer to the se
ond question is: yes. But we will explore other possibilities when

we present a
omplete approa
h in Chapter 5. To the �rst question, we answer that the �rst

pro
essing method is better. Here is the reason. Although the ful�lling of any of D

2

and D

0

2

is suÆ
ient to ful�l D

1

, only D

2

is ne
essary. That is, �

14;K

� ValP implies �

15;K

� ValP.

But it is not the
ase that �

14;K

� ValP implies �

15;K

= ;.

Now, why is it preferable to use suÆ
ient and ne
essary sub-demands? Be
ause of the

following reasoning. Sin
e (
ar

13

e

14

) is a part of the program, it is reasonable to expe
t e

14

to return only pairs. It is not an absolute truth at all, but simply a reasonable assumption.

Sin
e the demonstration that e

13

returns only pairs is ne
essary to satisfy D

1

, D

2

seems to

be a reasonable demand. The fa
t that D

2

is also suÆ
ient makes it even more attra
tive.

On the other hand, the property expressed in D

0

2

is not ne
essary, so the program
ould

possibly behave in su
h a way that the property expressed by D

0

2

is violated while the one in

D

1

is satis�ed nevertheless. It follows that D

0

2

ould be false and,
onsequently, impossible

to satisfy. In the
ase
onsidered in this example, the property in D

0

2

is e�e
tively false as

e

14

is evaluated.

84 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

Having
hosen sub-demand D

2

, we then have to pro
ess it. Although it is tempting to

interpret D

2

as saying \show that `x'
an only be bound to pairs", the right interpretation

is more like \show that `x'
an only be bound to a pair when e

15

is evaluated". Showing

that e

15

is not evaluated at all would solve our problems but this property is not a ne
essary

one, again. So we reje
t it. Let us study the situation
arefully. Currently, `x' seems to

possibly be bound to obje
ts of any type. However, in the
ase where `x' is bound to a pair,

the property in D

2

is satis�ed, so it is �ne. And in the
ases where `x' is bound to #f or to

a
losure, it appears that the property is violated. However, in the #f
ase, the
onditional

auses e

15

not to be evaluated. Consequently, there is no problem in this
ase, too. But let

us suppose that the pro
essing rules
annot make su
h a reasoning. So a sensible approa
h

onsists in �rst separating the
ases asso
iated to ea
h type. In simple words, evaluation of

body e

11

should o

ur in di�erent
ontours depending on the type of `x'. We express this

new demand by:

D

3

� split �

15;K

?

The `?' is the split point symbol. It indi
ates where additional pre
ision in the abstra
t

values is desired. It means \do the appropriate modi�
ations to M so that, in K or in

ea
h of its eventual substitutes K

1

, . . . , K

n

, e

15

evaluates to values of only one type". If

the request in this demand
ould be a
hieved, then we would have made progress in the

resolution of our problem sin
e it would be de
omposed into three sub-
ases. The sub-
ase

in whi
h `x' is bound to a pair would not be a problem. Neither would the sub-
ase in

whi
h `x' is bound to #f. There would remain the
ase where `x' is bound to a
losure.

The then-bran
h of the
onditional would be evaluated and
ar-�eld extra
tion would be

attempted on #f. But, at least, the situation would be
learer be
ause evaluation in this

ase would ne
essarily lead to an error, so it would be legitimate to emit this demand:

D

4

� show Æ

15;K

C

= ;

where K

C

would be the
ontour in whi
h `x' is bound to a
losure.

But let us not skip important steps. We �rst have to take
are of D

3

. Separating

evaluation
ontexts to distinguish the type of the values bound to a variable is easy sin
e

ontours are sele
ted by the
all fun
tion. And we have total
ontrol over
all. Let us pro
ess

4.3. A DEMAND-DRIVEN ANALYSIS EXAMPLE 85

D

3

by modifyingM. We in
lude only the modi�
ations toM:

M

0

= (ValB; ValC; ValP; Cont

0

; K;

; p
;
all

0

)

Cont = fK;K

B

;K

C

;K

P

g

all(l; f; v; k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K

B

; if f = �

10

^ v 2 ValB

K

C

; if f = �

10

^ v 2 ValC

K

P

; if f = �

10

^ v 2 ValP

K; otherwise

Note how the evaluation of the body of �

10

will o

ur in di�erent
ontours depending on

the type of the argument. The rest of the program is evaluated in
ontour K. Here are the

analysis results that we obtain for e

1

usingM

0

(only the non-empty entries are listed):

�

1;K

= f�

16

g �

2;K

= f�

2

g �

3;K

= f�

16

g �

4;K

= f�

10

g

�

5;K

= f#fg �

6;K

= f�

10

g �

7;K

= fPg �

8;K

= f#fg

�

9;K

= f#fg �

10;K

= f�

10

g

�

11;K

B

= f�

16

g �

12;K

B

= f#fg

�

16;K

B

= f�

16

g

�

11;K

P

= f#fg �

12;K

P

= fPg �

13;K

P

= f#fg �

14;K

P

= fPg

�

15;K

P

= fPg

These results are mu
h more a

urate. We see fewer super
uous values in the � matrix.

Obviously, D

3

has been pro
essed with su

ess sin
e `x'
ontains only values of the type

indi
ated by the
ontour, if at all, i.e. �

12;K

B

� ValB, �

12;K

C

� ValC, and �

12;K

P

� ValP.

As expe
ted, there is no problem in
ontours K

B

and K

P

. But the good news is that there

is no problem in
ontour K

C

either be
ause the �rst invo
ation of �

10

no longer returns �

16

\prematurely" and so the se
ond invo
ation does not re
eive �

16

as an argument.

The last safety test
an now be removed without risk for the safety of the program.

Indeed, 8k 2 Cont: �

14;k

� ValP. On the other hand, if it would not have been the
ase

that �

14;K

C

� ValP, then it would have been ne
essary to
ontinue with the pro
essing of

D

4

.

86 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

4.4 Preliminary Analysis

The
hoi
e of a good initial model to be used in the preliminary analysis is important. We

do not give one here expli
itly as it depends on the abstra
t value representation strategy.

But there are some prin
iples that must be
onsidered during the
hoi
e of the initial model.

The initial model has to be a
ompromise between
ontradi
tory tenden
ies: an ideal

preliminary analysis should be relatively fast and a

urate. The problem with a preliminary

analysis that is too slow is that it may
onsume all the work units available to the analyser.

And, in
ase of exhaustion of the work units during the preliminary analysis, one has to

hoose between two bad solutions. First bad solution: let the preliminary analysis �nish.

In this
ase, the time limit pres
ribed by the user is not respe
ted. Se
ond bad solution:

interrupt the preliminary analysis. In this
ase, the analysis results have to be
ompletely

dis
arded as the minimal valid solution has not been rea
hed yet and,
onsequently, there

is no guarantee that the results are
onservative.

On the other hand, the problem with a preliminary analysis that is not a

urate enough

is that the results may be almost unusable. It means that the results
ould
ontain so

many super
uous values that almost all safety tests would seem to be required. It follows

that almost all the work would be left to the model-update, re-analysis
y
le. The
y
le is

powerful but the
ost of removing one safety test with it is mu
h greater than the
ost of

removing one safety test with the preliminary analysis.

4.5 Model-Update, Re-Analysis Cy
le

The proposition of a
omplete approa
h for the
y
le is presented in Chapter 5. Here, we

only present
onsiderations related to the model-update, re-analysis
y
le and espe
ially

to demand pro
essing. Many of the
onsiderations have been introdu
ed informally in the

example.

The purpose of the model-update, re-analysis
y
le is to modify the model in su
h a way

that an in
reasing number of dynami
 safety tests
an be removed from the exe
utable
ode

generated for the program to
ompile. As proposed, the model-update phase
onsists in the

generation and pro
essing of demands in order to translate the needs of the optimiser into

4.5. MODEL-UPDATE, RE-ANALYSIS CYCLE 87

pres
riptions of model updates.

When pro
essing a demand, the
orresponding pro
essing rule should always translate it

into ne
essary and, when possible, into suÆ
ient sub-demands. Sub-demands are suÆ
ient

when a
hievement of the requests in the sub-demands implies a
hievement of the request in

the pro
essed demand. Sub-demands are ne
essary when the a
hievement of the pro
essed

demand ne
essarily implies the a
hievement of the sub-demands. It is not always possible

to �nd suÆ
ient and ne
essary sub-demands, depending on the demand to pro
ess and the

urrent analysis results. We give examples of the four possible
ases.

Ne
essary and suÆ
ient This
ase o

urred in the demand-driven analysis example. For

demand D

1

:

D

1

� show �

14;K

� ValP where e

14

= (pair?

14

e

15

)

we
an emit one sub-demand D

2

:

D

2

� show �

15;K

� ValP

D

2

is suÆ
ient be
ause its a
hievement would automati
ally imply the a
hievement

of D

1

, as a pair?-expression evaluates to a pair when its sub-expression evaluates to

that pre
ise pair. D

2

is also ne
essary be
ause the only way we
an have that e

14

returns only pairs (or nothing) is to have e

15

to return only pairs (or nothing). This

is the ideal
ase.

Ne
essary but insuÆ
ient Let us
onsider a demand D

3

:

D

3

� split �

23;k

? where e

23

= (if

23

e

24

e

25

e

26

)

Suppose that both e

25

and e

26

evaluate to values of more than one types in
ontour

k. Sin
e the value of e

23

is the union of the values of e

25

and e

26

, then it is ne
essary

to split the values
oming from e

25

and e

26

. That is, if the model were magi
ally

modi�ed in su
h a way that D

3

is a
hieved, we would ne
essarily observe that, in ea
h

sub-
ontour k

i

spe
ialising k, e

25

would evaluate to values of a single type. Similarly

88 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

for e

26

. So let us emit the following sub-demands:

D

4

� split �

25;k

? D

5

� split �

26;k

?

If both sub-demands are eventually satis�ed, then both bran
hes of the
onditional

will be well-split a

ording to the type of the values to whi
h they evaluate. That is, k

will have been repla
ed by sub-
ontours k

1

, k

2

, . . . su
h that in ea
h k

i

, ea
h bran
h,

taken individually, evaluates to values of only one type, if at all. But it does not

automati
ally imply that D

3

is a
hieved. In a
ontour, say k

7

, e

25

ould evaluate only

to pairs while e

26

ould evaluate only to Booleans, meaning that, in k

7

, e

23

evaluates

to values of more than one type. So the pro
essing of D

3

produ
ed ne
essary but

insuÆ
ient sub-demands.

SuÆ
ient but unne
essary Let us
onsider a demand D

6

:

D

6

� show �

18;K

� ValP where e

18

= (if

18

e

19

e

20

e

21

)

Suppose that e

19

and e

20

evaluate to values of all types and that e

21

evaluates only to

pairs. We
ould emit the following sub-demand:

D

7

� show �

19;K

� ValB

The advantage of usingD

7

is that its a
hievement is suÆ
ient to
ause the a
hievement

of D

6

. However, it does not express a ne
essary property of the
omputations made

by the program. To see why, imagine that the model is magi
ally modi�ed in su
h

a way that D

6

is a
hieved. It
ould be the result of having e

20

to return only pairs

and leaving the results of e

19

un
hanged. In this
ase, the property in D

7

would not

be satis�ed and it
ould even be impossible to satisfy D

7

. So, pro
essing D

6

as we

suggested here is risky.

InsuÆ
ient and unne
essary Let us
onsider a demand D

8

:

D

8

� show �

31;X

� ValP where e

31

= (

31

e

32

e

33

)

Suppose that �

32;X

= f

1

;

2

g, �

33;X

= fb; pg (for Boolean and pair), and that the

4.5. MODEL-UPDATE, RE-ANALYSIS CYCLE 89

results obtained by performing ea
h possible invo
ation is summarised in this table:

on b p

1

fb; pg fb; pg

2

fbg fpg

Here is an insuÆ
ient and unne
essary sub-demand:

D

9

� show

1

62 �

32;X

D

9

would be insuÆ
ient be
ause the lo
al information
urrently available indi
ates

that it is possible that

2

would be still
alled on b and still returned fbg. Also, D

9

would be unne
essary be
ause the real
omputations happening at e

31

ould be that

a
on
rete
losure abstra
ted by

1

does get
alled on some argument but that the

return value is a pair.

The last
ase was in
luded in the list for
ompleteness. It is not
lear how the generation

of unne
essary and insuÆ
ient sub-demands
ould help in the model-update phase.

In general, unne
essary sub-demands should be avoided sin
e the property they
ontain

may possibly be false. Sin
e there is no hope of ever �nding a demonstration for su
h

properties, a
onsiderable amount of time
ould be lost in the pro
essing of the unne
essary

demands. Note however that it does no harm as far as the safety of the generated exe
utable

ode is
on
erned. Dynami
 safety tests are removed only when there is indisputable evi-

den
e in the analysis results that they are redundant.

The whole demand-driven approa
h is based on the following reasoning. We use the

arrow `�>' to indi
ate that the steps in the reasoning are not logi
al impli
ations but rea-

sonably reliable
on
lusions instead.

When a programmer uses a possibly erroneous operation su
h as
ar, he expe
ts

the safety test to always su

eed

�> the safety test truly su

eeds all the time

�> there exists a mathemati
al proof that the safety test always su

eeds

�> there exists an abstra
t model that forms a demonstration that the safety

test always su

eeds

90 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

�> the demand-driven
y
le
an �nd su
h an abstra
t model through demand

generation and pro
essing

This reasoning
learly shows the di�eren
e between \trusting the programmer on how to

invest analysis e�orts" and \trusting the programmer on whi
h safety tests should be omit-

ted". Only the �rst kind of trust is granted as it does not
ompromise the safety of the

exe
utable
ode. The reasoning also illustrates why it is so important to use pro
essing rules

that produ
es only ne
essary sub-demands. By the fa
t that the initial demand, generated

from the possibly erroneous expression, is most probably ne
essary, then all its sub-demands

and sub-sub-demands, re
ursively, are ne
essary, too. It is then reasonable to expe
t these

sub-demands to be a
hievable. On the other hand, there is no \reasonably reliable"
hain

of dedu
tions to support the belief that an unne
essary sub-demand has a good potential

of being satis�able.

The
omplete set of demands naturally depends on the whole demand-driven approa
h.

However, three kinds of demands that we already mentioned previously seem to be un-

avoidable. Namely, bound demands, su
h as show �

12;k

� ValP , split demands, su
h as

split �

12;k

?, and never demands, su
h as show Æ

12;k

= ;. Normally, we expe
t the pro-

essing rules to be relatively simple for most of the demand kinds and in most situations.

As an instan
e, the reasonings involved in the example of Se
tion 4.3 were all reasonable

and intuitive. However, the biggest problems are to be expe
ted from the pro
essing of the

demands related to
onditionals and
all expressions. Espe
ially from the
alls as the un-

de
idability of the optimisation task would disappear if
alls were removed from the sour
e

language.

The importan
e of having ne
essary demands leads to an important prin
iple in the

design of the pro
essing rules. This prin
iple says that the good
ases should always be

separated from the bad
ases before an attempt is made to show that some
ases do not

o

ur. The wording of the prin
iple is deliberately vague as it applies to many situations.

The meaning of the prin
iple is better illustrated by examples.

A �rst example relates to the bound demands. Usually, some values lie inside the bound

and the others, outside. Let us
onsider demand D � show �

3;K

� ValC and let us suppose

that �

3;K

ontains abstra
t
losures and pairs. The
losures are the good
ases sin
e their

presen
e in �

3;K

does not give rise to problems. On the other hand, the pairs are the

4.5. MODEL-UPDATE, RE-ANALYSIS CYCLE 91

bad
ases as D pre
isely asks for a demonstration that they should not appear in �

3;K

.

One
annot take appropriate measures to a
hieve D by letting �

3;K

ontain both types of

values. Neither
an one do so by trying to eliminate all values from �

3;K

as the resulting

sub-demands would not express ne
essary properties. Be
ause, as far as we know, there is

no indi
ations that
losures should not appear in �

3;K

. So, appropriate measures must �rst

in
lude a sub-demand asking to make a separation between pairs and
losures in �

3;K

. Using

demand D

0

� split �

3;K

?, a
tually. Only when D

0

has been a
hieved
an one
ontinue

with the normal pro
essing of D. In the general situation, after the su

essful pro
essing

of D

0

,
ontour K has been repla
ed by spe
ialised versions of K: fK

1

; : : : ;K

n

g = G

_

[B,

and in
ontours K

i

2 G, �

3;K

i

ontains only
losures and in
ontours K

j

2 B, �

3;K

j

does

not
ontain any
losure. D is trivially satis�ed in
ontours K

i

2 G (the Good
ases). In

ontours K

j

2 B su
h that �

3;K

j

6= ; (the Bad
ases), it is now legitimate to emit a demand

like D

00

j

� show Æ

3;K

j

= ;. Now, D

00

j

is as ne
essary as D. That is, violation of D
auses a

safety test to stay required and violation of D

00

j

does the same.

Here is another example relates to
alls. In a single
all, some invo
ations may be

onsidered to be hazardous and some, not. Let us
onsider
all (

40

e

41

e

42

) in
ontour K,

where �

41;K

= f

1

;

2

g, �

42;K

= fvg, and a demand D asking for a demonstration that

1

is not invoked on v at e

40

in
ontour K. Doing nothing is not an appropriate method to

a
hieve D. On the
ontrary, emitting demands like show Æ

40;K

= ; or show Æ

41;K

= ; is

not appropriate either as they do not express ne
essary properties. That is, it may be the

ase that a
on
rete
losure, represented by

2

is truly invoked on a value, represented by v,

at e

40

in some
ontext, represented by K. Consequently,
losures

1

(the bad
ase) and

2

(the good
ase) must be separated before any attempt to demonstrate that some expression

does not get evaluated in some
ontour is made.

Apart from the fundamental me
hanism of generation and pro
essing of demands, many

onsiderations are related to the infrastru
ture required by the demand-driven analysis. A

�rst
onsideration is that there has to be some kind of
on
urren
y in the model-update,

re-analysis phase. The
y
le
annot pro
eed by working on the removal of one safety test,

then on another, et
. Any safety test may be arbitrarily diÆ
ult to remove, if possible at

all. So a sequential approa
h for the removal of tests may blo
k at one of the �rst tests,

leading to the
onsumption of all the time units available. This is a bad use of the resour
es

as many more safety tests might have been removed by working on all tests
on
urrently.

This way, all the easily removable tests disappear after little e�ort has been invested on

92 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

them. Only the tests that are the most diÆ
ult to remove, or impossible, remain.

Deriving from the
on
urren
y, there is the problem of the obsoles
en
e of demands.

The e�ort that is invested on some tests frequently results in an update of the model.

This update
auses some demands to be
ome either trivially satis�ed, or expressed in out-

fashioned terms. Demands that are trivially satis�ed not even have to be those that are

responsible for the model update. They be
ome a simple nuisan
e as pro
essing them is a

waste of time. Proper testing may be done before pro
essing ea
h demand in order to avoid

wasting time on already satis�ed ones. On the other hand, demands that are expressed

in out-fashioned terms are a more serious problem as their meaning is not related to the

abstra
t model anymore. For example,
onsider the out-fashioned demand D � split �

7;k

?

where
ontour k has been repla
ed by the more pre
ise
ontours k

1

, k

2

, and k

3

. As it is,

D is no longer a valid demand. It should be repla
ed by spe
ialised demands D

1

, D

2

, and

D

3

where D

i

� split �

7;k

i

?. Continuing to manipulate D is problemati
 as the following

situation
ould o

ur. Ea
h D

i

may be trivially satis�ed. That is, ea
h abstra
t variable

�

7;k

i

may
ontain values of only one type. That would mean that D would be satis�ed.

However, if we interpreted �

7;k

as [

i

�

7;k

i

, then we
ould be brought to believe that D is

not satis�ed, as [

i

�

7;k

i

ould
ontain values of di�erent types.

A last
onsideration
on
erns the sharing of the abstra
t model between threads of de-

mand pro
essing. Note that the
omputation e�ort that is put into proving the redundan
y

of a parti
ular safety test
an be viewed as a thread in the global,
on
urrent model-update,

re-analysis phase. Sharing the abstra
t model between threads means that, ea
h time one

of the threads sele
ts an update to the model, it is applied to a single global model. On

the
ontrary, not sharing the model means that ea
h thread has its own private model.

The advantage of sharing is that useful information
an
ow qui
kly between threads. And

updating a model means that the new analysis results will mimi
 the
on
rete evaluation

more a

urately. However, the in
onvenien
e of sharing is that the frequent model updates

oming from all threads
ause demands to be frequently rewritten in new terms. These

frequent rewritings tend to
ause a proliferation of demands. Hybrid approa
hes
an be

hosen that try to obtain the best of both worlds and keep the in
onvenien
e to a mini-

mum. For example, the model held by a thread is
ommuni
ated to the other threads only

if its
orresponding safety test has been proven to be redundant. So only \
learly useful"

model updates propagate to the model of the other threads.

4.6. DISCUSSION 93

4.6 Dis
ussion

To summarise the
ontents of this
hapter, we would say that it is a proposal of a demand-

driven analysis being
omposed of a preliminary analysis followed by a model-update, re-

analysis
y
le. Instead of the des
ription of a
omplete approa
h, the most important

onsiderations to take
are of in the design of a
omplete approa
h are highlighted. The

major
onsiderations are: the balan
e between a

ura
y and
ost in the preliminary anal-

ysis; the
on
epts of ne
essity and suÆ
ien
y in the pro
essing of demands; the ne
essary

on
urren
y in the
y
le and its
onsequen
es; and the eventual sharing of model updates.

Chapter 5 proposes a
omplete approa
h that tries to stay as simple as possible while taking

are of these
onsiderations.

Of
ourse, without the proposition of a
omplete approa
h and the exe
ution of exper-

iments, it is hard to evaluate the potential of a demand-driven type analysis. However,

the eventuality that the demand-driven analysis
ould be less powerful than an ora
le in

hoosing an abstra
t model
ould well be real. That is, an ora
le would
hoose an abstra
t

model allowing the program to be analysed perfe
tly well ea
h time su
h a model exists.

Of
ourse, this task is un
omputable and we
annot expe
t the demand-driven approa
h

to do the same in �nite time for ea
h program. But we
ould have hoped that, given an

unbounded amount of time, it has the ability to eventually �nd an appropriate model ea
h

time su
h a model exists while having the freedom to possibly loop ea
h time the model

does not exist. However, even this redu
ed requirement may not be a
hievable. That is,

the demand-driven analysis does not try every possible abstra
t model by brute for
e. Ea
h

modi�
ation has to be needed a

ording to the
urrent state of the model and the
urrent

analysis results. So there exists the possibility that a program
ould be so intri
ate that

no useful suggestion for updating the model is proposed after a
ertain point. I.e. that all

useful modi�
ations to the model seem to be unne
essary.

We expe
t that a model-update phase based on demand manipulation ought to propose

interesting modi�
ations to the model. The expe
tations
ome from the ne
essity of the

property in ea
h demand. Ne
essity that ultimately
omes from the supposition of the

programmer being probably right when he believes that some values have to be pairs or

losures. Consequently, we say that
alls and
ar- and
dr-expressions are reliable hints

to have guidan
e of the demand-driven analysis. Of
ourse, these expressions are pre
isely

those that normally in
lude dynami
 safety tests that the optimiser wants to remove. But

94 CHAPTER 4. DEMAND-DRIVEN ANALYSIS

the legitima
y behind the expe
tations
omes from the reliability of the hints and not from

the importan
e of having the optimiser to perform its task. If the optimisation to perform

were the dete
tion of
alls where inlining of fun
tions
an o

ur,

1

there would not be the

same legitima
y. To see why, when the programmer writes a
all expression in his program,

that does not mean that he believes that only one fun
tion
an be invoked from this
all.

At least, there is no synta
ti
 eviden
e to support the existen
e of su
h a belief. So there

is no reasonable
hain of
on
lusions that we
an draw from the
all. However, other

reliable sour
es of properties exist. As an instan
e, pro�ling

2

an provide statisti
s about

the exe
ution of a program and these statisti
s may reveal the existen
e of properties with

possibly high degree of reliability. For example, if all
losures observed at a
ertain
all e

l

ame from the same �-expression e

l

0

during ea
h of the several million invo
ations having

o

urred there, then it is an opportunity for inlining. A demand
ould be emitted that

requests a demonstration of the statement that all the
losures invoked at e

l

ome from e

l

0

.

1

The inlining is an optimisation te
hnique in whi
h a
all is repla
ed by the body of a fun
tion, when it

is known that only that fun
tion
ould be invoked at that
all.

2

Pro�ling a program
onsists in gathering di�erent statisti
s on the details of the exe
ution of a program.

The nature of the statisti
s may vary wildly as they go from exe
ution frequen
y for expressions to the type

of the obje
ts seen at a parti
ular point in the program.

Chapter 5

Pattern-Based Demand-Driven

Analysis

We now present a
omplete approa
h for performing a demand-driven analysis. That is, we

present parti
ular
hoi
es for the representation of the abstra
t values and abstra
t
ontours,

the implementation of models, and the global algorithm. The
hoi
es are intended to form

the simplest and most intuitive representation for the abstra
t values and
ontours. Values

and
ontours are based on patterns or, in informal terms, data stru
tures with holes. A

pattern presents a shallow des
ription of a
on
rete value or
ontour. It is similar to patterns

found in high-level languages that feature pattern-mat
hing for the de�nition of fun
tions.

Models are represented using pattern-mat
hers.

The
hapter starts by giving a
omplete presentation of the abstra
t models and de-

mands. Then the pro
essing rules for the demands are presented with a dis
ussion on our

parti
ular
hoi
es. Next, the whole approa
h is presented. It is a des
ription of the
ur-

rent prototype. A history of the di�erent attempts to
reate a working prototype follows.

Finally, we dis
uss the pros and
ons of the
urrent pattern-based approa
h and mention

extensions to it.

96 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

5.1 Pattern-Based Modelling

We use patterns to represent values and
ontours. The syntax of these patterns and their

meaning is �rst presented. The reasons behind the
hoi
e of the patterns follow.

Next, the abstra
t models are des
ribed. It in
ludes the de�nition of the pattern-

mat
hers, their use and the properties that they must obey. Algorithms used to update

the pattern-mat
hers, that is, the abstra
t models, are also presented.

Finally, the syntax and meaning of the demands are presented. These are presented in

that se
tion be
ause the de�nition of demands is
losely related to the patterns and the

representation of values and
ontours.

5.1.1 Representation of the Abstra
t Values and Contour

The abstra
t values are represented using patterns whi
h are shallow versions of the
on
rete

values. That is, the type and
ontents of the sub-values are known up to a
ertain depth.

The depth where the details are still available need not be the same in every part of a value.

At the point where no more details are available, a spe
ial pattern is used to indi
ate that

anything
ould go there. For example, an abstra
t pair
ould
ontain the Boolean #f in its

ar-�eld and the spe
ial any-value pattern in its
dr-�eld.

There are two reasons why we have adopted su
h a representation. We believe that

it is the simplest and most intuitive representation that still features an arbitrary level of

a

ura
y. Also, following the explanations of Se
tion 3.7, we think that data abstra
tions

of what is dire
tly used in the
on
rete evaluation should perform better than abstra
tions

that are indire
tly linked to the
on
rete evaluation. For example, we expe
t to obtain

better results by manipulating abstra
t pairs
ontaining (in
omplete) des
ription of the two

values they
ontain than by manipulating ones memorising at whi
h label and in whi
h

ontour they were
reated.

Overview

Here is an overview of the abstra
t representation for the values of ea
h type. There is

only one abstra
t Boolean sin
e there is only one
on
rete Boolean to keep tra
k of. Pairs

5.1. PATTERN-BASED MODELLING 97

are more or less shallow representations of
on
rete pairs. They do not memorise how they

were
reated but rather what they
ontain. On the other hand,
losures remember whi
h

�-expression they
ome from and what
ontour was prevailing during their
reation. Two

distin
t �-expressions
annot produ
e the same abstra
t
losure. However, the memorised

ontour
an be an approximation of the one that prevailed at
reation time. This may seem

to be in sharp
ontradi
tion with the spirit in whi
h we want to represent abstra
t values.

But this apparent
ontradi
tion disappears when we see what abstra
t
ontours are.

The
hoi
e of the representation for the
ontours is a dire
t appli
ation of the prin
iple

that the best abstra
t representation should be a partial des
ription of the
on
rete entity.

Abstra
t
ontours are essentially shallow versions of lexi
al environments, but without the

variables. An abstra
t
ontour is a list of abstra
t values where ea
h abstra
t value repre-

sents the value to whi
h a visible variable is bound to. As abstra
t values, abstra
t
ontours

may feature various degrees of a

ura
y in the representation of the value of ea
h variable.

The �rst value is a bound on the
ontents of the variable introdu
ed by the innermost en-

losing �-expression. The last
orresponds to the value of the outermost visible variable. By

onstru
tion of the abstra
t models, expressions get abstra
tly evaluated in
ontours that

have a length
orresponding to that of the lexi
al environment.

Syntax

Abstra
t values and
ontours are denoted using the syntax of the modelling [
ontour℄ pat-

terns. We
all these modelling patterns to distinguish them from the split patterns that

are introdu
ed later. Figure 5.1 presents the syntax of the modelling patterns. There is a

di�erent modelling pattern for ea
h type of abstra
t value. Also, there is a spe
ial pattern

that represents all values: 8. There is another spe
ial pattern that represents all
losures:

�

8

. These spe
ial patterns mark the limits of the des
ription of the abstra
t values. For

example, pattern (#f ; 8) is the notation for the pair mentioned above. The abstra
t pair

ontains a Boolean in its
ar-�eld and
ontains anything in its
dr-�eld.

Without the spe
ial patterns, the syntax of modelling patterns
ould only denote
on-

rete values. In order to be able to identify the type of the abstra
t values, model parameters

 and p
 are not allowed to return 8 as abstra
t
losure or as abstra
t pair, respe
tively.

Also, to avoid blending all
losures together, parameter

 is not allowed to return �

8

as

abstra
t
losure.

98 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

MPat := 8 j

#f j

�

8

j

�

l

k j where l 2 Lab and k 2 MCtPat

(P

1

; P

2

) where P

1

; P

2

2 MPat

MCtPat := (P

1

: : : P

n

) where n � 0 and P

1

; : : : ; P

n

2 MPat

Figure 5.1: Syntax of the modelling patterns

Modelling
ontour patterns are represented as lists of patterns. They have as many

entries as there are variables in the environment of the expressions for whi
h the
ontours

are intended. In parti
ular, the main expression and its immediate sub-expressions get

evaluated in the empty
ontour: (). This is normal as there is no variable visible from these

expressions. To illustrate the
ontours let us we
onsider this partial program:

(

1

(�

2

x: (

3

(�

4

y: e

5

)

. . .))

. . .)

The
ontours in whi
h e

5

is to be evaluated have two entries: the �rst for the value of

`y', the se
ond for the value of `x'. For example, a
ontour indi
ating that `x' is a
losure

and `y' is a pair looks like:

k = ((8; 8) �

8

)

By
onstru
tion of our abstra
t models, it is guaranteed that a referen
e to `x' made in k

(i.e. from an expression in 4(e

5

))
an only yield
losures and a referen
e to `y'
an only

yield pairs.

Conforman
e

Modelling patterns denote abstra
tions of
on
rete values. Most of the abstra
t values

happen to represent more than one
on
rete values. When a
on
rete value is represented by

an abstra
t value, we say that the
on
rete value
onforms to, or is abstra
ted by, the abstra
t

value. Here, we give a formal de�nition of the
onforman
e relation. We use the notation

% (already used in Se
tion 3.5.1) to denote the \is abstra
ted by" relation. However,

we give here a new de�nition that gives a dire
t
orresponden
e between
on
rete values

and modelling patterns, without any kind of referen
e to some analysis results. Figure 5.2

5.1. PATTERN-BASED MODELLING 99

% � Val�MPat

v % 8

#f % #f

% �

8

; if
 2 ValC

los((�

l

x: e); �)% �

l

k; if �%

l

k

pair(v

1

; v

2

)% (P

1

; P

2

); if v

1

% P

1

and v

2

% P

2

%

l

� Env �MCtPat; l 2 Lab

�%

l

(); if � is valid at label l and Dom(�) = ;

�%

l

(P

1

P

2

: : : P

n

); if � is valid at label l,

x is the innermost variable among those in Dom(�),

� x% P

1

;

e

l

1

= (�

l

1

x: e), and

�[x 7! ?℄%

l

1

(P

2

: : : P

n

)

Figure 5.2: De�nition of the
onforman
e relation

presents the de�nition of relation %. The
orresponden
e between lexi
al environments

and modelling
ontour patterns is also presented. In this
ase, a label must be provided

to the relation as an index. We say that an environment is abstra
ted, at label l, by a

ontour pattern when the values to whi
h variables are bound
onform to the
orresponding

abstra
t values in the
ontour. The label is ne
essary be
ause otherwise the same
ontour

ould abstra
t lexi
al environments
ontaining bindings for di�erent sets of variables. In

Figure 5.2, we use the notation �[x 7! ?℄ to denote an environment identi
al to � ex
ept

that the new one is not de�ned on `x'. The symbol ?
an be seen as an unde�ned value.

An extension to the de�nition of the relation % that we use later is that of the
on-

forman
e between modelling patterns. We say that P

1

onforms to P

2

when all
on
rete

values that
onform to P

1

also
onform to P

2

and we denote it by P

1

% P

2

. Verifying the

following property about two modelling patterns P

1

and P

2

:

P

1

% P

2

if

8v 2 Val: v % P

1

) v % P

2

is mathemati
ally sound but does not form an algorithm. However, it is easy to present one.

