
Universit�e de Montr�eal

Demand-Driven Type Analysis

for Dynamially-Typed Funtional Languages

par

Danny Dub�e

D�epartement d'informatique et de reherhe op�erationnelle

Fault�e des arts et des sienes

Th�ese pr�esent�ee �a la Fault�e des �etudes sup�erieures

en vue de l'obtention du grade de Ph.D.

en Informatique
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R�esum�e

Nous pr�esentons une nouvelle analyse de types destin�ee aux langages typ�es dynami-

quement qui produit des r�esultats de grande qualit�e �a un oût qui la rend utilisable en

pratique. Bien que statique, l'analyse est apable de s'adapter aux besoins de l'optimiseur

et aux arat�eristiques du programme �a ompiler. Le r�esultat est un analyseur qui se modi�e

rapidement pour être en mesure de mieux e�etuer son travail sur le programme. Des tests

d�emontrent que notre approhe peut user de passablement d'intelligene pour permettre la

r�ealisation de ertaines optimisations.

L'analyse est adaptable pare qu'elle est e�etu�ee �a l'aide d'un adre d'analyse pa-

ram�etrisable qui peut produire des instanes d'analyses �a partir de mod�eles abstraits. Ces

mod�eles abstraits peuvent être rempla�es au ours de l'analyse du programme. Plusieurs pro-

pri�et�es du adre d'analyse sont pr�esent�ees et d�emontr�ees dans e doument. Parmi elles-i,

on retrouve la garantie de terminaison assoi�ee �a toute instane d'analyse produite �a l'aide

du adre, la apait�e d'analyser parfaitement tout programme qui se termine sans erreur et

la apait�e d'imiter plusieurs analyses onventionnelles.

Les modi�ations apport�ees au mod�ele abstrait en fontion des besoins de l'optimiseur le

sont grâe �a l'utilisation de demandes et de r�egles de traitement des demandes. Les demandes

d�erivent des requêtes pour la d�emonstration de propri�et�es jug�ees utiles �a l'optimiseur.

Les r�egles de traitement permettent la tradution de demandes d�erivant les besoins de

l'optimiseur en des diretives pr�eises de modi�ations au mod�ele abstrait. Chaque diretive

de modi�ation du mod�ele peut apporter une aide direte �a l'optimiseur pare que les

r�egles de traitement font en sorte que des demandes justi��ees sont transform�ees en d'autres

demandes justi��ees.

Une approhe d'analyse sur demande ompl�ete bas�ee sur le pattern-mathing est d�erite
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et a �et�e implant�ee. Le prototype implantant ette approhe a d�emontr�e le potentiel onsid�e-

rable de nos travaux. Il faudra enore e�etuer d'autres reherhes avant qu'on puisse utiliser

ouramment notre approhe dans les ompilateurs. C'est toutefois ompr�ehensible si on

onsid�ere que tous nos travaux, outre les id�ees li�ees aux analyses statiques onventionnelles,

sont une ontribution originale.

Mots-l�es : analyse sur demande | analyse adaptable | analyse statique | analyse de

types | tehniques de ompilation | optimisation de programmes



Abstrat

We present a new stati type analysis for dynamially-typed languages that produes high

quality results at a ost that remains pratiable. The analysis has the ability to adapt

to the needs of the optimiser and to the harateristis of the program at hand. The

result is an analyser that quikly transforms itself to be better equipped to attak the

program. Experiments show that our approah an be pretty lever in the optimisations

that it enables.

The analysis is adaptable beause it is aomplished using a parametri analysis frame-

work that an instantiate analyses by building them from abstrat models. The abstrat

models an be hanged during the analysis of the program. Many properties of the analysis

framework are presented and proved in the dissertation. Among whih there is the guar-

antee of termination of any analysis instane it produes, the apaity to analyse perfetly

well error-free terminating programs, and the ability to mimi many onventional stati

analyses.

Modi�ations to the abstrat model in response to the needs of the optimiser are realised

through the use of demands and demand proessing rules. Demands express a request for

the demonstration of a property deemed useful to the optimiser. The proessing rules

allow demands that diretly express the needs of the optimiser to be translated into preise

proposals of modi�ations to the abstrat model. Eah modi�ation to the model that is

proposed is potentially diretly helpful to the optimiser beause the proessing rules ensure

that pertinent demands are translated into other pertinent demands.

A omplete approah of demand-driven analysis based on pattern-mathing is exposed

and has been implemented. The prototype implementing the approah has demonstrated

that our work has great potential. Further researh has to be onduted to make the method
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usable in everyday ompilers. Still, this is understandable, onsidering that our whole work,

exept the notions related to onventional stati analysis, is original material.

Key-words: demand-driven analysis | adaptable analysis | stati analysis | type anal-

ysis | ompilation tehniques | program optimisation
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Chapter 1

Introdution

1.1 A Gentle Introdution

Very high quality type analysis an be performed on programs written in a dynamially-

typed funtional language while maintaining ontrol over the analysis time. A quality type

analysis is ahieved by using a \lever" adaptive analysis method alled demand-driven

analysis. Although the method does not ome from traditional arti�ial intelligene, it

allows the analysis to adapt to the harateristis of the program at hand in ways that seem

rather intelligent. But all this is quite vague, so let us proeed from the beginning.

Program analyses that are used for optimisation purposes are always strethed between

two ontraditory goals: quality and eÆieny. Indeed, the user of a ompiler wants the

ompiler to produe the best possible ode while taking the least possible time to do so.

Unfortunately, these desires are inompatible.

Roughly speaking, in the ase of type analysis, two kinds of analyses exist, depending

on whih goal is onsidered to have priority. Fast analyses aim the eÆieny of the analysis

while heavy analyses aim the quality of the generated ode. The fast ones feature reasonable

analysis times and obtain results of a fair quality. The heavy ones inspet the program very

losely and do not feature reasonable analysis times. Commonly used ompilers that perform

some type analysis use a fast one beause the heavy ones are too ostly in pratie.

Of ourse, the user's desire to have his ake and eat it too is unrealisti but a relaxed
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version is still interesting. What we are interested in is a type analysis of very high quality

that an be performed within times that remain pratial. In our opinion, an analysis

featuring pratial times is ruial if we want our type analysis or a derivative to eventually

be applied in some routinely used ompiler. Despite the fat that our goal is relaxed, it still

seems to be a na��ve, \spoiled hild's" desire. It seems to disregard the apparently strong

relation between quality and eÆieny that years of researh in type analysis have outlined.

Until now, this empirial relation has brought the user to expet a ertain ost for a ertain

quality. Our hildish desire lies in the high-quality part of the spetrum while inurring a

ost that is well under the one that the quality-eÆieny relation suggests. Is it reasonable

to aim at suh a goal?

We believe it is reasonable beause a small amount of leverness often pays o� more

than a lot of brute fore. This is so in many aspets of real life and in omputer siene,

too. For example, during a war, the army with the greatest number of soldiers and the

best equipment does not neessarily defeat its enemy if it is poorly direted. In omputer

siene, an O(n log n) algorithm an outperform an O(n

2

) algorithm, even if the latter is

run on a omputer that is faster by orders of magnitude. However, disovering the better

algorithm requires areful thought.

But what lever thing ould be done about type analysis? This thesis has its origins in

an innoent sounding remark by my supervisor, roughly paraphrased as: \It would be nie

to have an analysis that is very powerful but that uses its power only as muh as needed by

the optimiser to perform its job." We all know something that has this kind of behaviour;

that is, something powerful but always trying to do as little as possible: a human. Let us

imagine an optimising ompiler where the type analysis would be done by a human; say,

Mr. D. Let us desribe the way Mr. D would proeed in analysing a program.

Mr. D would use his intelligene to perform the analysis. And he would perform a very

good one. Indeed, he wants to help the ompiler to produe highly optimised ode. But he

would use his intelligene mostly where it would really help the optimiser. That is, Mr. D is

lazy. If an easy hek allows the optimiser to improve a partiular piee of ode, Mr. D will

not waste his time by making a omplex proof involving the full extent of his mathematial

knowledge.

The mental work performed by Mr. D an be divided in two parts: raw program analysis

and reasoning about the task of analysing the program. The raw analysis part is essentially
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similar to what onventional analyses do. On the other hand, he does the reasoning part by

inspeting the program, by looking at the analysis results, by inventing new raw analyses,

by searhing for the right invariants, et. The raw analysis part an be done by hand or by

writing an algorithm and running it on a mahine. It does not matter how it is done. It is

mehanial work, anyway. But Mr. D is able to do the reasoning part only beause he is

intelligent and understands what he is doing.

To summarise Mr. D's work, we would say that he is intelligent, he is lazy, and he knows

what he is doing. He is able to analyse the program while he is also able to elaborate

strategies about the way he should analyse the program. The demand-driven analysis

approah that we introdue in this dissertation is inspired by the lever behaviour of Mr. D.

Our approah features the same division of the work into a raw analysis part and a reasoning

part. The reasoning part is able to modify the way raw analysis is done. The approah

features laziness as the reasoning part is goal-driven: it takes are of the needs of the

optimiser and only of these; any modi�ation to the way raw analysis is done derives from

those needs. Up to this point, our approah seems to at exatly as Mr. D. But, as expeted,

there is a di�erene and it lies in the fat that our approah does not understand what it

is doing. It is only a ombination of numerous deterministi algorithms and it does not

exhibit any sign of learning or understanding whatsoever. Nevertheless, experiments have

shown that it exhibits onsiderable leverness in the exeution of its task. This is satisfying

as only intelligene is required, not onsiousness.

1.2 Some More Preisions

The purpose of our type analysis is to help the optimiser to remove unneessary dynami

safety type tests from the exeutable. The ode resulting from the ompilation of a program

written in a dynamially-typed language inludes dynami safety type tests in the ode of

many primitive operations. For example, let us onsider the following Sheme

1

expression:

(ar x). This expression extrats the objet in the �rst �eld of the pair ontained in `x',

provided `x' really ontains a pair. Sine Sheme is dynamially-typed, `x' ould poten-

tially ontain objets of any type, depending on the omputations done by the program.

Consequently, the `ar' funtion must perform a safety type tests before it an extrat the

1

For a referene to the Sheme language, see [51℄.
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ontents of the �rst �eld. Safety tests guarantee that the exeution of the program proeeds

safely.

If no test were performed before `ar' did the extration, the extration ould trigger

an illegal operation at the hardware or operating system level and an abnormal termination

of the program would our. Or the illegal extration ould go undeteted and ause a

orruption of the data of the program, leading to potentially disastrous onsequenes. High-

level languages suh as Sheme are designed with safe exeution in mind. Consequently, it

is natural to inlude suh dynami safety tests in the exeutable.

Of ourse, these safety tests inur a penalty in the eÆieny of the exeutable program.

So it is perfetly understandable to want to avoid the added ineÆieny. A ommon way

to do so onsists in telling the ompiler to omit the inlusion of those tests. All potentially

illegal operations made by the exeutable program then go unheked and result in low-

level rashes or program misbehaviour in ase of an error. In this work, we hoose not to

onsider this \solution". We prefer to insist on keeping the safety of the exeution and

turn to another option: safe optimisations. For some operations made by the program, the

ompiler may be able to determine that they an never go wrong. Safe optimisations an

be enabled only in these ases. For example, the (ar x) expression need not inlude a

dynami safety test if the ompiler is able to determine that `x' annot ontain anything else

than pairs. The demonstrations needed to trigger safe optimisations are obtained through

the use of stati analysis.

But what is a stati analysis? It is the gathering of informations about the exeution

of the program. The nature of the informations that are gathered depends on what the

optimiser needs to perform its task. They may relate to the heap-spae usage, the liveliness

of the objets at run-time, the may-alias information, or something else. In this work,

the informations that interest us is the type of the values involved in the omputations

done by the program. What is partiular to stati analyses is the method that is used

to gather the informations: a phony exeution of the program or some other proess that

does not involve its real exeution. It is mandatory to avoid the real exeution beause

its duration is unknown (and possibly in�nite). On the other hand, the phony exeution

requires the manipulation of phony values only for a bounded number of steps. So it is fast

(and preditable) enough to be a part of a ompilation. The reader may �nd numerous

examples of stati analyses in [3℄.
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Despite the fat that the stati exeution is phony, it is designed in suh a way that

it has a mathematial onnetion to the real exeution. Consequently, the results of the

phony exeution onstitute the desired informations about the real exeution. In general,

the informations are only approximations of what ould be observed if the program were

really run. Moreover, in order to be useful to the optimiser, these informations have to be

onservative.

When we say that the gathered informations have to be onservative, it means that they

must take into aount at least all possible behaviours of the program. But why is it \at

least" and not \at most" or \the best approximation of"? Beause of the nature of typial

optimisations. Optimisations, suh as the removal of safety type tests, require a partiular

property to be true for all possible exeutions of the program. Consequently, if the property

is true for all behaviours listed in the desription, then it has to be true for all onrete

behaviours of the program. For example, if the analysis says that `x' an ontain nothing

else than pairs, then, during the onrete exeution of the program, it is ertain that `x'

ontains a pair (at least, if `x' ever omes to existene) and (ar x) an be optimised.

In opposition to the onservativeness of the analysis results, there is the need of the

optimiser for results that are as useful as possible. It is lear that obtaining a onservative

analysis is easy. We only need to write an analysis that pretends that anything may happen

during the exeution. Note that these analysis results are ertainly onservative. However,

the analysis results thus produed would not be useful as the property allowing optimisations

to be performed would not be true in general (aording to the results). For example, if the

type analysis blindly determines that `x' potentially ontains objets of any type (whih is

true), then the optimisation of (ar x) annot be performed.

Essentially, the best interest of the analyser is to overestimate the desription as little

as possible while it must imperatively avoid underestimating the desription. Reduing the

overestimation as muh as possible requires inreasing the omputational e�ort put into the

analysis. However, an inrease in the omputational e�ort means that the ompilation time

inreases, too. It is lear that hoosing a ompromise between the quality of the desription

(the smallness of its overestimation) and the ompilation times is a diÆult hoie.

This diÆulty in the hoie of an analysis, in partiular in the hoie of a type analysis,

makes the onventional type analyses inappropriate almost all the time. Let us explain our-

selves. When a partiular program is analysed, the analysis may be too oarse, produing
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results that are too overestimated to be really useful to the optimiser. Or it may be too

strong and time would be wasted beause suÆiently aurate results ould have been pro-

dued by a muh more eÆient analysis. Surprisingly, the analysis may sometimes be both

too oarse and too strong at the same time for the program at hand. This is the ase when

parts of the programs are easier to analyse than others. That is, the diÆulty of produing

analysis results aurate enough to trigger the optimisation of ertain expressions may be

muh greater than for other expressions. This fat is made obvious by an example. Suppose

that our (ar x) expression ours in two plaes in the program. The �rst ourrene is

in expression (if (pair? x) (ar x) ...)

2

and the seond is in (let ((x (get-lost

foo bar))) (ar x)). Suppose that the get-lost funtion is extremely omplex. Then

a heavy onventional analysis ould well be both too strong and too oarse for the program

at the same time.

The fundamental reason behind the inappropriateness is that onventional analyses use

a �xed abstrat model. We need to introdue the meaning of the \abstrat model" term.

We mention just above that an analysis is done by performing a phony exeution of the

program. This phony exeution is often performed using abstrat interpretation.

3

During

the abstrat interpretation of a program, phony values are manipulated, instead of onrete

values as in onrete interpretation. These phony values are alled abstrat values. Also,

during abstrat interpretation, expressions are evaluated in phony ontexts, not in onrete

ontexts (lexial environment, urrent ontinuation, et). An important di�erene between

onrete values and phony values is that, while onrete values are de�ned by the language,

the de�nition of the phony values has to be hosen by the implementer of the analysis. A

short introdution to abstrat interpretation is given in [19℄.

Taken together, the values and ontexts that are to be used by an analysis, onstitute

the abstrat model. Roughly speaking, the abstrat model indiates under whih simplisti

point of view the exeution of the program is going to be modelled. Sine onventional anal-

yses use a �xed abstrat model, this point of view annot hange and it leads immediately

to the inappropriateness of the analyses. Sine the inappropriateness of the onventional

analyses omes from the �xedness of the abstrat model behind them, then learly the

solution is to use some adaptive abstrat model.

2

The pair? funtion is a prediate that tests whether its argument is a pair or not.

3

Not all stati analyses are done using abstrat interpretation. There are other kinds of stati analyses.

Nevertheless, in all ases, there is an abstrat model behind the analysis.
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A diret onsequene of the goal-driven nature of our type analysis is that the analyser

and the optimiser must ollaborate. This ollaboration neessarily omprises two elements.

First, the needs of the optimiser have to be expressed in some way. Seond, the analyser

has to reat in a positive way to the needs expressed by the optimiser. The �rst element

is quite simple. The property required for a partiular optimisation to get enabled is well-

de�ned and, usually, relatively easy to formalise. It is suÆient to hoose some formalism

in whih the needs an be expressed. We illustrate the elements with our running example.

In the hope of removing the safety type test in expression (ar x), the optimiser expresses

its need by emitting a request like: \I would like to see a demonstration that `x' an only

ontain pairs." The analyser then has to do its best to ful�l the need of the optimiser.

The seond element, however, is diÆult and it is the ore of our work. For the analyser,

to be able to take are of the needs of the optimiser means that it must be able to detet

when the analysis urrently performed does not allow an optimisation to be enabled and,

if it is the ase, to adapt the analysis with the intention to enable the optimisation. In

order to have an analyser apable of doing so, two new elements have to be provided. First,

the analyser must have the ability to hange the analysis it performs while the ompiler is

proessing the program. That is, the analyser has to be able to hange the abstrat model

behind the analysis at will. Seond, a deision proedure has to be inluded in the analyser

to let it determine how the abstrat model ought to be modi�ed. Indeed, a lot of freedom

is granted to the analyser by the adaptivity of the abstrat model and this freedom must

not be used mindlessly. The �rst element an be realised without too muh diÆulty but

the seond remains quite a hallenge. Clearly, the seond element is the one that seems to

require understanding and intelligent reasoning. Nonetheless, the demand-driven analysis

that we propose possesses the desired exibility and adaptivity.

Now that we have a more preise desription of the requirements for the analyser, es-

peially those onerning its adaptivity, we ome bak to our goal for the quality expeted

from the analyser. We do not simply expet a high-quality analysis at a pratial ost,

where the quality is omparable to that of the heavy analyses. We expet an even higher

quality. Our expetations are justi�ed by the adaptivity of the analyser. By its adaptivity,

the analyser ought to spend the minimum of e�ort to enable the easy optimisations and

invest more time on harder optimisations. Eah optimisation ought to be taken are of using

an e�ort orresponding to its diÆulty. Sine the spetrum of the diÆulty of optimising

the various expressions of the programs is typially very wide, the analyser is able to trigger
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the optimisation of a maximum of expressions for the time it onsumes. On the other hand,

fast onventional analyses only trigger the optimisation of the easy expressions. Heavy ones

may waste huge amounts of resoures on easy and intermediate expressions by applying an

ill-adapted tedious proedure that is nevertheless too weak for the slightly more diÆult

expressions. The demand-driven analyser, by its reasoning about the needs of the optimiser

and the strategies it elaborates, ought to �nd the spei� modi�ations to the analysis that

are neessary to trigger the optimisation of the more diÆult expressions. In other words, it

ought to trigger the optimisation of more diÆult expressions beause it is able to produe

a \well-tailored" analysis.

1.3 Sketh of a Solution

Before we present a quik overview of the solution, we need to ome bak to the optimisation

that interests us. We onentrate on the elimination of dynami safety type tests. The other

type tests do not interest us. Those inlude the expliit tests written by the programmer

himself, suh as the one in expression (if (pair? x) ... ...), and the impliit ones that

are not related to safety, suh as the type tests performed by the garbage olletor when it

traverses the heap-alloated objets. The di�erene between the safety tests and the others

is that the outome of the safety tests is highly preditable. In fat, during the exeution

of a bug-free program, all safety type tests have a positive outome. On the other hand,

the expliit tests are preisely inserted by the programmer beause he wishes these tests

to be performed. Then it is reasonable to assume that these tests have an ative purpose

and that they result in both outomes. Consequently, these tests are rarely redundant. The

safety tests, on the ontrary, are in most ases redundant and an be removed (if identi�ed

as suh). They are a more valuable target for the analyser.

Not only are the safety type tests a valuable target, but their high preditability forms

the basis of the reasoning made by the demand-driven analysis. The analyser onentrates

on the needs of the optimiser that it onsiders to be plausibly realisable. The other needs

of the optimiser are not less legitimate but there is no evidene that they have a reasonable

hane of being realisable and they provide no lue on how to elaborate an analysis strategy

to enable them. For example, let us onsider all (f x) and suppose that the optimiser

is able to improve the ode produed for a all when only one funtion an possibly be
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invoked there (e.g. by replaing the generi invoation sequene by a diret all). The need

of the optimiser onsists in obtaining the on�rmation that `f' ontains only one partiular

funtion. It is a noble request as it would be pro�table to the ode if the on�rmation ould

be obtained. However, there is no indiation that `f' ontains only one partiular funtion.

In fat, funtional languages are notable for using higher-order funtions. So it would be

perfetly normal to see `f' ontain di�erent funtions during the exeution of the program.

On top of the low plausibility of this need, there is the tehnial problem that this need

provides no ue to the demand-driven analyser on how to answer it suessfully.

Now we give an overview of the way we obtain an analyser that is adaptive and that is

able to reason about the way to modify the analysis it performs. The analyser is adaptive

beause it uses an analysis framework instead of a �xed analysis. Roughly speaking, the

analysis framework is the shell of an analyser. It ontains all the usual mehanisms needed

by an analyser. However, it does not inlude an abstrat model. The framework has a

parameter through whih it reeives an abstrat model. When passed an abstrat model

and a program, it performs the type analysis presribed by the model on the reeived

program. The output of the framework is the analysis results. The latter are exatly those

that would be obtained if a true analyser inorporating the given abstrat model would have

been used on the program.

The analysis framework has many useful properties. Any analysis that it instantiates

(through the reeption of an abstrat model) is guaranteed to terminate and is onservative.

The framework is able to mimi the behaviour of many onventional analyses. It is very

powerful: given a bug-free program and an appropriate model, it produes analysis results

that allows the optimiser to remove all safety type tests. Unfortunately, it is generally

unfeasible to deide if an \appropriate" model exists.

As to the reasoning proedure that elaborates new analysis strategies aording to the

needs of the optimiser, we have two options. Either we reate a (good old) AI program, or

we reate a heuristi based on a limited set of simple and mehanial rules. In all ases,

the best that an be done is to obtain a heuristi sine the optimisation problem toys with

undeidable properties. We hoose the mehanial rules. We give the reasons behind this

hoie in the next hapter.

The abstrat models that we use are based on patterns. The patterns are similar to those
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found in languages that inlude pattern-mathing, suh as Haskell,

4

ML,

5

and Prolog.

6

At

the heart of the reasoning proedure used in the demand-driven analysis, there are. . . the

demands. Broadly speaking, demands are requests for the demonstration of fats that are

deemed useful to the optimiser. The demands diretly onstitute the formalism in whih

the needs of the optimiser are expressed. But they also express other, indiret requests

whih are produed through the reasoning proess. For example, apart from the syntax,

the request of the optimiser \I would like to see a demonstration that `x' an only ontain

pairs." that we mention above is in fat a demand.

The demands by themselves are not an ative omponent of our approah. Demand

proessing rules form the engine of the reasoning proess. They translate existing demands

into new ones with the intent to elaborate a strategy on how to modify the analysis. The

reasoning obtained through the proessing of demands is reminisent of the resolution al-

gorithm used by Prolog. Our demand proessing rules ome, shall we say, from the top of

our hat. They are not perfetly arbitrary, however. They are relatively simple rules that

make a lot of sense and they obey two priniples that we only mention here: suÆieny and

neessity. These priniples are responsible for the leverness shown by the analyser and for

keeping the analyser from letting the analysis degenerate to a heavy, impratial one.

Globally, the demand-driven analysis is a yle made of two phases. One phase onsists

in analysing the program using the urrent abstrat model (raw analysis). The other onsists

in modifying the abstrat model through demand proessing (reasoning). If all the safety

tests are eventually removed, the yle ends. In the other ase, the yle would not end

were it not for a time limit plaed by the user on the omputational resoures allotted to

the analysis. This unusual approah is onsistent with our view that more preise results

are expeted from the analyser if it is given more time. At least, is makes as muh sense to

let an analyser work for a spei�ed amount of time as it does to let an analyser work for an

a priori unknown amount of time up to the ompletion of its algorithm. In either ase, the

user has no guarantee on the extent of the optimisations. Having a limit on the time taken

by the analysis is even more user-friendly. Moreover, the limit on the resoures need not

neessarily be wall-lok time. It may be spae or the number of logial steps performed by

the demand-driven analysis. Interestingly, this last measure has some kind of deterministi

4

For a referene to the Haskell language, see [28℄.

5

For a referene to the ML language, see [44℄.

6

For a referene to the Prolog language, see [50℄.
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relation with the quality of the exeutable ode that results from the ompilation (this is

disussed in Setion 6.1).

1.4 Plan

In Chapter 2, we explain in detail the problem that we attak. We preisely desribe the

optimisation for whih the type analysis shall gather information. We introdue a mini-

language similar to a kind of Sheme that is simpli�ed almost down to a �-alulus. We

present its syntax and semantis. We bring justi�ation for the seletion of our goal.

Chapter 3 presents the analysis framework. It �rst gives a desription of the use of the

framework. That is, the parameters (the abstrat model) and the analysis results that it

produes. It then gives a preise desription of its implementation. Finally, many properties

of the analysis framework are demonstrated. Namely: that any analysis it instantiates

always terminates; that the analysis is onservative; that it is powerful, as any error-free

terminating program an be analysed perfetly well using an appropriate model, i.e. all safety

tests an be removed from the program; that, unfortunately, it is generally impossible to

�nd suh a model when it exists; that, in pratie, it is very exible sine it an mimi many

onventional stati analyses.

In Chapter 4, we give a sketh of what a demand-driven analysis should be, but without

giving a preise spei�ation. We propose a yli approah where the program is �rst

analysed, then the stati analysis is improved, then the program is analysed again, et. An

impreise de�nition of demands and proessing rules is given. Some notions that help to

reate a reasonable demand-driven analysis are presented. Namely, the neessity and the

suÆieny priniples. An extensive example is used to better explain the priniples behind

the approah.

In Chapter 5, we propose a onrete implementation of a demand-driven analysis that is

based on patterns. The hapter inludes a omplete desription of pattern-based modelling,

from the representation of abstrat values to the elaboration of an abstrat model to be

fed to the analysis framework, of the syntax and meaning of the demands, of the demand

proessing rules, and of the main algorithm ontrolling the analysis. An example illustrates

the working of the whole proess. A brief history of the development of our urrent prototype
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implementing the demand-driven analysis is presented.

Chapter 6 evaluates our prototype through many experiments. A brief desription of

eah of the benhmarks used in the experiments is given. The methodology used is presented

and justi�ed.

Chapter 7 summarises our ontributions, makes a quik survey of the (not so) related

work in demand-driven analysis, and, most importantly, presents some future work.



Chapter 2

De�nition of the Problem

2.1 Objetive

We intend to develop an adaptable type analysis for a dynamially-typed language. The

language is presented below. Basially, it is a minimalist appliative funtional language that

inludes three types: losures, pairs and the Boolean false (#f). To keep things simple, the

programs should be losed. That is, they should have no free variables. Also, ompilation

is done on whole programs at one.

Some operations of the language require dynami safety type tests. For example, before

performing the extration of the ar-�eld of an objet, a hek must be made to ensure that

it is truly a pair. At least, it is the ase if safe exeution of the program is desired. Indeed,

we work under the ontext of safe exeution. Under the ontext of non-safe exeution, the

problem of eliminating safety dynami type tests would no longer exist. Additionally, if

the optimiser were to trust annotations given by the programmer, the ontext would also

be that of non-safe exeution. We are interested in safe exeution, so no external soure of

information is trusted.

A na��ve ompilation of the programs would require the inlusion of ode to perform

safety tests at run time everywhere a hazardous operations is made. However, optimising

ompilers try to generate more eÆient ode by performing a stati analysis on the programs

to disover evidene that some or all of the dynami tests an be safely removed. Our

analysis intends to ahieve this task.
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The following setions �rst present the funtional language to analyse. A detailed pre-

sentation of both the syntax and the semantis of the language is given. Then there is a

disussion about the generality of the quite spei� analysis task that we have hosen.

2.2 Language

Figure 2.1 presents the syntax of our small appliative funtional language. It does not have

a name but we will often refer to it as the mini-language. Expressions in the mini-language

are labelled. The labels are used to give a unique \name" to the expressions. For example,

it allows us to refer to a partiular expression as e

12

instead of having to write it verbatim

everywhere. We use numerial labels throughout this text.

The mini-language provides funtions, pairs, and the Boolean `#f'. As in Sheme,

anything exept `#f' is onsidered to be a true Boolean value when the `if' expression

tests its �rst sub-expression. The `pair?' expression provides a way to distinguish between

pairs and the other objets. Depending on whether its argument is a pair or not, it returns

either the pair itself or `#f', respetively. Finally, evaluation of sub-expressions generally

proeeds from left to right. This partiularity ould make a di�erene if one of the sub-

expressions loops and the other leads to an error, but it annot when the program eventually

terminates. The rest of the semantis of the language is fairly standard: the `if' expression

�rst evaluates the test and then only one of its two branhes; the body of the �-expression

is evaluated only when the funtion is eventually alled; the other expressions evaluate all

of their sub-expressions.

Only three of the nine kinds of expressions require a dynami safety test. We do not

inlude pair?-expressions in these three as their purpose is not safety and there is no reason

to expet their result to always be true (or false). Expressions aessing pairs, namely `ar'

and `dr', must ensure that the objets that they are about to aess are truly pairs. Calls

must ensure that the objets returned by the evaluation of the �rst sub-expression are truly

funtions. The task of our type analysis is to give the optimiser the opportunity to remove

as many safety heks as possible among those introdued by these expressions.

The detailed semantis of the language are presented in Figure 2.2.

1

Semanti domain

1

The

_

[ operator is the disjoint union. Its results is the union of its two argument sets but it is de�ned
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Figure 2.1: Mini-language syntax
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Figure 2.2: Mini-language semantis
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Val

"

ontain evaluation results, whih are either normal values or error values. We do not

expliitly de�ne the error values. Normal values (or simply, values) are the Boolean, from

ValB, losures, from ValC, or pairs, from ValP. A losure is a onstrutor ontaining a

�-expression and the de�nition lexial environment. Note that pairs and environments an

only ontain values, not error values.

The evaluation funtion omputes the value of an expression in a ertain lexial environ-

ment. It makes extensive use of the hek funtion C to verify whether the values obtained

during the evaluation of sub-expressions are normal. C takes an evaluation result and a

ontinuation. It immediately returns the evaluation result if it is an error, otherwise it

passes it to the ontinuation, whih does the rest of the omputation. The apply funtion

A takes are of the details of the invoation of a losure on an argument. The spei�ation

of the evaluation funtion E itself is quite straightforward.

Note the situations in whih an error an our: in the aess to the ar- or dr-�eld

and in a all. Evaluation of the other expressions is always safe, barring the ourrene of

an error in the evaluation of a sub-expression.

2.3 Generality of the Objetive

Despite the fat that the objetive of our researh is done on type analysis, namely the

removal of dynami safety type tests, we expet the researh to have a muh broader impat.

We present a few reasons to support our belief.

The mini-language is appliative; that is, the argument expression is ompletely evalu-

ated before the losure is invoked with the result. However, that does not mean that the

sope of our researh is limited to appliative languages. We ould aim at the same objetive

while using a lazy language. The task of type analysis would be similar in suh a language.

The hoie of a type analysis is a reasonable one, too, as performing a good type analysis

in a dynamially-typed language is not less diÆult than performing some other analysis.

Instanes of analyses inlude esape analyses [53℄, referene ounting analyses [35℄, numerial

range analyses [26, 27, 41, 48℄, and representation analyses [54, 32, 33℄. In all ases, relatively

simple analysis methods an lead to relatively good analysis results. However, doing an

only it the two sets are disjoint.
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optimal job, that is, obtaining results that allow the optimiser to do the best job possible,

is unomputable as all the desired properties depend on the atual omputations done be

the program.

Note that our real goal is not neessarily to obtain the best possible method to remove

dynami type tests in the ode generated by ompilers. We also want to study the eÆieny

of a demand-driven approah as a mean to drive an adaptive analysis intelligently. Non-

adaptive methods learly have intrinsi limitations that are more or less easily enountered.

On the ontrary, adaptive methods an push these limitations muh farther. However, there

has to be some mehanism to guide the adaptations. As will be presented in the following

hapters, type analysis of the programs is performed using an adaptable analysis framework

and a demand-driven approah provides the means to translate the needs of the optimiser

(the task of removing safety tests) into preise diretives on how to adapt the analysis of

the program to obtain analysis results that are more useful to the optimiser. Although the

demand-driven approah that we develop in this researh is quite spei� and the idea of

being demand-driven is quite general, suess in our partiular projet would bring evidene

that the general idea an be useful.

The restrition to whole program ompilation is not a mandatory one. In a onrete

implementation, our type analysis ould be adapted to support separate ompilation while

guaranteeing omplete safety. However, a ertain ooperation from the programmer would

be required. First, the program would have to be separated in module. This way, no

mutation of a variable ould be done from another module (if the language inludes side-

e�ets). Seond, the programmer would have to give type annotations for all variables

that are exported out of a module. The importation of a module into a module under

ompilation would make these annotations available to the ompiler. The more preise

these annotations, the higher the quality of the analysis results for the module, and the

higher the quality of the exeutable ode. In order to ensure safety of the evaluation of

the program, the ompilation of eah module would inlude a veri�ation that the module

onforms to the given annotations and, at run time, before the start of the normal evaluation

of the program, the exeutable would perform a veri�ation to ensure that eah importing

module has seen the same annotations than those truly delared in eah imported module.