The
onforman
e relation between modelling
ontour patterns is also presented. Te
hni
ally,

the label index is not ne
essary to
ompare
ontour patterns dire
tly anymore be
ause the

only requirement on them is to be of the same length. But we keep it to let the notation

100 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

% � MPat �MPat

P

1

% 8

#f % #f

�

8

% �

8

�

l

k % �

8

�

l

k

1

% �

l

k

2

; if k

1

%

l

k

2

(P

1

; P

2

)% (P

0

1

; P

0

2

); if P

1

% P

0

1

and P

2

% P

0

2

%

l

� MCtPat �MCtPat l 2 Lab

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

); if there are n visible variables at label l and

P

1

% P

0

1

; : : : ; P

n

% P

0

n

Figure 5.3: Algorithm for the
onforman
e relation between modelling patterns

be
onsistent with the
on
rete-abstra
t
ase and to keep a
onne
tion with the following

mathemati
al de�nition of
onforman
e between
ontour patterns:

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

) if

8� 2 Env: � is valid at label l)

�

�%

l

(P

1

: : : P

n

)) �%

l

(P

0

1

: : : P

0

n

)

�

Note that we will never have to test
onforman
e between two
ontours that abstra
t two

in
ompatible lexi
al environments, i.e. lexi
al environments that have di�erent domains.

Figure 5.3 presents the formal de�nition of an algorithm testing the
onforman
e between

two modelling patterns. Proving that this de�nition of
onforman
e is identi
al to the

mathemati
al de�nitions is very simple and so we do not make the proof.

5.1.2 Models

We build upon the de�nition of the abstra
t values and de�ne the abstra
t models. Abstra
t

models are made of a
ertain number of pattern-mat
hers. These pattern-mat
hers regulate

the a

ura
y of the modelling patterns that a
t as abstra
t values. As is soon presented,

abstra
t operations on values are performed similarly to
on
rete operations ex
ept that

pattern-mat
hers are used to determine the appropriate level of details in the resulting

values. For example, while a
on
rete pair holding values v

1

and v

2

is pair(v

1

; v

2

), an

abstra
t pair holding values v̂

1

and v̂

2

is obtained by passing (v̂

1

; v̂

2

) through a pattern-

mat
her. The latter may
hoose to redu
e the a

ura
y in
ertain points of the new pair.

5.1. PATTERN-BASED MODELLING 101

A theoreti
al de�nition of pattern-mat
hers is �rst presented. There are many prop-

erties to whi
h they must obey. Models are de�ned using these pattern-mat
hers. Then,

the implementation of the pattern-mat
hers is des
ribed. Finally, the algorithms allowing

pattern-mat
hers (and,
onsequently, the abstra
t model) to be updated are presented.

Theoreti
al De�nition of Pattern-Mat
hers

The task of a pattern-mat
her
onsists in
hoosing, for ea
h
on
rete value v, a modelling

pattern P that is going to be its
orresponding abstra
t value. Naturally, P must be
hosen

so that v
onforms to it. That is, is has to
hoose P su
h that v % P . We de�ne a pattern-

mat
her to be a set of modelling patterns. For a
on
rete value v and a pattern-mat
her

M , the abstra
t value P returned as a representative for v is the element P 2M su
h that

v % P .

Note that we just used the words \the abstra
t value". That means that su
h an abstra
t

value must be present in M . This leads to the following property of pattern-mat
hers. A

orre
t pattern-mat
her has to be exhaustive. That is, M is exhaustive if:

8v 2 Val: 9P 2M: v % P

But it is not yet suÆ
ient to allow us to use the words \the abstra
t value". For most

of the values in Val, there is more than one pattern to whi
h it
onforms. So there may be

more than one P

0

2M su
h that v % P

0

. So a parti
ular pattern-mat
her has to
ommit to

ertain patterns so that its results are always unique. That is, it has to be non-redundant.

Formally, M is exhaustive and non-redundant if:

8v 2 Val: 9

1

P 2M: v % P

The modelling pattern P
hosen by the existential quanti�er is the abstra
t value sele
ted

by the pattern-mat
her to be the abstra
t representative for v.

The pre
eding example|the
onstru
tion of an abstra
t pair|also used a pattern-

mat
her. However, the pattern-mat
her was used on a modelling pattern, not on a
on
rete

value. Normally, it does not make a di�eren
e. For a modelling pattern P and pattern-

mat
her M , we simply sear
h for P

0

2M su
h that P % P

0

. However, if P is not a

urate

102 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

enough, there may be no appropriate P

0

in M . But, as long as P is a

urate enough, we

an use the pattern-mat
her to �nd an abstra
t value that abstra
ts it.

We present a simple example of modelling pattern that is not a

urate enough. Let M

be:

f#f ; �

8

; (8; 8)g

If P = 8, then we
annot sele
t P

0

2 M su
h that P % P

0

. P is too ina

urate. In fa
t,

8 is the only modelling pattern that is too ina

urate to have an abstra
t representative in

M .

Mathemati
ally, sele
ting an abstra
t value in a pattern-mat
her is equivalent to a pro-

je
tion. For v 2 Val [MPat, the abstra
t value v

0

2 MPat sele
ted by the pattern-mat
her

M is usually di�erent from v. But if we want to sele
t the abstra
tion for v

0

, we get v

0

again. Intuitively, it makes sense as the task of the pattern-mat
her is to \erase" unwanted

details in values. On
e their unwanted details are erased, values do not
hange anymore if

they go through the pattern-mat
her again.

Now that we have a pre
ise de�nition of a pattern-mat
her, we
an introdu
e the model.

A pattern-based abstra
t model is built on a group of pattern-mat
hers: one for the abstra
t

values and the others for the abstra
t
ontours. All of them have to be exhaustive and non-

redundant. The pattern-mat
her proje
ting the abstra
t values is used for all three types.

It has to be able to proje
t all values in Val. We will usually denote it as M

V

. As for the

ontour pattern-mat
hers, there is one for ea
h �-expression of the program. The
ontour

pattern-mat
her M

l

sele
ts the
ontour in whi
h the body of a �-expression (�

l

x: e

l

1

) is to

be evaluated when a
losure originating from e

l

is invoked.

In order to obtain a legal model, M

V

must
ontain distin
t patterns for values of the

three types. That is, it
annot be f8g. Also, M

V

must provide distin
t abstra
t
losures

for ea
h �-expression. So this model is not a

urate enough:

f#f ; �

8

; (8; 8)g

Indeed, blending all
losure together would keep our model from being able to feature sets

of
ontours
ustomised for ea
h
losure body.

The
ontour pattern-mat
hers do not proje
t (simple) modelling patterns, but mod-

5.1. PATTERN-BASED MODELLING 103

elling
ontour patterns. Pattern-mat
her M

l

ontain
ontour patterns of length n, where

n is the number of variables in the environment of the body of (�

l

x: e

l

1

). However, what

we presented above about a value pattern-mat
her applies almost immediately to
ontour

pattern-mat
hers. The only di�eren
e lies in the meaning of the exhaustiveness property.

Instead, of being able to proje
t all values in Val, M

l

has to be able to proje
t all lists of val-

ues of length n. There is no minimal a

ura
y required from the
ontour pattern-mat
hers.

An abstra
t modelM for program e

l

0

an be built using pattern-mat
hers provided that

there is a value pattern-mat
her M

V

and one
ontour pattern-mat
her M

l

per �-expression

e

l

. Ea
h pattern-mat
her must be exhaustive and non-redundant. We de�ne ea
h framework

parameter inM as:

� ValB is f#fg

� ValC is f�

l

k 2M

V

g

� ValP is f(P

1

; P

2

) 2M

V

g

� Cont is

S

l2L

M

l

where L = fl 2 4(e

l

0

) j e

l

is a �-expressiong

� k

0

is ()

�

(l; k) is the proje
tion by M

V

of �

l

k

� p
(l; P

1

; P

2

; k) is the proje
tion by M

V

of (P

1

; P

2

)

�
all(l

1

; �

l

(P

1

: : : P

n

); P; k) is the proje
tion by M

l

of (P P

1

: : : P

n

)

The de�nition of the �rst �ve parameters is straightforward. On the other hand, the de�-

nition of the three
reation fun
tions deserves some explanation. The

 and p
 fun
tions

onsist in performing a proje
tion on a pattern built in a natural way. Patterns �

l

k and

(P

1

; P

2

), respe
tively, are both proje
ted using M

V

. The raw
losure �

l

k
ontains full

ontour information. Some of it is forgotten by the proje
tion. Similarly, for the raw pair

(P

1

; P

2

). The de�nition of
all summarises well the me
hanisms implementing our
ontour

sele
tion strategy. Sin
e
ontours are abstra
t representatives for lexi
al environments, the

ontour sele
ted for the evaluation of the body of a
losure re
e
ts the lexi
al environment

by
ombining the
losure's
ontour (the abstra
t
losure's de�nition environment) and the

argument in the invo
ation. The
ontour that prevails at the site where the invo
ation

104 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

o

urs is not
onsidered. Neither is the label of the
all. The raw
ontour (P P

1

: : : P

n

)

is �rst
reated and is then proje
ted using the pattern-mat
her spe
ialised for invo
ations

of
losures of the form `�

l

', that is, M

l

. Note how the value of the innermost variable, P ,

is inserted at the beginning of the new
ontour, maintaining the invariant that the value of

the variables are listed from the innermost to the outermost.

Before we are done with the theoreti
al presentation of the pattern-based models, we

need to take
are of a last problem: that of
onsisten
y between pattern-mat
hers. The

proje
tion of a
on
rete value using a pattern-mat
her is always possible, as long as the

pattern-mat
her is exhaustive and non-redundant. However, not all abstra
t values
an

be proje
ted using a pattern-mat
her, even if the pattern-mat
her is exhaustive and non-

redundant. Certain abstra
t values are too ina

urate. That is, too ina

urate in at least

some of their sub-
omponents. The problem with abstra
t values (or
ontours) that are

too ina

urate is that, when they are used to form a raw pattern P and a proje
tion of

P is attempted using a pattern-mat
her M , there may not be any P

0

2 M su
h that

P % P

0

. Consequently, the pattern-mat
hers on whi
h an abstra
t model is built must

represent proje
tions that return values a

urate enough to be in
luded into raw patterns

and proje
ted again by the same or other pattern-mat
hers.

Let us give an example of a value pattern-mat
her that produ
es values that are too

ina

urate for its own needs. Let M

V

be:

8

>

>

>

<

>

>

>

:

#f ; �

8

; (8; #f);

(8; �

8

);

(8; (#f ; 8)); (8; (�

8

; 8)); (8; ((8; 8); 8))

9

>

>

>

=

>

>

>

;

Normally, it would not be
onsidered as a valid value pattern-mat
her be
ause it blends

all
losures together. But we prefer to keep the example simple as we are not interested

by
losures here. M

V

proje
ts Booleans and
losures to their simplest formulation. But

it lets pairs have more details. The type of the value in the
dr-�eld of pairs is expli
it

and in the
ase where this value is a pair too, the
ar-�eld of this internal pair
ontains

an extra level of details. Note also that all abstra
t pairs have no information about the

ontents of their
ar-�eld. However, type information on the value in the
ar-�eld of pairs

is sometimes required during the
onstru
tion of new pairs. To
learly illustrate when the

5.1. PATTERN-BASED MODELLING 105

problem o

urs, we
onsider the following expression:

(
ons

22

#f

23

(
ons

24

(�

25

x: x

26

) #f

27

))

Con
retely evaluating e

22

in, say, the empty environment `�', gives:

pair(#f; pair(
los((�

25

x: x

26

); �); #f))

Just out of
uriosity, we may proje
t this value using pattern-mat
her M

V

to obtain the

orresponding abstra
t value:

(8; (�

8

; 8))

However, during an abstra
t evaluation of e

22

, the abstra
t value must be built step by

step. So the
reation of the inner pair (evaluation of e

24

) produ
es the following raw and

proje
ted pattern:

(�

25

(); #f)

M

V

7! (8; #f)

The
reation of the outer pair (evaluation of e

22

) produ
es:

(#f ; (8; #f))

M

V

7! ?

The proje
tion
annot be done be
ause the internal abstra
t pair is not a

urate enough to

be handled by M

V

.

This was an example of the value pattern-mat
her not being
onsistent with itself. But

to obtain a valid pattern-based model, it is not only ne
essary for M

V

to produ
e abstra
t

values a

urate enough for its own needs, but it must do the same for the needs of ea
h M

l

,

and ea
h M

l

must produ
e
ontours a

urate enough for the needs of M

V

. Indeed, by the

de�nition of the
reation fun
tions

 and p
, M

V

is used to proje
t raw patterns
ontaining

abstra
t values and
ontours
oming from itself and from the di�erent M

l

, respe
tively.

And by the de�nition of the sele
tion fun
tion
all, all the M

l

are used to proje
t raw

ontour patterns
ontaining abstra
t values
oming from M

V

(and from
losure
ontours

oming themselves from M

V

). So the implementation of abstra
t models has to ensure that

onsisten
y is maintained between the pattern-mat
hers after ea
h model update.

106 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

Implementation of Pattern-Mat
hers

The mathemati
al de�nition of pattern-mat
hers is simple and pre
ise but if pattern-

mat
hers were dire
tly implemented this way, proje
tions would be rather ineÆ
ient. So,

instead, pattern-mat
hers are implemented as de
ision trees. A fast traversal of a pattern

allows the pattern-mat
her to determine what the result of the proje
tion is. The traversal

takes linear time in the size of the pattern. More pre
isely, it takes time linear in the size

of the inspe
ted part of the pattern. Some sub-parts of a pattern need not be inspe
ted as

they are mat
hed to the sub-pattern 8 in the pattern-mat
her.

We have adopted a breadth-�rst traversal of the patterns. Note that a depth-�rst traver-

sal would work too. In fa
t, any valid order would work; as long as any part of the pattern is

inspe
ted before its sub-parts are. But we have a reason to prefer the breadth-�rst traversal.

During a demand-driven analysis, there typi
ally are
onsiderable di�eren
es in the level

of details needed in some values (or
ontours)
ompared to that in other values. For example,

the pairs having a non-pair in the
dr-�eld may be uninteresting for the analysis while those

having a pair in the
dr-�eld may be
ome very detailed in both �elds. When
oarse and

detailed values
oexist, the point at whi
h there is a distin
tion between the two kinds of

values o

urs at a low depth in the pattern (be
ause a
oarse value is not very deep, to start

with). So, in order to avoid
onsidering unne
essary details in the uninteresting values,

the inspe
tion of the distinguishing point should appear as high as possible in the de
ision

tree. When a breadth-�rst traversal is used, this point
annot appear below a
ertain depth

be
ause traversing all levels above the point
an only introdu
e a bounded number of stages

in the de
ision tree. On the other hand, if a depth-�rst traversal is used, an arbitrary

number of points may have to be inspe
ted before the distinguishing point is rea
hed. This

is be
ause full-detail inspe
tion is ne
essary as long as the point distinguishing uninteresting

and interesting values is not met. To
ome ba
k to the example, a de
ision tree performing

a depth-�rst traversal of the pairs would have to inspe
t the value in the
ar-�eld with full

pre
ision in the eventuality that the pairs are interesting, i.e. in the eventuality that the

dr-�eld
ontains a pair. Complete traversal of the value in the
ar-�eld may be arbitrarily

long. So a depth-�rst traversal may lead to a de
ision tree that is exaggerately big if a bad

ase o

urs.

Now, let us des
ribe the data stru
tures used to implement the pattern-mat
hers. First,

5.1. PATTERN-BASED MODELLING 107

PM := PM

O

j PM

C

j PM

L

PM

O

:= Onode [Val)M ℄ j where M 2 PM

Onode [ValB)M

1

; ValC)M

2

; ValP)M

3

℄

where M

1

;M

2

;M

3

2 PM

PM

C

:= Cnode [Lab)M ℄ j where M 2 PM

Cnode [l

1

)M

1

; : : : ; l

n

)M

n

℄ where M

1

; : : : ;M

n

2 PM

and fl

1

; : : : ; l

n

g =

fl 2 Lab j e

l

is a �-expr.g

PM

L

:= Leaf P where P 2 MPat [MCtPat

Figure 5.4: Implementation of the pattern-mat
hers

the de
ision tree is made of inspe
tion nodes|the internal nodes|and of result nodes|the

leafs. The leafs
ontain the results of the proje
tion of raw patterns. There are two kinds

of inspe
tion nodes: the obje
t nodes and the
losures nodes. The two kinds of inspe
tion

nodes both
ome in two variants: the blind variant and the dis
riminating variant. An

obje
t node expe
ts a value and (possibly) dis
riminates on the type of the value. A
losure

node expe
ts a
losure and (possibly) dis
riminates on the label atta
hed to the
losure. A

blind variant does not inspe
t its
orresponding sub-pattern and has a single sub-tree. A

dis
riminating variant inspe
ts its
orresponding sub-pattern and dispat
hes the remainder

of the traversal to one of its sub-trees depending on the type or the label.

Figure 5.4 presents the data stru
tures used to represent de
ision trees. The inspe
tion

nodes are built with a
onstru
tor that indi
ates if they are obje
t or
losure nodes. Then

a list of alternatives follows. We believe that the notation for the alternatives speaks for

itself. The leaf nodes
ontain modelling patterns or modelling
ontour patterns, depending

on whether they are part of a value or
ontour pattern-mat
her, respe
tively.

The breadth-�rst traversal of data stru
tures typi
ally requires a queue to temporarily

hold the sub-stru
tures until they are traversed. It is the
ase for the traversal of patterns.

The general treatment for a pattern depends on the inspe
tion node variant that is inspe
ting

it. When the inspe
tion node is blind, the pattern is simply extra
ted from the queue. When

the inspe
tion node is dis
riminating, the pattern is extra
ted from the queue and then its

sub-patterns, when they exist, are inserted in the queue for future inspe
tion. One may

have noted that the data stru
tures used to implement the pattern-mat
hers do not in
lude

nodes to inspe
t
ontour patterns expli
itly. The inspe
tion of
ontours always starts by

breaking them into the individual values they
ontain and inserting ea
h value one after the

108 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

pm : PM� hqueue of MPati ! MPat [MCtPat

pm(Onode [Val)M ℄; P / q) = pm(M; q)

pm(Onode [ValB)M

1

; : : :℄; #f / q) = pm(M

1

; q)

pm(Onode [: : : ; ValC)M

2

; : : :℄; P / q) = pm(M

2

; q / P);

if P = �

8

or P = �

l

(P

1

: : : P

n

)

pm(Onode [: : : ; ValP)M

3

℄; (P

1

; P

2

) / q) = pm(M

3

; q / P

1

/ P

2

)

pm(Cnode [Lab)M ℄; P / q) = pm(M; q)

pm(Cnode [: : : ; l

i

)M

i

; : : :℄; �

l

i

(P

1

: : : P

n

) / q) = pm(M

i

; q / P

1

/ : : : / P

n

)

pm(Leaf P; [℄) = P

Figure 5.5: Algorithm for pattern-mat
hing

other in the queue.

Queues are denoted using square bra
kets and queue elements are separated by
ommas.

Insertion is performed to the right and extra
tion, to the left of queues. The proje
tion of

(simple) modelling pattern P is done by using [P ℄ as an initial queue. The proje
tion is

done by
omputing:

pm(M

V

; [P ℄)

where `pm' is the pattern-mat
hing fun
tion. The proje
tion of modelling
ontour pattern

(P

1

: : : P

n

) using pattern-mat
her M

l

is done by
omputing:

pm(M

l

; [P

1

; : : : ; P

n

℄)

Figure 5.5 presents the algorithm that performs proje
tions using the pattern-mat
hers. It

takes a pattern-mat
her node and a queue of values as arguments. To make the algorithm

easier to read, we use a view

1

on queues, denoted by `/', to indi
ate both insertions and

extra
tions. As usual, insertions are done to the right of queues and extra
tions, to the left.

The obje
t nodes a

ept all kinds of modelling patterns. But the
losure nodes expe
t

only modelling patterns of
losures. By
onstru
tion of the pattern-mat
hers, a
losure is

1

A view is an impli
it transformation that is performed on data stru
tures to present them under a

di�erent aspe
t, or point of view, that is more helpful. Views are used both in pattern-mat
hing and in the

onstru
tion of values. Here is an example using a Haskell-like syntax. We
an extra
t the �rst two elements

of a list along with the rest of the list using the pattern a:b:xs. However, if the real intent was to obtain

a list of the �rst two elements and the rest of the list, the use of the
on
atenation view, ++, in pattern

[a,b℄++xs, would be more natural. In the �rst pattern, it is the real
onstru
tor that is used to perform

the pattern-mat
hing. But in the se
ond, a �
titious but more
onvenient representation of the values is

obtained by the use of the ++ view.

5.1. PATTERN-BASED MODELLING 109

always the next pattern to extra
t from the queue ea
h time pattern-mat
hing goes through

a
losure node. Also, a leaf always
oin
ide with an emptied queue. This is guaranteed by

onstru
tion of the pattern-mat
hers.

Let us have a
loser look at the algorithm. When an obje
t node is rea
hed, four
ases

are possible: the node is blind or the node is dis
riminating and the extra
ted pattern is

that of a Boolean, that of a
losure, or that of a pair. A blind node simply dis
ards the

pattern. In the other
ases, sub-patterns, if they exist, are inserted ba
k into the queue.

In the Boolean
ase, there is no sub-pattern to insert ba
k. In the
losure
ase, the whole

losure is inserted ba
k for future examination by a
losure node. The inspe
tion of the

label of the
losure, if it o

urs at all, is
onsidered to be an operation done deeper by one

level in the pattern than the inspe
tion of its type. In the pair
ase, both sub-patterns are

inserted ba
k into the queue.

When a
losure node is rea
hed, there are only two
ases: the node is blind or it is

dis
riminating on the label of the �-expression from whi
h the extra
ted
losure originates.

When the node is blind, the label and the whole
losure are not
onsidered and the
losure

is dis
arded. When the node is dis
riminating, there is a
ase for ea
h �-expression label.

The
ontour of the
losure is broken and the values it
ontains are inserted into the queue,

from the �rst to the last.

When a leaf is rea
hed, the result of the proje
tion is simply extra
ted from the leaf and

returned.

The presented data stru
tures and pattern-mat
hing algorithm provide an implementa-

tion for the abstra
t models that is relatively fast. The raw patterns that must be proje
ted

be
ause of the use of
reation fun
tions of the model
an be pro
essed in linear time with

the size of the part of the pattern that is inspe
ted by the de
ision trees.

Model Updates

An update of the model
onsists in
hanging one or a few of the pattern-mat
hers to make

them more a

urate. That is, more a

urate with respe
t to the proje
tion results and more

a

urate with respe
t to their inspe
tion of the proje
ted patterns. A single model update

may require more than one
hange to the same pattern-mat
her. Typi
ally, this is the
ase

for M

V

. The
hanges to the pattern-mat
hers must be done with
are. In parti
ular, the

110 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

SPat := ? j

�

?

j

�

l

k j where l 2 Lab and k 2 SCtPat

(P

1

; P

2

) j where P

1

2 SPat and P

2

2 MPat

(P

1

; P

2

) where P

1

2 MPat and P

2

2 SPat

SCtPat := (P

1

: : : P

i�1

P

i

P

i+1

: : : P

n

) where P

i

2 SPat

and 8j 2 f1; : : : ; ng � fig: P

j

2 MPat

Figure 5.6: Syntax of the split patterns

pattern-mat
hers must stay
onsistent with the others. However, a systemati
 updating

pro
edure that ensures that the updates are done properly is relatively easy to elaborate.

The �rst tools we need to des
ribe are the split patterns and the split
ontour patterns.

The split patterns spe
ify a point in the abstra
t values or abstra
t
ontours where an

in
rease in pre
ision is sought. Split patterns are usually generated by the pro
essing of

demands. Figure 5.6 presents their syntax. The `?' sign is
alled the split point. Every

split (
ontour) pattern
ontains exa
tly one split point. Normally, the split point
auses the

values to be more a

urate by one extra level. But, in order to stay as general as possible,

we do not rely on that supposition.

The syntax of the split patterns allows one to indi
ate whi
h abstra
t values should be

a�e
ted by the update. For example, the following two patterns are not equivalent:

(�

8

; ?) (8; ?)

Both ask for additional a

ura
y in the representation of the value in the
dr-�eld of pairs.

But the �rst asks for additional a

ura
y only for the pairs that have a
losure in their

ar-�eld while the se
ond asks it for all pairs. Naturally, more
omplex restri
tions
an

be expressed using the \modelling part" of the patterns. However, there are limitations

related to the fa
t that patterns are traversed in a breadth-�rst manner. For example, the

following patterns des
ribe the same split:

�

12

((�

8

; #f) ?) �

12

((8; 8) ?)

be
ause the node a�e
ted by the split point is higher in the de
ision tree than those
or-

responding to the �elds of the pair. So, the
hoi
e between blindness and dis
rimination

5.1. PATTERN-BASED MODELLING 111

for the higher node
annot depend on the path that is followed in lower nodes. Even if,

on
retely, updates are performed dire
tly on de
ision trees, here, we prefer to des
ribe the

update pro
ess while
onsidering pattern-mat
hers to be sets.

The model update requests take the form of one or more pattern-mat
her update requests.

Pattern-mat
her update requests are denoted using the syntax:

update M with P where M 2 PM and P 2 SPat

In fa
t, the name of the pattern mat
her is important. The reasons are presented later.

As an example, the pro
essing of demands might generate the following pattern-mat
her

update requests:

update M

2

with (?)

update M

V

with �

4

(?)

update M

4

with (#f ?)

Ea
h pattern-mat
her update request
an be pro
essed individually.

The �rst step in the pro
essing of a pattern-mat
her update request like:

update M

V

with P or update M

l

with k

onsists in simplifying the pattern P|or k. Unne
essary details ought to be removed from

the pattern sin
e they do not have an in
uen
e on the signi�
ation of the pattern. We

illustrate the simpli�
ation by using on
e again the above example:

�

12

((�

8

; #f) ?) 7! �

12

((8; 8) ?)

The implementation of the simpli�
ation is relatively simple. It only requires a breadth-�rst

traversal of the pattern. The elements of the pattern are noted. Sin
e there is no de
ision

tree to guide the traversal, expli
it markers are manipulated along with the sub-patterns.

The `O' and `C' markers indi
ate obje
t and
losure inspe
tions, respe
tively. When the split

point is found, the rest of the traversal operates an erasure of the remaining sub-patterns.

The top of the pattern is then rebuilt on top of these simpli�ed sub-patterns. Figure 5.7

presents the algorithm formally. `S' is an overloaded fun
tion that simpli�es both split

patterns and split
ontour patterns. Fun
tion `S

Q

' de
onstru
ts and re
onstru
ts the higher

parts of the pattern. Fun
tion `S

?

Q

' is the detail-erasure operation. Note that a queue is

112 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

S : SPat! SPat

S(P) = P

0

where P

0

/ [℄ = S

Q

([℄ / O P)

S : SCtPat! SCtPat

S((P

1

: : : P

n

)) = (P

0

1

: : : P

0

n

)

where P

0

n

/ : : : / P

0

1

/ [℄ = S

Q

([℄ / O P

1

/ : : : / O P

n

)

S

Q

: hqueue of fO; Cg � (SPat [MPat)i ! hqueue of (SPat [MPat)i

S

Q

(O 8 / q) = S

Q

(q) / 8

S

Q

(O ? / q) = S

?

Q

(q) / ?

S

Q

(O #f / q) = S

Q

(q) /#f

S

Q

(O P / q) = q

0

/ P

0

; if P is �

8

, �

?

, or �

l

k

where P

0

/ q

0

= S

Q

(q / C P)

S

Q

(O (P

1

; P

2

) / q) = q

0

/ (P

0

1

; P

0

2

)

where P

0

2

/ P

0

1

/ q

0

= S

Q

(q / O P

1

/ O P

2

)

S

Q

(C �

8

/ q) = S

Q

(q) / �

8

S

Q

(C �

?

/ q) = S

?

Q

(q) / �

?

S

Q

(C �

l

(P

1

: : : P

n

) / q) = q

0

/ �

l

(P

0

1

: : : P

0

n

)

where P

0

n

/ : : : / P

0

1

/ q

0

= S

Q

(q / P

1

/ : : : / P

n

)

S

?

Q

: hqueue of fO; Cg �MPati ! hqueue of MPati

S

?

Q

(O P / q) = S

?

Q

(q) / 8

S

?

Q

(C P / q) = S

?

Q

(q) / �

8

S

?

Q

([℄) = [℄

Figure 5.7: Simpli�
ation of split patterns

used for the de
onstru
tion of the pattern and another for the re
onstru
tion. The order

of the sub-patterns in the re
onstru
tion queue is reversed. Figure 5.8 shows a tra
e of the

simpli�
ation of the above example.

The next step in the pro
essing of a pattern-mat
her update request
onsists in ensuring

that the pattern-mat
hers remain
onsistent. Updating a
ertain pattern-mat
her may lead

to a
as
ade of updates. This is be
ause the updated values may be
reated by proje
ting

raw patterns obtained from other values and these other values might not be a

urate

enough yet. Figure 5.9 shows the rules that are used to generate new update requests from

omplex ones in order to maintain
onsisten
y. The new requests have to go through the

rules themselves, and so on, until a base
ase is rea
hed. The set of requests obtained this

way
an be pro
essed in any order by the third step: the model
ould be in an in
onsistent

state during the update, but on
e all the pattern-mat
her update requests are a
hieved,

5.1. PATTERN-BASED MODELLING 113

S(�

12

((�

8

; #f) ?))

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([O �

12

((�

8

; #f) ?)℄)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([C �

12

((�

8

; #f) ?)℄)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([O (�

8

; #f); O ?℄)

2

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([O ?; O �

8

; O #f ℄)

2

6

6

6

6

6

6

6

6

4

S

?

Q

([O �

8

; O #f ℄)

2

6

6

6

4

S

?

Q

([O #f ℄)

"

S

?

Q

([℄)

) [℄

) [8℄

) [8;8℄

) [8;8; ?℄

) [?; (8; 8)℄

) [�

12

((8; 8) ?)℄

) [�

12

((8; 8) ?)℄

) �

12

((8; 8) ?)

Figure 5.8: Example of simpli�
ation of a split pattern

update M

V

with ? ! none

update M

V

with �

?

! none

update M

V

with �

l

(P

1

P

2

: : : P

n

) ! update M

l

0

with (P

1

P

2

: : : P

n

)

where e

l

0

= (�

l

0

x: e

l

00

) and l 2 4(l

00

)

update M

V

with (P

1

; P

2

) ! update M

V

with P

1

, if P

1

2 SPat

update M

V

with (P

1

; P

2

) ! update M

V

with P

2

, if P

2

2 SPat

update M

l

with (P

1

P

2

: : : P

n

) ! update M

V

with P

1

, if P

1

2 SPat

update M

l

with (P

1

P

2

: : : P

n

) ! update M

V

with �

l

(P

2

: : : P

n

), if P

1

62 SPat

Figure 5.9: Generation of pattern-mat
her update requests to ensure
onsisten
y

it be
omes
onsistent again. Figure 5.10
ontinues the example of Figure 5.8 and lists the

pattern-mat
her update requests that ensure a
onsistent update of the model. The example

supposes that �-expression e

12

is an immediate sub-expression of �-expression e

7

and that

�-expression e

7

is an immediate sub-expression of �-expression e

3

.

The third step is the sli
ing of patterns. The pattern in a pattern-mat
her update

request may be asking for an in
rease in a

ura
y that adds more than one extra level in the

on
erned abstra
t values. To avoid manipulating
omplex update situations, we perform

sli
ing on the pattern. The sli
ing of a pattern transform it in a sequen
e of patterns of

in
reasing a

ura
y. It makes sure that nodes in the de
ision tree are upgraded from the

114 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

update M

V

with �

12

((8; 8) ?)

! update M

7

with ((8; 8) ?)

! update M

V

with �

7

(?)

! update M

3

with (?)

! update M

V

with ?

Figure 5.10: Example of an update request and the sub-requests generated for
onsisten
y

highest to the lowest. Visually, the sequen
e of patterns have a split point that moves further

away from the top when we
onsider them in the order they appear in the sequen
e. The

split point moves further away from the top in a breadth-�rst order. Figure 5.11 presents

the sli
ing algorithm formally. The sequen
e that is produ
ed by the algorithm is denoted

using the syntax of queues. However, insertions to the front of the sequen
e are done using

the `.' operator. The `map' fun
tion is the usual fun
tion. It takes a fun
tion and a sequen
e

as arguments and applies the fun
tion to ea
h element of the sequen
e, produ
ing a new

sequen
e. On the
ontrary of to the pre
eding step, the patterns obtained with the sli
ing

algorithm are ordered and the order must be respe
ted. Figure 5.12 shows a split pattern

and the sequen
e of patterns obtained by sli
ing it. Noti
e how a split point is inserted for

ea
h point of the sub-pattern that is not a \universal" one, i.e. 8 or �

8

.

The fourth step
onsists in applying the simpli�ed,
onsistent, and sli
ed patterns to the

pattern-mat
hers. Let us
onsider a pattern-mat
her update request like:

update M

V

with P or update M

l

with k

We suppose that the order among the sli
ed patterns produ
ed by the sli
ing algorithm

is respe
ted. The upgrade may not even be ne
essary if the node to upgrade is already

dis
riminating. Even if upgrades are a
tually performed on de
ision trees, we prefer to

present upgrades on set-based pattern-mat
hers to keep things simpler. Also, we give the

textual explanations only for an update of M

V

. The operations are almost identi
al in the

ase of the update of M

l

.