The restrition to a language without input/output is not mandatory either. We hose

not to onsider I/O beause it does not add any interesting problem from the point of
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view of the type analysis. It is lear that the ability to write data does not hange what

the programs ompute and it would not interfere with the type analysis. So output is not

interesting. It is less lear that the ability to read data is also uninteresting. Indeed, the

data that are read have an impat on the omputations that programs perform. They

introdue an unertainty fator in the omputations. However, this unertainty is quite

easy to manage: a (read) expression may return any value that the language's spei�ation

allows as a valid input value. For example, the spei�ation ould say that (read) returns

a value made of pairs and Booleans every time it is evaluated. Consequently, any attempt

by the type analysis to obtain preise type information about the possible value of (read)

plainly fails.

Clearly, a type analysis is useful in the ompilation of dynamially-typed languages.

But it may seem useless for statially-typed languages suh as ML or Haskell. However,

it is not the ase. The main reason is that these languages both provide algebrai types.

An algebrai type may inlude many onstrutors. For example, in Haskell, list types are

algebrai types inluding two onstrutors: `[ ℄' of arity 0 for the empty list and `:' of arity

2 for the pairs. The programmer an de�ne a funtion taking lists as an argument and

use pattern-mathing with a pattern for only one of the two onstrutors. If the funtion

is passed a list built using the other onstrutor, an error ours. For example, an error

atually ours if the head or the tail is extrated from an empty list. The inspetion of the

argument is a kind of safety dynami test as the typing of the program annot guarantee

that only the expeted onstrutor(s) will be passed. A type analysis suh as ours would

be required in order to remove as many of those tests as possible. If we reverse the point

of view, programs in our mini-language an be onsidered to be statially typable using

a unique type that inludes three onstrutors. The uniqueness of this hypothetial type

makes the stati typing trivial and leaves all veri�ations relative to the onstrutors to the

run time.

Objet-oriented languages ould also bene�t from an adaptation of our type analysis.

The exat instantiation lass of an objet an be seen as a onstrutor. The lass of a de-

lared variable an be seen as an algebrai type inluding all the onstrutors orresponding

to its sub-lasses. Moreover, the ase where a variable does not referene any objet, that

is, when its value is null, an be seen as orresponding to an additional `null' onstrutor.

Despite the fat that our type analysis ould be applied to a variety of languages,
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we deided to use this partiular appliative dynamially-typed funtional mini-language

beause it is the kind of language that needs and stresses type analysis the most. First,

programs written in dynamially-typed languages typially need more safety type tests than

those in statially-typed languages. Seond, funtional programs have a tendeny to have

a more omplex ontrol-ow beause of the use of higher-order funtions. So our mini-

language (whih is similar to Sheme) is partiularly hallenging for a type analyser.

Finally, demand-driven analysis ould be useful in the �eld of dynami ompilation,

or just-in-time ompilation. Of ourse, it would have to operate within relatively limited

resoures, espeially in time. But the advantage is that analysis would operate while the

program runs and pro�ling statistis about the real exeution would be available.
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Chapter 3

Analysis Framework

This hapter presents the analysis framework and numerous properties related to it. The

analysis framework, by itself, is not a omplete stati analysis for programs drawn from the

syntati domain Exp. An abstrat model has to be provided to the framework in order to

reate an instane of analysis. Reall that the abstrat model spei�es what the phony values

and phony evaluation ontexts are when a phony exeution of the program is performed.

From now on, we designate phony values as abstrat values and phony ontexts as ontours.

The abstrat model takes the form of a few framework parameters. This parameterisation

of the analysis framework brings the mutability of the analysis that we need. Indeed, the

framework has a great exibility as will be made apparent by results in this hapter.

We start the presentation of the analysis framework by desribing its external behaviour,

that is, the desription of its parameters and that of the results of an analysis instane. Next,

we present the funtioning of the framework. The rest presents di�erent properties of the

framework. The �rst one is the fat that any analysis instantiated from the framework

always terminates. Next, a olleting mahine is introdued. The mahine omputes the

same result as the standard semantis for the mini-language but it also produes a ahe

ontaining the details of the omputation. With the help of the olleting mahine, we

demonstrate that the analysis instanes are onservative, that is, the results they produe

represent at least all the onrete omputations made during the onrete evaluation. Next,

we show that for any program that terminates without error, there exists an abstrat model

showing that all dynami type tests an safely be removed. We also show that, unfortunately,

it is undeidable to determine if suh a model atually exists for an arbitrary program. We
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end the hapter by illustrating the exibility of the framework by giving abstrat models

with whih it is possible to imitate many known analyses.

A kind of analysis framework was previously presented by Ashley and Dybvig in [11℄. It

is parameterised by two modelling funtions: one that ontrols the auray of the analysis

by splitting abstrat evaluation ontexts and one that ontrols the speed of the analysis by

performing widening on stores. In simple words, widening is some sort of \exaggeration" of

the abstrat values to help the analysis results to reah a stable state faster. Their analysis

framework does not o�er the subtlety that ours does. Both parameters have a global e�et

on the analysis. We onsider them to be too oarse for our appliation. Also their framework

handles mutable variables and data strutures. This adds unneessary omplexity sine our

language is purely funtional.

3.1 Instantiation of an Analysis

Before we present the proess of instantiating an analysis for a program, we need to mention

the existene of a few restritions imposed on the program itself. Let e

l

0

2 Exp be the

program to analyse. First, the framework requires the program to be �-onverted. That

is, eah variable in the program must have a distint name. This restrition poses no

big problem sine, for a program having variables with the same name, a simple renaming

remedy to the situation. Seond, the program must inlude proper labelling, that is, all labels

have to be distint. It is vital to uniquely identify eah expression in the program in order

to analyse it properly. One again, there is no problem there sine labels are an arti�ial

reation, anyway. They are introdued for analysis purpose only. Third, the program has

to be losed, that is, it must not have free variables. This restrition is losely related to

our hoie not to provide input/output operations in the mini-language (see Setion 2.3).

Now, if we suppose we have an appropriate program e

l

0

, the analysis of e

l

0

using an

abstrat modelM is denoted by

R = FW(e

l

0

;M)

where FW is the analysis framework reeiving a program and a model, and returning analysis

results R. We �rst desribe the abstrat model. Then the analysis results are presented.
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M = (ValB; ValC; ValP; Cont;

^

k

0

; ; p; all)

ValB 6= ; Abstrat Booleans

ValC 6= ; Abstrat losures

ValP 6= ; Abstrat pairs

Cont 6= ; Contours

^

k

0

2 Cont Main ontour

 : Lab� Cont ! ValC Abstrat losure reation

p : Lab� Val � Val � Cont ! ValP Abstrat pair reation

all : Lab� ValC � Val � Cont ! Cont Contour seletion

where Val := ValB

_

[ ValC

_

[ ValP

subjet to jVal j+ jContj <1

Figure 3.1: Instantiation parameters of the analysis framework

3.1.1 Framework Parameters

The abstrat model, formed by framework parameters, is presented in Figure 3.1.

1

The

model inludes abstrat values, abstrat ontours, and abstrat evaluation funtions.

The abstrat values inlude Booleans (ValB), losures (ValC), and pairs (ValP). ValB,

ValC, and ValP are �nite, non-empty sets. That is, these abstrat domains must be �nite

in order to guarantee that the abstrat evaluation of the program always uses a �nite

amount of resoures. And they must be non-empty in order to have at least one abstrat

representative for the onrete values of eah type. The three sets must be mutually disjoint,

as it is expressed by the use of the disjoint union operator (

_

[). The set of abstrat values Val

is the union of the three sets. As soon as three sets onform to the mentioned onstraints,

they an be onsidered as legal abstrat value domains. Nothing speial is required of the

abstrat values themselves. Their type omes from the fat that they belong to one (and

only one) of the three sets.

The abstrat ontours are given by the set Cont. It must be a �nite, non-empty set.

No other restrition applies to the abstrat ontours. Contours are abstrat representatives

for onrete evaluation ontexts. A onrete evaluation ontext desribes the irumstanes

in whih an expression gets evaluated. It inludes the urrent lexial environment that is

visible by the expression. It also inludes the identity of the aller to the losure whih led

1

In this hapter, we put a hat (̂ ) on the abstrat entities to distinguish them from the onrete ones.
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to the urrent evaluation, the aller of the aller, et. The ontext usually has an impat

on the value of an expression. For instane, an expression may produe di�erent values

when evaluated in di�erent lexial environments during onrete interpretation. Similarly,

this expression may produe di�erent abstrat values when evaluated in di�erent ontours

during abstrat interpretation.

Eah abstrat ontour represents a ertain fration of all possible evaluation ontexts.

The abstrat evaluation of an expression e

l

in a ontour

^

k must summarise everything

that ould happen during the onrete evaluation of e

l

in any evaluation ontext that is

represented by

^

k. For example, if e

l

evaluates to a pair in a ertain evaluation ontext and

to a losure in another ontext, and that both evaluation ontexts are abstrated by

^

k, then,

during abstrat evaluation in ontour

^

k, e

l

will evaluate to at least an abstrat pair and an

abstrat losure, the last two being abstrat ounterparts of the onrete values returned

by e

l

.

Parameter

^

k

0

is the ontour in whih the program (the top-level expression e

l

0

) is to be

abstratly evaluated. Exept for that speial use,

^

k

0

is an ordinary ontour.

When a �-expression is abstratly evaluated, an abstrat losure must be produed.

Similarly for a ons-expression. However, the analysis framework does not deide by itself

whih losure or whih pair should be returned. This is where the losure reation funtion

() and the pair reation funtion (p) ome into play. Funtion  hooses the abstrat

losure from ValC that should be returned based on the �-expression and the urrent on-

tour. Funtion p does the same but has also the possibility to base its deision on the two

values that go into the abstrat pair. We explain in the next setions what it means to

produe a value that ontains other values. p may hoose the abstrat pair in funtion of

the label of the ons-expression, or in funtion of the ontour, or in funtion of the type of

the value that goes in the dr-�eld of the pair, or, in general, aording to a ombination

of strategies. As long as  returns an element of ValC and p returns an element of ValP,

everything works.

The possibility of speifying ValC and ValP ontributes to the exibility of the frame-

work but it is espeially beause of the existene of the  and p funtions that the frame-

work is very exible. It is also beause of the all funtion that we desribe below.

One might worry about the fat that there is no b funtion (no Boolean reation fun-
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tion). Indeed, Booleans are produed by the evaluation of the false onstant and sometimes

by pair?-expressions. There ould have been a b funtion. However, we do not see the

utility of suh a funtion as there is just one onrete Boolean. What would be the bene�t

of hoosing one abstrat Boolean over another one sine they all represent the same on-

rete Boolean? We believe there is none. But why do we allow ValB to have more than

one element in the �rst plae? In fat, there is no advantage, but there is no problem in

doing so, either. The deision of having no b funtion ould be hanged in the future if

something indiates that it would be bene�ial. The urrent treatment of Boolean reation

by the framework is that eah time an abstrat Boolean is to be produed, the whole ValB

set is returned.

The last framework parameter is the all funtion. This funtion selets ontours in

whih expressions are evaluated. It is not used before the evaluation of eah individual

expression but only before the whole body of a losure. A (possibly) new ontour is seleted

eah time a losure is alled. Indeed, when an abstrat losure ̂ is invoked on argument

v̂ in all expression (

l

e

l

1

e

l

2

) and in ontour

^

k, the body of ̂ gets evaluated in ontour

all(l; ̂; v̂;

^

k). Hene, the all funtion ontributes greatly to the exibility of the analysis

framework as di�erent ontours an be seleted, depending, of ourse, on the invoked losure

but also on the argument, on the label of the all expression where the invoation ours,

and on the ontour in whih this invoation ours. The resulting exibility allows our

framework to have ontours that may be all-hains or that may be abstrat representatives

of the lexial environment, et. Examples of various uses of the all funtion an be found

in Setion 3.7.

In order to be a legal model for the analysis of a program e

l

0

,M has to obey to a last

onstraint. The three reation (or seletion) funtions have to be de�ned on the part of their

from-set that overs at least every possible argument passed by the analysis framework. That

is, their domain must over at least every possible argument. The funtions are not required

to be de�ned on their whole from-set as the label argument poses a problem. Presumably,

Lab is an in�nite set and the rest of the spei�ation of models manipulates only �nite sets.

So now we present the part of the from-set that must be overed by eah funtion. Let us

denote by 4(e

l

0

) the set of labels in program e

l

0

.

2

Closure reation funtion  has to be

de�ned at least on 4(e

l

0

) � Cont. Pair reation funtion p has to be de�ned at least on

2

The 4 funtion is formally de�ned in Setion 3.4.1.
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R = (�; �; ; Æ; �; �; �)

Value of e

l

in k: �

l;

^

k

�Val l 2 Lab,

^

k2 Cont

Contents of x when bound in

^

k: �

x;

^

k

�Val x2 Var,

^

k2 Cont

Return value of ̂ with body in

^

k: 

̂;

^

k

�Val ̂ 2 ValC,

^

k2 Cont

Flag indiating evaluation of e

l

in

^

k: Æ

l;

^

k

�Val l 2 Lab,

^

k2 Cont

Creation irumstanes of ̂: �

̂

�Lab� Cont ̂ 2 ValC

Creation irumstanes of p̂: �

p̂

�Lab� Val � Val � Cont p̂ 2 ValP

Seletion irumstanes of

^

k: �

^

k

�Lab� ValC � Val � Cont

^

k2 Cont

Figure 3.2: Analysis results of the framework

4(e

0

)�Val �Val �Cont. And ontour seletion funtion all has to be de�ned at least on

4(e

0

)� ValC � Val � Cont.

We ould relax this last onstraint on the domain of the abstrat reation funtions a

little more. For instane, the label passed to  an only be that of a �-expression. For p

and all, the label an only be that of a ons-expression and a all expression, respetively.

However, speifying the minimal domains that way would be unneessarily heavy. Anyway,

the given spei�ation does not pose a real problem as, for example,  may return any

element of ValC it wishes if the argument label is not one of a �-expression; it does not

matter.

3.1.2 Analysis Results

The analysis results R of the analysis of program e

l

0

using model M are desribed in

Figure 3.2. R takes the form of seven matries of abstrat variables. Eah matrix ontains

a ertain kind of information. In fat, it is diretly with these matries that the framework

does the analysis of programs.

We desribe the ontents of eah matrix. Essentially, the �rst four matries are the

analysis results that are normally onsidered as the most interesting, espeially the �rst.

The last three are rather intended for internal purpose.

The � matrix indiates the set of values to whih eah expression evaluates to in eah

ontour. Typially, there are many entries that remain empty after the analysis, beause,

for example, there is some dead ode in the program or, by the way the model is built, some
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expressions simply do not get evaluated in ertain ontours.

The � matrix indiates the values that eah variable of e

l

0

, in eah ontour, may ontain.

Note how the entries in this matrix require e

l

0

to be �-onverted. Idential names for

di�erent variables would produe pollution in the results as the values of all variables sharing

a ertain name would also share their ontents. The meaning of an abstrat variable like

�

x;

^

k

is quite subtle. It is not neessarily equivalent to the result of a referene to x in ontour

^

k. This would be ill-de�ned as there is no diret relation between the ontour that prevails

when x is (abstratly) bound to a value and the ontour that prevails when x is referened.

The referene may our inside of the body of a losure originating from a �-expression that

is in the sope of x. Remember that the ontour possibly hanges during eah invoation.

The abstrat variable �

x;

^

k

represents the value of variable x if x is the parameter of some

losure ̂ and if, for every invoation where ̂ gets alled on a ertain value, ontour

^

k is the

one that is presribed by all for the given situation. For example, onsider the following

program exerpt:

. . .

(

1

e

2

e

3

)

. . .

(�

4

x: (�

5

y: x

6

))

. . .

Suppose that during evaluation of all e

1

in ontour

^

k, a losure ̂, oming from �-expression

e

4

, gets alled on some value v̂, and that all(1; ̂; v̂;

^

k) =

^

k

0

. Then, it follows that v̂ 2 �

x;

^

k

0

.

Now, suppose that a losure originating from �-expression e

5

gets alled and that its body

is evaluated in ontour

^

k

00

. Then, the referene to x in e

6

in ontour

^

k

00

will inlude the

ontents of �

x;

^

k

0

(and not of �

x;

^

k

00

) beause

^

k

0

is the ontour in whih x was bound.

The  matrix indiates the values returned by the losures. Abstrat variable 

̂;

^

k

ontains the values returned by losure ̂ when its body has been evaluated in ontour

^

k.

The Æ matrix indiates in whih ontours eah expression gets evaluated. Eah entry

of the matrix ats as a ag. If Æ

l;

^

k

is non-empty, then expression e

l

gets evaluated in

ontour

^

k, otherwise, it is not. The atual ontents of these abstrat variables are not

important. The role of the Æ matrix is to help the framework to generate analyses that

are not too onservative. Analyses should always be onservative, but it should avoid
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unneessary pollution of the results as muh as possible. This is partiularly true in the

ase of our framework. Arbitrary ontour de�nition through parameters typially auses

the instantiation of analyses that inlude very disriminating ontours. Disriminating

ontours an mimi onrete evaluation ontexts with high �delity and most expressions

may get evaluated in only a small fration of the ontours. So it is important to avoid

propagation of values from the expressions that are not supposed to be evaluated.

The �, �, and � matries are logs of the reation and seletion of abstrat values and

ontours by the , p, and all funtions. They reord the irumstanes under whih values

and ontours are reated and seleted. Let us illustrate their usage with the ase of the

� matrix. For eah abstrat pair, the � matrix logs whih quadruples were e�etively used

in the reation of the pair. Note that a pair p̂ ould be reated when any quadruple from

p

�1

(p̂) is passed to p. But that does not mean that, during the analysis, pair p̂ really

got reated under all the irumstanes present in p

�1

(p̂). The exat set of irumstanes

that were prevailing when p̂ was reated during the analysis are logged in �

p̂

. The three

log matries are very helpful in helping to redue the propagation of superuous values

throughout the analysis results.

� Abstrat variable �

̂

ontains all ouples that lead to the reation of ̂, eah being

formed by a label and a ontour.

� Abstrat variable �

p̂

ontains all quadruples that lead to the reation of p̂, eah begin

formed by the label of the ons-expression, the two values to ons together, and the

ontour that was prevailing during that reation.

� Abstrat variable �

^

k

ontains all quadruples that lead to the seletion of

^

k as a ontext

for the evaluation of the body of a losure, eah being formed by the label of the all

expression, the losure that was invoked, the value that was passed, and the ontour

that was prevailing during the all.

Note that, from the point of view of the framework, the fat that p̂ has some ontents omes

from the fat that �

p̂

ontains some quadruples, and not from the fat that p̂ is atually

denoted in ValP by P , pair(v

1

; v

2

), or even |. The presentation of the internal funtioning

of the framework in the next setion show the intensive use of the log variables.
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3.1.3 An Example of Use of the Analysis Framework

To illustrate the use of the analysis framework, we present the analysis of a little program

using a simple model. Here is the program:

e

0

= (ar

0

(dr

1

(ons

2

#f

3

(ons

4

#f

5

#f

6

))))

Note that we avoid alls in the example as the mehanis for analysing funtions and alls

is quite involving. We hoose the simplest legal model for the analysis of e

0

:

M = (ValB; ValC; ValP; Cont; K; ; p; all) where

ValB = f#fg

ValC = fCg

ValP = fPg

Cont = fKg

(l;

^

k) = C

p(l; v̂

1

; v̂

2

;

^

k) = P

all(l;

^

f; v̂;

^

k) = K

The model ontains a single abstrat value of eah type and a single abstrat ontour.

Naturally, there is no freedom left in the hoie of the three reation funtions. Here are

the analysis results that we obtain from the analysis FW(e

0

;M):

R = (�; �; ; Æ; �; �; �) where

�

0;K

= f#fg �

1;K

= f#f; Pg �

2;K

= fPg �

3;K

= f#fg

�

4;K

= fPg �

5;K

= f#fg �

6;K

= f#fg



C;K

= ;

Æ

0;K

= f#fg Æ

1;K

= f#fg Æ

2;K

= f#fg Æ

3;K

= f#fg

Æ

4;K

= f#fg Æ

5;K

= f#fg Æ

6;K

= f#fg

�

C

= ;

�

P

= f(2; #f; P; K); (4; #f; #f; K)g

�

K

= ;

Here is the signi�ation of the results. We keep the desription of the � matrix for the end.

Note that the � matrix is degenerated as there is no variable in e

0

. The  matrix has only



30 CHAPTER 3. ANALYSIS FRAMEWORK

one entry. It says that losure C returns nothing when its body is evaluated in ontour

K. It is beause C never gets reated in the �rst plae, as is expressed by the � matrix.

The Æ matrix ontains an entry per expression and it shows that all the expressions are

evaluated in ontour K. The fat that their ontent is f#fg is not important, only that it

is not empty. The � matrix indiates that K gets seleted in no irumstane. There are

no alls, of ourse. The (neessary) use of K as the main ontour is not onsidered by the

framework to be a ontour seletion.

Now, we ome to the interesting part of the results. Let us �rst omment the ontents

of the � matrix. It indiates that pair P got reated under two irumstanes. One by e

4

in

ontour K and using two Booleans. The other one by e

2

in ontour K and using a Boolean

and P itself. Intuitively, this is redible. But, as will be made lear in the next setion,

these irumstanes originate from the interation between entries of the � and � matries.

We omplete the example by desribing the ontents of the �-matrix. Entries for e

3

, e

5

,

and e

6

only ontain #f. This is the only possible result for the evaluation of the onstant

false. Also, entries for e

2

and e

4

ontain pair P . A pair is the only result a ons-expression

ould provide and there is only one abstrat pair. Abstrat variable �

1;

^

k

ontains two values:

a Boolean and a pair. Note that, during a onrete evaluation, only a pair ould be the

result for the evaluation of e

1

. This is an example where analysis results ontains superuous

values that do not orrespond to anything in the onrete evaluation. This is aused by the

onservativeness of the analysis. The values in �

1;

^

k

are the result of the extration of the

dr-�eld of P . The extration proeeds by taking the third �eld of all quadruples in �

P

.

This explains the presene of the two values in �

1;

^

k

. The value in �

0;

^

k

is the result of the

extration of the ar-�eld and also by the �ltering of non-pairs among the values returned

by the sub-expression e

1

. The framework does not try to perform some kind of ar-�eld

extration on #f, but only on P .

Note, however, that the presene of a non-pair in �

1;

^

k

would fore a ompiler to inlude

a dynami type test in the generated ode for e

0

in order to keep the operations safe. That

has to be so, unless it did another analysis with a more preise model and managed to show

that only pairs an result from the evaluation of e

1

.

Note also how the log variable � helped us in obtaining more preise results. If p

�1

(P )

were to be used instead of �

P

, the values of expressions e

0

and e

1

would inlude Val entirely.
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3.2 Internal Funtioning of the Framework

Essentially, the analysis framework works by performing an abstrat interpretation of the

program. The analysis is done in two steps. First, a set of onstraints is generated. These

onstraints involve the abstrat variables mentioned above (�

l;

^

k

, et.). The onstraints

that are generated in order to perform the analysis are the evaluation onstraints. Their

name omes from the fat that their goal is to simulate the evaluation of the program.

The seond step onsists in solving these onstraints. Contrarily to what is done in [29℄, no

transformation or reation is performed on the onstraints themselves but, instead, abstrat

values are propagated in the abstrat variables until all the onstraints are satis�ed.

In the rest of the setion, we �rst present the generation of the evaluation onstraints.

We do not present an algorithm for solving the onstraints as it is a simple, mehanial

proess. As is ommon with the resolution of systems of onstraints between sets, there

are typially many solutions to the system. The one that is interesting is the least solution

sine the analysis ought to avoid the propagation of superuous values as muh as possible.

Then we present the generation of safety onstraints. These onstraints are not a part

of the analysis. However, their purpose is to provide a systemati way to verify whih opti-

misation's are enabled by the analysis results. That is, if all safety onstraints are satis�ed

for a partiular expression, then the ode generated by the ompiler for this expression need

not inlude any dynami safety type test.

3.2.1 Evaluation Constraints

The set of evaluation onstraints that the analysis framework generates for a program e

l

0

2

Exp and abstrat modelM, where

M = (ValB; ValC; ValP; Cont; k

0

; ; p; all),

is presented in Figure 3.3. Note that, exeptionally for this �gure, we omit putting a hat

(̂ ) on the abstrat values and ontours. The equations are already loaded enough without

it. And no onrete value is manipulated by the framework, anyway. The set of onstraints

inludes a speial onstraint `Æ

l

0

;k

0

� ValB', used to start the abstrat interpretation, and,

for eah ontour k and eah expression e

l

in the program, a set of onstraints simulating
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the (eventual) evaluation of e

l

in k. This onstraint generator may seem very omplex a

priori, so we explain the meaning of the onstraints generated for eah kind of expression.

The omplexity of the onstraints generated for eah kind of expression vary wildly and so

we try to order the presentation from that of the simplest kind to that of the most diÆult.

Let us start with the ase of the onstant false expression; i.e. let e

l

= #f

l

. Anytime e

l

is evaluated, its value is #f. The onstraint that is generated expresses just that. If Æ

l;k

6= ;,

that is, if e

l

gets evaluated, then �

l;k

� ValB. During the desription of the abstrat model,

we mentioned that we did not inlude a reation funtion for the Booleans. This is apparent

here as the whole set of abstrat Booleans is poured into the value of the expression, that

is, in �

l;k

. Note that, for expression #f

l

and for all subsequent expressions, great are has

been taken to ensure that they do not produe values if they do not get evaluated.

We ontinue with the pair?-expression; i.e. let e

l

= (pair?

l

e

l

1

). Here, e

l

has a sub-

expression and some \pipes" have to be installed in order to oordinate the evaluation of e

l

1

with that of its parent. Let us sketh the onrete evaluation of e

l

step by step and ompare

it with the generated onstraints. The �rst thing e

l

does is to trigger the evaluation of its

sub-expression. This is expressed by the onstraint Æ

l

1

;k

� Æ

l;k

. When the evaluation of e

l

1

is ompleted, the type of the resulting value is heked. If the value is a pair, e

l

returns

it diretly. So the next onstraint does the equivalent operation. The idea is that, if an

abstrat pair represents a onrete pair returned by e

l

1

, then the same abstrat pair also

represents the onrete pair returned by e

l

. If the value is not a pair, then #f is returned

by e

l

. This is expressed by the last onstraint. So, during the abstrat evaluation of e

l

in a

partiular ontour k, both the pair and the non-pair ases an our onurrently. This is

typial in abstrat interpretation.

We remain in pair-related ases and onsider the ons-expression: i.e. let e

l

= (ons

l

e

l

1

e

l

2

). The �rst onstraints express the fat that both sub-expressions have to be evaluated

when e

l

is. Instead, of reating one pair as during onrete interpretation, possibly many

abstrat pairs may have to be reated as eah sub-expression may produe more than one

value. The last onstraints reate pairs for eah ombination of values. The pair is reated

with the help of the p funtion. Moreover, the irumstanes prevailing when eah pair is

reated are logged in the appropriate � matrix entry. The logging of these informations is

required for the aess to the �elds of the pairs.

Let us onsider the ar-expression; i.e. let e

l

= (ar

l

e

l

1

). Basially, the evaluation steps
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Evaluation onstraints for program e

l

0

are:

[

k2Cont

E [[e

l

0

℄℄ k [ fÆ

l

0

;k

0

� ValBg ;

where

E [[#f

l

℄℄ k = fÆ

l;k

6= ; ) �

l;k

� ValBg

E [[x

l

℄℄ k = fÆ

l;k

6= ; ) �

l;k

� ref(x; l; k)g

E [[(

l

e

l

1

e

l

2

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [ E [[e

l

2

℄℄ k [

8

>

<

>

:

�

x;k

0

3 v;

�

l;k

� 

;k

0

;

�

k

0

3 (l; ; v; k)

 2 �

l

1

;k

\ ValC; v 2 �

l

2

;k

;

k

0

= all(l; ; v; k);

(l

0

; k

00

) 2 �



; e

l

0

= (�

l

0

x: e

l

00

)

9

>

=

>

;

E [[(�

l

x: e

l

1

)℄℄ k =

n

Æ

l;k

6= ; ) �

l;k

3 (l; k) ^ �

(l;k)

3 (l; k)

o

[

fÆ

l

1

;k

� �

x;k

g [ E [[e

l

1

℄℄ k [

f

;k

� �

l

1

;k

j  2 ValC; (l; k

0

) 2 �



g

E [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [

fÆ

l

2

;k

� �

l

1

;k

\ (ValC [ ValP)g [

fÆ

l

3

;k

� �

l

1

;k

\ ValBg [ E [[e

l

2

℄℄ k [

E [[e

l

3

℄℄ k [ f�

l;k

� �

l

2

;k

[ �

l

3

;k

g

E [[(ons

l

e

l

1

e

l

2

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

; Æ

l

2

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [ E [[e

l

2

℄℄ k [

(

�

l;k

3 p;

�

p

3 (l; v

1

; v

2

; k)

v

1

2 �

l

1

;k

; v

2

2 �

l

2

;k

;

p = p(l; v

1

; v

2

; k)

)

E [[(ar

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [

n

�

l;k

3 v

1

p 2 �

l

1

;k

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

E [[(dr

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [

n

�

l;k

3 v

2

p 2 �

l

1

;k

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

E [[(pair?

l

e

l

1

)℄℄ k = fÆ

l

1

;k

� Æ

l;k

g [ E [[e

l

1

℄℄ k [ f�

l;k

� �

l

1

;k

\ ValPg [

f�

l

1

;k

\ (ValB [ ValC) 6= ; ) �

l;k

� ValBg

ref(x; l; k) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ref(x; l

0

; k); if e

l

0

6= (�

l

0

y: e

l

)

�

x;k

; if e

l

0

= (�

l

0

x: e

l

)

[

k

0

ref(x; l

0

; k

0

); otherwise =� e

l

0

= (�

l

0

y: e

l

), where y 6= x �=

for (l

00

; ; v; k

00

) 2 �

k

;

(l

0

; k

0

) 2 �



where l

0

= parent(l)

Figure 3.3: Evaluation onstraints
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that are simulated by the onstraints are the triggering of the evaluation of e

l

1

and then,

for eah pair thus obtained, the extration of the ar-�eld. The ontents of the ar-�eld

is omputed by looking into the pair log (�) to reover the irumstanes leading to the

reation of the pairs. The seond omponent of eah quadruple ontains the value intended

for the ar-�eld of a pair. Aside from the extration issue, a point worth mentioning is the

treatment of the non-pair results oming from the sub-evaluation. The onstraints simply

ignore the non-pair values. This may seem strange as, in the onrete interpretation, a non-

pair value would ause an error. However, in the design of the framework, we have hosen

to simulate only the non-erroneous omputations by the evaluation onstraints. But, as will

be made lear below, there are safety onstraints that preisely have the veri�ation of the

\pairness" of the results oming from e

l

1

as a task. Moreover, propagating abstrat error

values would be a waste of resoures as there frequently are errors ourring somewhere

during the abstrat evaluation. An error value appearing as result from the evaluation of

an expression would not be very meaningful, anyway: \An error possibly ourred during

the evaluation of e

l

."

The explanations for the dr-expression are similar.

Now we turn to the onditional; i.e. let e

l

= (if

l

e

l

1

e

l

2

e

l

3

). The interesting harateristi

of the onditional is the fat that the last two sub-expressions get evaluated or not depends

on the value of the test. The abstrat interpretation of e

l

goes like this. The evaluation of

e

l

1

is triggered. Then the evaluation of e

l

2

is triggered if some true value omes from e

l

1

and the evaluation of e

l

3

is triggered if some false value omes from e

l

1

. The evaluation of

both (or even none) may be triggered. Finally, the value of e

l

is the union of the values of

e

l

2

and e

l

3

. These onstraints are an example that the value of a Æ entry may depend on

the value of an � entry.

The three kinds of expression that remain are all related to losures and invoations.

Let us onsider the �-expression; i.e. let e

l

= (�

l

x: e

l

1

). The onstraints generated for e

l

are divided in two groups: the ones related to the evaluation of the �-expression itself and

the ones related to the invoation of losures originating from e

l

. The onstraints of the

�rst group simply verify whether e

l

gets evaluated in ontour k and, if so, reate a losure

using  and log its reation. Note that di�erent �-expressions ould produe the same

abstrat losure. However, the � matrix logs the origins of all losures. The onstraints of

the seond group diret the evaluation of the body when a losure originating from e

l

is
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invoked. First, the evaluation of e

l

1

in k is triggered if the parameter is bound to any value

in ontour k. After e

l

1

is evaluated, the values it produes are opied as the return value of

the losures (

;k

) originating from e

l

. These losures may have been reated in any ontour,

but the thing that matters is that their body gets evaluated in k. Note that there is no

logial onnetion between the ontour in whih e

l

is evaluated and the ontour in whih

e

l

1

is evaluated. A ontour seletion using all ours during eah invoation. Nevertheless,

both groups of onstraints are generated together as the onstraint generator produes the

onstraints for the evaluation in ontour k for the whole program at one.

We ontinue by desribing the onstraints generated for a all; i.e. let e

l

= (

l

e

l

1

e

l

2

). The

triggering of the evaluation of the sub-expressions is routine, now. However, the invoation

is more interesting. An invoation ours for all ombinations of a losure  oming from e

l

1

and an argument v oming from e

l

2

. Note that non-losures oming from e

l

1

are ignored.

The ontour k

0

in whih the body ought to be evaluated is seleted using all. Then, the

parameter that has to be bound to the argument is loated by searhing for the origins of 

in the losure log �. Note that there ould be more than one parameter for abstrat losure

 sine di�erent �-expressions may produe . The onstraints then simulate the binding of

the parameter to v in ontour k

0

, the ontribution of the return value of  to the value of

e

l

, and the logging in � of the irumstanes in whih k

0

got seleted.

The last kind of expression is the variable referene; i.e. let e

l

= x

l

. It may seem

surprising that we desribe the onstraints related to this innoent-looking expression at

the end, but the referene is really not a trivial matter. Note that the framework does not

maintain an expliit abstrat representative for the lexial environment. Also, remember

that the abstrat variable �

x;k

does not represent the value of a referene to x in ontour k.

So the onstraint generated for e

l

involves the use of the `ref' funtion. This funtion does

the neessary work to gather the values to whih x ould be bound to when the referene

is made at label l in ontour k. Essentially, `ref' searhes for the binging site of x by

limbing in the syntax tree of the program. This is why it omputes the label l

0

of the

parent expression.