When we update M

V

with a split pattern P , some of the modelling patterns in M

V

hange while others do not. So we need a tool to de
ide whi
h modelling patterns are

a�e
ted by P . To ful�l our needs, we extend the % relation to make it able to test if

a modelling pattern
onforms to a split pattern. If we de
ree that `?' is equivalent to 8

5.1. PATTERN-BASED MODELLING 115

S : SPat! hsequen
e of SPati

S(P) = map (� (P

0

/ [℄): P

0

) �

where (; �) = S

Q

([℄ / P)

S : SCtPat! hsequen
e of SCtPati

S((P

1

: : : P

n

)) = map (� (P

0

n

/ : : : / P

0

1

/ [℄): (P

0

1

: : : P

0

n

)) �

where (; �) = S

Q

([℄ / P

1

/ : : : / P

n

)

S

Q

: hqueue of fO; Cg � (SPat [MPat)i !

hqueue of MPati � hsequen
e of hqueue of (SPat [MPat)ii

S

Q

(O 8 / q) = (q

0

/ 8; map (� q: q / 8) �)

where (q

0

; �) = S

Q

(q)

S

Q

(O ? / q) = (q

0

/ 8; (q

0

/ ?) . [℄)

where (q

0

; [℄) = S

Q

(q)

S

Q

(O #f / q) = (q

0

/ 8; (q

0

/ ?) . (map (� q: q /#f) �))

where (q

0

; �) = S

Q

(q)

S

Q

(O P / q) = (q

0

/ 8; (q

0

/ ?) . (map (� (P

0

/ q): q / P

0

) �));

if P is �

8

, �

?

, or �

l

k

where (�

8

/ q

0

; �) = S

Q

(q / C P)

S

Q

(O (P

1

; P

2

) / q) = (q

0

/ 8; (q

0

/ ?) . (map (� (P

0

2

/ P

0

1

/ q): q / (P

0

1

; P

0

2

)) �))

where (8 / 8 / q

0

; �) = S

Q

(q / O P

1

/ O P

2

)

S

Q

(C �

8

/ q) = (q

0

/ �

8

; map (� q: q / �

8

) �)

where (q

0

; �) = S

Q

(q)

S

Q

(C �

?

/ q) = (q

0

/ �

8

; (q

0

/ �

?

) . [℄)

where (q

0

; [℄) = S

Q

(q)

S

Q

(C �

l

(P

1

: : : P

n

) / q) = (q

0

/ �

8

;

(q

0

/ �

?

) .

(map (� (P

0

n

/ : : : / P

0

1

/ q): q / �

l

(P

0

1

: : : P

0

n

)) �))

where (8 / : : : / 8 /

| {z }

n times

q

0

; �) = S

Q

(q / P

1

/ : : : / P

n

)

S

Q

([℄) = ([℄; [℄)

Figure 5.11: Sli
ing of split patterns

S ((�

12

(?); (#f ; 8))) =

h

? , (?; 8) , (�

8

; ?) ,

(�

?

; (8; 8)) , (�

12

(8); (?; 8)) , (�

12

(?); (#f ; 8))

i

Figure 5.12: Example of the sli
ing of a split pattern

116 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

% � MPat � (MPat [SPat)

: : : (rules for the MPat �MPat
ases)

P % ?

�

8

% �

?

�

l

k % �

?

�

l

k

1

% �

l

k

2

; if k

1

%

l

k

2

(P

1

; P

2

)% (P

0

1

; P

0

2

); if P

1

% P

0

1

and P

2

% P

0

2

%

l

� MCtPat � (MCtPat [SCtPat) l 2 Lab

: : : (rule for the MCtPat �MCtPat
ases)

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

); if these are n visible variables at label l and

P

1

% P

0

1

; : : : ; P

n

% P

0

n

Figure 5.13: Extension of the de�nition of
onforman
e between modelling and split patterns

(and that `�

?

' is equivalent to `�

8

'), then, by the sli
ing, we
an always de
ide whether

ea
h pattern in M

V

onforms to P . Indeed, the only point in whi
h
onforming patterns in

M

V

may not be as pre
ise as P is exa
tly at the split point. The de
ree is reasonable as,

although `?' asks for higher a

ura
y, it has not
ommitted to a parti
ular
hoi
e among

the available options. Figure 5.13 presents the extension to %. The extension makes use of

the previous de�nition without any spe
ial indi
ation.

With the help of the
onforman
e relation, it is now easy to express the algorithm that

upgrades the inspe
tion points. Figure 5.14 presents the algorithm. A pattern-mat
her

update request `update M

V

with P ' is performed by the (overloaded) fun
tion `U ' and the

resulting pattern-mat
her is U(M

V

; P). Basi
ally, ea
h modelling pattern in M

V

is �rst

tested for
onforman
e to the split pattern. If it is
onforming, it is \exploded" into more

a

urate modelling patterns, if it is not already a

urate enough. When 8 is exploded, it

provides the basi
 patterns of the three types. When `�

8

' is exploded, it provides the basi

patterns of all
losures of the program. The program is assumed to be e

l

0

. Note that some

ases are not treated by u. This is be
ause of the
onforman
e test previously made: the

de�nition of u
ontains only the possible
ases.

A small example of upgrading is presented in Figure 5.15. The value pattern-mat
her for

a little program is upgraded using pattern P = �

10

(8 ?). The
urrent state ofM

V

is shown.

Note that M

V

is pre
ise enough to be ready to be split using P . This is always the
ase

be
ause of the sli
ing of split patterns. We suppose that the program has two �-expressions,

5.1. PATTERN-BASED MODELLING 117

U : PM� SPat

U(M

V

; P) =

[

P

0

2M

V

if P

0

% P then P

0

u P

else fP

0

g

!

U : PM� SCtPat

U(M

l

; k) =

[

k

0

2M

l

if k

0

%

l

0

k then k

0

u k

else fk

0

g

!

where e

l

= (�

l

x: e

l

0

)

u : MPat � (MPat [SPat)! 2

MPat

P u 8 = fPg

8 u ? = f#f ; �

8

; (8; 8)g

P u ? = fPg; if P 6= 8

#f u#f = f#fg

P u �

8

= fPg

�

8

u �

?

=

8

>

<

>

:

�

l

(8 : : : 8

| {z }

n times

)

l 2 4(e

l

0

) ^

e

l

is a �-expression ^

there are n visible variables at label l

9

>

=

>

;

�

l

k u �

?

= f�

l

kg

�

l

k

0

u �

l

k =

n

�

l

k

00

k

00

2 k

0

u k

o

(P

0

1

; P

0

2

) u (P

1

; P

2

) =

n

(P

00

1

; P

00

2

) P

00

1

2 P

0

1

u P

1

; P

00

2

2 P

0

2

u P

2

o

u : MCtPat � (MCtPat [SCtPat)! 2

MCtPat

(P

0

1

: : : P

0

n

) u (P

1

: : : P

n

) =

n

(P

00

1

: : : P

00

n

) P

00

1

2 P

0

1

u P

1

; : : : ; P

00

n

2 P

0

n

u P

n

o

Figure 5.14: Algorithm for the upgrade of inspe
tion points in pattern-mat
hers

118 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

e

5

and e

10

, having respe
tively one and two variables in their lexi
al environment.

If the upgrade of pattern-mat
hers is done dire
tly on the de
ision trees, it
an be made

more eÆ
ient. Essentially, the eÆ
ient algorithm
onsists in performing the
onforman
e

test and the (eventual) node upgrade together. Bran
hes of the trees that do not
onform

to the pattern are un
hanged. Bran
hes that
onform may
hange, depending on the fa
t

that the inspe
tion node
orresponding to the split point is blind or not. Proje
tion results

at the leafs must be updated to re
e
t the in
rease in a

ura
y. Essentially, the update of

the leafs is done similarly to u. Note that the upgrade of a blind node into a dis
riminating

node
hanges the use of the queue. New blind nodes have to be introdu
ed on lower

levels in the trees to
onsume the sub-patterns that are to be inserted in the queue by

the new dis
riminating node. As an instan
e, when a blind obje
t node is turned into a

dis
riminating node, two blind obje
t nodes have to be added in the \pair" bran
h and a

blind
losure node has to be added in the \
losure" bran
h. No new node is required in the

\Boolean" bran
h as no sub-pattern gets inserted in the queue when #f is en
ountered.

5.1.3 Demands

We present the di�erent kinds of demands that we manipulate during the demand pro
essing

phases of the demand-driven analysis. Most of these kinds were introdu
ed informally in

the previous
hapter as \inevitable" ones. We now give a
omplete presentation of ea
h

kind along with its syntax and meaning.

Figure 5.16 presents the syntax of demands. The �rst three kinds of demands were

informally mentioned in the previous
hapter. The bad
all demands are added to the list.

Here is a pre
ise des
ription of ea
h kind of demands. Ea
h demand more or less dire
tly

asks for modi�
ations to the abstra
t model.

Bound demands. Demand `show �

l;k

� B' requests a demonstration that e

l

, when eval-

uated in
ontour k, provides only values
ontained in bound B. The possible bounds

in
lude ea
h of the three types (ValB, ValC, and ValP) and also the values a
ting as

true Boolean values in
onditionals (ValTrues = ValC [ValP). The demonstration

obtained when the demand is a
hieved usually have
ontour k split into a
ertain

number of more spe
ialised
ontours k

1

; : : : ; k

n

su
h that 8 1 � i � n: �

l;k

i

� B. The

5.1. PATTERN-BASED MODELLING 119

M

V

=

8

>

>

>

<

>

>

>

:

#f ;

�

5

(8);

�

10

(#f 8); �

10

(�

8

8); �

10

((8; 8) 8);

(8; 8)

9

>

>

>

=

>

>

>

;

U(M

V

; �

10

(8 ?)) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

#f

non�
onforming

) f#fg

[

�

5

(8)

non�
onforming

) f�

5

(8)g

[

�

10

(#f 8)

onforming

)

8

>

<

>

:

�

10

(#f #f);

�

10

(#f �

8

);

�

10

(#f (8; 8))

9

>

=

>

;

[

�

10

(�

8

8)

onforming

)

8

>

<

>

:

�

10

(�

8

#f)

�

10

(�

8

�

8

)

�

10

(�

8

(8; 8))

9

>

=

>

;

[

�

10

((8; 8) 8)

onforming

)

8

>

<

>

:

�

10

((8; 8) #f)

�

10

((8; 8) �

8

)

�

10

((8; 8) (8; 8))

9

>

=

>

;

[

(8; 8)

non�
onforming

) f(8; 8)g

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

#f ;

�

5

(8);

�

10

(#f #f);

�

10

(#f �

8

);

�

10

(#f (8; 8));

�

10

(�

8

#f);

�

10

(�

8

�

8

);

�

10

(�

8

(8; 8));

�

10

((8; 8) #f);

�

10

((8; 8) �

8

);

�

10

((8; 8) (8; 8));

(8; 8)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

Figure 5.15: Example of the upgrade of a pattern-mat
her

120 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

Demand := show V � B j where V 2 �-var, B 2 Bound

split V P j where V 2 Splittee, P 2 SPat

show V = ; j where V 2 Æ-var

bad-
all l f v k where l 2 Lab, f; v 2 MPat, k 2 MCtPat

Bound := ValB j ValC j ValP j ValTrues

Splittee := ValC j ValP j V where V 2 �-var [�-var [
-var

�-var := �

l;k

where l 2 Lab, k 2 MCtPat

�-var := �

x;k;l

where x 2 Var, k 2 MCtPat, l 2 Lab

-var :=

;k

where
 2 MPat, k 2 MCtPat

Æ-var := Æ

l;k

where l 2 Lab, k 2 MCtPat

Figure 5.16: Syntax of the demands

%-.& � 2

MPat

� SPat

S %-.& P; if 8 2 S

S %-.& ?; if (#f 2 S ^ S n f#fg 6= ;) _

(S \ T 6= ; ^ S n T 6= ;)

where T = f(P

1

; P

2

) j P

1

; P

2

2MPatg

S %-.& �

?

; if �

8

2 S _

(�

l

k; �

l

0

k

0

2 S ^ l 6= l

0

)

S %-.& �

l

(P

1

: : : P

n

); if P

i

2 SPat ^ T %-.& P

i

where T =

(

P

0

i

�

l

(P

0

1

: : : P

0

n

) 2 S ^

�

l

(P

0

1

: : : P

0

n

)

9

\ �

l

(P

1

: : : P

n

)

)

S %-.& (P

1

; P

2

); if P

i

2 SPat ^ T %-.& P

i

where T =

n

P

0

i

(P

0

1

; P

0

2

) 2 S ^ (P

0

1

; P

0

2

)

9

\
(P

1

; P

2

)

o

Figure 5.17: Algorithm for the \is spread on" relation

5.1. PATTERN-BASED MODELLING 121

9

\ � (MPat [SPat)� (MPat [SPat)

8

9

\ P

2

P

1

9

\ 8

?

9

\ P

2

P

1

9

\ ?

#f

9

\ #f

�

8

9

\ P

2

; if P

2

is �

8

, �

?

, or �

l

k

P

1

9

\ �

8

; if P

1

is �

?

or �

l

k

�

?

9

\ P

2

; if P

2

is �

?

or �

l

k

P

1

9

\ �

?

; if P

1

is �

l

k

�

l

(P

1

: : : P

n

)

9

\ �

l

(P

0

1

: : : P

0

n

); if P

i

9

\ P

0

i

; 81 � i � n

(P

1

; P

2

)

9

\ (P

0

1

; P

0

2

); if P

1

9

\ P

0

1

and P

2

9

\ P

0

2

Figure 5.18: De�nition of the \have a non-empty interse
tion" relation

property �

l;k

� B may not (and need not) ne
essarily be satis�ed literally.

2

Most of the time, bound demands are generated as initial demands and dire
tly express

the needs of the optimiser.

The set of bounds that
an be used in bound demands may seem restri
ted. One

may estimate that more
omplex bounds are ne
essary. However, by the
hoi
e of the

demand pro
essing rules, bound demands are qui
kly transformed into other demands.

The four di�erent bounds that are mentioned are just suÆ
ient for our approa
h.

Never demands. Demand `show Æ

l;k

= ;' asks for a demonstration that e

l

is not really

evaluated in
ontour k. On
e again, various modi�
ations to the abstra
t model

are generally needed among whi
h there is typi
ally a split of
ontour k into more

spe
ialised ones, k

1

; : : : ; k

n

, su
h that 8 1 � i � n: Æ

l;k

i

= ;.

Usually, never demands are generated be
ause there is eviden
e that, if the expression

gets evaluated, then it ne
essarily leads to an error.

Split demands. These demands ask for an in
rease in the a

ura
y of the modelling. The

splittee is the entity for whi
h greater a

ura
y is required, i.e. that should be split.

The desired improvement in a

ura
y is spe
i�ed by the split pattern. There are

split demands that dire
tly ask for an update of the model. These have ValC or

2

Moreover, after the split of k is done, k no longer exists. So, stri
tly speaking, talking about abstra
t

variable �

l;k

is an abuse of notation.

122 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

ValP as splittee. The others ask for in
reased a

ura
y|or separation|in the values

ontained in an abstra
t variable. The abstra
t variable represents the value of an

expression (�

l;k

), the value of a referen
e to a variable (�

x;k;l

), or the return value of

a
losure (

;k

).

Split demands having an abstra
t variable as splittee are mainly generated to separate

the so-
alled good
ases from the bad
ases. In the previous
hapter, we explain the

importan
e of separating good and bad
ases before any attempt to remove the bad

ases is made.

A splittee of the form �

x;k;l

denotes a referen
e to `x' in
ontour k and from label

l. Re
all that this is di�erent from the abstra
t variable �

x;k

. The
ontours that

are valid where the variable is bound and those where the variable is referen
ed may

di�er
ompletely. For example, it is the
ase when the referen
e o

urs in an expression

deeply nested inside of the
losure that introdu
ed the binding to the variable.

Split demands on abstra
t variables request that the model be modi�ed in su
h a

way that (in the
ase of a splittee from `�-var') k is split into spe
ialised
ontours

k

1

; : : : ; k

n

su
h that, in ea
h k

i

, the values fall on only one side of the pattern. To

formally express this
on
ept, we need the help of the \is spread on" relation to

indi
ate when abstra
t values happen not fall all on the same side of the pattern.

Figure 5.17 gives a formal de�nition of this relation. The spread relation between a

set of values S and a split pattern P is denoted by S %-.& P . In turn, this relation

is based on another one: the \have a non-empty interse
tion". This one indi
ates

if two split or modelling patterns have an interse
tion, i.e. if there exists a
on
rete

value that is abstra
ted by both patterns. We write P

1

9

\ P

2

when patterns P

1

and

P

2

have a non-empty interse
tion. Figure 5.18 formally de�nes the relation. Again,

we de
ree that split pattern `?' abstra
ts all values and `�

?

' abstra
ts all
losures. So,

the a
hievement of `split �

l;k

P '
onsists in modifying the abstra
t model su
h that

k is spe
ialised into k

1

; : : : ; k

n

su
h that 81 � i � n: :(�

l;k

i

%-.& P). Similarly for other

split demands where the splittee is an abstra
t variable.

To help to understand the meaning of %-.&, we use a pi
ture. Imagine that the set of

all modelling patterns lie on a (two-dimensional) plan. Sin
e patterns are dis
rete

entities, we will imagine them as sand granules. Now, our set of abstra
t values S

is represented by a subset of these granules. Imagine that our split pattern P is a

riddle|a
oarse sieve. It has a
ertain number of holes. It may be as vast as the plan or

5.1. PATTERN-BASED MODELLING 123

may o

upy only a tiny fra
tion of the plan. Testing whether S %-.& P hold is equivalent

to sifting the sand granules using the riddle: let the sand granules levitate above the

ground, ea
h at their respe
tive x and y
oordinates; let the riddle lie between the

granules and the ground; and �nally let the granules fall free. Some granules fall into

the riddle, some do not. Among the granules that fall into the riddle, some may go

through a di�erent hole than others. We say that the sand was spread over the riddle

if more than one hole was passed through by the sand. The granules that fell outside

of the riddle do not matter.

With the test S %-.& P , a similar thing o

urs. Some abstra
t values do not have an

interse
tion with P : they fall outside of P . Others fall into P and pass through one of

the \holes" of P , depending on the type or on the label of a sub-pattern. Moreover,

some values may even be too
oarse to be able to go through one of the holes; they

get stu
k on P . Let us give some examples:

� pattern P = (?; 8) sifts pairs; it has three holes that are (#f ;8), (�

8

;8), and

((8;8);8); Booleans and
losures fall outside of P ; 8
annot go through P but

annot fall outside either;

� pattern P = ? has three holes and no values
an fall outside of it;

� pattern P = (�

12

(�

8

#f); (�

?

; #f)) o

upies a small fra
tion of the plan and

has as many holes as there are �-expressions in the program.

So S %-.& P holds if there is a value in S that gets stu
k in P or if there are values in

S going through di�erent \holes" of P . Values having no interse
tion with P do not

matter.

Bad
all demands. Demand `bad-
all l f v k' asks for a demonstration that the des
ribed

invo
ation a
tually does not o

ur. The invo
ation is that of
losure f on argument

v at
all e

l

in
ontour k. The a
hievement of this demand usually requires to �rst

perform
hanges on the abstra
t model and then to have all \bad" spe
ialisations of

the invo
ations not to o

ur.

Bad
all demands originate from the pro
essing of never demands. In order to show

that a
ertain expression (that happens to be the body of a
losure) does not get

evaluated, it is ne
essary to show that
ertain
alls do not o

ur.

Call site monitoring. Although
all site monitoring is not a kind of demand, we mention

it here simply to introdu
e its syntax. When a
all expression e

l

has to be monitored,

124 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

we write the pseudo-demand `monitor-
all l k'. It spe
i�es in whi
h
ontour the

monitoring must be done.

We intentionally omit to explain what monitoring is exa
tly. We simply mention that

it
onsists in taking a
tions to a
hieve all bad
all demands related to the spe
i�ed

all site.

5.2 Demand Pro
essing

We present the pro
essing rules for the demands. The pro
essing rules for ea
h kind of

demands are presented in the following se
tions. They are
onsidered in the following order:

the bound demands, the never demands, the bad
all demands, and the split demands.

The pro
essing of the split demands is
learly the most involving. Then, we
ontinue by

des
ribing the monitoring of
all sites. Finally, we present an important fun
tion that is

used to minimally separate
ouples a

ording to some given property: the Split-Couples

fun
tion (s
) is useful in the pro
essing of a few demands.

The demand pro
essing rules depend on a
ertain number of hypothesis. They suppose

that the
omplete demand-driven approa
h is the one presented in a later se
tion. Changing

the global approa
h would require some adaptation of the pro
essing rules. As des
ribed,

the pro
essing rules are intended to be used during a model-update phase. Let e

l

0

be the

program to analyse. The
urrent abstra
t model is

M = (ValB; ValC; ValP; Cont; ();

; p
;
all)

and is built on the pattern-mat
hers

fM

V

g [fM

l

j (�

l

x: e) 2 4(e

l

0

)g

The analysis results for the program usingM are assumed to be available as

R = (�; �;
; Æ; �; �; �) = FW(e

l

0

;M)

Despite the hypotheses that we pose, many pro
essing rules take
are of more
ases than

it is stri
tly ne
essary. This is be
ause, most of the time, it is simpler to treat all
ases,

5.2. DEMAND PROCESSING 125

even impossible ones, than to argue why some of them are impossible.

We show the results of pro
essing a demand using a double arrow. It is usually pre
eded

by a
ondition. It looks like:

If some
ondition:

)results

Most of the results of demand pro
essing are emissions of new demands. But some results

onstitute one or many model updates. When the pro
essing of a demand is
omplete

and does not emit sub-demands, a
omment is added to indi
ate whether its pro
essing is

su

essful. Comment (su

ess) indi
ates that the demand is a
hieved. Comment (failure)

indi
ates that the demand
annot be a
hieved. Normally, demands that depend on the

failed demand
annot be a
hieved either. As we explain during the des
ription of the

global demand-driven approa
h, the
omments are ignored. We insert them to make the

presentation
learer. However, a modi�ed approa
h
ould make use of the
omments.

5.2.1 Bound Demands

Let us
onsider bound demand D � `show �

l;k

� B' where B is one of the four bounds.

When D is pro
essed, one of three situations
an o

ur. The �rst is that the bound is

respe
ted, so D is trivially a
hieved:

If �

l;k

� B:

)(su

ess)

The se
ond situation o

urs when no value resulting from the evaluation of e

l

in k lies

inside of B. This is a relatively simple situation as only bad
ases o

ur. Only bad values

an
ome from e

l

so the suÆ
ient and ne
essary way to a
hieve D is by showing that e

l

does not get evaluated in k at all:

If �

l;k

\B = ;:

)show Æ

l;k

= ;

Note that, if �

l;k

is empty, we
an say that, in fa
t, it falls into the �rst two situations.

However, the �rst situation is more favourable and should be used. Ea
h time the
onditions

atta
hed to a situation are met, this situation should be
onsidered to have priority over

126 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

the next ones as we list the more favourable situations �rst.

The last situation o

urs when there are both good and bad
ases. That is, when there

are values that lie inside of the bound and others, outside. The �rst step in trying to a
hieve

D then
onsists in separating the good and bad
ases:

Otherwise:

)split �

l;k

?

Be
ause of the simpli
ity of the valid bounds, a split demand requesting the values in �

l;k

to

be split a

ording to their (top-level) type is suÆ
ient to separate good
ases from bad
ases.

In the eventuality that this new demand is a
hieved, then a reiteration of the pro
essing of

D (in fa
t, of its spe
ialisations) will be able to pro
eed using one of the �rst two situations.

5.2.2 Never Demands

Let us
onsider never demand D � `show Æ

l;k

= ;' to be the demand to pro
ess. The

�rst and simplest situation o

urs when the property to verify is already true. Then, the

demand is trivially a
hieved:

If Æ

l;k

= ;:

)(su

ess)

Another simple situation
onsists inD asking for a demonstration that the program does

not get evaluated in the main
ontour, whi
h is patently false. The abstra
t interpretation

of the program, for analysis purpose, is started by the
onstraint Æ

l

0

;()

� ValB. It follows

that D fails:

If l = l

0

and k = ():

)(failure)

The other situations require some a
tive pro
essing. First, note that, most of the time,

the fa
t that an expression is evaluated is
ontrolled by its parent expression, i.e. by e

l

0

,

where l

0

= parent(l).

3

Often, the evaluation of e

l

depends only on the fa
t that e

l

0

is

3

The attentive reader may noti
e that we do not mention the
ase where l = l

0

and k 6= (). This is be
ause

e

l

0

is not inside the body of a
losure. Its evaluation
annot be triggered be
ause of some invo
ation. So the

only way e

l

0

gets evaluated is by the starting
onstraint whi
h uses
ontour (). Consequently, for all k 6= (),

we have that Æ

l

0

;k

= ;, and this
ase is
aught by the �rst situation.

5.2. DEMAND PROCESSING 127

evaluated too. But let us start by
onsidering the spe
ial
ases �rst.

If e

l

0

= (�

l

0

x: e

l

), the events that
ause the evaluation of e

l

in
ontour k are that some

losure originating from e

l

0

gets invoked and
all sele
ts k as the
ontour in whi
h e

l

ought

to be evaluated. So, in order to try to a
hieve D, a demonstration that ea
h su
h invo
ation

annot happen is needed. Bad
all demands are emitted for ea
h invo
ation leading to the

evaluation of e

l

in k. If all of these sub-demands are eventually a
hieved, then D
learly

be
omes so, too:

If e

l

0

= (�

l

0

x: e

l

):

)

n

bad-
all l

00

(�

l

0

k

00

) v k

0

(l

00

; (�

l

0

k

00

); v; k

0

) 2 �

k

o

The situation in whi
h e

l

0

is a
onditional and e

l

is its then-bran
h is a spe
ial
ase as

it is not true that e

l

is evaluated if and only if e

l

0

is. In fa
t, e

l

is not evaluated if and only

if the test in e

l

0

does not return \true" values (
losures and pairs). So D is a
hieved if and

only it
an be showed that the test returns nothing else than \false" values:

If e

l

0

= (if

l

0

e

l

00

e

l

e

l

000

):

)show �

l

00

;k

� ValB

The situation in whi
h e

l

is the else-bran
h of e

l

0

is symmetri
 to the then-bran
h

situation:

If e

l

0

= (if

l

0

e

l

00

e

l

000

e

l

):

)show �

l

00

;k

� ValTrues

The remaining situations are all those in whi
h e

l

is evaluated if and only if e

l

0

is. Those

in
lude the
ase where e

l

is the test of the
onditional e

l

0

and the
ases where e

l

0

is not a

�-expression nor a
onditional. The appropriate pro
essing in these situations is to ask for

a demonstration that e

l

0

does not get evaluated either (at least in
ontour k):

Otherwise:

)show Æ

l

0

;k

= ;

5.2.3 Bad Call Demands

Let us
onsider demand D � `bad-
all l f v k'. Sin
e the parameters in D des
ribe the

ir
umstan
es of an invo
ation, we know that e

l

is a
all. Let e

l

= (

l

e

l

0

e

l

00

). In pro
essing

128 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

D, the �rst situation that we
ould fa
e is that of D being trivially a
hieved. The des
ribed

invo
ation does not o

ur if at least one of f and v does not appear at the
all in the

spe
i�ed
ontour:

If f 62 �

l

0

;k

or v 62 �

l

00

;k

:

)(su

ess)

Otherwise, the invo
ation really o

urs. At least, a

ording to the
urrent analysis

results. The natural pro
essing for this bad
all would
onsist in separating the spe
i�ed

invo
ation from the others, if they exist, and then trying to show that e

l

does not get

evaluated in the sub-
ontour that
ontains the spe
i�ed invo
ation. Prior separation of the

spe
i�ed invo
ation from the others, if they exist, is essential, sin
e the other invo
ations

need not ne
essarily be bad. Indeed, the other invo
ations may even represent a
tual

on
rete invo
ations, and, as su
h, should not be subje
t to an attempt to demonstrate

that they do not o

ur. Non-o

urren
e of the other invo
ations is not ne
essary.

However, we do not pro
ess D in the way we just des
ribed. The des
ribed method lead

to too many splits. Imagine that many
losures are invoked on many di�erent arguments at

e

l

in k, and that half of the invo
ations are
onsidered to be bad. The des
ribed pro
essing

requires every bad invo
ation to be
ompletely separated from all the others. But the only

separation that is really needed is one that separates all bad
alls from all (presumably) good

alls. This global separation may be mu
h simpler than the
ombination of all individual

separations. So instead of immediately taking measures to a
hieve D, we prefer to put it in

a log of bad
alls. Later, all bad
alls related to e

l

and
ontour k are pro
essed together in

what we designate as the monitoring of e

l

in k. We denote the log of bad
alls by L

BC

and

the invo
ations that are marked as bad for
all e

l

in
ontour k are listed in L

BC

(l; k).

Otherwise:

)Insert (f; v) in L

BC

(l; k)

Flag (l; k) as a
andidate for monitoring

5.2.4 Split Demands

The pro
essing of a split demand `split V P ' depends
onsiderably on the splittee V .

Pro
essing of the demand for ea
h kind of splittee is presented in separate se
tions.

5.2. DEMAND PROCESSING 129

Dire
t Split on the Model

A dire
t split on the model is requested by a demand like D � `split V P ' where V is

ValC or ValP. No matter whi
h of the two splittees is used in D, the demand is pro
essed

identi
ally. The value pattern-mat
her is updated using P :

)Update M

V

with P

Split on �-Variables

The splits on �-variables are the most involving part of the demand pro
essing. Let us

onsider split demand D � `split �

l;k

P '. The simplest situation is the one in whi
h D is

trivially a
hieved. It o

urs when the values in the abstra
t variable are not spread on the

pattern:

If :(�

l;k

%-.& P):

)(su

ess)

Otherwise, the
omplexity of the pro
essing be
omes immediately apparent. The values

in the abstra
t variable are spread on the pattern and some measures have to be taken in

order to
ause this spreading to disappear. We know that the values in an �-variable result

from the abstra
t interpretation of expression e

l

. And the interpretation of e

l

depends on

the kind of expression it is. So, similarly to the pro
essing of never demands that depended

on the kind of the parent expression, the pro
essing of split demands on �-variables depends

on the kind of the expression itself. We
onsider ea
h kind of expression in turn.

Boolean Constant Let e

l

= #f

l

. This situation is a
tually impossible, as we explain

next, but we in
lude it for
ompleteness. Abstra
t variable �

l;k

ontains either all Booleans

(ValB) or nothing, depending on whether e

l

gets evaluated in
ontour k or not. If �

l;k

=

ValB, inspe
tion of ea
h possible split pattern P

0

shows that we
annot have that �

l;k

%-.& P

0

.

Intuitively, this is be
ause abstra
t Booleans in ValB represent perfe
tly a

urately the

on
rete Boolean. A
on
rete value by itself
annot be spread on a split pattern. And

if �

l;k

= ;, then there
learly in no spreading. But we give the pro
essing rule for D

nevertheless and we indi
ate that D is trivially a
hieved:

If e

l

= #f

l

:

130 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

)(su

ess)

Variable Referen
e Let e

l

= x

l

. Pro
essing D is very simple as it translates dire
tly

into a split demand on a �-variable:

If e

l

= x

l

:

)split �

x;k;l

P

Call Let e

l

= (

l

e

l

0

e

l

00

). This situation is the diÆ
ult one. Here are a
ouple of reasons.

First, the result of the evaluation of e

l

omes from the invo
ation of ea
h
losure on ea
h

argument and blending the individual results together. So the values in �

l;k

are not dire
tly

fun
tion of the values in �

l

0

;k

and �

l

00

;k

. Se
ond, the
alls are responsible for making our

mini-language a Turing-
omplete one. Without them, analysing a program
ould simply

onsist in
on
retely evaluating it, given the guarantee not to loop.

In order to pro
ess D, the result of ea
h invo
ation has to be inspe
ted. For
losure f

invoked on argument v, with return values in

f;k

0

, for some k

0

, there are three
ases:

f;k

0

has no interse
tion with P ,

f;k

0

is not spread on P , or

f;k

0

is spread on P . In the �rst

ase, the invo
ation does not
ontribute to the value of �

l;k

in a way that is observable by

P . In the se
ond
ase, we
an determine into whi
h \hole" of P the result of the invo
ation

falls. In the third
ase, we
annot even determine into whi
h \hole" the invo
ation falls.

The treatment of ea
h invo
ation is di�erent depending on the
ase to whi
h it belongs.

Invo
ations having an empty return value or a return value that has no interse
tion with

P are ignored.

Invo
ations having a return value that is spread on P lead to a request for having a more

pre
ise des
ription of the
omputations o

urring in the invoked
losure. Eventually, the

more pre
isely des
ribed
losure may have return values that
ease to be spread on P . That

is,

f;k

0

may be repla
ed by a number of more spe
ialised invo
ation results, ea
h
ausing

no spreading on P . Being able to determine in whi
h \hole" of P ea
h invo
ation result

goes is vital to a su

essful pro
essing of D. Until the invo
ation of f on v is split into

non-spreading evaluation results, it
annot be used to sele
t useful splits on sub-expressions

e

l

0

and e

l

00

.

Invo
ations having a return value that is not spread on P are immediately used in

5.2. DEMAND PROCESSING 131

sele
ting splits on the sub-expressions of e

l

. The return value of su
h an invo
ation goes

through a single \hole" of P but that does not automati
ally mean that all non-spreading

return values, on
e united together, do not spread on P . In order to make progress in

the a
hievement of D, non-spreading return values are
olle
ted together along with their

orresponding
losure-argument
ouple. The Split-Couples fun
tion is then used to sele
t

splits on the
losure
omponent and/or on the argument
omponent. That is, on the value of

e

l

0

and that of e

l

00

, respe
tively. The s
 fun
tion sele
ts splits su
h that in
ompatible
ouples

are separated by the splits. We say that two
ouples (f

1

; v

1

) and (f

2

; v

2

) are in
ompatible

if their asso
iated return values

f

1

;k

1

and

f

2

;k

2

go through di�erent \holes" of P . If all

the splits sele
ted by s
 are to be a
hieved, then no in
ompatible
ouples will appear in the

same
ontour anymore.