3

Most of the steps made during the limb are simple, exept when it

goes through a �-expression. Remember that there is no simple onnetion between the

ontour in whih a losure body exeutes and the ontour in whih its native �-expression

was evaluated. The value of ref(x; l; k) depends on e

l

0

. There are three ases.

3

The parent expression always exists beause the program is losed. The main expression e

l

0

has no

parent, but it is in the sope of no variable either, so a referene annot our there.
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1. If e

l

0

is not a �-expression, then a referene to x from e

l

in ontour k has to give the

same results as one from e

l

0

.

2. If e

l

0

is a �-expression and its parameter is x, then the limb has ome to an end. The

value of ref(x; l; k) is exatly �

x;k

.

3. Otherwise, e

l

0

is a �-expression and its parameter is not x. Let us suppose that the

parameter is y. The value of ref(x; l; k) is the value of a referene to x from e

l

0

in

the ontext in whih it was evaluated. The ontour in whih e

l

0

was evaluated is not

neessarily k. More than that, it may not be unique. In fat, any ontour k

0

in whih

e

l

0

has got evaluated, having resulted in a losure , whih has in turn been invoked in

some irumstanes, leading to the evaluation of e

l

in ontour k, should be onsidered.

This is exatly what is expressed in the third ase of the de�nition of `ref'. Closures

involved in the seletion of ontour k are �rst searhed for in the � matrix. Only

those originating from e

l

0

are onsidered, sine `ref' performs a limb in the syntax

tree. Eah of those losures has been reated in some ontour k

0

, aording to log �.

So the referene to x ontinues at e

l

0

in eah suh ontour k

0

and then the union of

their result is taken.

Now that the onstraints for eah kind of expression have been desribed, there remains

the `Æ

l

0

;k

0

� ValB' onstraint. This onstraint ensures that the abstrat interpretation of

e

l

0

e�etively happens. Otherwise, the minimal solution to the evaluation onstraints would

onsist in leaving all abstrat variables empty.

Example of Evaluation Constraints

We ome bak on the example of Setion 3.1.3 and give the evaluation onstraints for the

same program

e

0

= (ar

0

(dr

1

(ons

2

#f

3

(ons

4

#f

5

#f

6

))))

and the same modelM. Fortunately, the use of a single ontour helps in keeping the size

of the onstraints moderate. Here they are:

fÆ

1;K

� Æ

0;K

g

[ fÆ

2;K

� Æ

1;K

g

[ fÆ

3;K

� Æ

2;K

; Æ

4;K

� Æ

2;K

g
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[ fÆ

3;K

6= ; ) �

3;K

� ValBg

[ fÆ

5;K

� Æ

4;K

; Æ

6;K

� Æ

4;K

g

[ fÆ

5;K

6= ; ) �

5;K

� ValBg

[ fÆ

6;K

6= ; ) �

6;K

� ValBg

[

8

<

:

�

4;K

3 p v

1

2 �

5;K

; v

2

2 �

6;K

�

p

3 (4; v

1

; v

2

; K) p = p(4; v

1

; v

2

; K)

9

=

;

[

8

<

:

�

2;K

3 p v

1

2 �

3;K

; v

2

2 �

4;K

�

p

3 (2; v

1

; v

2

; K) p = p(2; v

1

; v

2

; K)

9

=

;

[

n

�

1;K

3 v

2

p 2 �

2;K

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

[

n

�

0;K

3 v

1

p 2 �

1;K

\ ValP; (l; v

1

; v

2

; k

0

) 2 �

p

o

[ fÆ

0;K

� ValBg

3.2.2 Safety Constraints

To verify whih dynami type tests are still required one the analysis results are omputed,

one an onfront the latter to the safety onstraints. Three kinds of expression may require

dynami type tests: alls and ar- and dr-expressions. A dynami test may have to be

inluded to hek the value returned by their �rst sub-expression. Figure 3.4 presents the

safety onstraints generated for a program e

l

0

using a modelM. These onstraints are very

simple and we do not give more details on their meaning.

An expression is safe and does not have to omprise a dynami type test if the safety

onstraints on the value of its �rst sub-expression (if there are any) are satis�ed for all

ontours k 2 Cont.

A program is analysed perfetly well using modelM if all safety onstraints are satis�ed.

In other words, if the system of onstraints obtained by joining both evaluation and safety

onstraints has a solution. A program is analysable perfetly well if there exists a modelM

suh that e

l

0

is analysed perfetly well usingM.

If we ome bak to our running example, generating the onstraints and onfronting

them to the analysis results would reveal that e

0

must inlude a dynami type test to

ensure that it always operates on pairs, but e

1

does not have to.
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Safety onstraints for program e

l

0

are:

[

k2Cont

S [[e

l

0

℄℄ k;

where

S [[#f

l

℄℄ k = ;

S [[x

l

℄℄ k = ;

S [[(

l

e

l

1

e

l

2

)℄℄ k = f�

l

1

;k

� ValCg [ S [[e

l

1

℄℄ k [ S [[e

l

2

℄℄ k

S [[(�

l

x: e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

S [[(if

l

e

l

1

e

l

2

e

l

3

)℄℄ k = S [[e

l

1

℄℄ k [ S [[e

l

2

℄℄ k [ S [[e

l

3

℄℄ k

S [[(ons

l

e

l

1

e

l

2

)℄℄ k = S [[e

l

1

℄℄ k [ S [[e

l

2

℄℄ k

S [[(ar

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [ S [[e

l

1

℄℄ k

S [[(dr

l

e

l

1

)℄℄ k = f�

l

1

;k

� ValPg [ S [[e

l

1

℄℄ k

S [[(pair?

l

e

l

1

)℄℄ k = S [[e

l

1

℄℄ k

Figure 3.4: Safety onstraints

3.3 Termination of the Analysis

The following theorem establishes that an analysis instane obtained from the analysis

framework (using a legal model) always terminates.

Theorem 3.1 An analysis performed by the evaluation onstraints always �nishes.

Proof 3.1 First, observe that eah evaluation onstraint an be rewritten as a set of

onstraints, eah onstraint having the form:

I

1

^ : : : ^ I

n

) I

0

where eah I

i

, 0 � i � n, is a simple membership ondition (for example, p

3

2 �

l;k

). It

follows that the saturation of all abstrat variables (for example, �

l;k

= Val ) onstitutes

a trivial solution to the evaluation onstraints. So �nding the minimum solution to the

onstraints is guaranteed to �nish sine there is only a �nite number of values that an be

put in eah abstrat variable. 2
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As an example, the evaluation onstraints for expression #f

l

in ontour k an be trans-

formed in the following way:

E [[#f

l

℄℄ k = fÆ

l;k

6= ; ) �

l;k

� ValBg

7!

E [[#f

l

℄℄ k = fv

1

2 Æ

l;k

) v

2

2 �

l;k

j v

1

2 Val ; v

2

2 ValBg

3.4 A Colleting Mahine

The establishment of many properties of the framework requires us to introdue a olleting

mahine for the mini-language. So Figure 3.5 presents the semantis of a olleting mahine.

The olleting mahine essentially does the same omputations as those performed during

an ordinary evaluation exept that it also builds a ahe ontaining a detailed desription

of every step of the omputations. For eah evaluation of an expression in a partiular

evaluation ontext, a pre-entry and a post-entry are logged into the ahe. Conrete ontours

are used by the olleting mahine in order to designate eah evaluation ontext met during

the evaluation of the program.

Let us omment on Figure 3.5. First, the ontours are represented by �nite strings of

labels. The labels in a partiular ontour are those of the all expressions through whih

invoations were done that led to the evaluation ontext designated by the ontour. For

example, the main expression of the program is evaluated in ontour �. If losure 

1

is

invoked from all expression e

l

1

during the evaluation of the main expression, its body is

evaluated in ontour l

1

. In turn, if (another) losure 

2

is invoked from all expression e

l

2

during evaluation of the body of 

1

, the body of 

2

is evaluated in ontour l

1

l

2

. And so

on. We show below that this de�nition of onrete ontours is suÆient to unambiguously

designate eah evaluation ontext.

Seond, a ahe (of type Cahe) is a set of entries. Eah entry is either a pre-entry,

i.e. a member of PreEnt, or a post-entry, i.e. a member of PostEnt. Pre-entry pre(l; k; �)

indiates what lexial environment � was present when expression e

l

got evaluated in ontour

k. Post-entry post(l; k; v) indiates the value (or error value) v to whih expression e

l

has

evaluated to in ontour k.

The semantis of the olleting mahine is very similar to the standard semantis of the
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Val

"

:= Err

_

[ Val

Err := Errors

Val := ValB

_

[ ValC

_

[ ValP

ValB := f#fg Booleans

ValC := flos((�

l

x: e); �) j (�

l

x: e) 2 Exp; � 2 Envg Closures

ValP := fpair(v

1

; v

2

) j v

1

; v

2

2 Valg Pairs

Env := Var! Val

Cont := Lab

�

Contours

Cahe := 2

Entry

Entry := PreEnt

_

[ PostEnt

PreEnt := fpre(l; k; �) j l 2 Lab; k 2 Cont; � 2 Envg

PostEnt := fpost(l; k; v) j l 2 Lab; k 2 Cont; v 2 Val

"

g

E : Exp! Env! Cont! Val

"

� Cahe Main evaluation funtion

E [[e

l

℄℄ � k = let (v; �) = E

0

[[e

l

℄℄ � k in

(v; � [ fpre(l; k; �); post(l; k; v)g)

E

0

: Exp! Env! Cont! Val

"

�Cahe Auxiliary eval. funtion

E

0

[[#f

l

℄℄ � k = (#f; ;)

E

0

[[x

l

℄℄ � k = (� x; ;)

E

0

[[(

l

e

1

e

2

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v

1

: C (E [[e

2

℄℄ � k) (A l k v

1

))

E

0

[[(�

l

x: e

1

)℄℄ � k = (los((�

l

x: e

1

); �); ;)

E

0

[[(if

l

e

1

e

2

e

3

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v 6= #f ? E [[e

2

℄℄ � k : E [[e

3

℄℄ � k)

E

0

[[(ons

l

e

1

e

2

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v

1

: C (E [[e

2

℄℄ � k) (�v

2

: (pair(v

1

; v

2

); ;)))

E

0

[[(ar

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v = pair(v

1

; v

2

) ? (v

1

; ;) : (error; ;))

E

0

[[(dr

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v = pair(v

1

; v

2

) ? (v

2

; ;) : (error; ;))

E

0

[[(pair?

l

e

1

)℄℄ � k = C (E [[e

1

℄℄ � k)

(�v: v 2 ValP ? (v; ;) : (#f; ;))

A : Lab! Cont! Val! Val! Val

"

� Cahe Apply funtion

A l k v

1

v

2

= (v

1

= los((�

l

0

x: e

1

); �))

? E [[e

1

℄℄ �[x 7! v

2

℄ kl

: (error; ;)

C : Val

"

� Cahe! (Val! Val

"

� Cahe)! Val

"

� Cahe Chek funtion

C (v

1

; �

1

) k = v

1

2 Err ? (v

1

; �

1

)

: let (v

2

; �

2

) = k v

1

in

(v

2

; �

1

[ �

2

)

Figure 3.5: Semantis of the olleting mahine
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4 : Exp! 2

Exp

4(#f

l

) = f#f

l

g

4(x

l

) = fx

l

g

4((

l

e

1

e

2

)) = f(

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((�

l

x: e

1

)) = f(�

l

x: e

1

)g [4(e

1

)

4((if

l

e

1

e

2

e

3

)) = f(if

l

e

1

e

2

e

3

)g [4(e

1

) [4(e

2

) [4(e

3

)

4((ons

l

e

1

e

2

)) = f(ons

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((ar

l

e

1

)) = f(ar

l

e

1

)g [4(e

1

)

4((dr

l

e

1

)) = f(dr

l

e

1

)g [4(e

1

)

4((pair?

l

e

1

)) = f(pair?

l

e

1

)g [4(e

1

)

Figure 3.6: Funtion omputing the set of sub-expressions

mini-language. The major di�erene lies in the instrumentation that insert entries in the

ahe. The semanti equations are divided in the de�nition of the main evaluation funtion

E and that of the auxiliary funtion E

0

. E

0

is essentially similar to the standard semanti

funtion. E provides the instrumentation for reording the evaluation steps and leaves the

atual omputations to E

0

. Note also how the apply funtion A updates the ontour when

the invoation of a losure ours. The label of the urrent all expression is appended

at the end of the urrent ontour. The body of the losure is evaluated in this extended

ontour.

3.4.1 Well-De�nedness of Cahe Entries

Now, we need to demonstrate that ahe entries are properly reorded in the ahe. In

partiular, that there is no ambiguity or onit between entries. The fat that pre- and

post-entries are added in the ahe for eah evaluation of an expression is obvious. The fat

that at most one pre-entry and one post-entry are added in the ahe for the evaluation of

an expression under a ertain ontour is less obvious. Preisely, there should be at most

one pre-entry (post-) for eah expression and ontour pair. In order to show this fat, we

�rst introdue some notation, then haraterise the ontents of the ahe returned by a all

to E, and �nally show that there annot be a onit between entries.

Figures 3.6 and 3.7 de�ne funtions 4 and 4, respetively. Funtion 4 returns the

set of sub-expressions of a partiular expression. Funtion 4 returns the set of immediate

sub-expressions. The immediate sub-expressions of e

l

are the ones that ould be evaluated
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4 : Exp! 2

Exp

4(#f

l

) = f#f

l

g

4(x

l

) = fx

l

g

4((

l

e

1

e

2

)) = f(

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((�

l

x: e

1

)) = f(�

l

x: e

1

)g

4((if

l

e

1

e

2

e

3

)) = f(if

l

e

1

e

2

e

3

)g [4(e

1

) [4(e

2

) [4(e

3

)

4((ons

l

e

1

e

2

)) = f(ons

l

e

1

e

2

)g [4(e

1

) [4(e

2

)

4((ar

l

e

1

)) = f(ar

l

e

1

)g [4(e

1

)

4((dr

l

e

1

)) = f(dr

l

e

1

)g [4(e

1

)

4((pair?

l

e

1

)) = f(pair?

l

e

1

)g [4(e

1

)

Figure 3.7: Funtion omputing the set of immediate sub-expressions

if e

l

were evaluated, but without going through a losure invoation. For example, if

e

l

= (

l

: : : (�

l

0

x: (

l

00

: : : e

l

000

: : : )) : : : )

then if e

l

000

is evaluated while e

l

is evaluated, it is neessarily through a losure invoation.

That implies that e

l

000

is not an immediate sub-expression of e

l

. The di�erene between

the implementation of 4 and 4 only lies in the treatment of �-expressions. The de�nition

of 4 is purely syntati and does not try to determine if a sub-expression may really be

evaluated.

We will not distinguish between the expressions and their labels in the use of 4 and 4.

They ould as well have type Lab! 2

Lab

, or Exp! 2

Lab

, et.

The following theorem haraterises the entries that may appear in a ahe returned by

the olleting mahine.

Theorem 3.2 Let e

0

2 Exp be a program and e

l

2 4(e

0

), a sub-expression. Also, let

(v; �) = E [[e

l

℄℄ � k. All entries in ahe � have the form pre(l

0

; k

0

; �

0

) or post(l

0

; k

0

; v

0

)

where

�

k

0

= k ^ l

0

2 4(l)

�

_

�

k

0

= kl

00

k

00

^ l

00

2 4(l)

�

What the theorem means is that all ontours met during evaluation of e

l

have k as a

pre�x. Cases where preisely k was met involve immediate sub-expressions of e

l

. And in

ases where an extension of k was met, the label used to extend k for the �rst time is one

belonging to an immediate sub-expression of e

l

.
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Proof 3.2 We prove the property by indution on the number of uses of the funtion E in

the omputation of E [[e

l

℄℄ � k. The proof is easy and a omplete one would be too lengthy.

We only over a few ases.

Basis. E [[e

l

℄℄ � k is omputed with one use of E. Neessarily, e

l

= #f

l

, e

l

= x

l

, or

e

l

= (�

l

x: e

l

0

). Then:

� = fpre(l; k; �);post(l; k; v)g

Clearly, both entries in � have the desired form as they ontain the ontour k and l 2 4(l).

Indution hypothesis. Let us suppose that entries in � have the desired form if E [[e

l

℄℄ � k is

omputed in at most n

0

uses of E.

Indution step. E [[e

l

℄℄ � k is omputed in n

0

+ 1 uses of E. Neessarily, e

l

is one of:

8

<

:

(

l

e

l

1

e

l

2

); (if

l

e

l

1

e

l

2

e

l

3

); (ons

l

e

l

1

e

l

2

);

(ar

l

e

l

1

); (dr

l

e

l

1

); (pair?

l

e

l

1

)

9

=

;

As it is the most omplex and, onsequently, a good representative, we present the ase

where e

l

= (

l

e

l

1

e

l

2

).

The �rst sub-ase ours when E [[e

l

1

℄℄ � k = (v

1

; �

1

) where v

1

2 Err. It follows that

� = fpre(l; k; �);post(l; k; v

1

)g [ �

1

Note that E [[e

l

1

℄℄ � k is omputed with n

0

uses of E. So, by indution hypothesis, eah entry

in �

1

is of the form pre(l

0

; k

0

; �

0

) or post(l

0

; k

0

; v

0

) where

�

k

0

= k ^ l

0

2 4(l

1

)

�

_

�

k

0

= kl

00

k

00

^ l

00

2 4(l

1

)

�

Sine 4(l

1

) � 4(l), we an onlude that eah entry in � has the desired form.