We give the pro
essing rule and then give an example:

If e

l

= (

l

e

l

0

e

l

00

):

)

8

<

:

split

f;k

0

P

f 2 �

l

0

;k

\ ValC ^ v 2 �

l

00

;k

^

k

0

=
all(l; f; v; k) ^

f;k

0

%-.& P

9

=

;

[

n

split �

l

0

;k

P

0

P

0

2 B

o

[

n

split �

l

00

;k

P

00

P

00

2 C

o

where A =

8

>

>

>

<

>

>

>

:

((f; v);

f;k

0

)

f 2 �

l

0

;k

\ ValC ^ v 2 �

l

00

;k

^

k

0

=
all(l; f; v; k) ^

9v

0

2

f;k

0

: v

0

9

\ P ^ : (

f;k

0

%-.& P)

9

>

>

>

=

>

>

>

;

(B; C) = s
(A; P)

In our example, we
onsider demand D =� `split �

l;k

?' where e

l

= (

l

e

l

0

e

l

00

). So we

want to have k (and possibly other abstra
t entities) split into k

1

; : : : ; k

n

so that, for ea
h

1 � i � n, the
ontents of �

l;k

i

is of a single type, if not empty. In order to have an a
tual

situation with whi
h we
an work, let us suppose that two di�erent
losures may be invoked

on two di�erent values. That is, �

l

0

;k

= ff

1

; f

2

g and �

l

00

;k

= fv

1

; v

2

g. For
onvenien
e, we

also suppose that f

1

and f

2

originate from two di�erent �-expressions and that v

1

and v

2

are

values of di�erent types. These last
onvenient suppositions are used below to keep things

simple. During abstra
t interpretation, ea
h
losure is invoked on ea
h argument and ea
h

time a
ontour is sele
ted by
all. We denote by k

ij

the
ontour sele
ted when f

i

is invoked

on v

j

, for i; j 2 f1; 2g. That is, k

ij

=
all(l; f

i

; v

j

; k). Let the spreading or non-spreading

132 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

on ? of the result of ea
h invo
ation be given by this table:

: (

f

1

;k

11

%-.& ?);

f

1

;k

12

%-.& ?;

f

2

;k

21

%-.& ?; and : (

f

2

;k

22

%-.& ?)

Finally, let us suppose that ; 6=

f

1

;k

11

� ValB and that ; 6=

f

2

;k

22

� ValP.

Using this information, we are able to illustrate the pro
essing of D. First among all

the return values

f

i

;k

ij

, none is empty. So none is ignored. Se
ond, we must take
are

of the return values that are spread over ?, namely

f

1

;k

12

and

f

2

;k

21

. For ea
h, a split

demand is emitted that requests that they be split using pattern ?. Finally, we take
are

of non-spreading return values

f

1

;k

11

and

f

2

;k

22

. Individually, they are non-spreading but,

olle
tively, they are spread on ?. So the set A des
ribing the
ouples is built:

A = f((

1

; v

1

);

1

;k

11

); ((

2

; v

2

);

2

;k

22

)g

The two
ouples in A are in
ompatible be
ause their asso
iated return values go through

di�erent \holes" of ?. The �rst
ouple goes through the \Boolean hole" and the se
ond goes

through the \pair hole". Sin
e the
ouples are distin
t, at least one of the
omponents must

be distin
t. In our
ase, both
omponents di�er. The s
 fun
tion
omputes an e
onomi
al

way to separate the two
ouples in A relatively to pattern ?. It returns one of the two

following splitting strategies:

(f�

?

g; ;) or (;; f?g)

meaning that either a split should be performed on the �rst
omponents to separate them

based on the
losure label or a split should be performed on the se
ond
omponents to

separate them based on the type. Splitting both
omponents would be zealous. If we

suppose that the �rst strategy is adopted, then the �nal result of pro
essing D is:

)split

f

1

;k

12

?

split

f

2

;k

21

?

split �

l

0

;k

�

?

�-Expression Let e

l

= (�

l

x: e

l

0

). When this situation is being
onsidered, we know that

it is be
ause �

l;k

%-.& P . And sin
e �

l;k

= f

(l; k)g, then P is of the form �

l

k

0

. So we

translate D into a dire
t model update demand:

5.2. DEMAND PROCESSING 133

If e

l

= (�

l

x: e

l

0

):

)split ValC P

Conditional Let e

l

= (if

l

e

l

0

e

l

00

e

l

000

). The pro
essing for the
onditional expression

shares some similarity with that of the
all. The evaluation result, �

l;k

, is the union of

some sub-evaluations; here, the two bran
hes of the
onditional. Ea
h sub-evaluation result

spreads on P has to be split �rst. The non-spreading results are used to sele
t splits on sub-

expressions of e

l

; here, this o

urs when both bran
hes are non-spreading but in
ompatible

and a split on the test has to be emitted.

We �rst
onsider the
ase where the evaluation result of at least one of the bran
hes is

spread on P . Sin
e the evaluation result of e

l

remains spread on P as long as the result of

at least one bran
h is, then it is ne
essary to split the result for ea
h su
h bran
h. It is too

early to be able to determine if a split on the test is required or not.

If e

l

= (if

l

e

l

0

e

l

00

e

l

000

) ^ (�

l

00

;k

%-.& P _ �

l

000

;k

%-.& P):

)

n

split �

l

(n)

;k

P l

(n)

2 fl

00

; l

000

g ^ �

l

(n)

;k

%-.& P

o

The other
ase
onsists in having the result for both bran
hes not to be spread on P .

But, sin
e we know that �

l;k

%-.& P , these results must be in
ompatible. To a
hieve D, the

ne
essary and suÆ
ient sub-demand to generate is to ask for both bran
hes not to evaluate

in the same
ontour. So the
ases where the test evaluates to a true value must be separated

from the
ases where the test evaluates to a false value. So a sub-demand is emitted that

asks for the split of the result of the test on its type. In fa
t, this is slightly ex
essive as

a ValB/ValC/ValP distin
tion is requested when only a ValB/ValTrues one is required.

However, the split pattern syntax that we have
hosen
annot express a split
oarser than

`?'.

If e

l

= (if

l

e

l

0

e

l

00

e

l

000

):

)split �

l

0

;k

?

Pair Constru
tion Let e

l

= (
ons

l

e

l

0

e

l

00

). Keeping in mind that �

l;k

%-.& P , qui
k

inspe
tion of the di�erent kinds of split patterns allows us to
on
lude that P is of the

form (P

0

; P

00

). One of P

0

and P

00

is a split pattern. We pro
ess D simply by emitting a

sub-demand that asks for the sub-split to be performed on the appropriate sub-expression

134 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

of e

l

:

If e

l

= (
ons

l

e

l

0

e

l

00

) ^ P = (P

0

; P

00

) ^ P

0

2 SPat:

)split �

l

0

;k

P

0

If e

l

= (
ons

l

e

l

0

e

l

00

) ^ P = (P

0

; P

00

):

)split �

l

00

;k

P

00

Note that the proposed pro
essing in the situation where we have a pair
onstru
tion

expression is suÆ
ient. But it is less
lear whether it is ne
essary. To see why, we give

an example. Let P = ((8; 8); �

?

). Of
ourse, the value of e

l

00

has to be split using �

?

in

a way or another. But is it really �

l

00

;k

that should be split? Note that P spe
i�es that

additional a

ura
y is requested only when the
ar-�eld of the pair
ontains a pair. Maybe

the appropriate pro
essing
onsists in �rst splitting �

l

0

;k

using ? and, when this is done, we

have k spe
ialised into, say, k

B

, k

C

, and k

P

. We would then split �

l

00

;k

P

using �

?

. That

is, we would split the value of e

l

00

only in the
ontour in whi
h e

l

0

evaluates to pairs. We

believe that it is not obvious at all whether this more elaborate way of splitting is easier or

more pro�table. A split on �

l

00

;k

?

has to be made for some k

?

, anyway.

Sin
e the split sub-pattern in (P

0

; P

00

), that is, P

0

or P

00

, has to be propagated to e

l

0

or

e

l

00

anyway, the question
an be summarised like this: Should more a

ura
y be requested

on the non-splitting side in order to (possibly) fa
ilitate the splitting on the splitting side?

We have de
ided that the answer would be: no. Only the sub-pattern on the splitting side

is propagated. No additional a

ura
y is requested from the non-splitting side.

CAR-Field A

ess Let e

l

= (
ar

l

e

l

0

). Sin
e D asks for in
reased a

ura
y in the

representation of the value of e

l

, then a new demand should be emitted that requests

in
reased a

ura
y in the representation of the
ar-�eld of the pairs that
ome from e

l

0

.

That is, sin
e P is the split pattern appearing in the request
on
erning e

l

, (P; 8) should be

the one appearing in the request
on
erning e

l

0

. However, a veri�
ation that the abstra
t

domain ValP is a

urate enough for (P; 8) must be done. Indeed, it is pointless to ask for

a split of �

l

0

;k

using (P; 8) if the abstra
t pairs are not distinguishable by (P; 8). If ValP

is not a

urate enough, a dire
t model update demand is emitted. Otherwise, the normal

pro
essing is performed.

If e

l

= (
ar

l

e

l

0

) ^ ValP is a

urate enough for (P; 8):

5.2. DEMAND PROCESSING 135

)split �

l

0

;k

(P; 8)

If e

l

= (
ar

l

e

l

0

):

)split ValP (P; 8)

Verifying that ValP is a

urate enough for (P; 8) is relatively simple. The abstra
t pairs

in ValP result from proje
tions using M

V

. The veri�
ation pro
eeds by testing whether

there is a modelling pattern in M

V

having an interse
tion with (P; 8) but for whi
h we

annot de
ide in whi
h \hole" it passes through. In other words, if there is a modelling

pattern in M

V

that is spread on (P; 8):

ValP is a

urate enough for (P; 8)

,

8 v 2M

V

: : (fvg %-.& (P; 8))

This pro
essing for D is an instan
e of the
reation of
omplex split patterns using

simpler ones. Also, it justi�es our
hoi
e of the meaning of split demands, as presented in

Se
tion 5.1.3 that says that values having no interse
tion with the split pattern are ignored.

The split of �

l

0

;k

using (P; 8) is
on
erned only with pairs
oming from e

l

0

. Non-pairs
oming

from e

l

0

do not
ontribute to the value of e

l

and, as su
h, are not
on
erned by the split

pattern (P; 8). The fa
t that their presen
e leads to errors is an independent problem.

CDR-Field A

ess Let e

l

= (
dr

l

e

l

0

). The pro
essing of D is
ompletely symmetri
 to

that of a demand
on
erning a
ar-�eld a

ess.

If e

l

= (
dr

l

e

l

0

) ^ ValP is a

urate enough for (8; P):

)split �

l

0

;k

(8; P)

If e

l

= (
dr

l

e

l

0

):

)split ValP (8; P)

Pair Membership Test Let e

l

= (pair?

l

e

l

0

). The pro
essing of D is trivial, the split

pattern is propagated to the sub-expression without modi�
ation:

If e

l

= (pair?

l

e

l

0

):

)split �

l

0

;k

P

136 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

To see why this pro
essing is adequate, ea
h form of split patterns has to be
onsidered.

If P = ?, then to make the distin
tion ValP/ValB on the value of e

l

, it is ne
essary to make

the distin
tion ValP/ValP on the value of e

l

0

. The split pattern ? is then used. P
annot

be �

?

nor be of the form �

l

k, be
ause �

l;k

%-.& P . Finally, if P = (P

0

; P

00

), then only the

pairs
oming from e

l

are
on
erned. Sin
e these pairs are the same as those
oming from

e

l

0

, P itself must be used in the split of �

l

0

;k

.

Split on �-Variables

Let D � `split �

x;k;l

P '. Pro
essing D results in a dire
t model update. However, some

information has to be gathered in order to �nd the appropriate
ontour pattern-mat
her

and to produ
e the right split
ontour pattern. The �rst step
onsists in �nding the position

of variable `x' in
ontour k. Re
all that k is an abstra
t version of the lexi
al environment

and that \bounds" on the possible values that ea
h variable
an take are listed from the

innermost variable to the outermost. Let e

l

i

2 4(e

l

0

) be the �-expression that binds `x':

(�

l

i

x: (: : : (�

l

i+1

y

i+1

: (: : : (�

l

n

y

n

: e

l

0

n

) : : :)) : : :))

where e

l

2 4(e

l

0

n

). In other words, we have that the e

l

j

are �-expressions, for 1 � j � n,

and that:

(�

l

1

y

1

: e

l

0

1

) 2 4(e

l

0

)

(�

l

2

y

2

: e

l

0

2

) 2 4(e

l

0

1

)

: : :

(�

l

i�1

y

i�1

: e

l

0

i�1

) 2 4(e

l

0

i�2

)

(�

l

i

x: e

l

0

i

) 2 4(e

l

0

i�1

)

(�

l

i+1

y

i+1

: e

l

0

i+1

) 2 4(e

l

0

i

)

: : :

(�

l

n

y

n

: e

l

0

n

) 2 4(e

l

0

n�1

)

e

l

2 4(e

l

0

n

)

So k = (P

n

: : : P

i+1

P

i

P

i�1

: : : P

1

) and P

i

is the bound on the value of `x' in
ontour k.

The intent is to update k su
h that its P

i

pattern is split into spe
ialisations. Note that the

pattern-mat
her that must be updated isM

l

n

. UpdatingM

l

n

using the split
ontour pattern

5.2. DEMAND PROCESSING 137

\ : (MPat [SPat)� (MPat [SPat)! (MPat [SPat)

P

1

\ P

2

is unde�ned if P

1

; P

2

2 SPat

8 \ P

2

= P

2

P

1

\ 8 = P

1

? \ P

2

= ?

P

1

\ ? = ?

#f \#f = #f

�

8

\ P

2

= P

2

; if P

2

is �

8

, �

?

, or �

l

k

P

1

\ �

8

; = P

1

; if P

1

is �

?

or �

l

k

�

?

\ P

2

= �

?

; if P

2

is �

l

k

P

1

\ �

?

= �

?

; if P

1

is �

l

k

�

l

(P

1

: : : P

n

) \ �

l

(P

0

1

: : : P

0

n

) = �

l

((P

1

\ P

0

1

) : : : (P

n

\ P

0

n

))

(P

1

; P

2

) \ (P

0

1

; P

0

2

) = (P

1

\ P

0

1

; P

2

\ P

0

2

)

Figure 5.19: De�nition of the interse
tion operator between patterns

(P

n

: : : P

i+1

P P

i�1

: : : P

1

) would almost be what we want ex
ept that more than
ontour k

may get updated. Instead, we
ompute the interse
tion between P and P

i

and use the result

in the split
ontour pattern. That is, we updateM

l

n

using (P

n

: : : P

i+1

(P\P

i

) P

i�1

: : : P

1

).

The de�nition of the interse
tion is presented in Figure 5.19. This de�nition is that of a

fun
tion
omputing the interse
tion between patterns. It it di�erent from the

9

\ relation

whose purpose is simply to determine whether some
on
rete value is abstra
ted by both

its arguments. The \ fun
tion produ
e a pattern representing the interse
tion of the input

patterns as long as it makes sense. That is, the patterns must have an interse
tion (a

ording

to

9

\) and they must not both be split patterns.

4

The result of the pro
essing of D is thus:

If k = (P

n

: : : P

1

) ^

(�

l

1

y

1

: e

l

0

1

) 2 4(e

l

0

) ^

(�

l

j

y

j

: e

l

0

j

) 2 4(e

l

0

j�1

), 8 2 � j � n ^

e

l

2 4(e

l

0

n

) ^

y

i

is in fa
t x

)Update M

l

n

with (P

n

: : : P

i+1

(P \ P

i

) P

i�1

: : : P

1

)

Note that the value of a variable is generally
ontrolled through many abstra
t values and

ontours. In the general
ase, M

l

i

must be updated to provide more a

urate
ontours,

4

The interse
tion between a split pattern and a modelling pattern may lead to a resulting pattern that

is less a

urate. This is be
ause the split point (?) has priority over the modelling pattern it is interse
ted

with. When this situation o

urs, the resulting pattern is a split pattern but it does not
ause a real update

on the pattern-mat
her.

138 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

whi
h allows M

V

to be updated to provide more a

urate
losures of the form �

l

i+1

k

i+1

,

whi
h in turn allows M

l

i+1

to be updated to provide more a

urate
ontours, . . . , whi
h

allows M

l

n

to be updated to provide more a

urate
ontours. However, a single update

request is emitted and we let the rules that ensure
onsisten
y do the rest.

Split on
-Variables

Let D � `split

f;k

P '. The pro
essing of D appears trivial when we note that the return

value of a
losure f , when its body is evaluated in
ontour k, is pre
isely the result of the

evaluation of the body in
ontour k. The only thing that has to be done is to re
over the

label of the body of the
losure and emit a new split demand:

If f = �

l

k

0

^ e

l

= (�

l

x: e

l

0

):

)split �

l

0

;k

P

5.2.5 Call Site Monitoring

As explained in the pro
essing of bad
all demands, undesirable invo
ations are logged into

the bad-
all log and they are taken
are of later. When the invo
ation of f on v, denoted

as (f; v), is put into the bad-
all log for
all site e

l

and
ontour k, denoted as L

BC

(l; k), the

all site is
agged for future monitoring. Eventually, the demand-driven analysis goes into

a
all site monitoring phase and monitors ea
h
all site that has been
agged.

We des
ribe the pro
essing of the
ommand C = `monitor-
all l k', that is, the moni-

toring of
all site e

l

in
ontour k. We insist on the fa
t that C is not a demand, but simply

a
ommand. On
e pro
essed, C
annot be
onsidered as a
hieved. Even if ea
h demand

that results from the pro
essed of C is eventually a
hieved, C still
annot be
onsidered as

a
hieved. New undesirable invo
ations o

urring at e

l

in
ontour k may be dis
overed later

and a new monitoring would be required.

Let e

l

= (

l

e

l

0

e

l

00

). Let A be the set of all invo
ations o

urring at e

l

in k denoted in the

form of
ouples:

A = (�

l

0

;k

\ ValC)� �

l

00

;k

and L

BC

(l; k)
ontains those that are bad invo
ations. The �rst situation that we may fa
e

5.2. DEMAND PROCESSING 139

in pro
essing C is that no invo
ation in A is marked as bad. Then the monitoring trivially

su

eeds:

If (�

l

0

;k

\ ValC)� �

l

00

;k

\ L

BC

(l; k) = ;:

)(su

ess)

The se
ond situation is the one in whi
h all invo
ations in A are marked as bad. None

should be allowed to o

ur. Then the adequate pro
essing
onsists in requesting a demon-

stration that e

l

does not evaluate in
ontour k:

If (�

l

0

;k

\ ValC)� �

l

00

;k

� L

BC

(l; k):

)show Æ

l;k

= ;

Note that A
ontains only
ouples that represent invo
ations o

urring at e

l

in k. The other

ouples, i.e. those in:

(�

l

0

;k

\ (ValB [ValP)) � �

l

00

;k

represent illegal invo
ations as it is not a
losure that is to be invoked.

The last situation is the one in whi
h bad invo
ations and good invo
ations (invo
ations

not yet
onsidered as bad) appear in A. The appropriate pro
essing
onsists in emitting

demands that separate the good from the bad
ases. If all these demands are eventually

a
hieved, then the �rst or se
ond situations will apply in the di�erent spe
ialised
ontours.

On
e again, the Split-Couples fun
tion is used:

Otherwise:

)

�

split �

l

0

;k

P

1

j P

1

2 B

	

[

�

split �

l

00

;k

P

2

j P

2

2 C

	

where A = (�

l

0

;k

\ ValC)� �

l

00

;k

(B; C) = s
 (A; L

BC

(l; k))

5.2.6 Split-Couples Fun
tion

The Split-Couples fun
tion is used in two pla
es in the pro
essing of \demands": in the split

of an �-variable where the expression involved is a
all; in the monitoring of a
all site. One

might have noted that s
 is overloaded. In the �rst
ase, it re
eives a set of
ouple-result

pairs and a split pattern. In the se
ond, it re
eives two sets of
ouples. Both type signatures

140 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

for s
 are given here:

s
 : 2

(MPat�MPat)�2

MPat

� SPat ! 2

SPat

� 2

SPat

s
 : 2

MPat�MPat

� 2

MPat�MPat

! 2

SPat

� 2

SPat

Despite the di�eren
es in the uses, the task is essentially the same:
ouples are grouped

into equivalen
e
lasses and splits operating on the �rst or on the se
ond
omponents of

the
ouples must be produ
ed su
h that all non-equivalent
ouples have been separated by

splits. So we des
ribe the implementation of s
 in two steps:
omputing the equivalen
e

lasses, �nding splits to separate them.

Let us �nd the equivalen
e
lasses in the �rst use of Split-Couples. Suppose it is used as

s
(�; P). � is a set of
ouple-result pairs like ((f; v); S) where (f; v) des
ribes an invo
ation

and S is the result of the invo
ation. P is a split pattern. By the
onstru
tion of �, there

are no two
ouple-result pairs that have the same
ouple. Also, we expe
t that, in ea
h

ouple-result pair ((f; v); S) 2 �, S is non-empty, has some interse
tion with P , and is not

spread on P . These
onditions ensure that the following de�nition of relation R on
ouples

is one of an equivalen
e relation:

(f

1

; v

1

) R (f

2

; v

2

) , :

�

(S

1

[S

2

)%-.& P

�

where ((f

1

; v

1

); S

1

); ((f

2

; v

2

); S

2

) 2 �

Basi
ally, R says that two
ouples are related if their asso
iated return values go through

the same \hole" of P . The desired equivalen
e
lasses are those indu
ed by R on the set

f(f; v) j ((f; v); S) 2 �g.

Let us do the same in the se
ond use of Split-Couples. Suppose it is used as s
(S; T).

S is the set of invo
ations that o

ur. T is the set of undesirable invo
ations. We de�ne

relation R this way:

(f

1

; v

1

) R (f

2

; v

2

) , ((f

1

; v

1

); (f

2

; v

2

) 2 T) _ ((f

1

; v

1

); (f

2

; v

2

) 62 T)

Basi
ally, R says that two
ouples are related if they are both good or both bad. The desired

equivalen
e
lasses are those indu
ed by R on S.

From this point on, we
an now
onsider that we have a set of
ouples and that a
olour

has been assigned to ea
h
ouple. The number of
olours may be mu
h smaller than the

5.2. DEMAND PROCESSING 141

�

�

�

�

Æ

Æ

Æ

Æ

4

4

4

4

Figure 5.20: Example of
ouples to separate

number of
ouples. For example, when the
ouples have been separated into good and bad

alls, there are two
olours. To help to understand the task of separating the
ouples, we

hoose an illustration that represent
ouples of di�erent
olours. The
ouples are presented

in Figure 5.20 as points on the plan. They are depi
ted using di�erent symbols to represent

di�erent
olours. Two
ouples having the same x-
oordinate have the same �rst
omponent

but di�erent se
ond
omponents. Similarly for
ouples having the same y-
oordinate.

The separation task now
onsists (in 2D-points terminology) in drawing verti
al and

horizontal lines (separators) that delimit re
tangles in whi
h points of a single
olour lie.

The simplest separation
onsists in drawing a
omplete grid of lines su
h that ea
h re
tangle

ontains at most one point. However, separations made of fewer separators are desirable

be
ause,
on
retely, ea
h separator translates into a split demand that is emitted on one of

the two sub-expressions of a
all. Sin
e we
annot presume that any demand is trivial to

a
hieve, demands should be generated with parsimony. A more e
onomi
al but still na��ve

method of separation of the
ouples
onsists in introdu
ing as many verti
al separators as

ne
essary and then to introdu
e horizontal separators only in the
olumns that require some.

Figure 5.21 presents the separation that is obtained if we pro
eed this way. It is
learly

better than the grid strategy. But it is possible to do better by trying to take advantage of

the distribution of the
ouples. Figure 5.22 presents a more
lever separation of the
ouples.

It introdu
es only 7 separators
ompared to the 11 introdu
ed by the na��ve method.

The illustration using points and
olours does not
orrespond to the
ouples/equivalen
e-

lasses with high �delity but highlights the main
on
erns: the separators are uni-dimension-

al and they should be introdu
ed in small numbers. We
an now present the implementation

of the pro
ess of separation for the
lasses of
ouples. Sin
e horizontal and verti
al separators

142 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

�

�

�

�

Æ

Æ

Æ

Æ

4

4

4

4

Figure 5.21: Example of a na��ve separation

�

�

�

�

Æ

Æ

Æ

Æ

4

4

4

4

Figure 5.22: Example of a more
lever separation

5.2. DEMAND PROCESSING 143

s

0

: 2

MPat�MPat

� 2

(MPat�MPat)�(MPat�MPat)

! 2

SPat

� 2

SPat

s

0

(S;R) =

�

fP

1

j (P

1

; P

2

) 2 D ^ P

1

2 SPatg ; fP

2

j (P

1

; P

2

) 2 D ^ P

2

2 SPatg

�

where A =

n

f(P

0

1

; P

0

2

) 2 S j (P

0

1

; P

0

2

) R (P

1

; P

2

)g (P

1

; P

2

) 2 S

o

B =

h

f[℄ / O P

1

/ O P

2

j (P

1

; P

2

) 2 Kg K 2 A

i

(C;) = s

0

Q

(B)

D =

n

(P

1

; P

2

) P

2

/ P

1

/ [℄ 2 C

o

s

0

Q

; s

0

O8

; s

0

O ?

; s

0

C8

; s

0

C ?

: hsequen
e of 2

hqueue of fO;Cg�MPati

i ! 2

hqueue of MPat[SPati

�N

s

0

Q

([℄) = (;; 0)

s

0

Q

([K℄) = (;; 0)

s

0

Q

([K

1

; : : : ;K

i�1

; ;;K

i+1

; : : : ;K

n

℄) = s

0

Q

([K

1

; : : : ;K

i�1

;K

i+1

; : : : ;K

n

℄)

s

0

Q

�h

f[℄g; : : : ; f[℄g

| {z }

�2 times

i�

= (;; 1)

s

0

Q

([K

1

; : : : ;K

n

℄) = (N

i

; n

i

); if 9 (O P / q) 2 K

1

^ n

i

� min(n

1

; n

2

)

where (N

1

; n

1

) = s

0

O8

([K

1

; : : : ;K

n

℄)

(N

2

; n

2

) = s

0

O ?

([K

1

; : : : ;K

n

℄)

s

0

Q

([K

1

; : : : ;K

n

℄) = (N

i

; n

i

); if 9 (C P / q) 2 K

1

^ n

i

� min(n

1

; n

2

)

where (N

1

; n

1

) = s

0

C8

([K

1

; : : : ;K

n

℄)

(N

2

; n

2

) = s

0

C ?

([K

1

; : : : ;K

n

℄)

Figure 5.23: Implementation of the Split-Couples fun
tion (to be
ontinued . . .)

seem to have a similar
ost a priori, our approa
h looks for separators by inspe
ting both

omponents of the
ouples level by level. In fa
t, a breadth-�rst traversal of both
omponents

simultaneously is performed in order to have a balan
e in the
omplexity of the split patterns

that are sele
ted in ea
h dimension. The separation method tries di�erent strategies in a

dynami
-programming fashion and sele
ts a shortest separation strategy.

Figure 5.23 presents the implementation of the separation phase of the s
 fun
tion. The

algorithm
onsists in �rst taking the (non-empty) equivalen
e
lasses among the
ouples

in S indu
ed by relation R and inserting the two
omponents of ea
h
ouple into a queue.

Queues are used for both traversing the
omponents of the
ouples and for re
onstru
t-

ing split patterns. The split patterns are then extra
ted from the re
onstru
tion queues.

Note that these patterns are intended to split
ouples, and not just one of the two
om-

ponents. However, as we do in the pro
essing of split demands on �-variables related to

ons-expressions, we keep only the split pattern among the pair of patterns. Costs for the

di�erent strategies are returned with the re
onstru
tion queues.

144 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

s

0

O8

(M) =

�n

q / 8 q 2 N

o

; n

�

where A =

h

fq j (O P / q) 2 Kg K 2M

i

(N; n) = s

0

Q

(A)

s

0

O ?

(M) =

(

(;; 1); if 9K 2M: (O 8 / q) 2 K

(fq

0

g [N

0

1

[N

0

2

[N

0

3

; 1 + n

1

+ n

2

+ n

3

); otherwise

where A =

h

fq j (O #f / q) 2 Kg K 2M

i

(N

1

; n

1

) = s

0

Q

(A)

N

0

1

=

n

q /#f q 2 N

1

o

B =

h

fq / C P j (O P / q) 2 K ^ (P is �

8

or �

l

k)g K 2M

i

(N

2

; n

2

) = s

0

Q

(B)

N

0

2

=

n

q / P P / q 2 N

2

o

C =

h

fq / O P

1

/ O P

2

j (O (P

1

; P

2

) / q) 2 Kg K 2M

i

(N

3

; n

3

) = s

0

Q

(C)

N

0

3

=

n

q / (P

1

; P

2

) P

2

/ P

1

/ q 2 N

3

o

fq

0

g =

n

s

00

Q

(q) / ? K 2M; (O P / q) 2 K

o

s

0

C8

(M) =

�n

q / �

8

q 2 N

o

; n

�

where A =

h

fq j (C P / q) 2 Kg K 2M

i

(N; n) = s

0

Q

(A)

s

0

C ?

(M) =

(

(;; 1); if 9K 2M: (C �

8

/ q) 2 K

(fq

0

g [

S

l2L

N

0

l

; 1 +

P

l2L

n

l

) ; otherwise

where L =

n

l 2 4(e

l

0

) e

l

is a �-expression

o

A

l

=

h

fq / O P

1

/ : : : / O P

j

j (C �

l

(P

1

: : : P

j

) / q) 2 Kg K 2M

i

(N

l

; n

l

)

= s

0

Q

(A

l

)

N

0

l

=

(

q / �

l

(P

1

: : : P

j

)

there are j visible variables at label l ^

(P

j

/ : : : / P

1

/ q) 2 N

l

)

fq

0

g =

n

s

00

Q

(q) / �

?

K 2M; (C P / q) 2 K

o

s

00

Q

: hqueue of fO; Cg �MPati ! hqueue of MPati

s

00

Q

([℄) = [℄

s

00

Q

(O P / q) = s

00

Q

(q) / 8

s

00

Q

(C P / q) = s

00

Q

(q) / �

8

Figure 5.23: Implementation of the Split-Couples fun
tion (
ontinued . . .)

5.2. DEMAND PROCESSING 145

Let us des
ribe the implementation. The main fun
tion for the separation of
ouples is

s

0

, whi
h takes the set of
ouples passed to s
 and the equivalen
e relation R. It a
ts as an

interfa
e in front of the
entral fun
tion s

0

Q

. Couples are grouped into equivalen
e
lasses,

represented as sets, and these equivalen
e
lasses are grouped into a sequen
e. We denote

sequen
es using square bra
kets instead of
urly bra
es and all set operations
an be used

on the sequen
es, like de�nition in
omprehension and membership test. We use sequen
es

to
ontain the equivalen
e
lasses instead of sets not that mu
h be
ause they are ordered,

but be
ause the same element
an appear more than on
e in a sequen
e. This feature is

useful be
ause, eventually,
lasses may simply
onsist of a set
ontaining the empty queue

and it is important to be able to distinguish whether there is one or more of these
lasses.

Central fun
tion s

0

Q

operates quite similarly to the sli
ing algorithm that is des
ribed

in the se
tion on model update. The di�eren
e lies in the fa
t that a sequen
e of sets of

queues is manipulated instead of a single queue and that, at ea
h possible split point, a split

may, or may not, be introdu
ed. As in all algorithms performing a breadth-�rst traversal of

patterns, the patterns in the de
onstru
tion queues are marked as either obje
t nodes (O)

or as
losure nodes (C). A non-terminal step in the operations of s

0

Q

onsists in
omputing

a separation strategy for an obje
t node or for a
losure node. Note that, for a
ertain

invo
ation of s

0

Q

, if one queue in some set in the sequen
e has length l, then all queues

have length l. Also, if the �rst element to be extra
ted from that queue is of the obje
t

kind, then it is also the
ase for all queues. Similarly for the
losure kind. Computing a

separation strategy for an obje
t node
onsists in
omputing one using the blind auxiliary

fun
tion s

0

O8

,
omputing another using the dis
riminating auxiliary fun
tion s

0

O ?

, and

sele
ting the \best" of both strategies. A strategy has an in�nite
ost when it does not

provide a proper separation. When both strategies have an in�nite
ost, taking the \best"

onsists in taking any strategy among the two. Computing a separation strategy for a

losure node pro
eeds in a similar way, using auxiliary fun
tions s

0

C8

and s

0

C ?

.

Blind auxiliary fun
tions s

0

O8

and s

0

C 8

elaborate separation strategies by
hoosing not

to insert a split at the
urrent inspe
tion point. Con
retely, the �rst element of ea
h queue

is dis
arded. This means that the information that remains in the equivalen
e
lasses for

performing the separation is redu
ed. However, the advantage is that no new separator

is introdu
ed at this point. The shortened queues are passed to s

0

Q

to let it elaborate a

separation strategy based on the remaining information. The splits that it proposes are

then updated to allow
omplete patterns to eventually be re
onstru
ted.