The seond sub-ase ours when E [[e

l

1

℄℄ � k = (v

1

; �

1

) where v

1

2 Val, E [[e

l

2

℄℄ � k =

(v

2

; �

2

), and either v

2

2 Err or v

1

62 ValC. It follows that

� = fpre(l; k; �);post(l; k; error)g [ �

1

[ �

2

Again, by indution hypothesis, entries in �

1

and �

2

have the desired form (relatively to l

1

and l

2

, respetively), and we an onlude that entries in � all have the desired form.
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The last sub-ase ours when

E [[e

l

1

℄℄ � k = (los((�

l

4

x: e

l

3

); �

1

); �

1

);

E [[e

l

2

℄℄ � k = (v

2

; �

2

) where v

2

2 Val, and

E [[e

l

3

℄℄ �

1

[x 7! v

2

℄ kl = (v

3

; �

3

):

It follows that

� = fpre(l; k; �);post(l; k; v

3

)g [ �

1

[ �

2

[ �

3

One again, the indution hypothesis an be used to determine that entries in �

1

have the

desired form relatively to l

1

and k, entries in �

2

have the desired form relatively to l

2

and

k, and entries in �

3

have the desired form relatively to l

3

and kl. Note that all ontours

found in entries of �

3

have k as a strit pre�x. We an onlude that all entries in � have

the desired form. 2

With the help of this theorem, we an show that the ontours unambiguously designate

the various evaluation ontexts in whih expressions are evaluated in the olleting mahine.

In other words, that eah distint evaluation of a partiular expression ours in a distint

ontour.

Theorem 3.3 Let e

0

2 Exp be a program, and let (v

0

; �

0

) = E [[e

0

℄℄ � �. We have that

8l

0

2 Lab; k

0

2 Cont:

jfpre(l

0

; k

0

; �) 2 �

0

j � 2 Envgj = jfpost(l

0

; k

0

; v) 2 �

0

j v 2 Val

"

gj � 1

Proof 3.3 We make the demonstration by indution on the number of uses of E neessary

to ompute (v; �) = E [[e

l

℄℄ � k where e

l

2 4e

0

, � 2 Env, and k 2 Cont. For brevity, we

onsider only a few ases.

Basis. If E [[e

l

℄℄ � k is omputed with one use of E, verifying the property is trivial.

Indution hypothesis. Suppose that the desired property is true for � when the number of

uses of E is at most n

0

.

Indution step. E [[e

l

℄℄ � k is omputed in n

0

+ 1 uses of E. Then e

l

has to be one of six

kinds of expressions. As it is the most omplex, we hoose the ase where e

l

= (

l

e

l

1

e

l

2

) as
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a representative. Also, we restrit ourselves to the sub-ase where

E [[e

l

1

℄℄ � k = (los((�

l

4

x: e

l

3

); �

1

); �

1

);

E [[e

l

2

℄℄ � k = (v

2

; �

2

) where v

2

2 Val, and

E [[e

l

3

℄℄ �

1

[x 7! v

2

℄ kl = (v

3

; �

3

):

It follows that

� = �

+

[ �

1

[ �

2

[ �

3

where �

+

= fpre(l; k; �);post(l; k; v)g

The desired property holds for all ahe parts �

1

, �

2

, and �

3

as eah of the three sub-

evaluations uses E less than n

0

times and onsequently the indution hypothesis applies. So

it is easy to �rst onvine oneself that

8l

0

2 Lab; k

0

2 Cont:

h

9�

0

2 Env: pre(l

0

; k

0

; �

0

) 2 � if and only if 9v

0

2 Val: post(l

0

; k

0

; v

0

) 2 �

i

What remains to be shown is either the non-existene or the uniqueness of the pre-

entry for a partiular expression e

l

0

and ontour k

0

. Similarly for the post-entries. As the

arguments for both kinds of entries are almost the same, the rest of the demonstration

onsiders only pre-entries.

Now, to make the theorem false, we would have to �nd two oniting pre-entries in

�. That is, pre(l

0

; k

0

; �

0

), pre(l

0

; k

0

; �

00

) 2 � suh that �

0

6= �

00

. The two pre-entries annot

ome from only one of the ahe parts �

+

, �

1

, �

2

, and �

3

as �

+

introdues only one pre-

entry and the others have been given to us by the indution hypothesis. Let us enumerate

the di�erent possibilities for the soure of the two pre-entries and show that eah possibility

leads to a ontradition.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

1

, then l

0

= l, k

0

= k, and it implies that

l 2 4(l

1

). Contradition.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

2

, then, similarly, it implies that l 2 4(l

2

).

Contradition.

If pre(l

0

; k

0

; �

0

) 2 �

+

and pre(l

0

; k

0

; �

00

) 2 �

3

, then k

0

would have to be equal to k and

have k as a strit pre�x at the same time. Contradition.
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If pre(l

0

; k

0

; �

0

) 2 �

1

and pre(l

0

; k

0

; �

00

) 2 �

2

, then there are two ases. Either k

0

= k

and l

0

2 4(l

1

) \ 4(l

2

) = ;. Contradition. Or k

0

= kl

00

k

00

where l

00

2 4(l

1

) \ 4(l

2

) = ;.

Contradition.

If pre(l

0

; k

0

; �

0

) 2 �

1

and pre(l

0

; k

0

; �

00

) 2 �

3

, then k

0

= klk

00

and it implies that l 2 4(l

1

).

Contradition.

Finally, if pre(l

0

; k

0

; �

0

) 2 �

2

and pre(l

0

; k

0

; �

00

) 2 �

3

, then, similarly, it implies that

l 2 4(l

2

). Contradition. 2

3.5 Conservativeness of the Analysis

An essential property about our analysis framework is that any analysis instane that it

produes is onservative. In short, the analysis results always fore the optimiser to inlude

at least all the truly required dynami type tests, and so, no matter what the abstrat model

is. This property is to be established as the �nal result of this setion and it is derived

from the main theorem saying that an analysis instane mimis onservatively the onrete

evaluation of the program. Before we present both, we �rst introdue many de�nitions and

notations helping in the next proofs.

3.5.1 Aessory De�nitions

Let e

0

2 Exp be the program to analyse. Let M = (ValB; ValC; ValP; Cont;

^

k

0

; ; p;

all) be the abstrat model. We will denote the analysis results by R. Formally,

R = (�; �; ; Æ; �; �; �) = FW(e

0

;M)

As the proof of onservativeness mentions both onrete and abstrat values, a hat marks

the abstrat values.

We de�ne the abstrat environment funtion �̂ this way:

�̂ : Lab� Cont ! Var! 2

Val

�̂(l;

^

k)(x) = ref(x; l;

^

k)
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That is, it returns the abstrat lexial environment visible from expression e

l

in ontour

^

k.

Next, we de�ne the \is abstrated by" relation. We denote the relation by the % glyph.

This relation is de�ned in terms of the abstrat model and parts of the analysis results.

These equations de�ne when a onrete value is onsidered to be abstrated by an abstrat

value:

#f % v̂, if v̂ 2 ValB

los((�

l

x: e); �)% v̂, if v̂ 2 ValC and 9(l;

^

k) 2 �

v̂

: �% �̂(l;

^

k)

pair(v

1

; v

2

)% v̂, if v̂ 2 ValP and 9(l; v̂

1

; v̂

2

;

^

k) 2 �

v̂

: v

1

% v̂

1

^ v

2

% v̂

2

The relation % on values basially veri�es that an abstrat value has at least the same

behaviour as the onrete one. There are no speial onditions for Booleans. The onditions

for pairs verify that appropriate values an be extrated from the ar- and dr-�elds of

the abstrat pair. The onditions for losures verify that the right �-expression an be

reovered with an appropriate lexial environment. This last test onsists in testing if an

abstrat lexial environment abstrats a onrete lexial environment. We de�ne the %

relation on environments as:

�% �̂(l;

^

k), if 8x 2 Dom(�): 9v̂ 2 �̂(l;

^

k): �(x)% v̂

Now, with the help of the % relation de�ned on values and lexial environments, we

an formally explain what it means for analysis results to mimi onservatively the onrete

evaluation of a program. The relation also relates ahes and analysis results onditional to

the provision of a ontour abstration funtion.

�%

a

R if

a : Cont! Cont

V

h

8pre(l; k; �) 2 �: Æ

l;a(k)

6= ; ^ �% �̂(l; a(k))

i

V

h

8post(l; k; v) 2 �: (9v̂ 2 �

l;a(k)

: v % v̂) _ v 2 Err

i

3.5.2 Conservative Mimiking of the Evaluation

Before we proeed with the main theorem, we introdue this little lemma. We do not prove

it as quik examination of the semantis of the olleting mahine is suÆient to onvine

oneself that it is true.
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Lemma 3.4 Let e

l

2 Exp, � 2 Env, and k 2 Cont:

E [[e

l

℄℄ � k = (v; �)) post(l; k; v) 2 �

The following theorem onstitutes the main part of the demonstration that any analysis

instane oming from the framework is onservative. The proof follows.

Theorem 3.5 Let e

l

0

2 Exp be a program and let e

l

2 4(e

l

0

). Let the model M be (ValB;

ValC; ValP; Cont;

^

k

0

; ; p; all). Let R = FW(e

l

0

;M) be the analysis results for e

l

0

.

E [[e

l

℄℄ � k = (v; �) ^ Æ

l;

^

k

6= ; ^ �% �̂(l;

^

k)

) 9a : Cont! Cont:

�

�%

a

R ^ a(k) =

^

k

�

The theorem says that the onrete evaluation of an expression in some evaluation on-

text has an abstrat ounterpart as long as the expression is evaluated in an appropriate

abstrat evaluation ontext. The a funtion provided by the theorem is the ontour ab-

stration funtion and it indiates to whih abstrat ontour eah onrete ontour should

be mapped to. The theorem applies only if an appropriate abstrat evaluation ontext is

found. That is, it applies only if there is an abstrat ontour in whih e

l

gets evaluated and

in whih the lexial environment abstrats �. This may seem to weaken the theorem, but

note that we do not require E [[e

l

℄℄ � k to be an atual part of the onrete evaluation of

the whole program. It will quikly beome apparent in the proof that, if E [[e

l

℄℄ � k is an

atual part of the whole evaluation, then there will exist an abstrat ontour

^

k in whih e

l

is evaluated within an appropriate abstrat lexial environment.

Proof 3.5 We prove the theorem by indution on the number of uses of E in the evaluation

E [[e

l

℄℄ � k. To have a more preise argumentation, we de�ne the following property P :

P (n) : E [[e

l

℄℄ � k is omputed in at most n uses of E ^

E [[e

l

℄℄ � k = (v; �) ^ Æ

l;

^

k

6= ; ^ �% �̂(l;

^

k)

) 9a : Cont! Cont:

�

�%

a

R ^ a(k) =

^

k

�

Basis. We must show that P (1) is satis�ed. So we only need to onsider ases where

E [[e

l

℄℄ � k is omputed in exatly one use of E. The only expressions that an get evaluated
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in one use of E are the false onstant, the variable referene, and the �-expression. Let us

examine eah ase in turn.

First ase: e

l

= #f

l

. We have that:

1. E [[e

l

℄℄ � k = (#f; �) where � = fpre(l; k; �);post(l; k; #f)g, by the olleting mahine

semantis;

2. let us de�ne a : Cont! Cont as [k 7!

^

k℄; that is, it is only de�ned in k and a(k) =

^

k;

3. Æ

l;a(k)

6= ;, beause Æ

l;

^

k

6= ; and the de�nition of a;

4. �% �̂(l; a(k)), beause �% �̂(l;

^

k) and by def. of a;

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 3 and 4;

6. 9v̂

0

2 �

l;a(k)

: #f % v̂, beause Æ

l;

^

k

6= ; implies �

l;

^

k

� ValB, by the evaluation

onstraints of the analysis;

7. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 6;

8. �%

a

R, by 5 and 7.

So, �%

a

R where a(k) =

^

k.

Seond ase: e

l

= x

l

. We have that:

1. E [[e

l

℄℄ � k = (� x; �) where � = fpre(l; k; �);post(l; k; � x)g, by the olleting ma-

hine semantis;

2. let a = [k 7!

^

k℄;

3. Æ

l;a(k)

6= ;;

4. �% �̂(l; a(k));

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

6. 9v̂

0

2 �̂(l;

^

k)(x): � x% v̂

0

, by 4;

7. 9v̂

0

2 �

l;a(k)

: � x% v̂

0

, beause Æ

l;

^

k

6= ; implies �

l;

^

k

� ref(x; l;

^

k) = �̂(l;

^

k)(x), by the

evaluation onstraints, the de�nition of �̂, and 6;
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8. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 7;

9. �%

a

R.

So, �%

a

R where a(k) =

^

k.

Third ase: e

l

= (�

l

x: e

l

1

). We have that:

1. E [[e

l

℄℄ � k = (; �) where  = los((�

l

x: e

l

1

); �) and � = fpre(l; k; �);post(l; k; )g;

2. let a = [k 7!

^

k℄;

3. Æ

l;a(k)

6= ;;

4. �% �̂(l; a(k));

5. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

6. �

l;

^

k

3 (l;

^

k) and �

(l;

^

k)

3 (l;

^

k), beause Æ

l;

^

k

6= ;, and by the evaluation onstraints;

7. % (l;

^

k), beause (l;

^

k) 2 ValC and by 6;

8. 9v̂

0

2 �

l;a(k)

: % v̂

0

, by 6 and 7;

9. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 8;

10. �%

a

R.

So, �%

a

R and a(k) =

^

k.

For all three possible kinds of expressions, we obtained that � %

a

R for a funtion

a : Cont! Cont suh that a(k) =

^

k. So P (1) is satis�ed.

Indution hypothesis. Let us suppose that P (n� 1) is satis�ed for some n � 2.

Indution step. Now, we must show that P (n) is also satis�ed. Note that we have to provide

a demonstration only for the ases where E [[e

l

℄℄ � k is omputed in exatly n uses of E as

the ases for less than n uses are already overed by the indution hypothesis.

Sine n � 2, the only kinds of expressions that are possible for e

l

are preisely those

that were impossible in the indution basis. In order to avoid starting with the diÆult

all-expression ase, we go through the kinds of expressions from the last to the �rst.
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First ase: e

l

= (pair?

l

e

l

1

). The evaluation starts by omputing E [[e

l

1

℄℄ � k = (v

1

; �

1

).

Three sub-ases may our: v

1

is an error, a pair, or a non-pair value.

Let us �rst onsider the sub-ase where v

1

2 Err. We have that:

1. E [[e

l

℄℄ � k = (v

1

; �) where � = fpre(l; k; �);post(l; k; v

1

)g [ �

1

;

2. the omputation of E [[e

l

1

℄℄ � k is done in less than n uses of E;

3. Æ

l

1

;

^

k

6= ; by the fat that Æ

l;

^

k

6= ; and the evaluation onstraints;

4. � % �̂(l

1

;

^

k) beause: e

l

is not a �-expression, so ref(x; l

1

;

^

k) = ref(x; l;

^

k) (for any

x 2 Var in the lexial environment), and so, �̂(l

1

;

^

k) = �̂(l;

^

k);

5. �

1

%

a

R where a(k) =

^

k, beause of 2, 3, 4, and the indution hypothesis;

6. Æ

l;a(k)

6= ;;

7. �% �̂(l; a(k));

8. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 1, 5, 6, and 7;

9. | 11. (non-existent)

12. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and the fat that

v

1

2 Err;

13. �%

a

R.

So, �%

a

R where a(k) =

^

k.

The seond sub-ase ours when v

1

2 ValP. Here, we give only the reasoning steps that

must be hanged from the proof of the �rst sub-ase:

9. post(l

1

; k; v

1

) 2 �

1

, beause of the fat that E [[e

l

1

℄℄ � k = (v

1

; �

1

) and Lemma 3.4;

10. 9v̂

0

2 �

l

1

;

^

k

: v

1

% v̂

0

, by 5 and the fat that v

1

62 Err;

11. 9v̂

0

2 �

l;

^

k

: v

1

% v̂

0

, by 10, the fat that v

1

2 ValP (so v̂

0

2 ValP), and the evaluation

onstraints;

The third sub-ase ours when v

1

2 ValB [ValC. The hanges in the reasoning are:
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1. E [[e

l

℄℄ � k = (#f; �) where � = fpre(l; k; �);post(l; k; #f)g [ �

1

;

11. 9v̂

00

2 �

l;

^

k

: #f % v̂

00

, by 10, the fat that v

1

2 ValB [ ValC (so v̂

0

2 ValB [ ValC),

and the evaluation onstraints;

Sine all three sub-ases are veri�ed, the ahe resulting from the evaluation of a pair-

membership test expression is abstrated by the analysis results.

Seond ase: e

l

= (dr

l

e

l

1

). Again, the evaluation of e

l

starts by omputing E [[e

l

1

℄℄ � k =

(v

1

; �

1

). The same three sub-ases as those seen with the pair?-expression must be on-

sidered. We skip the v

1

2 Err sub-ase sine its treatment is almost idential as that of the

pair?-expression.