146 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

Dis
riminating auxiliary fun
tion s

0

O ?

elaborates a separation strategy by
hoosing to

perform a split at the
urrent inspe
tion point. Queues that have a Boolean, a
losure,

or a pair as their �rst element are taken separately. So three spe
ialised versions of the

equivalen
e
lasses are obtained. A separator is introdu
ed. The
ost of the resulting

strategy is the sum of the
osts of the sub-strategy for ea
h spe
ialised partition, plus

one for the additional separator. Sin
e a split is done, the sub-patterns of the inspe
ted

patterns be
ome apparent and queues are updated a

ordingly at de
onstru
tion and at

re
onstru
tion. Dis
riminating auxiliary fun
tion s

0

C ?

pro
eeds in a similar manner with

losure inspe
tion nodes. However, instead of making three versions of the partition based

on the type, jLj spe
ialised versions are made, where L is the set of labels of �-expressions.

For s

0

O ?

and s

0

C ?

, an immediate split may be impossible if there is a queue that
ontains

an \ambiguous" pattern. That is, if a queue
ontains `8' or `�

8

', respe
tively. In su
h a

ase, the separation strategy is marked as having an in�nite
ost. It is then reje
ted by

upper levels in the separation strategy sele
tion.

We
ome ba
k to the des
ription of the di�erent
ases in s

0

Q

. The �rst terminal
ases

are the su

ess of a separation strategy. The equivalen
e
lasses are su

essfully separated

if there is at most one
lass left. No separator is required and the
ost of the separation

strategy is 0. The other terminal
ase is the failure of a separation strategy. The separation

fails if there remains at least two equivalen
e
lasses
ontaining empty queues. This means

that no information remains about the original
ouples and in
ompatible ones
annot be

distinguished. An in�nitely
ostly strategy is returned. Su
h a failure is not an extraor-

dinary event. It simply means that insuÆ
ient separators are sele
ted in upper stages of

the separation strategy sele
tion. Note that the
omplete sele
tion pro
ess
annot fail as

introdu
ing separators at every inspe
tion point is guaranteed to produ
e a su

essful strat-

egy. Finally, there is a \
lean-up" non-terminal
ase. It removes empty
lasses from the

sequen
e. An empty
lass o

urs when no representative of a
ertain type (or
losure label)

an be found among the queues of a
ertain
lass during a previous spe
ialisation.

This
ompletes the des
ription of the implementation of the Split-Couples fun
tion.

Sin
e its internal operations are slightly
omplex, we present a short example illustrating

the
omputations it makes. Let us
onsider the
ouples formed by the invo
ations of �

3

()

and �

5

() on #f and �

8

. Note that, normally, modelling pattern �

8

is not supposed to be

manipulated dire
tly as a value. But we need to split very simple
ouples in order to keep

the example to a reasonable size. Suppose that the
ouple (�

5

(); #f) is marked as bad.

5.2. DEMAND PROCESSING 147

The main
omputations that are made to split the
ouples are the following:

s
(f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); #f); (�

5

(); �

8

)g; f(�

5

(); #f)g)

s

0

(f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); #f); (�

5

(); �

8

)g; R)

where R = f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); �

8

)g

2

[f(�

5

(); #f)g

2

2

6

6

6

4

s

0

Q

([f[O �

3

(); O #f ℄; [O �

3

(); O �

8

℄; [O �

5

(); O �

8

℄g; f[O �

5

(); O #f ℄g℄)

: : :

) (f[8; ?℄; [?; �

8

℄; [#f ; �

?

℄g; 3)

) (f?; �

?

g; f?g)

The
omputations made by
entral fun
tion s

0

Q

are shown in Figure 5.24. Despite the

smallness of the input to s
, an impressive amount of
omputations has to be performed.

In the tra
e of the
omputations performed by s

0

Q

, the main ideas are illustrated.

The tra
e of ea
h use of the
entral fun
tion or of an auxiliary fun
tion is presented in a

separate box. With the notable ex
eption that blind auxiliary fun
tions only use s

0

Q

on
e

and no separate box is depi
ted for these uses of s

0

Q

. Fun
tion s

0

Q

uses either auxiliary

fun
tions s

0

O8

and s

0

O ?

when the next pattern in the queues is of the obje
t kind, and

s

0

C8

and s

0

C ?

when the next pattern is of the
losure kind. Ea
h time, the best of both

resulting strategies is returned. Blind auxiliary fun
tions s

0

O8

and s

0

C8

simply
onsume

the �rst pattern in ea
h queue, sometimes leading to equivalen
e
lasses
ontaining only

empty queues. Dis
riminating auxiliary fun
tion s

0

O ?

separates its input queues into those

that start with a Boolean, those that start with a
losure, and those that start with a pair.

Sub-strategies are elaborated for ea
h new partitions of queues. They are then
ombined

together with the addition of a queue
ontaining parts of a new split pattern performing the

dis
rimination dire
tly introdu
ed by s

0

O ?

itself. Similarly, s

0

C ?

separates its input queues

into those that start with a
losure having 3 as a label and those that start with a
losure

having 5 as a label. Note how the re
onstru
tion queues are modi�ed depending on whi
h

type or whi
h label they are the result for. Unfortunately, not all
ases appearing in the

implementation of s

0

are illustrated in the example. But a
omplete one would likely result

in a huge tra
e. We tried to keep a balan
e between
ompleteness and
omprehensibility.

148 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

s

0

Q

([f[O �

3

(); O #f ℄; [O �

3

(); O �

8

℄; [O �

5

(); O �

8

℄g; f[O �

5

(); O #f ℄g℄)

8 #

s

0

O 8

([f[O �

3

(); O #f ℄; [O �

3

(); O �

8

℄; [O �

5

(); O �

8

℄g; f[O �

5

(); O #f ℄g℄)

s

0

Q

([f[O #f ℄; [O �

8

℄g; f[O #f ℄g℄)

8.

s

0

O8

([f[O #f ℄; [O �

8

℄g; f[O #f ℄g℄)

s

0

Q

([f[℄g; f[℄g℄)

) (;; 1)

& ?

s

0

O ?

([f[O #f ℄; [O �

8

℄g; f[O #f ℄g℄)

ValB .

s

0

Q

([f[℄g; f[℄g℄)

) (;; 1)

ValC #

: : :

&

: : :

ValP

) (f[?℄g; 1)

) (;; 1)

?

s

0

O ?

([f[O �

3

(); O #f ℄; [O �

3

(); O �

8

℄; [O �

5

(); O �

8

℄g; f[O �

5

(); O #f ℄g℄)

ValB .

s

0

Q

([;; ;℄)

) (;; 0)

ValP .

s

0

Q

([;; ;℄)

) (;; 0)

& ValC

s

0

Q

([f[O #f ; C �

3

()℄; [O �

8

; C �

3

()℄; [O �

8

; C �

5

()℄g; f[O #f ; C �

5

()℄g℄)

8 #

s

0

O8

([f[O #f ; C �

3

()℄; [O �

8

; C �

3

()℄; [O �

8

; C �

5

()℄g; f[O #f ; C �

5

()℄g℄)

s

0

Q

([f[C �

3

()℄; [C �

5

()℄g; f[C �

5

()℄g℄)

8.

s

0

C8

([f[C �

3

()℄; [C �

5

()℄g; f[C �

5

()℄g℄)

s

0

Q

([f[℄g; f[℄g℄)

) (;; 1)

& ?

s

0

C ?

([f[C �

3

()℄; [C �

5

()℄g; f[C �

5

()℄g℄)

3 .

s

0

Q

([f[℄g; ;℄)

) (;; 0)

& 5

s

0

Q

([f[℄g; f[℄g℄)

) (;; 1)

) (f[�

?

℄g; 1)

) (;; 1)

?

s

0

O ?

([f[O #f ; C �

3

()℄; [O �

8

; C �

3

()℄; [O �

8

; C �

5

()℄g; f[O #f ; C �

5

()℄g℄)

ValB #

s

0

Q

([f[C �

3

()℄g; f[C �

5

()℄g℄)

8.

s

0

C8

([f[C �

3

()℄g; f[C �

5

()℄g℄)

s

0

Q

([f[℄g; f[℄g℄)

) (;; 1)

& ?

s

0

C ?

([f[C �

3

()℄g; f[C �

5

()℄g℄)

3 .

s

0

Q

([f[℄g; ;℄)

) (;; 0)

& 5

s

0

Q

([;; f[℄g℄)

) (;; 0)

) (f[�

?

℄g; 1)

) (f[�

?

℄g; 1)

ValC .

s

0

Q

([f[C �

3

(); C �

8

℄; [C �

5

(); C �

8

℄g; ;℄)

) (;; 0)

& ValP

s

0

Q

([;; ;℄)

) (;; 0)

) (f[�

8

; ?℄; [�

?

; #f ℄g; 2)

) (f[�

8

; ?℄; [�

?

; #f ℄g; 2)

) (f[8; ?℄; [?; �

8

℄; [#f ; �

?

℄g; 3)

) (f[8; ?℄; [?; �

8

℄; [#f ; �

?

℄g; 3)

Figure 5.24: Example of
omputation made by Split-Couples

5.2. DEMAND PROCESSING 149

5.2.7 Remarks

We
on
lude the se
tion on demand pro
essing with a few remarks. The �rst one is the

observation that we took
are of
hoosing pro
essing rules that emit suÆ
ient and ne
essary

sub-demands. In the presentation of
ertain pro
essing rules, we mentioned that some of

the emitted split demands are more aggressive than what is really needed. For example, it

is the
ase in the pro
essing of bound demands, in the pro
essing of split demands on �-

variables where the expression is a pair
onstru
tion, and with the split demands pres
ribed

by fun
tion s
. However, these demands
annot be designed as unne
essary sin
e the

property they express is indeed true. In fa
t, all split demands are ne
essary. This may

seem surprising but it should be noted that the abstra
t interpretation tries to be a simpli�ed

representative of the
on
rete interpretation. And in
on
rete interpretation, at most one

value is the result of ea
h evaluation of an expression in a
on
rete
ontour. That
on
rete

value, taken alone,
annot be spread on any split pattern. Sin
e the abstra
t evaluation of

an expression in an abstra
t
ontour represents a (usually in�nite) union of (non-spreading)

on
rete evaluations, it is legitimate to ask for a split of this evaluation into non-spreading

abstra
t evaluations. The split demand may not be a
hievable but, at least, the property

it expresses is true.

We have
hosen split demands to be the main tool in the translation of the needs of

the optimiser into model update pres
riptions. They are the basi
 operations that are

performed to prepare the analysis results for adequate pro
essing of bound, never, and

bad
all demands. However, in most of the
ases, we
ould pro
eed otherwise and bound

demands
ould be pro
essed and transformed mostly into new bound demands. For example,

the pro
essing of D � `show �

l;k

� B', for B being some modelling pattern, or union of

modelling patterns,
ould easily be done by emitting new bound and never demands when

e

l

is #f

l

, (if

l

e

l

0

e

l

00

e

l

000

), (
ons

l

e

l

0

e

l

00

), (
ar

l

e

l

0

), (
dr

l

e

l

0

), or (pair?

l

e

l

0

). By having an

update of the model additionally, expressions x

l

and (�

l

x: e

l

0

)
ould easily be pro
essed too.

Also, never demands, whi
h
an be seen as spe
ial variants of bound demands operating

on Æ-variables,
ould be pro
essed by emitting new bound, never, and bad
all demands.

However, the pro
essing of bad
all demands and that of D, where e

l

= (

l

e

l

0

e

l

00

), would be

problemati
. Consider pro
essing D knowing that:

�

l

0

;k

= ffg

150 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

�

l

00

;k

= fvg

all(l; f; v; k) = k

0

f;k

0

6� B

Should the new bound demand `show

f;k

0

� B' be emitted, blaming f for the violation of

the bound? Or should a demand be emitted that asks for a demonstration that the
all does

not o

ur at all? If so, by emitting `show Æ

l

0

;k

= ;' or by emitting `show Æ

l

00

;k

= ;'? At

least one of the three properties expressed in these demands has to be true. But whi
h one?

Always
hoosing the right one would require an ora
le. And emitting three \or-related"

demands seems, if not impossible, far from obvious. So it seems that split demands are

unavoidable if adequate pro
essing of demands like D is desired. And sin
e split demands

and their
omplex pro
essing is ne
essary, we
hose to use them extensively and simplify

the pro
essing of the other demands.

The �nal remark about our pro
essing rules is that the rules always propose a single

\plan" to a
hieve the pro
essed demands. As we mention in the previous remark, in some

situations, it would be useful to be able to express things like this set of properties or that

one needs to be veri�ed to a
hieve the pro
essed demand. Sin
e we
hose not to allow the

exe
ution of alternate plans, only a single plan is allowed and
onsequently it must in
lude

only ne
essary demands. This may unduly delay the a
hievement of the pro
essed demands.

Indeed, if it were possible to propose two plans, the normal, ne
essary plan
ould
oexist

with an alternate, aggressive plan that would immediately try to show a property that is only

probably true. The knowledge that a property is probably true
ould
ome from pro�ling

statisti
s on the program, for example. The pro
essed demand would be a
hieved as soon

as one of the plans is
ompleted. Typi
ally, the aggressive plan would \have guessed right"

and su

eed qui
kly. But sometimes it would result in the laun
h of unfeasible demands

that
ould
ause a
onsiderable waste of analysis e�orts. It would
ertainly be interesting

to investigate on the value of allowing alternate plans in the future.

5.3 Complete Approa
h

Now that all the ne
essary tools have been presented, we
an des
ribe the
omplete demand-

driven analysis approa
h. As mentioned in the previous
hapter, the demand-driven analysis

is divided in two parts. A preliminary analysis is �rst performed and then the demand-

5.3. COMPLETE APPROACH 151

driven
y
le is entered.

The preliminary analysis simply
onsists in analysing the program e

l

0

using the initial

model. The
y
le needs these preliminary results in order to start. The initial model is

relatively
oarse. There is one abstra
t Boolean, one abstra
t pair, one abstra
t
losure

per �-expression, and one abstra
t
ontour for the body of ea
h �-expression plus the main

ontour (). More formally, the initial modelM

0

is built on the following pattern-mat
hers:

M

V

= f#f ; (8; 8)g [f�

l

(8 : : : 8

| {z }

n(l) times

) j l 2 Lg

M

l

= f(8 : : : 8

| {z }

n(l)+1 times

)g; l 2 L

where L = fl 2 4(l

0

) j e

l

is a �-expressiong

n(l) = number of variables visible at label l

In short, M

0

is the simplest model that does not mix the three types of values and the

losures
oming from di�erent �-expressions. We believe that M

0

is a good
ompromise

between simpli
ity and a

ura
y. IfM

0

were
oarser, the quality of the preliminary analysis

results would be too low. Also, extra me
hanisms would have to be added in the set

of demands and the demand pro
essing rules to take anonymous
losures or values into

a

ount. On the other hand, ifM

0

were more a

urate, more time would be spent in the

preliminary analysis without eviden
e that this extra a

ura
y is useful at all. The demand-

driven
y
le is better informed to
hoose whi
h part of the abstra
t model ought to be made

more a

urate.

The demand-driven
y
le is the repetition of the model-update and re-analysis phases.

The
y
le ends when there is no time left or there are no more dynami
 safety types tests to

remove. The model-update phase
onsists in making a modi�
ation to the abstra
t model

through demand pro
essing. The re-analysis phase simply performs an analysis of the

program using the newly updated model. Hopefully, the modi�
ation to the model makes

the new analysis results more pre
ise. Note that there is no guarantee that the modi�
ation

leads to more pre
ise results. Note also that what we mean by \more pre
ise" is not having

analysis results expressed using more pre
ise abstra
t values, but having analysis results

that are more informative, or, stated di�erently, less overly
onservative. For example,

152 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

suppose that among the analysis results, we have that:

�

l;k

= f(8; 8)g

and that, after a model update and a re-analysis (assuming that k has not been spe
ialised):

�

l;k

=

8

>

>

>

<

>

>

>

:

(#f ; #f); (�

8

; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

); ((8; 8); �

8

);

(#f ; (8; 8)); (�

8

; (8; 8)); ((8; 8); (8; 8))

9

>

>

>

=

>

>

>

;

These new results are expressed using more pre
ise abstra
t values but they are not more

pre
ise themselves. What we know is that e

l

, when evaluated in
ontour k,
an produ
e any

pair. These new results are not less
onservative. However, if the new results are:

�

l;k

=

8

>

>

>

<

>

>

>

:

(#f ; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

);

(�

8

; (8; 8))

9

>

>

>

=

>

>

>

;

we
an say that they are more pre
ise, or more informative.

The model-update phase pro
eeds by generating and pro
essing demands and then se-

le
ting a parti
ular model update. The idea is that the initial demands dire
tly re
e
t the

needs of the optimiser and that the pro
essing of demands is a kind of translation from the

needs of the optimiser to pres
riptions of model updates. All suggestions of model update

that
an be obtained from the
urrent analysis results are gathered and the sele
tion o

urs

among the suggestions. In order to gather the suggestions of model update, the demands

that are normally pro
essed by modifying the model are kept apart without being pro
essed.

Only those that do not modify the model are pro
essed.

The exe
ution of the model-update phase
onsists in maintaining a set of demands to

pro
ess. When there are no more demands to pro
ess, a sele
tion o

urs among the model-

modifying demands that have been gathered. The demands that are put in the set initially

are those re
e
ting the needs of the optimiser. These initial demands
orrespond exa
tly

to the
onstraints that would be violated if the safety
onstraints for the program using

the
urrent model were generated and
onfronted to the analysis results. Formally, these

5.3. COMPLETE APPROACH 153

demands are:

n

show �

l

0

;k

� ValC (

l

e

l

0

e

l

00

) 2 4(l

0

) ^ k 2 Cont ^ �

l

0

;k

6� ValC

o

[

8

>

>

>

<

>

>

>

:

�

(
ar

l

e

l

0

) 2 4(l

0

) _ (
dr

l

e

l

0

) 2 4(l

0

)

�

^

show �

l

0

;k

� ValP k 2 Cont ^

�

l

0

;k

6� ValP

9

>

>

>

=

>

>

>

;

On
e the initial demands are inserted in the set, demand pro
essing starts. A demand is

extra
ted from the set and pro
essed provided that it is not a model-modifying demand.

Otherwise it is inserted in the set of model-modifying demands. The pro
essing of an

ordinary demand usually
auses the emission of new demands. So pro
essing
ontinues

until the set of demands to pro
ess is empty. Of
ourse, veri�
ations are done to ensure

that a demand is not pro
essed more than on
e. If the set of demands to pro
ess be
omes

empty, but there are
all sites to monitor, the monitoring of all those sites is triggered.

The monitoring usually
auses new demands to be emitted. If there is no site to monitor,

then the demand pro
essing has
ompleted. If the allotted time expires during demand

pro
essing, the pro
essing is stopped and the sele
tion is done immediately.

The model-modifying demands are of the form:

split ValC P

split ValP P

split �

x;k;l

P

The sele
tion of the model update is done on a spa
e
onsumption basis. In our proto-

type, the data stru
tures for the abstra
t model and the analysis results use a
onsiderable

amount of spa
e. So the
riterion that is used to sele
t the \best" model update
onsists in

trying to minimise the amount of spa
e used by the model and the results. Despite the fa
t

that this
riterion is relatively na��ve, it is quite e�e
tive. A model update that leads to more

pre
ise analysis results is favoured be
ause the number of abstra
t values propagated during

the analysis using the proposed model has a tenden
y to de
rease. However, in
luding the

size of the abstra
t model in the
riterion is
ru
ial be
ause it ensures that the gains in

the size of the results are not obtained by
ausing the model to expand too mu
h. The

in
onvenien
e asso
iated to this
riterion is that a re-analysis has to be performed for ea
h

model update proposal.

154 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

A summary of the
omplete demand-driven approa
h is presented in Figure 5.25. Many

operations are only informally spe
i�ed. They are itali
ised to indi
ate that their de�nition

an found elsewhere. Here is the meaning of ea
h variable of the algorithm. The
urrent

abstra
t model is M. The
urrent analysis results are R. The set of demands to pro
ess

is S. The demands already seen in this period of the
y
le are in T . The model-modifying

demands are kept in U . Variable F
ontains the
all sites
agged for future monitoring.

Naturally, the
ouples des
ribing the bad invo
ations (
losure and argument) are kept in

the bad-
all log L

BC

. Variables D and S

0

a
t as temporaries and
ontain a demand and a

set of demands, respe
tively.

5.4 Example of Demand-Driven Analysis

We illustrate the demand-driven analysis algorithm by analysing a small program. Despite

its small size, it is designed to be relatively intri
ate. At least, for an analyser. A tra
e

of the exe
ution of the demand-driven analysis is given. The pro
essing of ea
h demand

and its e�e
ts are presented. The tra
e in
ludes the set of demands to pro
ess, markers

to distinguish the model-modifying demands, the bad-
all log and the
agged
all sites.

The evolution of the abstra
t model through the updates is presented. Also, ex
erpts of

the
urrent analysis results are shown in order to bring some justi�
ation to the presented

demand pro
essing. Let us begin the example.

The program to analyse is the following:

(

1

(�

2

swap.

(

3

swap

4

(
ar

5

(

6

swap

7

(
ons

8

(�

9

x. x

10

)

(
ons

11

(�

12

y. #f

13

)

#f

14

))))))

(�

15

p. (
ons

16

(
dr

17

p

18

) (
ar

19

p

20

))))

Essentially, a fun
tion `swap' is de�ned and used by the \main program". `Swap' takes

a pair and returns a new pair where the
ar- and
dr-�elds have been swapped. The

main program builds a #f-terminated list
ontaining the identity fun
tion and a
onstant

fun
tion. It then
alls `swap' on the list and extra
ts the
ar-�eld from the result. This is

equivalent to dropping the head of the list. Finally, it
alls `swap' on this shortened list. It

is easy for a human reader to
onvin
e himself that this program does not lead to an error

when it is evaluated. Consequently, it is natural to hope that the demand-driven analysis

5.4. EXAMPLE OF DEMAND-DRIVEN ANALYSIS 155

M :=M

0

; R := FW(e

l

0

;M) /* preliminary analysis */

while there is time /* demand-driven
y
le */

S := finitial demandsg; T := S; U := ;; F := ;;

L

BC

(l; k) = ;; 8 l 2 4(l

0

); k 2 Cont;

if S = ; then exit

do

while there is time and S 6= ; /* demand pro
essing */

let D 2 S; S := S � fDg

if D is model-modifying then

U := U [fDg

else if D � `bad-
all l f v k' then

pro
ess D with
agged
ouple (l; k) put in F , if ne
essary

else

pro
ess D with emitted demands in S

0

S := S [(S

0

� T); T := T [S

0

end if

end while

while there is time and F 6= ; /*
all site monitoring */

let (l; k) 2 F ; F := F � f(l; k)g

pro
ess `monitor-
all l k' with emitted demands in S

0

S := S [(S

0

� T); T := T [S

0

end while

while there is time and S 6= ;

if U = ; then

exit

else

let D be the best demand in U /* sele
tion of a . . . */

pro
ess D with modi�ed model in M /* . . . model update */

end if

R := FW(e

l

0

;M) /* re-analysis */

end while

Figure 5.25: Algorithm for the demand-driven analysis

156 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

will be able to eliminate all dynami
 type tests. We will see that it indeed does so.

The abstra
t model used to perform the preliminary analysis is based on the following

pattern-mat
hers:

M

V

=

8

>

>

>

<

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(8; 8)

9

>

>

>

=

>

>

>

;

M

2

= f(8)g

M

9

= f(8 8)g

M

12

= f(8 8)g

M

15

= f(8)g

Note how the value pattern-mat
her
ontains one abstra
t value per type, ex
ept for the

losure type where there is one abstra
t
losure per �-expression. The
ontour pattern-

mat
hers for the invo
ation of ea
h kind of
losures are the trivial ones.

Here is an ex
erpt of the results
olle
ted by the preliminary analysis:

R : �

2;()

= f�

2

()g; �

4;(8)

= f�

15

()g;

�

6;(8)

= f(8; 8)g; �

7;(8)

= f�

15

()g;

�

18;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g;

�

20;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g

Only the results that are pertinent for the example are presented.

Now that the preliminary analysis has been performed, the demand-driven
y
le
an

start. We show a tra
e of the �rst model-update phase. We add
omments throughout

the presentation of the di�erent model-update phases. Comments are indi
ated similarly to

footnotes. A sign like

99

g

is put on top of the arrows separating the numerous steps of the

model-update phases. The
orresponding
omment is given in the text. Here is the tra
e of

the �rst model-update phase:

8

<

:

show �

18;(8)

� ValP

show �

20;(8)

� ValP

9

=

;

1

g

)

8

<

:

show �

20;(8)

� ValP

split �

18;(8)

?

9

=

;

)

8

<

:

split �

18;(8)

?

split �

20;(8)

?

9

=

;

2

g

)

8

<

:

split �

20;(8)

?

[split �

p;(8);18

?℄

9

=

;

3

g

)

8

<

:

[split �

p;(8);18

?℄

[split �

p;(8);20

?℄

9

=

;

5.4. EXAMPLE OF DEMAND-DRIVEN ANALYSIS 157

1

g

The �rst set
ontains the initial demands. A qui
k examination of the program reveals

that there are six expressions that may require a dynami
 safety test. However, the results

of the preliminary analysis indi
ate that four of the expressions do not really need a test.

So the remaining two tests are taken
are of by the emission of these two initial demands.

The arrow indi
ates that an elementary step of the demand-driven algorithm is performed.

In this
ase, there exists a demand to pro
ess, so the arrow indi
ates that the �rst demand

is pro
essed. In all the tra
es, we take the
onvention that the �rst demand to pro
ess is

taken
are of and that the eventual new demands are added at the end of the set. Normally,

we will not des
ribe the pro
essing of the demands themselves. The pro
essing rules are

quite pre
ise and the information that they need about the analysis results that is needed

is presented in the
orresponding result ex
erpt.

2

g

The newly emitted demand is a model-

modifying demand. To indi
ate that it should not be pro
essed, we en
lose it into square

bra
kets.

3

g

The demand-pro
essing ends be
ause there is no more demand to pro
ess. Also,

there is no
all site to monitor.

The demand pro
essing of this �rst model-update phase has produ
ed two model update

suggestions. Next, a sele
tion is made to
hoose the update to perform on the abstra
t

model. In this
ase, both demands have exa
tly the same e�e
t on the model. The update

on the model
auses pattern-mat
her M

15

to be updated. Here is its new de�nition:

M

15

= f(#f); (�

8

); ((8; 8))g

Now, when `swap' is invoked, its body is not always evaluated in the same
ontour. The

ontour depends on the type of the argument that is passed to `swap'. Intuitively, this �rst

update makes sense as it is ne
essary to know whether `p' is a pair or not before we
an do

a
ar- or
dr-�eld extra
tion on it.

Using this new, updated model, a re-analysis of the program is performed. Here is an

158 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

ex
erpt of the new analysis results:

R : �

4;(8)

= f�

15

()g;

�

5;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g;

�

18;(#f)

= f#fg; �

20;(#f)

= f#fg;

�

18;(�

8

)

= f�

9

(8); �

12

(8)g; �

20;(�

8

)

= f�

9

(8); �

12

(8)g;

�

18;((8;8))

= f(8; 8)g; �

20;((8;8))

= f(8; 8)g;

�

(#f)

= f(3; (�

15

()); #f ; (8))g;

�

(�

8

)

=

8

<

:

(3; (�

15

()); (�

9

(8)); (8));

(3; (�

15

()); (�

12

(8)); (8))

9

=

;

Note that we do not in
lude information on the value of expressions e

2

, e

6

, and e

7

again

sin
e it was already determined at the beginning of the �rst
y
le that they did not need a

dynami
 safety test. However, that on e

4

is needed for the next model-update phase and is

mentioned nevertheless. Note that an updated model
annot lead to worse analysis results.

This is why we
onsider the
ases of e

2

, e

4

, e

6

, and e

7

to be
losed.

Based on these new analysis results, a se
ond demand-pro
essing phase
an start. Note

how the remaining initial demands are expressed in more pre
ise terms be
ause of the

updated model. Also, demands are still ne
essary in only two of the three
ontours sin
e

ontour `((8; 8))' means that `p'
annot
ontain anything else than pairs. Whi
h is perfe
tly

satisfa
tory for the extra
tion of the �eld of a pair. Here is the tra
e of the se
ond demand-

pro
essing phase:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show �

18;(#f)

� ValP

show �

18;(�

8

)

� ValP

show �

20;(#f)

� ValP

show �

20;(�

8

)

� ValP

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � �)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show Æ

18;(#f)

= ;

show Æ

18;(�

8

)

= ;

show Æ

20;(#f)

= ;

show Æ

20;(�

8

)

= ;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � �

)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show Æ

17;(#f)

= ;

show Æ

17;(�

8

)

= ;

show Æ

19;(#f)

= ;

show Æ

19;(�

8

)

= ;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � �)

8

<

:

show Æ

16;(#f)

= ;

show Æ

16;(�

8

)

= ;

9

=

;

4

g

)

8

<

:

show Æ

16;(�

8

)

= ;

bad-
all 3 (�

15

()) #f (8)

9

=

;

5

g

)

8

>

>

>

<

>

>

>

:

bad-
all 3 (�

15

()) #f (8)

bad-
all 3 (�

15

()) (�

9

(8)) (8)

bad-
all 3 (�

15

()) (�

12

(8)) (8)

9

>

>

>

=

>

>

>

;

5.4. EXAMPLE OF DEMAND-DRIVEN ANALYSIS 159

6

g

)

8

>

>

>

<

>

>

>

:

bad-
all 3 (�

15

()) (�

9

(8)) (8)

bad-
all 3 (�

15

()) (�

12

(8)) (8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

>

>

>

=

>

>

>

;

)

2 steps

� � �)

�

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

�

7

g

)

8

>

<

>

:

monitor-
all 3 (8)

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

8

g

)

8

>

<

>

:

split �

5;(8)

?

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

9

g

)

8

>

<

>

:

[split ValP (?; 8)℄

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

4

g

The pro
essing of this never demand
onsists in �nding all invo
ation
ir
umstan
es

leading to the sele
tion of
ontour `(#f)' and involving a
losure originating from parent

�-expression e

15

. It appears that the single
ir
umstan
e logged in �

(#f)

involves a
losure

originating from e

15

, so it be
omes a bad
all demand.

5

g

Similarly, the two
ir
umstan
es

be
ome bad
all demands.

6

g

The bad
all demand is not trivially a
hieved so it must be

inserted into the bad-
all log. We denote this insertion by indi
ating the state of the log at

the bottom of the set. Also, we
ag the
on
erned
all site by underlining its appearan
e as

an index in the log.

7

g

There is no more demand to pro
ess. However, there is a
agged
all

site. A monitor
ommand is emitted and the
ag is removed from the
all site.

8

g

The
all

site only impli
ates fun
tion `swap' and arguments of all types. Only the pair is allowed as

an argument. Consequently, a split demand is emitted to request a separation of the good

and the bad
ases.

9

g

Finally, a model-modifying demand is emitted and there are no more

demand to pro
ess and no
all site to monitor.

The unique model-modifying demand is ne
essarily sele
ted. It requests an update on

the representation of the pairs. Pattern-mat
her M

V

is updated and be
omes:

M

V

=

8

>

>

>

<

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(#f ; 8); (�

8

; 8); ((8; 8); 8)

9

>

>

>

=

>

>

>

;

With the new model, a re-analysis is performed and we
an observe these new analysis

160 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

results:

R : �

4;(8)

= f�

15

()g; �

5;(8)

= f#f ; (�

8

; 8)g;

�

6;(8)

= f(#f ; 8); ((8; 8); 8)g;

�

7;(8)

= f�

15

()g; �

8;(8)

= f(�

8

; 8)g;

�

16;((8;8))

= f(#f ; 8); ((8; 8); 8)g;

�

17;((8;8))

= f#f ; (�

8

; 8)g; �

18;(#f)

= f#fg;

�

18;(�

8

)

= ;; �

20;(#f)

= f#fg;

�

20;(�

8

)

= ;;

�

15

();((8;8))

= f(#f ; 8); ((8; 8); 8)g;

�

(#f)

= f(3; (�

15

()); #f ; (8))g

The results reveal that, in fa
t, `swap' is not
alled on any
losure. However, there is no

eviden
e that it is not
alled on #f and the two remaining initial demands try to remedy

to the situation in the next demand-pro
essing phase:

8

<

:

show �

18;(#f)

� ValP

show �

20;(#f)

� ValP

9

=

;

)

2 steps

� � �)

8

<

:

show Æ

18;(#f)

= ;

show Æ

20;(#f)

= ;

9

=

;

)

2 steps

� � �

)

8

<

:

show Æ

17;(#f)

= ;

show Æ

19;(#f)

= ;

9

=

;

)

2 steps

� � �)

n

show Æ

16;(#f)

= ;

o

)

n

bad-
all 3 (�

15

()) #f (8)

o

)

n

L

BC

(3; (8)) = f

(�

15

();#f)

g

o

)

8

<

:

monitor-
all 3 (8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

5;(8)

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

6;(8)

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split

�

15

();((8;8))

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

16;((8;8))

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

17;((8;8))

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

[split ValP (8; ?)℄

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

Only one model-modifying demand is generated and it is automati
ally sele
ted. It asks

for another improvement in the representation of the pairs. On
e again, pattern-mat
her

M

V

is updated and it now in
ludes abstra
t pairs that are uniformly spe
i�ed one level

5.4. EXAMPLE OF DEMAND-DRIVEN ANALYSIS 161

deep:

M

V

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(#f ; #f); (�

8

; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

); ((8; 8); �

8

);

(#f ; (8; 8)); (�

8

; (8; 8)); ((8; 8); (8; 8))

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

A re-analysis with the new model leads to the following results:

R : �

4;(8)

= f�

15

()g; �

5;(8)

= f#f ; (�

8

; #f)g;

�

6;(8)

= f(#f ; �

8

); ((8; 8); �

8

)g;

�

7;(8)

= f�

15

()g; �

8;(8)

= f(�

8

; (8; 8))g;

�

16;((8;8))

= f(#f ; �

8

); ((8; 8); �

8

)g;

�

17;((8;8))

= f#f ; (�

8

; #f)g; �

18;(#f)

= f#fg;

�

18;((8;8))

= f(�

8

; #f); (�

8

; (8; 8))g; �

20;(#f)

= f#fg;

�

15

();((8;8))

= f(#f ; �

8

); ((8; 8); �

8

)g; �

(#f)

= f(3; (�

15

()); #f ; (8))g

Unfortunately, they do not allow the removal of the last two safety tests, yet. The same

two initial demands are emitted for the next demand-pro
essing phase:

8

<

:

show �

18;(#f)

� ValP

show �

20;(#f)

� ValP

9

=

;

)

14 steps

� � �)

8

<

:

split �

17;((8;8))

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

18;((8;8))

(8; ?)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

[split �

p;((8;8));18

(8; ?)℄

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

Only one model-modifying demand is generated by the demand-pro
essing phase. Its

appli
ation to the model
auses the update of pattern-mat
her M

15

:

M

15

= f(#f); (�

8

); ((8; #f)); ((8; �

8

)); ((8; (8; 8)))g

Before this modi�
ation, the analysis of the behaviour of `swap' was
onfusing both invo
a-

tions of `swap'. Remember that the �rst invo
ation involves the whole list and the se
ond,

the shortened list. Ea
h time, the abstra
t invo
ation of `swap' sees a pair
oming as an

argument. So the values for both invo
ations were blended together. With this last update,

the analysis no longer
onfuses both invo
ations and now ea
h invo
ation has its own return

value. The se
ond invo
ation involves only the shortened list originating from the return

162 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

value of the �rst invo
ation.