So we start by onsidering the sub-ase where v

1

= (v

0

1

; v

00

1

) 2 ValP. We have that:

1. E [[e

l

℄℄ � k = (v

00

1

; �) where � = fpre(l; k; �);post(l; k; v

00

1

)g [ �

1

;

2. the omputation of E [[e

l

1

℄℄ � k is done in less than n uses of E;

3. Æ

l

1

;

^

k

6= ; beause of the fat that Æ

l;

^

k

6= ; and the evaluation onstraints;

4. � % �̂(l

1

;

^

k) beause: e

l

is not a �-expression, so ref(x; l

1

;

^

k) = ref(x; l;

^

k) (for any

x 2 Var in the lexial environment), and so, �̂(l

1

;

^

k) = �̂(l;

^

k);

5. �

1

%

a

R where a(k) =

^

k, beause of 2, 3, 4, and the indution hypothesis;

6. Æ

l;a(k)

6= ;;

7. �% �̂(l; a(k));

8. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 1, 5, 6, and 7;

9. post(l

1

; k; v

1

) 2 �

1

, beause of the fat that E [[e

l

1

℄℄ � k = (v

1

; �

1

) and Lemma 3.4;

10. 9v̂

0

2 �

l

1

;

^

k

: v

1

% v̂

0

, by 5 and the fat that v

1

62 Err;

11. let p̂ 2 �

l

1

;

^

k

suh that v

1

% p̂;

12. p̂ 2 ValP and 9(l

0

; p̂

0

; p̂

00

;

^

k

0

) 2 �

p̂

: v

0

1

% p̂

0

^ v

00

1

% p̂

00

, by 11;

13. p̂

00

2 �

l;

^

k

by 12 and the evaluation onstraints;

14. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and 12;
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15. �%

a

R where a(k) =

^

k.

Note how the% relation is helpful in the reasoning. It determines that p̂ is an abstration of

v

1

based on the observable behaviour of both values. Let us explain ourselves. The essene

of onrete value v

1

is that it is a pair, and it ontains two values v

0

1

and v

00

1

in its �elds.

The essene of abstrat value p̂ is that it is a pair and, aording to log variable �

p̂

, it has,

among other things, been formed by onsing together p̂

0

and p̂

00

, that is, abstrations of v

0

1

and v

00

1

, respetively.

The third sub-ase ours when v

1

2 ValB [ValC. We give only the modi�ed steps:

1. E [[e

l

℄℄ � k = (error; �) where � = fpre(l; k; �);post(l; k; error)g [ �

1

;

9. | 13. (removed)

14. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 1, 5, and the fat that

the result is an error;

This ends the demonstration for ase e

l

= (dr

l

e

l

1

).

Third ase: e

l

= (ar

l

e

l

1

). Sine the reasoning is analogous to that for the dr-

expression, we skip it entirely.

Fourth ase: e

l

= (ons

l

e

l

1

e

l

2

). The evaluation of one of the sub-expressions may lead

to an error. Moreover, the related sub-ases are not really interesting and their demonstra-

tion ould easily be done by adapting the one for the error sub-ase in the pair?-expression

demonstration. So we onentrate immediately on the interesting sub-ase where both sub-

expressions evaluate to normal values. Note that we will be a little more onise in the

demonstration:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 Val;

2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k where v

2

2 Val;

3. E [[e

l

℄℄ � k = (p; �) where p = pair(v

1

; v

2

) and � = fpre(l; k; �);post(l; k; p)g[�

1

[�

2

4. the omputation of eah of E [[e

l

1

℄℄ � k and E [[e

l

2

℄℄ � k uses E less than n times;

5. Æ

l

1

;

^

k

6= ; and Æ

l

2

;

^

k

6= ;;
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6. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

7. �

1

%

a

1

R and �

2

%

a

2

R, where a

1

(k) =

^

k and a

2

(k) =

^

k, by 4, 5, 6, and the indution

hypothesis;

8. let a = a

1

a

2

; that is, a ontains all the bindings that form both a

1

and a

2

; note

that there is onit in doing so; this is beause Theorem 3.2 guarantees us that

Dom(a

1

) \Dom(a

2

) = fkg and we know that a

1

(k) = a

2

(k) =

^

k;

9. �

1

%

a

R and �

2

%

a

R, by 7 and 8;

10. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 3, 9, and the theorem pre-

onditions;

11. E [[e

l

1

℄℄ � k = (v

1

; �

1

) ) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

; let v̂

1

be that

value;

12. E [[e

l

2

℄℄ � k = (v

2

; �

2

) ) post(l

2

; k; v

2

) 2 �

2

) 9v̂

0

2

2 �

l

2

;

^

k

: v

2

% v̂

0

2

; let v̂

2

be that

value;

13. let p̂ = p(l; v̂

1

; v̂

2

;

^

k);

14. p̂ 2 �

l;

^

k

and (l; v̂

1

; v̂

2

;

^

k) 2 �

p̂

, by the evaluation onstraints;

15. p% p̂, by 3, 11, 12, and 14;

16. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 3, 9, 14, and 15;

17. �%

a

R where a(k) =

^

k.

Fifth ase: e

l

= (if

l

e

l

1

e

l

2

e

l

3

). There are many sub-ases: the evaluation of the test

leads to an error, to a true value, or to a false value. The last two sub-ases an be further

subdivided depending on whether the evaluation of the branh that is taken leads to an

error on not. As in previous ases, we skip the sub-ase where the test evaluates to an error.

We onsider the sub-ases where the test evaluates to a true value. In the reasoning, we

take are of the situations where the then-branh e

l

2

evaluates or not to an error. We have

that:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 ValC [ValP;
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2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k;

3. E [[e

l

℄℄ � k = (v

2

; �) where � = fpre(l; k; �);post(l; k; v

2

)g [ �

1

[ �

2

;

4. the omputation of both E [[e

l

1

℄℄ � k and E [[e

l

2

℄℄ � k is done in less than n uses of E;

5. Æ

l

1

;

^

k

6= ; (note that we annot say the same thing about Æ

l

2

;

^

k

yet);

6. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

7. �

1

%

a

1

R where a

1

(k) =

^

k, by 4, 5, 6, and the indution hypothesis;

8. E [[e

l

1

℄℄ � k = (v

1

; �

1

) ) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

, sine v

1

62 Err;

let v̂

1

be this value;

9. v̂

1

2 Æ

l

2

;

^

k

, beause of 8 whih implies that v̂

1

2 �

l

1

;

^

k

\ (ValC [ ValP);

10. �

2

%

a

2

R where a

2

(k) =

^

k, by 4, 6, 9, and the indution hypothesis;

11. let a = a

1

a

2

; note that a(k) =

^

k;

12. �

1

%

a

R and �

2

%

a

R;

13. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

));

14. E [[e

l

2

℄℄ � k = (v

2

; �

2

) ) post(l

2

; k; v

2

) 2 �

2

) (9v̂

0

2

2 �

l

2

;a(k)

: v

2

% v̂

0

2

) _ v

2

2 Err

) (9v̂

0

2 �

l;a(k)

: v

2

% v̂

0

) _ v

2

2 Err, beause of 12 and evaluation onstraints;

15. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err;

16. �%

a

R where a(k) =

^

k.

These are the modi�ed steps in the reasoning for the sub-ases where the test evaluates

to false:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

2 ValB;

2. let (v

3

; �

3

) = E [[e

l

3

℄℄ � k;

3. E [[e

l

℄℄ � k = (v

3

; �) where � = fpre(l; k; �);post(l; k; v

3

)g [ �

1

[ �

3

;

4. the omputation of both E [[e

l

1

℄℄ � k and E [[e

l

3

℄℄ � k is done in less than n uses of E;

6. �% �̂(l

1

;

^

k) and �% �̂(l

3

;

^

k);
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9. v̂

1

2 Æ

l

3

;

^

k

, beause of 8 whih implies that v̂

1

2 �

l

1

;

^

k

\ ValB;

10. �

3

%

a

3

R where a

3

(k) =

^

k, by 4, 6, 9, and the indution hypothesis;

11. let a = a

1

a

3

; note that a(k) =

^

k;

12. �

1

%

a

R and �

3

%

a

R;

14. E [[e

l

3

℄℄ � k = (v

3

; �

3

) ) post(l

3

; k; v

3

) 2 �

3

) (9v̂

0

3

2 �

l

3

;a(k)

: v

3

% v̂

0

3

) _ v

3

2 Err

) (9v̂

0

2 �

l;a(k)

: v

3

% v̂

0

) _ v

3

2 Err, beause of 12 and evaluation onstraints;

Last ase: e

l

= (

l

e

l

1

e

l

2

). There are numerous sub-ases: one of the sub-expressions

evaluates to an error; the �rst one evaluates to a non-losure; a losure is invoked and its

body is evaluated, leading or not to an error. The �rst kind of sub-ases is similar to sub-

ases present in all previous ases. We skip them. The seond kind of sub-ase is similar

to the one involving a dr-expression and a non-pair. We skip it too. We only onsider the

last kind of sub-ases. Here is the reasoning:

1. let (v

1

; �

1

) = E [[e

l

1

℄℄ � k where v

1

= los((�

l

4

x: e

l

3

); �

0

);

2. let (v

2

; �

2

) = E [[e

l

2

℄℄ � k where v

2

2 Val;

3. let (v

3

; �

3

) = E [[e

l

3

℄℄ �

0

[x 7! v

2

℄ kl;

4. E [[e

l

℄℄ � k = (v

3

; �) where � = fpre(l; k; �);post(l; k; v

3

)g [ �

1

[ �

2

[ �

3

;

5. the omputation of eah of E [[e

l

1

℄℄ � k, E [[e

l

2

℄℄ � k, and E [[e

l

3

℄℄ �

0

[x 7! v

2

℄ kl requires

less than n uses of E;

6. Æ

l

1

;

^

k

6= ; and Æ

l

2

;

^

k

6= ;;

7. �% �̂(l

1

;

^

k) and �% �̂(l

2

;

^

k);

8. �

1

%

a

1

R and �

2

%

a

2

R, where a

1

(k) =

^

k and a

2

(k) =

^

k, by 5, 6, 7, and the indution

hypothesis;

9. E [[e

l

1

℄℄ � k = (v

1

; �

1

) ) post(l

1

; k; v

1

) 2 �

1

) 9v̂

0

1

2 �

l

1

;

^

k

: v

1

% v̂

0

1

as v

1

62 Err; let

̂ 2 �

l

1

;

^

k

\ ValC be that losure;

10. E [[e

l

2

℄℄ � k = (v

2

; �

2

) ) post(l

2

; k; v

2

) 2 �

2

) 9v̂

0

2

2 �

l

2

;

^

k

: v

2

% v̂

0

2

as v

2

62 Err; let

v̂

2

2 �

l

2

;

^

k

be that value;
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11. let

^

k

0

= all(l; ̂; v̂

2

;

^

k);

12. 9

^

k

00

2 Cont: (l

4

;

^

k

00

) 2 �

̂

and �

0

% �̂(l

4

;

^

k

00

), beause v

1

% ̂;

13. v̂

2

2 �

x;

^

k

0

, by 9, 10, 11, 12, and the evaluation onstraints;

14. Æ

l

3

;

^

k

0

6= ;, beause of 13 and the evaluation onstraints;

15. v

2

% v̂

2

2 �

x;

^

k

0

= ref(x; l

3

;

^

k

0

) = �̂(l

3

;

^

k

0

)(x) ) 9v̂

0

2 �̂(l

3

;

^

k

0

): v

2

% v̂

0

) 9v̂

0

2

�̂(l

3

;

^

k

0

): (�

0

[x 7! v

2

℄) x% v̂

0

;

16. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

4

;

^

k

00

): �

0

y% v̂

0

, by 12;

17. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

3

;

^

k

0

): �

0

y % v̂

0

, by 16 and the fat that �̂(l

3

;

^

k

0

)(y) �

�̂(l

4

;

^

k

00

)(y) (see the evaluation onstraints);

18. for any y 2 Dom(�

0

), 9v̂

0

2 �̂(l

3

;

^

k

0

): (�

0

[x 7! v

2

℄) y% v̂

0

, by 17;

19. �

0

[x 7! v

2

℄% �̂(l

3

;

^

k

0

), by 15 and 18;

20. �

3

%

a

3

R where a

3

(kl) =

^

k

0

, by 5, 14, 18, the indution hypothesis;

21. let a = a

1

a

2

a

3

; there is no onit as Dom(a

1

) \ Dom(a

2

) = fkg, a

1

(k) = a

2

(k) =

^

k,

and Dom(a

3

) \ (Dom(a

1

) [Dom(a

2

)) = ;;

22. �

1

%

a

R, �

2

%

a

R, and �

3

%

a

R;

23. sine post(l

3

; kl; v

3

) 2 �

3

, we have that if v

3

62 Err, then v̂

3

2 �

l

3

;

^

k

0

suh that v

3

% v̂

3

,

then v̂

3

2 

̂;

^

k

0

� �

l;

^

k

;

24. 8pre(l

0

; k

0

; �

0

) 2 �: Æ

l

0

;a(k

0

)

6= ; ^ �

0

% �̂(l

0

; a(k

0

)), by 4 and 22;

25. 8post(l

0

; k

0

; v

0

) 2 �: (9v̂

0

2 �

l

0

;a(k

0

)

: v

0

% v̂

0

) _ v

0

2 Err, by 4, 22, and 23;

26. �%

a

R where a(k) =

^

k.

This ompletes the ase e

l

= (

l

e

l

1

e

l

2

), the proof that P (n) is satis�ed, and the whole proof

of Theorem 3.5. 2
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3.5.3 Conservativeness Regarding Dynami Type Tests

The entral property, Theorem 3.5, shows that an analyser instane produed by the frame-

work mimis onservatively parts of the onrete evaluation, provided that ertain onditions

are met. The following theorem uses this property to show that an optimiser an rely on

the analysis results produed by the analyser.

Theorem 3.6 Let e

l

0

2 Exp be a program. Let (v

0

; �

0

) = E [[e

l

0

℄℄ � � be the onrete

evaluation result. LetM = (ValB; ValC; ValP; Cont;

^

k

0

; ; p; all) be the abstrat model.

Let R = FW(e

l

0

;M) be the analysis results. Then we have that:

9post(l; k; v) 2 �

0

^ (ar

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC ) 9

^

k 2 Cont: �

l;

^

k

6� ValP

9post(l; k; v) 2 �

0

^ (dr

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC ) 9

^

k 2 Cont: �

l;

^

k

6� ValP

9post(l; k; v) 2 �

0

^ (

l

0

e

l

e

l

00

) 2 4(e

l

0

) ^ v 2 ValB [ValP ) 9

^

k 2 Cont: �

l;

^

k

6� ValC

Essentially, it means that if v 2 Err and we onfront R to the safety onstraints, then

at least one of the safety onstraints has to be violated. More aurately, if it is expression

e

l

that evaluates to an illegal value, then there is a safety onstraint onerning e

l

that gets

violated.

Proof 3.6 First, observe that in order to make the onrete evaluation to produe an

error, one the following three situations must our: the sub-expression of a ar- or a

dr-expression returns a non-pair, the �rst sub-expression of a all expression returns a

non-losure. Formally, we have that:

9post(l; k; v) 2 �

0

: (ar

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC _

(dr

l

0

e

l

) 2 4(e

l

0

) ^ v 2 ValB [ValC _

(

l

0

e

l

e

l

00

) 2 4(e

l

0

) ^ v 2 ValB [ValP

Seond, using Theorem 3.5 it is easy to show that R abstrats the whole onrete

evaluation:

1. E [[e

l

0

℄℄ � � = (v

0

; �

0

);

2. Æ

l

0

;

^

k

0

6= ;, by the evaluation onstraints;
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3. � % �̂(l

0

;

^

k

0

), that is, the empty environment is abstrated by �̂(l

0

;

^

k

0

); this is imme-

diate sine � is not de�ned on any variable;

4. then �

0

%

a

R where a(�) =

^

k

0

, by 1, 2, 3, and Theorem 3.5.

Finally, we use this last result to obtain the desired property. In the ase where

(ar

l

0

e

l

) 2 4(e

l

0

), we have that:

post(l; k; v) 2 �

0

^ v 2 ValB [ValC

) 9v̂ 2 �

l;a(k)

: v % v̂ (sine v 62 Err)

) 9v̂ 2 �

l;a(k)

\ (ValB [ ValC) (by def. of %)

) �

l;a(k)

6� ValP

Similarly in the other two ases. 2

3.6 Theoretial Power and Limitations of the

Analysis Framework

Beause of its great exibility, our analysis framework is a very powerful tool. In this

setion, we show that any program that terminates without error an be analysed perfetly

well using the framework. What this means is that there exists an abstrat model that,

when it is used to instantiate an analysis for the program, provides the demonstration that

all dynami type tests an be removed. In the preeding setion, we already demonstrated

that any program that terminates with an error annot be analysed perfetly well. That

is, for any abstrat model, the analysis results that we obtain using it show that at least

one type test has to be left in the ompiled program. As for the non-terminating programs,

there is no general result. Some an be analysed perfetly well and some annot. This is

partiularly interesting sine non-terminating programs do not run into an error (otherwise

they would terminate).