A re-analysis using this last model provides the desired results. Namely, these
ontain:

R :

�

18;(#f)

= ;; �

20;(#f)

= ;

whi
h
ompletes the demonstration that no safety test is required for the whole program.

The presented example illustrates the exe
ution of the demand-driven analysis on a

simple program. But also, it is remarkable to see how the algorithm did it all without
oming

lose to \understand" the program or being intelligent in a human sense. The only expertise

in type analysis is present in the design of the global approa
h and mainly in the design

of the pro
essing rules. But even in the pro
essing rules, there is no long body of domain-

spe
i�
 knowledge; only relatively short, sensible tests and transformations. Nevertheless,

the whole approa
h is remarkably intelligent. Empiri
al evaluation of its performan
es are

presented in Chapter 6.

5.5 Development of the Prototype

The presented prototype is not a �rst attempt that has happened to immediately work

well. Many previous prototypes have been built and tried. The attentive reader may have

noti
ed some details that suggest that previous approa
hes were used: the (su

ess) and

(failure)
omments that are ignored; many kinds of demands that
an never happen to

be trivially a
hieved, namely bad
all demands; the split demands with ValC as a splittee

that
an never be emitted.

5.5.1 Resolution-Like Pro
essing of Demands

The �rst prototypes did not pro
eed with a model-update re-analysis
y
le but were doing

a kind of request resolution �a la Prolog. That explains the presen
e of the (su

ess) and

(failure)
omments. Rea
hing (su

ess) meant that the
urrent demand was trivially

a
hieved and rea
hing (failure) meant that the
urrent demand
ould not be a
hieved.

When many sub-demands were emitted by the pro
essing of the
urrent demand, they were

onsidered to be linked by a logi
al-and operator, i.e. the
urrent demand was a
hieved if

5.5. DEVELOPMENT OF THE PROTOTYPE 163

all its sub-demands were a
hieved.

This resolution-like approa
h had many problems. For example, the natural pro
essing

for a bound demand is �rst to separate the good
ases from the bad
ases and then to

show the impossibility of the bad
ases. This pro
essing requires an ordering in time that

annot be expressed using simple Boolean operators. So sequen
ing operators were intro-

du
ed. Their task
onsisted in triggering the pro
essing of a
ertain demand, waiting for its

a
hievement, and then emitting another demand. In fa
t, a
omplete system of pa
kage of

things to do,
alled wills, were implemented to take
are of the pres
riptions issued by the

pro
essing of demands. Wills
ould in
lude the emission of groups of demands, sequen
es of

other wills, and other
ommands that we mention below. Wills were intended to implement

all the me
hanisms needed for performing the resolution of the demands in a resolution-like

fashion. They were pretty
omplex.

Another problem with the resolution-like approa
h was that of the model updates be-

ing performed during the resolution pro
ess. The exe
ution of a will doing a sequen
ing

operation typi
ally
onsists in waiting for a model update to
ause the �rst sub-demand to

su

eed in order to trigger the pro
essing of the next one. This parti
ular will is spe
i�
ally

designed to deal with su
h updates. However, the pro
essing of other demands might be

a�e
ted by the model update. For example,
alls are expressions with a very
omplex inter-

pretation and they
an be a�e
ted by almost any model update. So, a demand
on
erning a

all that is pro
essed at the beginning of the demand-driven analysis usually does not lead

to the same set of sub-demands as if it were pro
essed later. It typi
ally be
omes easier

to pro
ess as the model evolves. So the prototypes had two me
hanisms to deal with the

pro
essing of diÆ
ult demands. The �rst was that the demand
ould be re-emitted by its

will. For example, when a demand
annot be
ompletely pro
essed (typi
ally be
ause a

separation of good and bad
ases has to be performed �rst), its will
onsists in a sequen
ing

operator that �rst emitted split demands for the separation and then emitted the original

demand again. If the splits are eventually a
hieved, then the new pro
essing of the demand

an happen within new, separated results.

The problem with this re-emission after the separation is
ompleted is that, often, the

requested separation is too
omplex. Indeed, at the beginning of the demand-driven analysis,

the analysis results may be too ina

urate and the pro
essing of a demand
on
erning a

all may produ
e a will that asks for a separation that is ex
essively ambitious. So the

164 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

split demands involved in the separation may never be a
hieved. However, the analysis

results typi
ally be
ome more a

urate as the demand-driven analysis progresses. The

pro
essing of the same demand, if done later, would lead to the request of a mu
h more

sober separation step, in
reasing the
han
es of its realisability. To take advantage of the

progressive improvement of the analysis results, we added another me
hanism: a wake-up

all for the
omplex demands. If there is a wake-up
all that is set for a
ertain demand and

that the demand is not a
hieved within a
ertain amount of time, then it is automati
ally

re-emitted. In order to determine whi
h demands have been pro
essed, sin
e when, whether

they are a
hieved or not, et
., we added a demand log. It was a
omplex data stru
ture

with fast a

ess and in whi
h all existing demands were noted along with their related

informations. Another problem that the demand log helped to deal with was that of the

y
li
 demands. Cy
li
 demands often appear when, for example, two fun
tions are mutually

re
ursive and the result of ea
h one depends on that of the other. A split demand on the

result of the �rst leads to the emission of a split demand (among other) on the result of the

other, whi
h in turn leads to the same �rst demand. The demand log allowed to verify if

a demand was already in the waiting queue to be pro
essed or has already been pro
essed

and possesses a will.

Periodi
ally repro
essing a demand
ould be expensive as a new will
ould possibly be

reated, whi
h lead to the possible emission of similar demands as before. So, for
ertain

kinds of demands, we instead performed periodi

he
ks to see if they now happened to be

a
hieved, due to some update of the model. When a demand was dis
overed to be a
hieved

during a
he
k, we would delete the whole \sear
h" tree that represented its resolution

pro
ess and send a su

ess signal to its parent demands. One
an imagine the
omplexity

of su
h an operation be
ause of the wills, wake-up
alls, demand log that are involved in

the resolution pro
ess.

All these me
hanisms were introdu
ed in the su

essive prototypes in order to try to

make the demand-driven analysis work. All of this was terribly
omplex and, on top of

that, it did not work satisfa
torily. The main problems that we �nally identi�ed through

extensive experiments were: the pro
essing of a demand rarely bene�ts from the most

up to date analysis results; many demands
ontinued to be \resolved" while it
ould be

established from the
urrent analysis results that they were now useless (not to
onfuse

with \a
hieved").

5.5. DEVELOPMENT OF THE PROTOTYPE 165

5.5.2 Model-Update Sele
tion and Re-Analysis Cy
le

From these observations, we de
ided to make a major
hange in the demand-driven analysis

pro
edure and de
ided that, ea
h time the model was
hanged, demand pro
essing had to

be restarted from s
rat
h. At �rst glan
e, it seems like a terrible waste of resour
es. Indeed,

the initial demands have to be generated ea
h time, many similar demands have to be

pro
essed ea
h time. The reader
ould witness that redundan
y in the example of demand-

driven analysis in the previous se
tion. But the bene�ts
learly outweigh the in
onvenien
es:

only the demands that are needed a

ording to the
urrent analysis resour
es are generated

and pro
essed. As soon as new results indi
ate that su
h or su
h property no longer needs to

be veri�ed, the
orresponding demand does not get emitted. The model-modifying demands

that are proposed by the demand pro
essing now have a very high degree of pertinen
e.

The new problem is that the demand-pro
essing phase of the
y
le usually proposes

more than one model-modifying demands. Our �rst strategy
onsisted in sele
ting all of

them. We immediately saw an improvement in the intelligen
e of the prototype. It
ould

dis
over fa
ts that stayed
ompletely unsuspe
ted by the previous prototypes. However,

it
aused a massive expansion of the abstra
t model. During the demand-driven analysis,

the analysis results were rapidly improving in quality but they were expressed in so many

pre
ise values that they were expanding very qui
kly, too. After only a few minutes of

exe
ution, the prototype needed more than a gigabyte of memory spa
e.

So we de
ided to use a sele
tion
riterion. The �rst one simply
onsisted in measuring

the in
rease in size of the abstra
t model and sele
ting the model-modifying demand that

aused the smallest in
rease. It su

eeded in keeping the model to a reasonable size but

it had the tenden
y to
hoose demands that do not really help in making the results more

informative. Consequently, the results qui
kly expanded as they were always denoting the

same information but in ever �ner terms. Nevertheless, for some ben
hmarks, this
ontrol

on the size of the model, plus the high pertinen
e of the proposed model-modifying demands

resulted in su

essful analyses, where previous prototypes stagnated or exploded.

We
hanged the
riterion for a slightly more
lever one: its measures the in
rease in

the size of both the model and the results and sele
ts the least in
rease-
ausing demand.

Despite the fa
t that this
riterion is not mu
h more
lever than the previous one, it happens

to be really useful. It is the one that is used in the
urrent prototype and allows the latter

166 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

to analyse perfe
tly well many of the ben
hmarks that we submit to it.

In
on
lusion, we say that it is pra
ti
ally the most na��ve design of demand-driven

analysis that allowed us to obtain a working prototype. The \more
lever" approa
h of

having a resolution of demands �a la Prolog did not work properly. Although the
y
li

approa
h of performing demand pro
essing from s
rat
h and re-analysing after ea
h model

update seems to imply some resour
e waste, it turns out to be e
onomi
al in the demands

that it insists on pro
essing.

5.6 Dis
ussion

To
on
lude with the pattern-based demand-driven analysis, we make a few
omments. We

believe that the pattern-based analysis is the simplest instan
e of demand-driven analy-

sis that has a reasonably high power. The meaning of the patterns as abstra
t values is

straightforward. There are only a few kinds of demands that need to be manipulated and

the rules to pro
ess them are relatively intuitive. Moreover, the pattern-based instan
e

respe
ts the intent expressed in the presentation of demand-driven analyses in general that

we should avoid
reating an expert system with an extensive knowledge base to obtain a

good type analysis.

The pattern-based approa
h has somehow a redu
ed power
ompared to the
on
ept of

demand-driven analysis in general. Not ne
essarily theoreti
ally, but in pra
ti
e. Theoret-

i
ally, the modelling of the
on
rete values and evaluation
ontexts using patterns is not

less powerful than the generi
 modelling allowed by the analysis framework: a
orre
tly

terminating program still
an be analysed perfe
tly well using a model based on patterns.

Indeed, the
orre
tly terminating program runs only for a
ertain time; so it
reates values

and manipulates environments that have only a
ertain depth (if written as syntax trees);

so
hoosing pattern-mat
hers that only proje
t details that are beyond this depth would

allow to simulate with perfe
t a

ura
y the
on
rete
omputations.

In pra
ti
e, however, the program runs for an unknown time and a priori manipulates

arbitrarily big and deep values. The pattern-based modelling is intrinsi
ally myopi
 and

fails to
apture many kinds of properties applying to the values. For example, for long

enough lists, the di�eren
e between lists having an even length and those having an odd

5.6. DISCUSSION 167

length
annot be made. By inspe
tion of the �rst few levels of a list, it is
lear that it is

impossible to determine how many other pairs are linked in the list. On the other hand,

with the general modelling provided by the analysis framework, it is easy to
hoose ValP

and p
 su
h that pairs that start lists of even and odd length are distinguished.

Despite its myopia, the pattern-based modelling, in
ombination with the analysis re-

sults, may sometimes dis
over non-super�
ial properties of the values manipulated by a

program. Consider a simple program that manipulates two kinds of lists: lists of
losures

and lists of pairs. Suppose that both kinds of lists are terminated by #f. Let us pretend

that we are the analyser ourselves and that an ora
le told us that the program only ma-

nipulates those two kinds of lists. Then we
ould identify whi
h of the two kinds of lists

we are manipulating in a myopi
 fashion: if the �rst pair
ontains a
losure, then it is the

head of a
losure list; otherwise, it is the head of a pair list. The real analyser
an dis
over

the same invariant (without the help of an ora
le, of
ourse) by exploiting the
ontents of

the log of pair
reation
ir
umstan
es, i.e. the � matrix. First, let us observe what the log

ontains when there is only one abstra
t pair, i.e. when ValP = f(8; 8)g:

�

(8;8)

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(; � (: : :); #f ;);

(; � (: : :); (8; 8););

(; (8; 8); #f ;);

(; (8; 8); (8; 8););

: : :

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

These
ir
umstan
es illustrate the best possible
ase for the analysis results. Note that we

intentionally omitted to give the labels and
ontours where the pairs are
reated and the

details from the
losures stored into the pairs. The omitted details are not useful to the

example. The information in the log only indi
ates that lists are #f-terminated and that

they
ontain
losures and pairs. But if we now observe the
ontents of the log if the model

were updated to have pairs that are distinguished by the type of the value in their
ar-�eld,

i.e. ValP = f(#f ; 8); (�

8

; 8); ((8; 8); 8)g:

�

(#f ;8)

= ;

�

(�

8

;8)

= f(; � (: : :); #f ;); (; � (: : :); (�

8

; 8)); : : :g

�

((8;8);8)

= f(; (; 8); #f ;); (; (; 8); ((8; 8); 8);); : : :g

Again, these results also illustrate the best possible
ase for the analysis results. Observe

168 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

that pairs having a
losure in the
ar-�eld are either terminated by #f or have a
losure

list in the
dr-�eld; pairs having a pair in the
ar-�eld are either terminated by #f or

have a pair list in the
dr-�eld. This property of the lists
an be dis
overed by the analyser

be
ause the di�erent kinds of lists have a super�
ial di�eren
e that is suÆ
ient to distinguish

them.

On the
ontrary, if there are two kinds of lists and that these two kinds are only dif-

ferentiated deeply, the analyser
annot �nd the distin
tion. For example, suppose that the

program manipulates these two kinds of lists: both are lists of Booleans, but one kind is

#f-terminated and the other is terminated by a
losure. Then, if we
onsider two suÆ-

iently long lists, one that is #f-terminated and the other not, then there is no super�
ial

di�eren
e between them. So they have to be represented by the same abstra
t value (by the

proje
tion through the value pattern-mat
her). The best the pattern-based analyser
ould

do is to determine that the lists
ontain Booleans and are terminated by a Boolean or a

losure. Only short lists
ould be
lassi�ed
orre
tly. However, by dire
tly using generi

models a

epted by the analysis framework, a model
an be
hosen su
h that pairs are

di�erent depending on the type of the value that terminates the list they are the head of.

We �nish by asking, and answering, the following question: Sin
e any
orre
tly termi-

nating program
an be analysed perfe
tly well using an appropriate pattern-based model,

is the pattern-based demand-driven analysis always able to eventually analyse the program

perfe
tly well? Unfortunately, the answer is: No. Intuitively, it is relatively easy to a

ept

this answer. It is be
ause the analyser starts with a
oarse model, may only obtain obs
ure

analysis results, and may not be able to dis
over the appropriate model updates before there

is no more useful information it
an extra
t from the results. However, stri
tly speaking,

this explanation is not suÆ
ient. But in Chapter 6, experiments show that our prototype

is not able to analyse perfe
tly well some of the ben
hmarks.

Chapter 6

Experimental Results

We have run some experiments on a prototype implementation of the pattern-based demand-

driven analysis. But before we present the results of these experiments, we �rst give some

details on the implementation of the prototype. And then we des
ribe the method used to

measure the e�e
tiveness of the demand-driven analysis. Finally, we present the results and

make
omments.

6.1 Current Implementation

The prototype is implemented in a rather na��ve way. No spe
ial e�ort has been made

to make it parti
ularly eÆ
ient, in time and in spa
e. The abstra
t values and abstra
t

ontours are implemented almost as we have presented them in the previous
hapter. They

are represented using simple, easy to read S
heme data made of lists, symbols and numbers.

For example, here is the representation of two abstra
t values:

(#f ; �

8

) 7! (pair (bool) (
los any))

�

12

(8 #f 8) 7! (
los 12 (vals (bool) vals))

This representation is quite spa
e
onsuming and
ould
ertainly be redu
ed to a more

ompa
t form.

During the analyses, values and
ontours of this kind are
reated and proje
ted using

the pattern-mat
hers. Their proje
tion involves their de
onstru
tion using a queue. Conse-

170 CHAPTER 6. EXPERIMENTAL RESULTS

quently, this pro
ess is also time
onsuming. However, a feature of the implementation of the

pattern-mat
hers redu
es the spa
e
onsumption. During a single analysis, the abstra
tions

that result from the proje
tions using the pattern-mat
hers are not
reated from s
rat
h.

Instead, they are taken from the leaves of the pattern-mat
hers. So the values stored in the

�, �,
, and Æ matri
es are the same obje
ts (in the sense of eq?) as those already present

in the pattern-mat
hers. However, the tuples found in the �, �, and � matri
es are built

during the analysis even if their
ontents are already existing obje
ts. Naturally, the data

stru
tures implementing the matri
es themselves must also be
reated.

The
onsiderable amount of data stru
tures that are needed in order to perform the

analyses
auses a loss of time eÆ
ien
y due to the stress on memory management. Also,

the repeated proje
tions of abstra
tions add to the ineÆ
ien
y.

The implementation of the sets that hold the values of ea
h matrix entry is eÆ
ient.

However, operations on the sets rely on an ordering relation between abstra
tions that is

quite heavy. To determine the relative order of two abstra
tions, the relation traverses the

lists and atoms until a di�eren
e is found. These
omparisons
ause a large
onsumption of

time.

In fa
t, the major sour
e of time
onsumption in the prototype is the need to re-analyse

the program from s
rat
h ea
h time a model-modifying demand is evaluated by the sele
tion

riterion. With models that are in
reasingly
omplex during the whole demand-driven

analysis, the repeated analyses in
ur a tremendous
ost. When one wat
hes the tra
e that

is produ
ed by the prototype, it is perfe
tly obvious that almost all the time is spent in

the demand sele
tion step. Even in the prototype that used only the size of the model as

a
riterion, almost all of the time was spent in the analyses. The demand generation and

pro
essing steps are faster by orders of magnitude.

Be
ause of that, our
urrent measure of the amount of resour
es to invest in the demand-

driven analysis is not reliable. The amount of resour
es is measured in the number of

pro
essed demands. Sin
e the pro
essing of demands is far from being the major
ost,

the measure does not represent very a

urately the amount of resour
es that are available.

Using a measure like the CPU time would be preferable. At least, it is so from the point of

view of the user of the system. From our
urrent point of view, the advantage of the
urrent

measure is that it measures the amount of reasoning the demand-driven analysis
an do.

Indeed, the
leverness of the approa
h
omes mostly from the pro
essing of demands.

6.2. TEST METHODOLOGY 171

6.2 Test Methodology

6.2.1 What is Measured?

For ea
h ben
hmark, we
ount the number of safety tests that
an be removed from the

program. It is important to note the distin
tion between the fa
t that these tests are

dynami
 and the fa
t that we remove their stati
 o

urren
es in the program text. We
ount

the number of stati
 o

urren
es of the tests, not the number of dynami
 uses of the tests.

One might obje
t that \
ounting the stati
 o

urren
es of the tests is farther from

measuring the
on
rete improvement in the exe
ution time of the program than
ounting

their dynami
 uses". We agree, but we answer that \it is not farther by mu
h". Let us give

our reasons.

The number of dynami
 uses does not have a relation to the exe
ution time of the

program that is as tight as we may expe
t at �rst. Many other fa
tors impa
t on the

exe
ution time: the \useful"
omputations made by the program, the hidden run-time tasks

su
h as memory management, the intera
tion with the operating system, the parti
ular

ma
hine on whi
h the program runs, et
. In general, it is hazardous to predi
t what is the

impa
t on the exe
ution time of the program when it has been determined that only 50%

of the uses of dynami
 tests were required. In some situations, the savings on the safety

tests are overshadowed by the remainder of the program tasks and little improvement of the

exe
ution time is observed. On the other hand, the frequen
y of the dynami
 tests during

the
omputations might be so high that the redu
tion in the exe
ution time
ould be
lose to

that of the number of uses of safety tests. In ex
eptional
ases, the improvement
ould even

be over 50% if the optimizations help the
ode to be smaller and to behave more favourably

in relation to the
a
he memory and if they improve the bran
h predi
tion su

ess rate in

the pro
essor.

For the exa
t same reasons, dire
tly taking the improvement of the exe
ution time of

the programs as a measure of the e�e
tiveness of the analysis is not representative.

Using the number of stati
 o

urren
es of safety tests in the program text has many

advantages. It ex
lusively depends on the analysis and the program. No external fa
tors

an in
uen
e the measure. The su

ess of our analysis in the removal of the di�erent safety

tests depends more on the intrinsi
 diÆ
ulty of the program. Consequently, we believe it

172 CHAPTER 6. EXPERIMENTAL RESULTS

gives a more stable measure of the e�e
tiveness of the analysis. For instan
e, it
annot

happen to obtain very good results on a parti
ular ben
hmark be
ause it eliminated a few

very frequently used tests and, the next time, to obtain poor results be
ause it eliminated

many rarely used tests. A measure of the dynami
 uses of the safety tests is more sensitive

to \lu
k". Moreover, there is no reason to believe that frequently used tests are harder or

easier to eliminate than rarely used ones. Our measure is insensitive to the inputs of the

program while it is exe
uted. Or
ourse, our mini-language does not in
lude input/output

operations, but a
on
rete language for whi
h the analysis
ould eventually be implemented

should in
lude input/output.

Finally,
ounting the number of stati
 o

urren
es of safety tests is
ommon in the �eld

of stati
 analyses. Also, it is
ompatible with the goal we gave ourselves at the beginning

of the do
ument: to try to remove as many safety tests as possible.

6.2.2 Ben
hmarks

The e�e
tiveness of the analysis is evaluated using a variety of ben
hmarks. They vary from

small to medium size. There are a few toy programs, adaptations of some of the Gabriel

ben
hmarks, and other programs. Many ben
hmarks involve numeri
al
omputations. Some

have a more symboli
 nature. Most are written or translated,
ompletely or partly, by hand

from S
heme. Some are automati
ally
ompiled from a subset of S
heme into the syntax of

the mini-language.

Before we present ea
h ben
hmark, we need to dis
uss a few issues regarding their

translation. The most important issue
on
erns the use of letre
-expressions. As we

know, the mini-language does not in
lude letre
-expressions (it does not even in
lude let-

expressions). In order to obtain ben
hmarks written in the mini-language, letre
s are

redu
ed into lets plus uses of the well known \Y"
ombinator. For ea
h ben
hmark, we

used two di�erent translations. One in whi
h variable Y is �rst bound to an appropriate

fun
tion and in whi
h ea
h re
ursive fun
tion gets
reated by
alling Y on a partially

re
ursive fun
tion. The other in whi
h ea
h re
ursive fun
tion is
reated using a private Y

ombinator. Clearly, having one global Y
ombinator makes the program harder to analyse

be
ause every re
ursive fun
tion is
reated using the same �-expression
oming from Y.

Naturally, the returned
losure remembers its asso
iated partially re
ursive fun
tion but

6.2. TEST METHODOLOGY 173

(letre

1

foo = (�

2

x. (

3

foo

4

x

5

))

(

6

foo

7

#f

8

))

(a) Original program

(let

1

Y = (�

2

f. (let

3

g = (�

4

h. (�

5

z. (

6

(

7

f

8

(

9

h

10

h

11

)) z

12

)))

(

13

g

14

g

15

)))

(let

16

foop = (�

17

foof. (�

18

x. (

19

foof

20

x

21

)))

(let

22

foo = (

23

Y

24

foop

25

)

(

26

foo

27

#f

28

))))

(b) Translation with global Y

(let

1

foo = (let

2

f = (�

3

foo2. (�

4

x. (

5

foo2

6

x

7

)))

(let

8

g = (�

9

h. (�

10

z. (

11

(

12

f

13

(

14

h

15

h

16

)) z

17

)))

(

18

g

19

g

20

)))

(

21

foo

22

#f

23

))

(
) Translation with private Y

Figure 6.1: Translation of letre
-expressions

the analyser has to dis
over that by itself. On the other hand, private Y
ombinators

allow re
ursive fun
tions from distin
t letre
s to be
reated from distin
t �-expressions.

Certainly, this does not make the task as easy as if the analyser knew how to handle

letre
-expressions dire
tly but nevertheless it helps a lot. Figure 6.1 shows both kinds of

translation for the little ben
hmark loop.

Many ben
hmarks involve numeri
al
omputations. But we know that the mini-language

does not in
lude numbers. Consequently, a redu
tion step used in the elaboration of the

ben
hmarks
onsists in getting rid of the numbers by repla
ing them by lists of Booleans.

Only the naturals and a few arithmeti
 operations are supported. The numbers are en
oded

in unary. Thus, the
onstant `3' appearing in the program is translated into:

(
ons #f (
ons #f (
ons #f #f)))

The \numeri
al lists" do not have any spe
ial status and are manipulated as ordinary values

by the mini-language.

174 CHAPTER 6. EXPERIMENTAL RESULTS

The ben
hmarks written in the S
heme subset may in
lude empty lists, both Booleans,

numbers (naturals), pairs, ve
tors,
losures of any (non-variable) arity, and symbols. A

subset of the standard library is provided. The extra spe
ial forms are letre
 and let,

provided that they in
lude only one binding. Also, the expression to whi
h the variable

is bound in letre
-expressions must be a �-expression. Programs written in this subset

of S
heme are translated into the mini-language plus let, letre
, and unary numbers.

Ea
h S
heme obje
t is represented by a pair of the mini-language. The pair
ontains a

type tag (a small number) and the value en
oded in a type-dependent way. The ne
essary

library fun
tions are in
luded. The S
heme type dis
ipline is enfor
ed and a S
heme type

error leads to the evaluation of the mini-language expression (
ar #f). Wrapping and

unwrapping instrumentation is added throughout the translated program. Programs thus

translated tend to expand
onsiderably. Figure 6.2 shows the translation of a very small

expression. The
ode expansion is evident.

We now des
ribe ea
h ben
hmark:

dr-safe De�nition and use of a se
ure version of the
dr fun
tion. Written in the extended

mini-language.

loop An in�nite loop. Written in the extended mini-language.

2-1 Computes the indi
ated subtra
tion. Written in the extended mini-language.

map-easy Two uses of map on the same list using two di�erent fun
tions. Written in the

extended mini-language.

map-hard A use of map on two di�erent lists using two di�erent fun
tions. Ea
h fun
tion

an only be applied on the elements of its
orresponding list. Otherwise, an error

would o

ur. This simple ben
hmark is reported in [37℄ as being impossible to analyse

perfe
tly well by the k-
fa analysis, no matter how big k is. Written in the extended

mini-language.

�b Computes the 7th Fibona

i number. Adapted from a Gabriel ben
hmark. Written in

the extended mini-language.

g
d Computes the greatest
ommon divisor of 3 and 5. Written in the extended mini-

language.

6.2. TEST METHODOLOGY 175

(if (= 2 3) #f '(32 a))

7!

(let

1

true = (
ons

2

4

3

(
ons

4

#f

5

#f

6

))

(let

7

false = (
ons

8

4

9

#f

10

)

(let

11

wrap-num = (�

12

n. (
ons

13

2

14

n

15

))

(let

16

null = (
ons

17

0

18

#f

19

)

(let

20

wrap-
los =

(�

21

n. (�

22

. (
ons

23

1

24

(�

25

m. (if

26

(=

27

n

28

m

29

)

30

(
ar

31

#f

32

))))))

(let

33

test = (�

34

x. (if

35

(=

36

(
ar

37

x

38

) 4

39

) (
dr

40

x

41

) x

42

))

(let

43

all = (�

44

x. (if

45

(=

46

(
ar

47

x

48

) 1

49

) (
dr

50

x

51

) (
ar

52

#f

53

)))

(let

54

wrap-sym = (�

55

l. (
ons

56

6

57

l

58

))

(let

59

dummy = #f

60

(let

61

= =

(

62

(

63

wrap-
los

64

2

65

)

(�

66

x. (�

67

y. (if

68

(=

69

(
ar

70

x

71

) 2

72

)

(if

73

(=

74

(
ar

75

y

76

) 2

77

)

(if

78

(=

79

(
dr

80

x

81

) (
dr

82

y

83

)) true

84

false

85

)

(
ar

86

#f

87

))

(
ar

88

#f

89

)))))

(let

90

ons = (

91

(

92

wrap-
los

93

2

94

)

(�

95

x. (�

96

y. (
ons

97

3

98

(
ons

99

x

100

y

101

)))))

(if

102

(

103

test

104

(

105

(

106

(

107

(

108

all

109

=

110

) 2

111

)

(

112

wrap-num

113

2

114

))

(

115

wrap-num

116

3

117

)))

false

118

(

119

(

120

(

121

(

122

all

123

ons

124

) 2

125

) (

126

wrap-num

127

32

128

))

(

129

(

130

(

131

(

132

all

133

ons

134

) 2

135

)

(

136

wrap-sym

137

(
ons

138

97

139

#f

140

)))

null

141

))))))))))))))

Figure 6.2: Translation from the S
heme subset to the extended mini-language

176 CHAPTER 6. EXPERIMENTAL RESULTS

tak Computes the Takeu
hi fun
tion on 18, 12, and 6. Adapted from a Gabriel ben
hmark.

Written in the extended mini-language.

n-queens Counts the number of solutions to the problem of the n-queens, for n = 4.

Written in the extended mini-language.

a
k Computes the A
kermann fun
tion on 4 and 0. Adapted from a Gabriel ben
hmark.

Written in the extended mini-language.

SKI Interpreter for programs written using the well known S, K, and I
ombinators. The

SKI program is that of an in�nite loop. Written in the extended mini-language.

hange Computes the optimal strategy for returning the
hange using
oins taken from

unlimited supplies of
oins of 25/
, 17/
, 4/
, 3/
, and 1/
. The optimal
hange return

onsists in minimising the number of
oins. The result of the
omputation is a ve
tor

of pairs. Ea
h pair
ontains the optimal strategy for making
hange for the amount

orresponding to its position in the ve
tor. The strategy is expressed by a pair
ontain-

ing the optimal number of
oins and the most valuable
oin needed by this strategy.

For amounts greater than the length of the ve
tor, the most valuable
oin must be

sele
ted until the remaining amount is handled by the ve
tor. Written in the S
heme

subset.

interp Interpreter for the S
heme subset. The program it interprets is:

(letre
 ((foo (lambda () (foo)))) (foo))

The interpreter does not
he
k whether the operations performed by the program it

interprets are valid. So an illegal operation in the interpreted program
auses the

interpreter to do an illegal operation itself. Written in the S
heme subset.

ps-QS-s Generation and sort of a list of numbers. The list
ontains the numbers 1 to 28

in \random" order. The numbers are generated by the su

essive powers of 2 modulo

29. The list is then sorted using the Qui
ksort algorithm. The program is written in

ontinuation-passing style (CPS) ex
ept for the initial de�nition of the CPS versions

of the library fun
tions. Written in the S
heme subset.

ps-QS-m The same program but translated by hand in the extended mini-language. In-

deed, apart from the empty lists terminating the lists of numbers, the other values are

6.3. RESULTS 177

dire
tly present in the extended mini-language.

Appendix A presents the listing of ea
h ben
hmark.

6.3 Results

We present the results of the experiments on the ben
hmarks in Table 6.1. Ea
h ben
hmark

has been translated into the mini-language in two versions: one with a global Y
ombinator

and one with a Y
ombinator for ea
h letre
-expression. A limit of 10000 \work units" has

been allowed for the analysis of ea
h ben
hmark. The ma
hine running the ben
hmarks is a

PC with a 1.5 GHz Athlon CPU, 2 GByte RAM, and running RH Linux kernel 2.4.18-5smp.

Gambit-C 4.0 was used to
ompile the demand-driven analysis.

The meaning of ea
h
olumn is the following. The
olumn labelled Y indi
ates whether

the ben
hmark is the version with one Global Y
ombinator or with Private Y
ombinators.

The
olumn labelled size indi
ates the size of the ben
hmark, as measured by the number of

expressions. The
olumns labelled total, pre, and post indi
ate the number of o

urren
es

of safety tests present in the non-optimised program, in the optimised program based on the

preliminary analysis results, and in the optimised program after demand-driven analysis,

respe
tively. The
olumn labelled during gives a tra
e of the evolution of the number of

safety tests through the analysis. An item of the form n�t indi
ates that n safety tests

are still ne
essary after t work units have been
onsumed. The
olumns labelled units and

time indi
ate how many work units and how mu
h CPU time, respe
tively, were
onsumed

by the whole analysis pro
ess.

Only partial results
ould be obtained for the ben
hmarks written in the S
heme subset

and for the global Y version of
ps-QS-m. The exe
ution of the demand-driven analysis

on these
onsumed too mu
h memory and it had to be stopped. Consequently, they are

analysed using the 0-
fa only. No post information is available for them. Nevertheless, we

insist on mentioning the ben
hmarks as they
ould serve as a basis for
omparison if future

improvements of the implementation of the demand-driven analysis eventually allows these

to be analysed. The size of the interp ben
hmark may seem parti
ularly impressive, but

it is mainly due to the expressions that
reate the \S
heme symbols".

Looking at the results of the experiments on the other ben
hmarks, we easily note

178 CHAPTER 6. EXPERIMENTAL RESULTS

Y size total pre during post units time(s)

dr-safe G 17 4 1 0 5 0.04

P 17 4 1 0 5 0.03

loop G 32 11 0 0 1 0.04

P 26 9 0 0 1 0.03

2-1 G 48 15 2 1�7 0 47 0.51

P 42 13 2 1�7 0 48 0.42

map-easy G 82 26 6 4�19 0 134 3.12

P 76 24 6 4�19 0 134 2.83

map-hard G 96 33 9 6�38 5�254 3�305 1�520 0 1399 115.54

P 101 35 4 2�118 0 284 8.42

fib G 141 40 12 12 10000 2204.95

P 168 50 5 4�16 3�29 2�39 1�46 0 358 13.87

g
d G 257 77 8 7�25 6�47 5�66 4�82 1 10000 11482.90

3�95 2�105 1�112

P 328 103 6 5�19 4�35 3�48 2�58 1�65 0 8509 1633.34

tak G 202 46 9 9 10000 2967.36

P 218 52 4 3�13 2�23 1�30 0 240 18.22

n-queens G 372 121 51 51 10000 23028.97

P 454 151 11 10�34 9�65 8�93 5 10000 2667.07

7�118 6�140 5�1750

a
k G 162 49 5 4�16 3�29 2�39 1�46 1 10000 5786.97

P 189 59 3 2�10 1�17 0 200 12.51

SKI G 285 46 19 15�91 13�173 11�323 4 10000 1238.40

9�397 7�473 6�543

5�1474 4�3584

P 290 48 17 13�52 11�98 9�138 8�212 0 899 98.90

5�249 4�358 3�567 1�673

hange G 2371 717 377 [377℄ [0℄ 3227.67

P 2519 771 329 [329℄ [0℄ 1944.26

interp G 42056 1348 762 [762℄ [0℄ 17251.09

P 42292 1434 678 [678℄ [0℄ 9597.56

ps-QS-s G 2042 584 277 [277℄ [0℄ 11273.67

P 2157 626 242 [242℄ [0℄ 7705.23

ps-QS-m G 693 211 58 [58℄ [0℄ 71.47

P 808 253 16 14�49 13�92 12�132 1 10000 3356.97

11�169 10�203 9�234

8�262 7�287 6�309 5�328

4�344 3�357 2�444

1�1121

Table 6.1: Experimental results

6.3. RESULTS 179

that having private Y
ombinators make the analysis mu
h simpler. It is the
ase for the

preliminary analysis and for the
omplete demand-driven analysis.

In fa
t, the demand-driven analysis is able to remove all safety tests when private Y

ombinators are used ex
ept in the
ases of the n-queens and of the
ps-QS-m ben
hmarks.

In these two
ases, the demand-driven analysis is nevertheless able to improve on the re-

sults obtained by the preliminary analysis. These results are remarkable, given that the Y

ombinator is quite intri
ate. Also, in the ben
hmarks that use the subtra
tion, a pretty

diÆ
ult property has to be demonstrated. The property says that, when an expression su
h

as (� x y) is evaluated, y is never greater than x. In fa
t, subtra
tion is implemented using

a
all to a fun
tion that is inserted during the redu
tion that removes the numbers from the

extended mini-language. The fun
tion assumes that its arguments respe
t the property. If

they do not, the fun
tion eventually attempts to extra
t the
dr-�eld of the Boolean #f

that ends the unary representation of x. In the 2-1, fib, g
d, tak, and a
k ben
hmarks,

the property ne
essarily had to be demonstrated sin
e these rely on the subtra
tion.

When a global Y
ombinator is used, on the other hand, the analysis obtains results of

a pretty variable quality. The problem is that all re
ursive fun
tions are blended together

by Y and when there is no easily dete
table di�eren
e in the behaviour of these fun
tions,

then the analysis does not realise that a \good move"
onsists in
reating distin
t re
ursive

fun
tions for uses of Y on distin
t partially re
ursive fun
tions.

Note that there is no
lear relation between the size of the ben
hmarks and the su

ess of

the demand-driven analysis on them. Certainly, the style of programming has a mu
h bigger

impa
t, as demonstrated by the di�eren
e introdu
ed by global and private Y
ombinators.

On top of the diÆ
ulty
reated by their size, we expe
t the ben
hmarks written in S
heme

to be diÆ
ult to analyse be
ause of their style, also. Eventually, their style may even have

a bigger impa
t than their size. The main reason is that all S
heme values are en
apsulated

in pairs using spe
ial purpose fun
tions and that this en
apsulation may produ
e a masking

e�e
t similar to that of the global Y
ombinator. As an instan
e, two S
heme fun
tions

introdu
ed by distin
t letre
-expressions be
ome very diÆ
ult to distinguish: they both

are represented as pairs; their
ar-�eld
ontains the same \
losure" type tag and their

dr-�eld
ontains fun
tions
reated by the wrap-num fun
tion, whose task is to
he
k the

number of arguments that are to be passed; the
he
k fun
tion then
ontains a referen
e

to the distin
t \raw" re
ursive fun
tions. If a global Y
ombinator is to be used on top

180 CHAPTER 6. EXPERIMENTAL RESULTS

unrolling 1 2 4 8 16

units 176 280 532 1276 3724

time(s) 10.59 24.34 79.97 374.34 2325.77

Table 6.2: The e�e
t of the size of a program on the analysis

of that, the di�eren
e between both raw re
ursive fun
tions is even more diÆ
ult to make.

The di�eren
e appears only in the referen
es to the partially re
ursive fun
tions the
losure

from Y has
aptured. It is not
lear if even a very improved demand-driven analysis
ould

ever be dis
riminating enough for these ben
hmarks.

Note that, when the demand-driven analysis has some su

ess in removing safety tests, it

usually is able to �nd the opportunities rather qui
kly. This suggests that relatively modest

investments in analysis time
an usually be fruitful. At least, provided that the program is

\analysable". When it is not, it seems that
onsiderable time investments in the analysis

do not help. This is a happy result sin
e it means that the demand-driven analysis should

be used with a rather limited amount of resour
es, whi
h tends to make it more pra
ti
al.

We ran another kind of experiment. We wanted to obtain a measure of the time re-

quired by the demand-driven analysis on a family of programs that have exa
tly the same

programming style. To do so, we have modi�ed the a
k ben
hmark and unrolled the re-

ursive fun
tion by various fa
tors. Figure 6.3 shows the aspe
t of the resulting programs.

For ea
h unrolling level i, the number of safety tests in the resulting program is 43 + 19i if

no optimisation is done. There remain 3 after the preliminary analysis. And the demand-

driven analysis removes the remaining tests. The times required by the
omplete analysis

for di�erent unrolling levels are presented in Table 6.2. The measures indi
ate that the total

time required by the
omplete analysis grows between quadrati
ally and
ubi
ally with the

level of unrolling. This is
ertainly better than the exponential behaviour expe
ted of a

type analysis that uses lexi
al-environment
ontours.

We also ran experiments
on
erning the inputs used in some of the ben
hmarks. Mem-

bers of the jury of this dissertation have expressed the
on
ern that some ben
hmarks used

very small input values. For example, the a
k ben
hmark
ontains the
omputation of the

A
kermann fun
tion on arguments 4 and 0, whi
h produ
es only 13 as a result. It is obvious

that it is
heaper by orders of magnitude to evaluate this ben
hmark than to analyse it.

Analysing su
h a program does not seem very worthwhile. Consequently, we present a few

6.3. RESULTS 181

(letre

1

a
k =

(�

2

m. (�

3

n. (let

4

a
k = (�

5

m. (�

6

n. (if

7

(=

8

m

9

0

10

)

(+

11

n

12

1

13

)

(if

14

(=

15

n

16

0

17

)

(

18

(

19

a
k

20

(�

21

m

22

1

23

)) 1

24

)

(

25

(

26

a
k

27

(�

28

m

29

1

30

))

(

31

(

32

a
k

33

m

34

) (�

35

n

36

1

37

)))))))

(let

38

a
k = (�

39

m. (�

40

n. (if

41

(=

42

m

43

0

44

)

(+

45

n

46

1

47

)

(if

48

(=

49

n

50

0

51

)

(

52

(

53

a
k

54

(�

55

m

56

1

57

)) 1

58

)

(

59

(

60

a
k

61

(�

62

m

63

1

64

))

(

65

(

66

a
k

67

m

68

) (�

69

n

70

1

71

)))))))

� � �

(

?

(

?

a
k

?

m

?

) n

?

)� � �))))

(

?

(

?

a
k

?

4

?

) 0

?

))

Figure 6.3: Unrolling of the a
k ben
hmark

test time(s)

a
k 4 0 18.5

a
k 4 4 19.0

a
k 10 10 19.8

test time(s)

fib 7 20.5

fib 50 25.2

test time(s)

g
d 3 5 2375.8

g
d 3 6 4167.5

Table 6.3: The e�e
t of the inputs on the analysis times

experiments in Table 6.3 that show the impa
t of the programs inputs on the analysis times.

These experiments were run on a di�erent ma
hine and at a di�erent time. They were run

on a PC with a 1.2 GHz Athlon CPU, 1 GByte RAM, and running RH Linux kernel 2.4.9.

Clearly, the time required to run the �rst ben
hmarks is longer than the time required

to analyse them. The measures show that, roughly, ben
hmarks a
k and fib remain as

diÆ
ult to analyse, no matter what the input numbers are. On the other hand, the g
d

ben
hmark be
omes mu
h harder to analyse when one of its inputs is only in
reased by

one. This may seem surprising at �rst sin
e the numbers manipulated by the �rst two

ben
hmarks are giganti
 (even delirious in the
ase of a
k) while those manipulated by the

last one are very small. However, the di�eren
e
omes from the fa
t that the demonstration

of the safety of the �rst ben
hmarks only has to partition the naturals into f0g, f1g, f2g,

and the rest, while the demonstration for the last ben
hmark has to distinguish ea
h number

involved in the
omputations. It is easy to realise the diÆ
ulty of su
h demonstrations when

one remembers that numbers are en
oded as lists.

182 CHAPTER 6. EXPERIMENTAL RESULTS

A last experiment was
ondu
ted to prove an aÆrmation made in the previous
hap-

ter: that the pattern-based demand-driven analysis may fail to analyse perfe
tly well some

programs, even if the amount of resour
es is unlimited. We let the analyser do its work

on the SKI ben
hmark (with global Y) until it stopped by itself. After the
onsumption of

29560 work units, it stopped by la
k of proposal of model-modifying demands.

Chapter 7

Con
lusions

7.1 Contributions

Our goal was to obtain a type analysis of very high quality that is not prohibitively expensive.

We think that we have rea
hed our goal by proposing the demand-driven analysis: the

program is repetitively analysed using abstra
t models that are in
reasingly spe
ialised

for the task at hand; the updates of the abstra
t model are dire
ted by the pro
essing of

demands, whi
h
onstitutes the means to translate the needs of the optimiser into proposals

of updates to the abstra
t model.

Stati
 analysis of programs is a
lassi
al domain in the �eld of
ompilation (see [3℄).

However, all proposed stati
 analyses share the
hara
teristi
 that their underlying abstra
t

model is
onstant. Even if some
ompilers o�er a spe
trum of analyses of varying strength,

it remains the responsibility of the user to sele
t himself the desired analysis. In any
ase,

the analysis
ertainly does not adapt to the given program while the
ompilation o

urs.

To improve stati
 analysis: we proposed an analysis where the abstra
t model is modi�-

able through the use of an analysis framework; we proposed and realised an implementation

of abstra
t models based on patterns su
h as those used in many programming languages

su
h as ML, Haskell, or Prolog; we introdu
ed the
on
ept of demands that are requests for

the a
hievement of desirable tasks; the demands are generated a

ording to the needs of the

optimiser, are translated following pre
ise rules|the demand pro
essing rules|and result

in spe
i�
 proposals of update of the abstra
t model so that the analyser be
omes better

184 CHAPTER 7. CONCLUSIONS

equipped to analyse su

essfully the program. Most of the theoreti
al basis behind the

approa
h has been proved in the dissertation. Finally, the approa
h has been implemented

and tested. It exhibits an impressive
leverness in the diÆ
ulty of the fa
ts that it is able

to dis
over in order to enable the optimisations.

Expe
t for the
on
epts of stati
 analysis, abstra
t interpretation (see [19℄), and param-

eterisable analysis (at
ompiler implementation time, though, not at
ompile time, see [11℄),

our whole work is original. Two papers present parts of our
ontributions [21, 22℄.

7.2 Related Work

As we underline in the exposition of our
ontributions, we had to propose ourselves almost

everything that we have presented, so it is not surprising to �nd that there is virtually no

related work. In fa
t, the most
losely related work is so more by the name than by the

ideas.

Demand-driven analyses are presented by Duesterwald et al [23, 24℄, by Agrawal [1, 2℄,

and by Heintze and Tardieu [31℄. The analyses that are presented are a data-
ow analysis,

a simultaneous data-
ow and
all graph analysis, and a pointer analysis, respe
tively. In

essen
e, these works
onsist in taking
lassi
al stati
 analyses and turning them into lazy

versions. That is, the presented analyses are able to produ
e only parts of the results that

the
lassi
al ones
ompute and to redu
e the ne
essary amount of
omputations a

ordingly.

The demands represent the need for a spe
i�
 part of the results. Demand pro
essing rules

are used to determine the minimal subset of
omputations that is ne
essary to produ
e only

those parts. In ea
h
ase, the original analysis is very simple and, not too surprisingly, the

demand pro
essing rules turn out to be quite simple, too.

Other work also shares similar names. But they are used in the
ompilation of languages

featuring lazy evaluation. They have a
ompletely di�erent purpose: they are normal

analyses that
ompute informations about demands on the suspended
omputations of the

programs. They are usually referred to as stri
tness analyses. For the sake of information,

su
h works are presented in [13℄, [47℄, and [52℄, for example.

7.3. FUTURE WORK 185

7.3 Future Work

As our work is not exa
tly a polished, re�ned solution to a well-delimited problem but more

a bold leap into a whole new methodology in stati
 type analysis, it brings with it a lot of

new questions, problems, and things to try. We brie
y mention some.

7.3.1 On the Pattern-Based Analysis

A lot of additional work ought to be done on the pattern-based demand-driven analysis

itself.

Speeding Up the Analysis

In order to make the demand-driven type analysis really pra
ti
al, its speed must be im-

proved. We propose some means to make it faster.

First, the approa
h would be mu
h faster if the numerous re-analyses were not always

omputed from s
rat
h. Indeed, a single modi�
ation to the abstra
t model does not ne
-

essarily imply that the new analysis results
ompletely
hange. A kind of in
remental

re-analysis
ould be implemented. That is, given a model M, the
orresponding analysis

results R, and an updated modelM

0

, the new analysis results R

0

ould be obtained more

eÆ
iently than by performing a re-analysis from s
rat
h. A way to do it
onsists in having

a me
hanism that allows the analyser to retra
t from R the abstra
tions that have been

re�ned (and only these) and then to propagate the re�ned values instead. At the beginning

of the pro
ess of analysing the program, we expe
t the model to be so
oarse that any

update would
on
ern a major fra
tion of the abstra
tions but, as the model be
omes more

re�ned, model updates should involve only a very small fra
tion of the abstra
tions and the

retra
tion and propagation sweep should be
ome minor.

Se
ond, the dire
t manipulation of the na��vely represented abstra
tions during the anal-

yses is
ostly and more eÆ
ient representations should be
onsidered. Indi
es for the ab-

stra
tions instead of the abstra
tions themselves would be more lightweight. Bit ve
tors are

often employed to implement set operations, also.

Third, the representation of the
ontours
ould be optimised and they
ould be restri
ted

186 CHAPTER 7. CONCLUSIONS

to
ontain only the environment variables to whi
h there is a referen
e. In most of the
losure

bodies, only a fra
tion of all the visible variables are really referen
ed. The
orresponding

ontours should only list the values of these.

Aggressive, Risky Strategies

In the
urrent approa
h, the demand pro
essing rules produ
e a single set of new demands

and these demands are restri
ted to be ne
essary and suÆ
ient. The uniqueness of the

strategy
ould be abandoned. The rules
ould still produ
e the same
onservative strategy

but, additionally, more aggressive and risky strategies. These would not need to be made

of ne
essary demands, but of suÆ
ient ones. The multipli
ity of strategies would make the

analyser tolerant to the failure of the aggressive strategies and allow it to fall ba
k to the

onservative ones when ne
essary.

Better Sele
tion of Model-Modifying Demands

The
urrent
riterion for the sele
tion of the \best" model-modifying demand is very na��ve.

A more appropriate
riterion should measure the quality of the information
ontained in

the analysis results. Sometimes, good (informative) analysis results need to be verbose.

Also, the
urrent method
onsists in sele
ting a model-modifying demand after the

other and a

umulating the updates without
onsidering other sequen
es of updates. This

sequen
e of updates
an be viewed as a sear
h for an ideal model. Now, single-threaded

sear
hes have the in
onvenien
e of being easy to trap in \lo
al optima". Browsing through

elementary AI referen
es for sear
h methods
ould be pro�table. For example, a kind of

best-�rst sear
h
ould be more e�e
tive than our greedy sear
h.

Extension to S
heme

Our demand-driven type analysis is intended for the mini-language but should be extended

to
over a dynami
ally-typed fun
tional language su
h as S
heme. We expe
t the greatest

hallenge to
ome partly from separate
ompilation (not a standard feature but a part

of most S
heme implementations) and from
ontinuations but, most of all, from the side-

e�e
ts
reated by define, set!, and a few standard library fun
tions. Indeed, the heart

7.3. FUTURE WORK 187

of the pattern-based approa
h relies on the absen
e of side-e�e
ts. Contours, by de�nition,

represent the value of the variables in the lexi
al environment. But what does it mean

to be in a
ontour where, say, `x' is
onstrained to
ontain a pair and then a side-e�e
t

mutates its
ontents to a ve
tor? Does the
ontour stays the same and we allow ve
tors to

be
ontained in variable `x' despite the fa
t that the
ontours says that the bound on the

possible values of `x' ought to be the pairs? Or does the
ontour instantaneously
hanges

when the side-e�e
t o

urs?

7.3.2 Alternate Modelling

The pattern-based modelling of values and evaluation
ontexts is just a
hoi
e of ours and a

di�erent modelling
ould be used while maintaining the fa
t that the demand-driven analysis

uses abstra
t interpretation.

The Use of Labels

We should try a modelling of the pairs that produ
e abstra
tions that remember the label of

the
ons-expressions that
reated them. However, re
all that we argued that pairs are never

dis
riminated on the basis of their origins in the
on
rete interpretation. So they should not

be in the abstra
t interpretation either. Also, abstra
t pairs without labels help in avoiding

a proliferation of abstra
tions having the same meaning. But the point of
reation may

arry a lot of information as the programmer may have di�erent plans for pairs
reated in

di�erent parts of the programs.

Regular Trees

Patterns, and even patterns that in
lude
reation site labels, are shallow representations of

on
rete values. Of
ourse, we showed that deep invariants
ould sometimes be dis
overed

through the use of the information kept in the log matri
es of the analysis framework.

Regular trees, on the
ontrary, naturally express deep invariants of the
on
rete values. A

sound mathemati
al basis
omes along with them. Analyses using regular trees should be

onsidered. They have been used by Aiken (and
ollaborators) in [5, 4, 6℄ and presented by

Cour
elle in [18℄. The results by Aiken showed an impressive representation power but did

188 CHAPTER 7. CONCLUSIONS

not seem to be eÆ
ient enough.

7.3.3 Extensions

Other Languages

Although we expli
itly aim at analysing dynami
ally-typed languages, we believe that the

type analysis
ould be useful in some stati
ally-typed languages, too. Indeed, stati
ally-

typed languages su
h as ML and Haskell feature algebrai
 types. The parti
ular
hoi
e of

a
onstru
tor is not determined at
ompile time. In many situations (su
h as prior to the

extra
tion of the �rst element of a list), a dynami
 test must be performed to ensure that an

appropriate
onstru
tor is being manipulated. These dynami
 tests are perfe
tly analogous

to the safety types tests made in S
heme, for example. And they in
ur similar run-time

penalties, too.

In fa
t, we
an
onsider the typing system of S
heme to be implemented as a single

algebrai
 type that in
ludes many di�erent
onstru
tors. The main type means \S
heme

obje
t" and the
onstru
tors mean number,
hara
ter, et
. To push the point further, we

say that even if S
heme programs do not in
lude type annotations, they usually respe
t an

impli
it type dis
ipline that is mu
h stri
ter than the full dynamism that S
heme allows.

We believe that S
heme programs and ML and Haskell programs often have very similar

data stru
tures with
omparable type signatures, even if no stati
 veri�
ation of the types

is done in the �rst
ase.

Pro�ling

Having pro�ling statisti
s about the program to analyse would be very useful to the demand-

driven analysis. It would put a realisti
 pri
e on the safety tests or,
onversely, a realisti

pro�t estimation on the eventual removal of these tests. It is folklore in
omputer s
ien
e

that exe
ution o

urs 90% of the time in only 10% of the program. The work units invested

in the demand-driven analysis would be used in a more pro�table way if they enabled

optimisations on more frequently exe
uted
ode.

7.3. FUTURE WORK 189

Di�erent Sour
es of Initial Demands

We are able to say that our demands express reasonable requests be
ause they
orrespond

to ne
essary properties of the program. The basis of this ne
essity is that run-time errors

probably will not o

ur. Consequently, initial demands are only generated from expressions

where run-time errors
ould o

ur. In an extended system, initial demands
ould be gener-

ated from di�erent sour
es. However, various degrees of reliability should be attributed to

these sour
es. That is, the
on�den
e that the properties must be true varies from a sour
e

to another. For example, during the
ompilation of a
omplete program along with the

ne
essary library fun
tions, a higher degree of reliability should be granted to the demands

originating from expressions in the library fun
tions. Indeed, these are normally written

with extreme
are while it is doubtful that the program should be
onsidered to be as se
ure

as the library.

If pro�ling were used, a whole family of optimiser needs
ould be taken
are of by the

analyser. For example, the information needed by the optimiser to perform inlining is not

related to safety issues at all. But if pro�ling statisti
s show that, at
ertain
all sites,

the same
losures are always invoked, then some kind of
redibility
ould be granted to a

demand requesting the demonstration of the
onje
tured (but desirable) property.

Certainty Analysis

If a future extension of the demand-driven analysis allows the demand pro
essing rules to

spe
ulatively generate aggressive non-ne
essary strategies, it would be useful to know whi
h

strategies are more likely to fail or, even, whi
h are sure to fail. Pro�ling information helps

in de
iding whi
h are likely to fail. But in order to know that an aggressive strategy is sure

to fail, we have to know that a parti
ular non-ne
essary property is
ertainly false. For

example, let us suppose that the pro
essing of a demand D would be greatly simpli�ed if

it
ould be shown that
losure
 does not get invoked at e

l

. Suppose also that the stated

property is not a ne
essary one. An aggressive strategy might try to a
hieve the desired

demonstration. However, if we knew that
 is indeed invoked at e

l

in at least one o

asion,

the analyser would avoid to make a useless attempt with this aggressive strategy.

That kind of information is knowledge that something does o

ur. Analyses used for

optimisation purposes never gather that kind of knowledge. They are
onservative analyses

190 CHAPTER 7. CONCLUSIONS

and they gather a superset of all that happens. The information that we need in the present

ase is of the opposite nature: it is a subset of all that happens. All the fa
ts reported by

su
h an analysis are sure to happen. We
all su
h an analysis a
ertainty analysis. Its

results would be useful for the evaluation of the pertinen
e of various strategies.

Other Kinds of Analyses

The general approa
h of generating and pro
essing demands that express ne
essary prop-

erties
ould be tried on other analyses than type analysis. Its natural appli
ations are the

analyses related to safety issues. It should adapt well to numeri
al range analysis, for in-

stan
e. Su
h an analysis determines in whi
h range all the numeri
al values
ontained in a

variable must lie. This information is then used to optimise a

esses to arrays sin
e one or

both bound
he
ks may possibly be dropped.

By using pro�ling statisti
s to obtain suggestions of plausible properties, the (non-type)

analysis need not ne
essarily be related to safety issues. It appears that most of the opti-

misations are not related to safety. For example, inlining (see [9, 39℄), eager evaluation in

lazy languages (with the help of stri
tness analyses, see [14, 13, 47, 52℄), register allo
ation

(with the help of liveliness analysis and pointer or alias analysis, see [3, 17, 65, 31℄), sta
k

allo
ation to repla
e heap allo
ation (see [25, 53℄), sele
tion of eÆ
ient representation for

the values (see [32, 33, 54℄), re
y
ling of heap obje
ts (see [35, 36℄), elimination of dead
ode

(see [3, 40℄), stati
 bran
h predi
tion (using numeri
al analysis, though, see [48℄), et
.

7.3.4 Demand Propagation Cal
ulus

We merely make an allusion to this subje
t as it is no more than a vague idea by ours. A

demand-driven type analysis
ould be based on a pure demand propagation
al
ulus and

not relying on abstra
t interpretation of the programs at all. We imagine that the result

would be a kind of reverse abstra
t interpretation where bounds on a

eptable values are

propagated ba
kward in the program instead of sets of possibles values being propagated

forward. However, we are not able to guess what would be the power of su
h an approa
h

or whether it would be equivalent to something that is already known.

Bibliography

[1℄ Gagan Agrawal. Simultaneous demand-driven data-
ow and
all graph analysis. In

Pro
eedings of International Conferen
e on Software Maintenan
e, pages 453{462, sep

1999.

[2℄ Gagan Agrawal, Jinqian Li, and Qi Su. Evaluating a demand-driven te
hnique for
all

graph
onstru
tion. In Computational Complexity, pages 29{45, 2002.

[3℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Prin
iples, Te
hniques

and Tools. Addison-Wesley, 1986.

[4℄ Alexander Aiken and Brian Murphy. Implementing regular tree expressions. In Fun
-

tional Programming and Computer Ar
hite
ture, pages 427{447, aug 1991.

[5℄ Alexander Aiken and Brian Murphy. Stati
 type inferen
e in a dynami
ally typed

language. In ACM, editor, POPL '91. Pro
eedings of the eighteenth annual ACM

symposium on Prin
iples of programming languages, pages 279{290, jan 1991.

[6℄ Alexander Aiken and Edward L. Wimmers. Type in
lusion
onstraints and type in-

feren
e. In Pro
eedings of the Conferen
e on Fun
tional Programming Languages and

Computer Ar
hite
ture, pages 31{41, jun 1993.

[7℄ Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with
ondi-

tional types. In Prin
iples of Programming Languages, pages 163{173, jan 1994.

[8℄ Roberto M. Amadio and Lu
a Cardelli. Subtyping re
ursive types. Te
hni
al Report

DEC-SRC-62, Digital Equipment Corporation, Systems Resear
h Centre, aug 1990.

[9℄ J. Mi
hael Ashley. The e�e
tiveness of
ow analysis for inlining. In Pro
eedings of the

1997 ACM SIGPLAN International Conferen
e on Fun
tional Programming, 1997.

xx BIBLIOGRAPHY

[10℄ J. Mi
hael Ashley and Charles Consel. Fixpoint
omputation for polyvariant stati

analyses of higher-order appli
ative programs. In ACM Transa
tions on Programming

Languages and Systems, pages 1431{1448, sep 1994.

[11℄ J. Mi
hael Ashley and R. Kent Dybvig. A pra
ti
al and
exible
ow analysis for

higher-order languages. ACM Transa
tions on Programming Languages and Systems,

20(4):845{868, jul 1998.

[12℄ Anindya Banerjee. A modular, polyvariant, and type-based
losure analysis. In Pro
eed-

ings of the 1997 ACM SIGPLAN International Conferen
e of Fun
tional Programming,

pages 1{10, jun 1997.

[13℄ Sandip K. Biswas. A demand-driven set-based analysis. In Conferen
e re
ord of POPL

'97, the 24th ACM SIGPLAN-SIGACT Symposium on Prin
iples of Programming Lan-

guages, pages 372{385, jan 1997.

[14℄ Adrienne Bloss and Paul Hudak. Variations on stri
tness analysis. In 1986 ACM

Symposium on Lisp and Fun
tional Programming, pages 132{142, 1986.

[15℄ Fran�
ois Bourdon
le. Abstra
t interpretation by dynami
 partitioning. Journal of

Fun
tional Programming, 2(4):407{435, 1992.

[16℄ Fran�
ois Bourdon
le. Abstra
t debugging of higher-order imperative languages. In

Pro
eedings of the 1993 ACM Conferen
e on Programming Language Design and Im-

plementation, pages 46{55, 1993.

[17℄ Robert G. Burger, Os
ar Waddell, and R. Kent Dybvig. Register allo
ation using lazy

saves, eager restores, and greedy shu�ing. In Conferen
e on Programming Language

Design and Implementation, volume 30, pages 130{138, jun 1995.

[18℄ Bruno Cour
elle. Fundamental properties of in�nite trees. Theoreti
al Computer S
i-

en
e, 25(2):95{169, mar 1983.

[19℄ Patri
k Cousot. Abstra
t interpretation. ACM Computing Surveys, 28:324{328, jun

1996.

[20℄ Patri
k Cousot and Radhia Cousot. Abstra
t interpretation: A uni�ed latti
e model for

stati
 analysis of programs by
onstru
tion or approximation of �xpoints. In Conferen
e

Re
ord of the Fourth ACM Symposium on Prin
iples of Programming Languages, pages

238{252, jan 1977.

BIBLIOGRAPHY xxi

[21℄ Danny Dub�e and Mar
 Feeley. Demand-driven type analysis: an introdu
tion. In

Pro
eedings of the Workshop on S
heme and Fun
tional Programming 2001, pages 21{

32, sep 2001.

[22℄ Danny Dub�e and Mar
 Feeley. A demand-driven adaptive type analysis. In Pro
eedings

of the 2002 ACM SIGPLAN International Conferen
e on Fun
tional Programming,

pages 84{97, o
t 2002.

[23℄ Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So�a. Demand-driven
omputation

of interpro
edural data
ow. In Symposium of Prin
iples of Programming Languages,

pages 37{48, jan 1995.

[24℄ Evelyn Duesterwald, Rajiv Gupta, and Mary Lou So�a. A demand-driven analyzer

for data
ow testing at the integration level. In Pro
eedings of the 18th International

Conferen
e on Software Engineering, pages 575{586, mar 1996.

[25℄ Benjamin Goldberg and Young Gil Park. Higher order es
ape analysis: Optimizing

sta
k allo
ation in fun
tional program implementations. In ESOP'90, 3rd European

Symposium on Programming, volume 432 of Le
ture Notes in Computer S
ien
e, pages

152{160, may 1990.

[26℄ Rajiv Gupta. Optimizing array bound
he
ks using
ow analysis. ACM Letters on

Programming Languages and Systems, 2:135{150, 1993.

[27℄ William H. Harrison. Compiler analysis of the value ranges for variables. IEEE Trans-

a
tions on Software Engineering, 3(3):243{250, may 1977.

[28℄ The Haskell language. http://www.haskell.org/.

[29℄ Nevin Heintze. Set based analysis of ML programs (extended abstra
t). Te
hni
al

Report CS-93-193, Carnegie Mellon University, S
hool of Computer S
ien
e, jul 1993.

[30℄ Nevin Heintze. Control-
ow analysis and type systems. Le
ture Notes in Computer

S
ien
e, 983:189{206, 1995.

[31℄ Nevin Heintze and Olivier Tardieu. Demand-driven pointer analysis. In Pro
eedings of

SIGPLAN 2001 Conferen
e on Programming Languages Design and Implementation,

ACM SIGPLAN Noti
es. ACM Press, jun 2001.

xxii BIBLIOGRAPHY

[32℄ Fritz Henglein. Global tagging optimization by type inferen
e. In Pro
eedings of the

1992 ACM Conferen
e on Lisp and Fun
tional Programming, pages 205{215. ACM,

aug 1992.

[33℄ Fritz Henglein and Jesper J�rgensen. Formally optimal boxing. In 21st Annual ACM

SIGACT-SIGPLAN Symposium on Prin
iples of Programming Languages, Portland,

Oregon, pages 213{226, jan 1994.

[34℄ John E. Hop
roft and Je�rey D. Ullman. Introdu
tion to automata, languages and

omputations. Addison-Wesley, Reading, MA, 1979.

[35℄ Paul Hudak. A semanti
 model of referen
e
ounting and its abstra
tion (detailed

summary). In Pro
eedings of the 1986 ACM Conferen
e on Lisp and Fun
tional Pro-

gramming, pages 351{363, 1986.

[36℄ Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of fun
tional programs to

dete
t run-time garbage
ells. ACM Transa
tions on Programming Languages and

Systems, 10(4):555{578, o
t 1988.

[37℄ Suresh Jagannathan and Stephen Weeks. A uni�ed treatment of
ow analysis in higher-

order languages. In 22nd ACM Symposium on Prin
iples of Programming Languages,

pages 392{401, jan 1995.

[38℄ Suresh Jagannathan and Andrew Wright. E�e
tive
ow analysis for avoiding run-time

he
ks. Le
ture Notes in Computer S
ien
e, 854:207{224, 1995.

[39℄ Suresh Jagannathan and Andrew Wright. Flow-dire
ted inlining. In Pro
eedings of the

ACM SIGPLAN 1996 Conferen
e on Programming Language Design and Implementa-

tion, pages 193{205, 1996.

[40℄ Jens Knoop, Oliver R�uthing, and Bernhard Ste�en. Partial dead
ode elimination. In

Pro
eedings of the ACM SIGPLAN 1994 Conferen
e on Programming Language Design

and Implementation, pages 147{158, 1994.

[41℄ Priyadarshan Kolte and Mi
hael Wolfe. Elimination of redundant array subs
ript range

he
ks. In Pro
eedings of the ACM SIGPLAN 1995 Conferen
e on Programming Lan-

guage Design and Implementation, pages 270{278, 1995.

[42℄ Dexter Kozen, Jens Palsberg, and Mi
hael I. S
hwartzba
h. EÆ
ient re
ursive subtyp-

ing. In Pro
eedings POPL '93, pages 419{428, 1993.

BIBLIOGRAPHY xxiii

[43℄ Robin Milner. A theory of type polymorphism in programming languages. Journal of

Computer and System S
ien
e, 17(3):348{375, 1978.

[44℄ The ML language. http://
m.bell-labs.
om/
m/
s/what/smlnj/sml97.html.

[45℄ Patri
k O'Keefe and Mit
hell Wand. Type inferen
e for partial types is de
idable. In

ESOP'92, 4th European Symposium on Programming, volume 582 of Le
ture Notes in

Computer S
ien
e, pages 408{417, feb 1992.

[46℄ Jens Palsberg and Mi
hael I. S
hwartzba
h. Safety analysis versus type inferen
e.

Information and Computation, 118(1):128{141, apr 1995.

[47℄ Dirk Pape. Higher order demand propagation. Le
ture Notes in Computer S
ien
e,

1595:153{168, 1999.

[48℄ Jason R. C. Patterson. A

urate stati
 bran
h predi
tion by value range propagation. In

Pro
eedings of the ACM SIGPLAN '95 Conferen
e on Programming Language Design

and Implementation, pages 67{78, jun 1995.

[49℄ Benjamin C. Pier
e. Bounded quanti�
ation is unde
idable. In Pro
eedings of the 19th

Annual Symposium on Prin
iples of Programming Languages, pages 305{315, jan 1992.

[50℄ The Prolog language. http://www.logi
-programming.org/prolog std.html.

[51℄ The S
heme language. http://www.s
heme.org/.

[52℄ R. Sekar and I. V. Ramakrishnan. Fast stri
tness analysis based on demand propaga-

tion. ACM Transa
tions on Programming Languages and Systems, 17(6):896{937, nov

1995.

[53℄ Manuel Serrano and Mar
 Feeley. Storage use analysis and its appli
ations. In Pro
eed-

ings of the 1996 ACM SIGPLAN International Conferen
e on Fun
tional Programming,

pages 50{61, 1996.

[54℄ Zhong Shao. Flexible representation analysis. In Pro
eedings of the 1997 ACM SIG-

PLAN International Conferen
e on Fun
tional Programming, pages 85{98, jun 1997.

[55℄ Olin Shivers. Control
ow analysis in S
heme. In Pro
eedings of the SIGPLAN '88

Conferen
e on Programming Language Design and Implementation, pages 164{174,

jun 1988.

xxiv BIBLIOGRAPHY

[56℄ Olin Shivers. Cps data-
ow analysis example. Te
hni
al report, Carnegie Mellon Uni-

versity, may 1990.

[57℄ Olin Shivers. Data-
ow analysis and type re
overy in S
heme. Te
hni
al Report CMU-

CS-90-115, Carnegie Mellon University, mar 1990.

[58℄ Olin Shivers. Super-�: Copy,
onstant, and lambda propagation in S
heme. Te
hni
al

report, Carnegie Mellon University, may 1990.

[59℄ Olin Shivers. Useless-variable elimination. Te
hni
al report, Carnegie Mellon Univer-

sity, apr 1990.

[60℄ Olin Shivers. Control-
ow Analysis of Higher-Order Languages. PhD thesis, Carnegie

Mellon University, may 1991.

[61℄ Olin Shivers. The semanti
s of S
heme
ontrol-
ow analysis. In Pro
eedings of the

Symposium on Partial Evaluation and Semanti
s-based Program Manipulation, pages

190{198, jun 1991.

[62℄ Je�rey Mark Siskind. Flow-dire
ted lightweight
losure
onversion. To be published

by ACM.

[63℄ Jerzy Tiuryn and Mit
hell Wand. Type re
onstru
tion with re
ursive types and atomi

subtyping. In TAPSOFT '93: Theory and Pra
ti
e of Software Development, 4th

International Joint Conferen
e CAAP/FASE, pages 686{701, apr 1993.

[64℄ Adam Brooks Webber. Program analysis using binary relations. In Pro
eedings of the

1997 ACM SIGPLAN Conferen
e on Programming Language Design and Implementa-

tion, pages 249{260, jun 1997.

[65℄ Robert P. Wilson and Moni
a S. Lam. EÆ
ient
ontext-sensitive pointer analysis for

 programs. In Pro
eedings of the ACM SIGPLAN '95 Conferen
e on Programming

Language Design and Implementation, volume 30, pages 1{12, jun 1995.

[66℄ Andrew K. Wright and Robert Cartwright. A pra
ti
al soft type system for s
heme.

In Conferen
e on Lisp and Fun
tional Programming, pages 250{262, jun 1994.

Appendix A

Ben
hmarks

The sour
e of ea
h ben
hmark is presented next. All ben
hmarks ex
ept
hange, interp,

and
ps-QS-s are written in the syntax of the extended mini-language. These ben
hmarks

have to be redu
ed to the basi
 mini-language and �-
onverted before the demand-driven

analysis
an operate on them. On the other hand, the
hange, interp, and
ps-QS-s

ben
hmarks are written in S
heme syntax. Before they
an be pro
essed by the demand-

driven analysis, they �rst have to be translated from S
heme to the extended mini-language

and then undergo the same redu
tions as the other ben
hmarks.

A.1 Sour
e of the
dr-safe Ben
hmark

(let

1

dr-safe = (�

2

l. (if

3

(pair?

4

l

5

) (
dr

6

l

7

) #f

8

))

(

9

dr-safe

10

(

11

dr-safe

12

(
ons

13

#f

14

(�

15

x. x

16

)))))

A.2 Sour
e of the loop Ben
hmark

(letre

1

foo = (�

2

x. (

3

foo

4

x

5

))

(

6

foo

7

#f

8

))

xxvi APPENDIX A. BENCHMARKS

A.3 Sour
e of the 2-1 Ben
hmark

(�

1

2

2

1

3

)

A.4 Sour
e of the map-easy Ben
hmark

(letre

1

map =

(�

2

op. (�

3

l. (if

4

l

5

(
ons

6

(

7

op

8

(
ar

9

l

10

)) (

11

(

12

map

13

op

14

) (
dr

15

l

16

))) #f

17

)))

(let

18

d = (
ons

19

(�

20

x. x

21

) (
ons

22

#f

23

#f

24

))

(let

25

list = (
ons

26

d

27

(
ons

28

d

29

(
ons

30

d

31

#f

32

)))

(let

33

op1 = (�

34

y. (

35

(
ar

36

y

37

) #f

38

))

(let

39

op2 = (�

40

z. (
ar

41

(
dr

42

z

43

)))

(
ons

44

(

45

(

46

map

47

op1

48

) list

49

) (

50

(

51

map

52

op2

53

) list

54

)))))))

A.5 Sour
e of the map-hard Ben
hmark

(letre

1

map =

(�

2

op. (�

3

l. (if

4

l

5

(
ons

6

(

7

op

8

(
ar

9

l

10

)) (

11

(

12

map

13

op

14

) (
dr

15

l

16

))) l

17

)))

(let

18

op1 = (�

19

x. (
ar

20

x

21

))

(let

22

op2 = (�

23

y. (

24

y

25

#f

26

))

(letre

27

loop =

(�

28

data. (let

29

res1 = (

30

(

31

map

32

op1

33

) (
ar

34

data

35

))

(let

36

res2 = (

37

(

38

map

39

op2

40

) (
dr

41

data

42

))

(

43

loop

44

(
ons

45

(
ons

46

(
ons

47

#f

48

#f

49

) (
ar

50

data

51

))

(
ons

52

(�

53

w. #f

54

) (
dr

55

data

56

)))))))

(

57

loop

58

(
ons

59

#f

60

#f

61

))))))

A.6 Sour
e of the fib Ben
hmark

(letre

1

�b = (�

2

n. (if

3

(<=

4

n

5

1

6

) n

7

(+

8

(

9

�b

10

(�

11

n

12

1

13

)) (

14

�b

15

(�

16

n

17

2

18

)))))

(

19

�b

20

7

21

))

A.7. SOURCE OF THE GCD BENCHMARK xxvii

A.7 Sour
e of the g
d Ben
hmark

(letre

1

mod = (�

2

x. (�

3

d. (�

4

x

5

(�

6

(=

7

x

8

d

9

) d

10

))))

(letre

11

g
d = (�

12

b. (�

13

s. (if

14

(=

15

s

16

0

17

) b

18

(

19

(

20

g
d

21

s

22

)

(

23

(

24

mod

25

b

26

) s

27

)))))

(let

28

g
d = (�

29

x. (�

30

y. (if

31

(>=

32

x

33

y

34

) (

35

(

36

g
d

37

x

38

) y

39

)

(

40

(

41

g
d

42

y

43

) x

44

))))

(

45

(

46

g
d

47

3

48

) 5

49

))))

A.8 Sour
e of the tak Ben
hmark

(letre

1

tak = (�

2

x. (�

3

y. (�

4

z. (if

5

(<=

6

x

7

y

8

)

z

9

(

10

(

11

(

12

tak

13

(

14

(

15

(

16

tak

17

(�

18

x

19

1

20

)) y

21

) z

22

))

(

23

(

24

(

25

tak

26

(�

27

y

28

1

29

)) z

30

) x

31

))

(

32

(

33

(

34

tak

35

(�

36

z

37

1

38

)) x

39

) y

40

))))))

(

41

(

42

(

43

tak

44

18

45

) 12

46

) 6

47

))

A.9 Sour
e of the n-queens Ben
hmark

(letre

1

make-list =

(�

2

n. (�

3

v. (if

4

(=

5

n

6

0

7

) #f

8

(
ons

9

v

10

(

11

(

12

make-list

13

(�

14

n

15

1

16

)) v

17

)))))

(letre

18

list-ref =

(�

19

l. (�

20

n. (if

21

(=

22

n

23

0

24

) (
ar

25

l

26

) (

27

(

28

list-ref

29

(
dr

30

l

31

))

(�

32

n

33

1

34

)))))

(letre

35

list-set =

(�

36

l. (�

37

n. (�

38

v. (if

39

(=

40

n

41

0

42

)

(
ons

43

v

44

(
dr

45

l

46

))

(
ons

47

(
ar

48

l

49

)

(

50

(

51

(

52

list-set

53

(
dr

54

l

55

)) (�

56

n

57

1

58

)) v

59

))))))

(letre

60

nq =

(�

61

n.

(�

62

i.

(�

63

sw.

(�

64

s.

(�

65

se.

(if

66

(=

67

i

68

0

69

)

1

70

(letre

71

loop =

(�

72

j.

(if

73

(=

74

j

75

n

76

)

0

77

(+

78

xxviii APPENDIX A. BENCHMARKS

(if

79

(

80

(

81

list-ref

82

sw

83

) j

84

)

(if

85

(

86

(

87

list-ref

88

s

89

) j

90

)

(if

91

(

92

(

93

list-ref

94

se

95

) j

96

)

(let

97

sw = (
dr

98

(

99

(

100

(

101

list-set

102

sw

103

) j

104

) #f

105

))

(let

106

s = (

107

(

108

(

109

list-set

110

s

111

) j

112

) #f

113

)

(let

114

se = (
ons

115

(
ons

116

#f

117

#f

118

)

(

119

(

120

(

121

list-set

122

se

123

) j

124

) #f

125

))

(

126

(

127

(

128

(

129

(

130

nq

131

n

132

) (�

133

i

134

1

135

)) sw

136

) s

137

)

se

138

))))

0

139

)

0

140

)

0

141

)

(

142

loop

143

(+

144

j

145

1

146

)))))

(

147

loop

148

0

149

))))))))

(let

150

nqueens =

(�

151

n. (let

152

ags = (

153

(

154

make-list

155

(�

156

2

157

n

158

)) (
ons

159

#f

160

#f

161

))

(

162

(

163

(

164

(

165

(

166

nq

167

n

168

) n

169

)
ags

170

)
ags

171

)
ags

172

)))

(

173

nqueens

174

4

175

))))))

A.10 Sour
e of the a
k Ben
hmark

(letre

1

a
k = (�

2

m. (�

3

n. (if

4

(=

5

m

6

0

7

) (+

8

n

9

1

10

)

(if

11

(=

12

n

13

0

14

)

(

15

(

16

a
k

17

(�

18

m

19

1

20

)) 1

21

)

(

22

(

23

a
k

24

(�

25

m

26

1

27

))

(

28

(

29

a
k

30

m

31

) (�

32

n

33

1

34

)))))))

(

35

(

36

a
k

37

4

38

) 0

39

))

A.11 Sour
e of the SKI Ben
hmark

(letre

1

append =

(�

2

l1. (�

3

l2. (if

4

(pair?

5

l1

6

) (
ons

7

(
ar

8

l1

9

) (

10

(

11

append

12

(
dr

13

l1

14

)) l2

15

))

l2

16

)))

(letre

17

eval =

(�

18

exp. (if

19

(
ar

20

(
ar

21

exp

22

))

(

23

eval

24

(

25

(

26

append

27

(
ar

28

exp

29

)) (
dr

30

exp

31

)))

(let

32

 = (
ar

33

exp

34

)

(let

35

rest = (
dr

36

exp

37

)

(if

38

(pair?

39

rest

40

)

(let

41

arg1 = (
ar

42

rest

43

)

(let

44

rest = (
dr

45

rest

46

)

(if

47

(pair?

48

(
dr

49

50

))

(if

51

(pair?

52

rest

53

)

A.11. SOURCE OF THE SKI BENCHMARK xxix

(let

54

arg2 = (
ar

55

rest

56

)

(let

57

rest = (
dr

58

rest

59

)

(if

60

(pair?

61

(
dr

62

(
dr

63

64

)))

(if

65

(pair?

66

rest

67

)

(let

68

arg3 = (
ar

69

rest

70

)

(let

71

rest = (
dr

72

rest

73

)

(

74

eval

75

(
ons

76

(
ons

77

arg1

78

(
ons

79

arg3

80

#f

81

))

(
ons

82

(
ons

83

arg2

84

(
ons

85

arg3

86

#f

87

))

rest

88

)))))

exp

89

)

(

90

eval

91

(
ons

92

arg1

93

rest

94

)))))

exp

95

)

(

96

eval

97

(
ons

98

arg1

99

rest

100

)))))

exp

101

)))))

(

102

eval

103

(
ons

104

(
ons

105

(
ons

106

(
ons

107

#f

108

(
ons

109

#f

110

(
ons

111

#f

112

#f

113

)))

(
ons

114

(
ons

115

(
ons

116

#f

117

(
ons

118

#f

119

#f

120

))

(
ons

121

(
ons

122

(
ons

123

(
ons

124

#f

125

(
ons

126

#f

127

(
ons

128

#f

129

#f

130

)))

(
ons

131

(
ons

132

#f

133

#f

134

) #f

135

))

(
ons

136

(
ons

137

#f

138

#f

139

) #f

140

))

#f

141

))

#f

142

))

(
ons

143

(
ons

144

(
ons

145

(
ons

146

#f

147

(
ons

148

#f

149

(
ons

150

#f

151

#f

152

)))

(
ons

153

(
ons

154

(
ons

155

(
ons

156

#f

157

(
ons

158

#f

159

(
ons

160

#f

161

#f

162

)))

(
ons

163

(
ons

164

(
ons

165

#f

166

(
ons

167

#f

168

#f

169

))

(
ons

170

(
ons

171

#f

172

(
ons

173

#f

174

(
ons

175

#f

176

#f

177

))) #f

178

))

#f

179

))

(
ons

180

(
ons

181

(
ons

182

(
ons

183

#f

184

(
ons

185

#f

186

(
ons

187

#f

188

#f

189

)))

(
ons

190

(
ons

191

(
ons

192

#f

193

(
ons

194

#f

195

#f

196

))

(
ons

197

(
ons

198

#f

199

(
ons

200

#f

201

#f

202

)) #f

203

))

#f

204

))

(
ons

205

(
ons

206

#f

207

#f

208

) #f

209

))

#f

210

))

#f

211

))

(
ons

212

(
ons

213

(
ons

214

#f

215

(
ons

216

#f

217

#f

218

))

(
ons

219

(
ons

220

(
ons

221

(
ons

222

#f

223

(
ons

224

#f

225

(
ons

226

#f

227

#f

228

)))

xxx APPENDIX A. BENCHMARKS

(
ons

229

(
ons

230

#f

231

#f

232

) #f

233

))

(
ons

234

(
ons

235

#f

236

#f

237

) #f

238

))

#f

239

))

#f

240

))

#f

241

))

(
ons

242

(
ons

243

#f

244

#f

245

) #f

246

)))))

A.12 Sour
e of the
hange Ben
hmark

(let ((queue-empty

(
ons '() '())))

(let ((queue-insert

(lambda (q x)

(if (null? (
ar q))

(
ons (
ons x '()) '())

(
ons (
ar q) (
ons x (
dr q)))))))

(let ((queue-top

(lambda (q)

(
ar (
ar q)))))

(let ((queue-pop

(lambda (q)

(let ((head (
dr (
ar q))))

(if (null? head)

(
ons (reverse (
dr q)) '())

(
ons head (
dr q)))))))

(let ((queue->list

(lambda (q)

(append (
ar q) (reverse (
dr q))))))

(let ((stratv->stratf

(lambda (v)

(let ((len (ve
tor-length v)))

(let ((
 (
dr (ve
tor-ref v 0))))

(lambda (M)

(if (< M len)

(ve
tor-ref v M)

(let ((n (quotient (+ (- M (- len 1)) (-
 1))
)))

(let ((
pl (ve
tor-ref v (- M (* n
)))))

(
ons (+ n (
ar
pl))
))))))))))

(letre

((ret

(lambda (
oins)

(if (null? (
dr
oins))

(list->ve
tor (
ons (
ons 0 1) '()))

(let ((
 (
ar
oins)))

A.13. SOURCE OF THE INTERP BENCHMARK xxxi

(let ((rest (
dr
oins)))

(let ((v (ret rest)))

(let ((f (stratv->stratf v)))

(let ((initq (queue-insert queue-empty (
ons 0
))))

(letre

((loop2

(lambda (M wq nb-
 sq)

(if (= nb-

)

(list->ve
tor (queue->list sq))

(let ((strat-hi (queue-top wq)))

(let ((wq (queue-pop wq)))

(let ((nb-
 (if (= (
dr strat-hi)
)

(- nb-
 1)

nb-
)))

(let ((sq (queue-insert sq strat-hi)))

(let ((strat-lo (f M)))

(if (< (+ (
ar strat-hi) 1)

(
ar strat-lo))

(let ((strat

(
ons (+ (
ar strat-hi) 1)

)))

(let ((wq (queue-insert wq strat)))

(loop2 (+ M 1) wq (+ nb-
 1) sq)))

(let ((wq

(queue-insert wq strat-lo)))

(loop2 (+ M 1)

wq

nb-

sq))))))))))))

(letre

((loop1

(lambda (M wq nb-
)

(if (< M
)

(loop1 (+ M 1)

(queue-insert wq (f M))

nb-
)

(loop2 M wq nb-
 queue-empty)))))

(loop1 1 initq 1))))))))))))

(ret (
ons 25 (
ons 17 (
ons 4 (
ons 3 (
ons 1 '()))))))))))))))))

A.13 Sour
e of the interp Ben
hmark

(letre
 ((zip

xxxii APPENDIX A. BENCHMARKS

(lambda (l1 l2)

(if (null? l1)

'()

(
ons (
ons (
ar l1) (
ar l2)) (zip (
dr l1) (
dr l2)))))))

(let ((
apply

(lambda (f)

(lambda (args) (apply f args)))))

(let

((std-alist

(append

(append

(append

(append (append (
ons (
ons 'null? (
apply null?)) '())

(
ons (
ons 'boolean? (
apply boolean?)) '()))

(append (
ons (
ons 'number? (
apply number?)) '())

(
ons (
ons 'equal? (
apply equal?)) '())))

(append (append (
ons (
ons '= (
apply =)) '())

(
ons (
ons '< (
apply <)) '()))

(append (
ons (
ons '<= (
apply <=)) '())

(
ons (
ons '+ (
apply +)) '()))))

(append (append (append (
ons (
ons '- (
apply -)) '())

(
ons (
ons '* (
apply *)) '()))

(append (
ons (
ons 'quotient (
apply quotient))

'())

(
ons (
ons '
ons (
apply
ons)) '())))

(append (append (
ons (
ons '
ar (
apply
ar)) '())

(
ons (
ons '
dr (
apply
dr)) '()))

(append (
ons (
ons '
adr (
apply
adr)) '())

(
ons (
ons '
addr (
apply
addr)) '())))))

(append

(append

(append (append (
ons (
ons '
adddr (
apply
adddr)) '())

(
ons (
ons 'length (
apply length)) '()))

(append (
ons (
ons 'reverse (
apply reverse)) '())

(
ons (
ons 'append (
apply append)) '())))

(append

(append (
ons (
ons 'asso
 (
apply asso
)) '())

(
ons (
ons 've
tor-length (
apply ve
tor-length)) '()))

(append (
ons (
ons 've
tor-ref (
apply ve
tor-ref)) '())

(
ons (
ons 'list->ve
tor (
apply list->ve
tor)) '()))))

(append

(append

(append

(
ons (
ons 'map (lambda (args)

(let ((f (
ar args)))

(map (lambda (x) (f (
ons x '())))

(
adr args)))))

A.13. SOURCE OF THE INTERP BENCHMARK xxxiii

'())

(
ons (
ons 'apply (lambda (args) ((
ar args) (
adr args))))

'()))

(append (
ons (
ons 'symbol? (
apply symbol?)) '())

'()))

'())))))

(let ((standard-environment

(lambda (v)

(
dr (asso
 v std-alist)))))

(letre
 ((ev

(lambda (exp env)

(if (boolean? exp)

exp

(if (number? exp)

exp

(if (symbol? exp)

(env exp)

(let ((kw (
ar exp)))

(if (equal? kw 'quote)

(
adr exp)

(if (equal? kw 'lambda)

(let ((fpars (
adr exp)))

(let ((body (
addr exp)))

(lambda (apars)

(let ((alist (zip fpars apars)))

(ev body

(lambda (v)

(let ((a (asso
 v alist)))

(if a (
dr a) (env v)))))))))

(if (equal? kw 'if)

(if (ev (
adr exp) env)

(ev (
addr exp) env)

(ev (
adddr exp) env))

(if (equal? kw 'let)

(let ((binding (
ar (
adr exp))))

(let ((var (
ar binding)))

(let ((val (ev (
adr binding) env)))

(ev (
addr exp)

(lambda (v)

(if (equal? v var) val (env v)))))))

(if (equal? kw 'letre
)

(let ((binding (
ar (
adr exp))))

(let ((var (
ar binding)))

(let ((l-e (
adr binding)))

(letre
 ((env2 (lambda (v)

(if (equal? v var)

(ev l-e env2)

xxxiv APPENDIX A. BENCHMARKS

(env v)))))

(ev (
addr exp) env2)))))

((ev (
ar exp) env)

(map (lambda (e) (ev e env))

(
dr exp)))))))))))))))

(let ((eval (lambda (exp) (ev exp standard-environment))))

(eval

(
ons 'letre

(
ons

(
ons (
ons 'foo

(
ons (
ons 'lambda

(
ons '()

(
ons (
ons 'foo '()) '())))

'()))

'())

(
ons (
ons 'foo '()) '()))))))))))

A.14 Sour
e of the
ps-QS-s Ben
hmark

(let ((CPS-=

(lambda (x y k) (k (= x y)))))

(let ((CPS-if

(lambda (res k1 k2) (if res (k1) (k2)))))

(let ((CPS-*

(lambda (x y k) (k (* x y)))))

(let ((CPS-modulo

(lambda (x y k) (k (modulo x y)))))

(let ((CPS-
ons

(lambda (x y k) (k (
ons x y)))))

(let ((CPS-null?

(lambda (x k) (k (null? x)))))

(let ((CPS-
ar

(lambda (x k) (k (
ar x)))))

(let ((CPS-
dr

(lambda (x k) (k (
dr x)))))

(let ((CPS-<

(lambda (x y k) (k (< x y)))))

(let ((CPS-<=

(lambda (x y k) (k (<= x y)))))

(let ((CPS-append

(lambda (x y k) (k (append x y)))))

(let ((CPS-k

(lambda (res) res)))

A.14. SOURCE OF THE CPS-QS-S BENCHMARK xxxv

(let ((gen-list

(lambda (g p k1)

(letre
 ((loop

(lambda (n a

 k2)

(CPS-= n 1

(lambda (tmp1)

(CPS-if tmp1

(lambda ()

(k2 a

))

(lambda ()

(CPS-* n g

(lambda (tmp2)

(CPS-modulo tmp2 p

(lambda (tmp3)

(CPS-
ons n a

(lambda (tmp4)

(loop tmp3 tmp4

k2))))))))))))))

(CPS-
ons 1 '()

(lambda (tmp5)

(loop g tmp5

k1)))))))

(letre
 ((filter

(lambda (pred? l k3)

(CPS-null? l

(lambda (tmp6)

(CPS-if tmp6

(lambda ()

(k3 '()))

(lambda ()

(CPS-
ar l

(lambda (tmp7)

(pred? tmp7

(lambda (tmp8)

(CPS-if tmp8

(lambda ()

(CPS-
ar l

(lambda (tmp9)

(CPS-
dr l

(lambda (tmp10)

(filter pred? tmp10

(lambda (tmp11)

(CPS-
ons tmp9 tmp11

k3))))))))

(lambda ()

(CPS-
dr l

(lambda (tmp12)

xxxvi APPENDIX A. BENCHMARKS

(filter pred? tmp12

k3))))))))))))))))

(letre
 ((qui
ksort

(lambda (l k4)

(CPS-null? l

(lambda (tmp13)

(CPS-if tmp13

(lambda ()

(k4 '()))

(lambda ()

(CPS-
ar l

(lambda (pivot)

(CPS-
dr l

(lambda (rest)

(filter

(lambda (n k5)

(CPS-< n pivot

k5))

rest

(lambda (lows)

(filter

(lambda (n k6)

(CPS-<= pivot n

k6))

rest

(lambda (highs)

(qui
ksort lows

(lambda (tmp14)

(qui
ksort highs

(lambda (tmp15)

(CPS-
ons pivot tmp15

(lambda (tmp16)

(CPS-append tmp14 tmp16

k4))))))))))))))))))))))

(gen-list 2 29

(lambda (tmp17)

(qui
ksort tmp17

CPS-k))))))))))))))))))

A.15 Sour
e of the
ps-QS-m Ben
hmark

(let

1

CPS-= = (�

2

x. (�

3

y. (�

4

k. (

5

k

6

(=

7

x

8

y

9

)))))

(let

10

CPS-if = (�

11

res. (�

12

k1. (�

13

k2. (if

14

res

15

(

16

k1

17

#f

18

) (

19

k2

20

#f

21

)))))

A.15. SOURCE OF THE CPS-QS-M BENCHMARK xxxvii

(let

22

CPS-� = (�

23

x. (�

24

y. (�

25

k. (

26

k

27

(�

28

x

29

y

30

)))))

(let

31

CPS-modulo = (�

32

x. (�

33

y. (�

34

k. (

35

k

36

(�

37

x

38

(�

39

(=

40

x

41

y

42

) y

43

))))))

(let

44

CPS-
ons = (�

45

x. (�

46

y. (�

47

k. (

48

k

49

(
ons

50

x

51

y

52

)))))

(let

53

CPS-null? = (�

54

x. (�

55

k. (

56

k

57

(if

58

x

59

#f

60

(
ons

61

x

62

x

63

)))))

(let

64

CPS-
ar = (�

65

x. (�

66

k. (

67

k

68

(
ar

69

x

70

))))

(let

71

CPS-
dr = (�

72

x. (�

73

k. (

74

k

75

(
dr

76

x

77

))))

(let

78

CPS-< = (�

79

x. (�

80

y. (�

81

k. (

82

k

83

(<

84

x

85

y

86

)))))

(let

87

CPS-<= = (�

88

x. (�

89

y. (�

90

k. (

91

k

92

(<=

93

x

94

y

95

)))))

(let

96

CPS-append =

(�

97

x. (�

98

y. (�

99

k. (letre

100

loop =

(�

101

l. (if

102

l

103

(
ons

104

(
ar

105

l

106

)

(

107

loop

108

(
dr

109

l

110

)))

y

111

))

(

112

k

113

(

114

loop

115

x

116

))))))

(let

117

CPS-k = (�

118

res. res

119

)

(let

120

gen-list =

(�

121

g.

(�

122

p.

(�

123

k1.

(letre

124

loop =

(�

125

n.

(�

126

a

.

(�

127

k2.

(

128

(

129

(

130

CPS-=

131

n

132

) 1

133

)

(�

134

tmp1.

(

135

(

136

(

137

CPS-if

138

tmp1

139

) (�

140

dummy. (

141

k2

142

a

143

)))

(�

144

dummy.

(

145

(

146

(

147

CPS-�

148

n

149

) g

150

)

(�

151

tmp2.

(

152

(

153

(

154

CPS-modulo

155

tmp2

156

) p

157

)

(�

158

tmp3.

(

159

(

160

(

161

CPS-
ons

162

n

163

) a

164

)

(�

165

tmp4. (

166

(

167

(

168

loop

169

tmp3

170

) tmp4

171

)

k2

172

))))))))))))))

(

173

(

174

(

175

CPS-
ons

176

1

177

) #f

178

)

(�

179

tmp5. (

180

(

181

(

182

loop

183

g

184

) tmp5

185

) k1

186

)))))))

(letre

187

�lter =

(�

188

pred?.

(�

189

l.

(�

190

k3.

(

191

(

192

CPS-null?

193

l

194

)

(�

195

tmp6.

(

196

(

197

(

198

CPS-if

199

tmp6

200

) (�

201

dummy. (

202

k3

203

#f

204

)))

(�

205

dummy.

(

206

(

207

CPS-
ar

208

l

209

)

(�

210

tmp7.

(

211

(

212

pred?

213

tmp7

214

)

(�

215

tmp8.

(

216

(

217

(

218

CPS-if

219

tmp8

220

)

(�

221

dummy.

(

222

(

223

CPS-
ar

224

l

225

)

(�

226

tmp9.

(

227

(

228

CPS-
dr

229

l

230

)

xxxviii APPENDIX A. BENCHMARKS

(�

231

tmp10.

(

232

(

233

(

234

�lter

235

pred?

236

) tmp10

237

)

(�

238

tmp11.

(

239

(

240

(

241

CPS-
ons

242

tmp9

243

)

tmp11

244

)

k3

245

)))))))))

(�

246

dummy.

(

247

(

248

CPS-
dr

249

l

250

)

(�

251

tmp12. (

252

(

253

(

254

�lter

255

pred?

256

) tmp12

257

)

k3

258

))))))))))))))))

(letre

259

qui
ksort =

(�

260

l.

(�

261

k4.

(

262

(

263

CPS-null?

264

l

265

)

(�

266

tmp13.

(

267

(

268

(

269

CPS-if

270

tmp13

271

) (�

272

dummy. (

273

k4

274

#f

275

)))

(�

276

dummy.

(

277

(

278

CPS-
ar

279

l

280

)

(�

281

pivot.

(

282

(

283

CPS-
dr

284

l

285

)

(�

286

rest.

(

287

(

288

(

289

�lter

290

(�

291

n. (�

292

k5. (

293

(

294

(

295

CPS-<

296

n

297

)

pivot

298

)

k5

299

))))

rest

300

)

(�

301

lows.

(

302

(

303

(

304

�lter

305

(�

306

n. (�

307

k6.

(

308

(

309

(

310

CPS-<=

311

pivot

312

) n

313

)

k6

314

))))

rest

315

)

(�

316

highs.

(

317

(

318

qui
ksort

319

lows

320

)

(�

321

tmp14.

(

322

(

323

qui
ksort

324

highs

325

)

(�

326

tmp15.

(

327

(

328

(

329

CPS-
ons

330

pivot

331

) tmp15

332

)

(�

333

tmp16.

(

334

(

335

(

336

CPS-append

337

tmp14

338

)

tmp16

339

)

k4

340

)))))))))))))))))))))

(

341

(

342

(

343

gen-list

344

2

345

) 29

346

)

(�

347

tmp17. (

348

(

349

qui
ksort

350

tmp17

351

) CPS-k

352

))))))))))))))))))