Additionally, we give the answer to another question. Sine any error-free terminating

program an be analysed perfetly well and some non-terminating ones an, too, it would

be interesting to be able to �nd an appropriate model eah time it exists. So a natural

question is: Is it possible to systematially deide whether there exists an abstrat model

M that, when used to analyse a program, provides analysis results that respet all safety
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onstraints? Setion 3.6.2 presents a demonstration that the problem is (unfortunately)

undeidable. A by-produt of this demonstration is the provision of evidene that some

non-terminating programs annot be analysed perfetly well.

3.6.1 Programs Terminating Without Error

Programs that terminate without error an be analysed perfetly well. This result is pretty

easy to obtain sine: a terminating program evaluates ompletely in a �nite number of

steps; so it manipulates a �nite number of values and evaluation ours in a �nite number

of ontours; so we simply have to reate an abstrat model that ontains preisely these

values and ontours and in whih , p, and all behave like in the onrete evaluation.

Theorem 3.7 Let e

l

0

2 Exp be a program. Let (v

0

; �

0

) = E [[e

l

0

℄℄ � �. Let us suppose

that v

0

62 Err. Then there exists an abstrat model M suh that the analysis results R =

FW(e

l

0

;M) satisfy all the safety onstraints.

Proof 3.7 We build the abstrat model this way:

M = (ValB; ValC; ValP; Cont;

^

k

0

; ; p; all) where

ValB = ValB

ValC = f?

C

g [ fv 2 ValC j 9l 2 Lab: 9k 2 Cont: post(l; k; v) 2 �

0

g

ValP = f?

P

g [ fv 2 ValP j 9l 2 Lab: 9k 2 Cont: post(l; k; v) 2 �

0

g

Cont = f?g [ fk 2 Cont j 9l 2 Lab: 9� 2 Env: pre(l; k; �) 2 �

0

g

^

k

0

= �

(l;

^

k) =

8

<

:

; if e

l

= (�

l

x: e

l

1

) ^

^

k 6= ? ^ post(l;

^

k; ) 2 �

0

?

C

; otherwise

p(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

p; if e

l

= (ons

l

e

l

1

e

l

2

) ^ v̂

1

2 Val ^ v̂

2

2 Val ^

^

k 6= ?

^ post(l

1

;

^

k; v̂

1

) 2 �

0

^ post(l

2

;

^

k; v̂

2

) 2 �

0

^ post(l;

^

k; p) 2 �

0

?

P

; otherwise

all(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

<

>

>

>

:

^

kl; if e

l

= (

l

e

l

1

e

l

2

) ^ v̂

1

2 Val ^ v̂

2

2 Val ^

^

k 6= ?

^ post(l

1

;

^

k; v̂

1

) 2 �

0

^ post(l

2

;

^

k; v̂

2

) 2 �

0

? otherwise
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There is a dummy losure ?

C

and a dummy pair ?

P

added to the values manipulated by

the program. And there is a dummy ontour ? added to the set of ontours manipulated

by the program. They are introdued to allow the abstrat reation funtions , p, and

all to be de�ned on their entire domain. Basially, , p, and all do exatly the same

omputations as those done in the onrete evaluation. However, for any tuple of arguments

that do not orrespond to a situation found during the onrete evaluation, they return a

dummy answer. We will see later that the dummies do not diminish the power of the model

as a smallest �xed-point solution to the evaluation onstraints does not inlude dummies.

Note that  and p are well-de�ned despite the fat that  and p, respetively, are extrated

from the ahe. This is a onsequene of Theorem 3.3, whih guarantees that the post-entry

from whih  or p is extrated is unique.

Some justi�ation has to be given in order to ensure that the model is legal. First, it is

easy to verify that ValB, ValC, ValP, and Cont are �nite sets and that ValB, ValC, and

ValP are disjoint. Next,

^

k

0

is learly a member of Cont as the program has been evaluated

in ontour �. , p, and all are de�ned on their entire domain.  either returns ?

C

or

the value extrated from a post-entry. Sine the post-entry ontains a value resulting from

the evaluation of a �-expression, it is lear that the value is an element of ValC. So we an

onlude that the return value of  is always in ValC. A similar reasoning applies to p.

There remains to verify that all's return value always lie in Cont.

In the ase where all returns ?, the veri�ation is immediate. In the ase where all

returns a ontour of the form

^

kl, we have to show that the onditions heked by all are

suÆient to imply that

^

kl 2 Cont. The reasoning is the following:

1.

^

k 6= ?

) 9l

0

2 Lab: 9� 2 Env: pre(l

0

;

^

k; �) 2 �

0

;

2. e

l

= (

l

e

l

1

e

l

2

), post(l

1

;

^

k; v̂

1

) 2 �

0

, post(l

2

;

^

k; v̂

2

) 2 �

0

) the omputation of E [[e

l

℄℄ �

^

k is required in the global omputation E [[e

l

0

℄℄ � �;

3. omputation of E [[e

l

℄℄ �

^

k is required

) omputation of E [[e

l

1

℄℄ �

^

k is required

) E [[e

l

1

℄℄ �

^

k = (v̂

1

; �

1

) for some ahe �

1

� �

0

;

4. omputation of E [[e

l

℄℄ �

^

k is required and v̂

1

2 Val

) omputation of E [[e

l

2

℄℄ �

^

k is required
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) E [[e

l

2

℄℄ �

^

k = (v̂

2

; �

2

) for some ahe �

2

� �

0

;

5. v

0

2 Val ) v̂

1

2 ValC (otherwise there would have been an error and it would

ontradit the theorem hypothesis);

6. v̂

1

2 ValC and v̂

2

2 Val

) omputation of E [[e

l

3

℄℄ �

0

[y 7! v̂

2

℄

^

kl is required where v̂

1

= los((�y: e

l

3

); �

0

)

) pre(l

3

;

^

kl; �

0

[y 7! v̂

2

℄) 2 �

0

)

^

kl 2 Cont

Valid model M = (ValB; ValC; ValP; Cont;

^

k

0

; ; p; all) allows program e

l

0

to be

analysed perfetly well. To justify this laim, we present an assignment to the abstrat

variables that is a solution to the evaluation onstraints and that also respets the safety

onstraints. Here is the assignment:

�

l;

^

k

=

8

<

:

fvg; if

^

k 6= ? ^ post(l;

^

k; v) 2 �

0

;; otherwise

�

x;

^

k

=

8

>

>

>

<

>

>

>

:

fvg; if

^

k 6= ? ^

^

k =

^

k

0

l ^ e

l

= (

l

e

l

1

e

l

2

) ^

post(l

1

;

^

k

0

; los((�

l

3

x: e

l

4

); �)) 2 �

0

^ post(l

2

;

^

k

0

; v) 2 �

0

;; otherwise



̂;

^

k

=

8

>

>

>

<

>

>

>

:

fvg; if ̂ 6= ?

C

^

^

k 6= ? ^ ̂ = los((�

l

x: e

l

1

); �) ^

post(l

1

;

^

k; v) 2 �

0

;; otherwise

Æ

l;

^

k

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

if

^

k = ? then

;

else if pre(l;

^

k; �) 2 �

0

then

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

if e

l

= e

l

0

then

f#fg

else let l

1

= parent(l); if e

l

1

= (�

l

1

x: e

l

) then

�

x;

^

k

else if e

l

1

= (if

l

1

e

l

2

e

l

e

l

3

) then

�

l

2

;

^

k

else if e

l

1

= (if

l

1

e

l

2

e

l

3

e

l

) then

�

l

2

;

^

k

else

Æ

l

1

;

^

k

else

;
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�

̂

=

8

<

:

f(l; k) j e

l

= (�

l

x: e

l

1

) ^ k 2 Cont ^ post(l; k; ̂) 2 �

0

g; if ̂ 6= ?

C

;; otherwise

�

p̂

=

8

>

>

>

<

>

>

>

:

8

<

:

(l; v

1

; v

2

; k)

e

l

= (ons

l

e

l

1

e

l

2

) ^ k 2 Cont ^

post(l; k; p̂) 2 �

0

^ p̂ = pair(v

1

; v

2

)

9

=

;

; if p̂ 6= ?

P

;; otherwise

�

^

k

=

8

>

>

>

<

>

>

>

:

8

<

:

(l; v

1

; v

2

; k)

e

l

= (

l

e

l

1

e

l

2

) ^ post(l

1

; k; v

1

) 2 �

0

^

post(l

2

; k; v

2

) 2 �

0

^

^

k = kl

9

=

;

; if

^

k 6= ?

;; otherwise

Clearly, matries �, �, , �, �, and � are well-de�ned in terms of �

0

and beause of the

fat that post-entries post(l; k; ) are unique (Theorem 3.3). The Æ matrix is well-de�ned,

too, beause it is mostly de�ned in terms of �

0

and the other matries. The only reursive

referenes to Æ itself are non-yli, sine we an see the de�nition of an entry Æ

l;

^

k

as being

omputed as f(�

0

; �; �; Æ

parent(l);

^

k

) for some funtion f . Note that 8

^

k 2 Cont:j�

^

k

j � 1. Note

also that no abstrat variable ontains any of the dummies ?

C

, ?

P

, and ?.

Now, we have to verify that this assignment to the abstrat variables respets all the

evaluation onstraints. We omit a omplete veri�ation as it would be too lengthy and it

would be almost ompletely mehanial. The only point that is more diÆult onsists in

verifying that the onstraints related to a variable referene are respeted. That is, we verify

that, for any variable referene e

l

= x

l

, Æ

l;

^

k

6= ; ) �

l;

^

k

� ref(x; l; k).

We show by indution on the depth of label l in the syntax tree that if pre(l; k; �) 2 �

0

and � x is de�ned, then ref(x; l; k) = f� xg.

Basis. Label l is at depth 0 ) l = l

0

) Dom(�) = ;.

Indution hypothesis. Let us suppose that the desired property is respeted for any label l

of depth at most d.

Indution step. Let pre(l; k; �) 2 �

0

where l is at depth d + 1. Let l

1

= parent(l). There

are two ases. First ase:

1. e

l

1

is not a �-expression

2. ) pre(l

1

; k; �) 2 �

0

.

3. Suppose that � x is de�ned.
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4. ) ref(x; l

1

; k) = f� xg by indution hypothesis

5. ) ref(x; l; k) = f� xg sine ref(x; l; k) = ref(x; l

1

; k).

Seond ase:

1. e

l

1

= (�

l

1

x: e

l

)

2. ) 9l

2

2 Lab:

e

l

2

= (

l

2

e

l

3

e

l

4

) ^ k = k

0

l

2

^ post(l

3

; k

0

; los((�

l

1

x: e

l

); �

0

)) 2 �

0

^ post(l

4

; k

0

; v) 2 �

0

^ � = �

0

[x 7! v℄

3. There are two sub-ases:

4. �rst sub-ase:

(a) � x is de�ned

(b) ) ref(x; l; k) = �

x;k

(�)

= fvg = f� xg (�) beause of the assignment to � variables

5. seond sub-ase:

(a) Suppose � y is de�ned

(b) ) ref(y; l; k) =

S

k

00

2K

ref(y; l

1

; k) where

K = fk

00

2 Cont j (l

2

; ; v; k

0

) 2 �

k

^ (l

1

; k

00

) 2 �



g

= fk

00

2 Cont j (l

1

; k

00

) 2 �

los((�

l

1

x: e

l

); �

0

)

g

(sine �

k

= f(l

2

; los((�

l

1

x: e

l

); �

0

); v; k

0

)g)

= fk

00

2 Cont j post(l

1

; k

00

; los((�

l

1

x: e

l

); �

0

)) 2 �

0

g

= fk

00

2 Cont j pre(l

1

; k

00

; �

0

) 2 �

0

g

() ) 8k

00

2 K: pre(l

1

; k

00

; �

0

) 2 �

0

(d) ) 8k

00

2 K: ref(y; l

1

; k

00

) = f�

0

yg

(e) ) ref(y; l; k) = f�

0

yg = f� yg

Now that we know that all the evaluation onstraints are respeted, there remains to do

the same with the safety onstraints. That would be easy to verify sine, by onstrution

of the assignment, the violation of a safety onstraint diretly imply that the onrete

evaluation should have led to an error.
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So this onludes the proof, as we gave a model, with whih analysis results for the

program were obtained, and these results respet both the evaluation and the safety on-

straints. So the program ould be analysed perfetly well.

2

3.6.2 Undeidability of the \Perfetly Analysable" Property

We demonstrate here that it is undeidable to determine whether there exists an abstrat

model that allows a program to be analysed perfetly well. In order to do so, we make a

redution from the Universal Language for the Turing mahines to our problem. So, before

we state the theorem and give the proof, we introdue the de�nition of a Turing mahine,

its behaviour on an input, and the Universal Language.

Our model of Turing mahine has a tape that is in�nite in both diretions. It has a

suess state and a failure state. Exeution an only stop beause the mahine has entered

one of these speial states. It annot stop beause of any kind of illegal operation like, for

example, letting the read/write head fall past the end of the tape (in the ase of a mahine

with a semi-in�nite tape). The omputation may last forever and the exeution may not

stop.

Formally, a Turing mahine M is a tuple (Q; �; �; Æ; #; q

0

; q

s

; q

f

) where:

� Q is a (�nite) set of states;

� � is the alphabet of the tape;

� � � � is the input alphabet;

� Æ : Q��! Q���fL;Rg is the funtion of transition, where L and R are diretions;

it is de�ned for every pair of arguments; given a urrent state q 2 Q and the symbol

 2 � that is urrently under the read/write head, (q

0

; 

0

; d) = Æ(q; ) is a tuple giving

the new state, the symbol to be written at the urrent position and the diretion in

whih the head must move;

� # 2 � is the blank symbol;

� q

0

2 Q is the start state;
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� q

s

2 Q is the \suess" state;

� q

f

2 Q is the \failure" state; q

f

6= q

s

.

The exeution of M on a word w 2 �

�

proeeds like this. At the beginning, the tape

ontains w surrounded by an in�nity of # in both diretions. The read/write head is

positioned on the �rst symbol of w. The state is set to q

0

. Then, omputation is done

aording to Æ. Exeution stops if the mahine enters the state q

s

or q

f

. We say that M

aepts w if exeution ends by having M to enter q

s

. We say that M refuses w if exeution

ends by having M to enter q

f

. Finally, we say that M loops on w if exeution never stops.

The Universal Language is de�ned as:

UL = f(M; w) 2 fTuring mahinesg � �

�

jM aepts wg

It is well-known that UL is undeidable. For example, see [34℄.

We an now present the theorem.

Theorem 3.8 The following problem is undeidable:

fe

l

2 Exp j 9M: e

l

is analysed perfetly well using model Mg

Proof 3.8 We prove the theorem by making a redution of UL to our problem. That

is, if our problem were deidable, then UL would be, too, leading to a ontradition. The

redution is a transformation from a mahine-word pair (M; w) to a program e

l

0

suh that

M aepts w if and only if e

l

0

is analysable perfetly well.

The generated program simulates the exeution of M on w. If the exeution of the

mahine ends by entering q

s

, the program ends by evaluating the expression #f. If the

exeution of the mahine ends by entering q

f

, the program ends by evaluating the expression

(ar #f), ausing an error. If the exeution of the mahine never ends, the program's

evaluation lasts forever.

The tape is represented using two lists: one ontaining the part of the tape on the right

of the head and another ontains the reverse of the part of the tape on the left of the head.

Of ourse, the lists annot ontain all the symbols appearing on their part of the tape. The
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end of list represents an in�nity of blank symbols. The expliitly represented parts of the

tape are lazily extended during the exeution. The urrent state and the symbol under the

read/write head are passed around as parameters.

Moreover, two ounters are maintained throughout the program evaluation. The value

of the �rst one is always 1 less than the value of the seond one. The program tests whether

this invariant is still true before eah step of the simulation. Of ourse, the invariant is

always true. In the other (neessarily impossible) ase, an error is generated by evaluating

(ar #f). These two ounters are used later in the proof.

We desribe the transformation from (M; w) to e

l

0

as a sequene of steps.

1. From a Turing mahine to a funtional program. We desribe this �rst step of trans-

formation using a number of ompilation funtions denoted by `T

�

'.

T[[(M; v)℄℄ = let d = T

Æ

[[Æ℄℄ =� d : Q! �! Q� �� fL;Rg �=

let l = �k lt s rt: lt = #f ? k #f `#' (s:rt)

: k (dr lt) (ar lt) (s:rt)

let r = �k lt s rt: rt = #f ? k (s:lt) `#' #f

: k (s:lt) (ar rt) (dr rt)

=� l; r : (�

�

! �! �

�

! Val

"

)! �

�

! �! �

�

! Val

"

�=

letre s = �1 2 q lt s rt:

1 + 1 6= 2 ? (ar #f) :

q = q

s

? #f :

q = q

f

? (ar #f) :

let (q

0

; s

0

; dir) = d q s

(dir = L ? l : r) (s (1 + 1) (2 + 1) q

0

) lt s

0

rt

s 0 1 q

0

#f T

s

[[w℄℄ T

rt

[[w℄℄

T

Æ

[[Æ℄℄ = �q s: q = q

0

? T

0

Æ

[[Æ q

0

℄℄ :

q = q

1

? T

0

Æ

[[Æ q

1

℄℄ :

. . .

q = q

jQj�1

? T

0

Æ

[[Æ q

jQj�1

℄℄ :

#f =�  inaessible ase �=

T

0

Æ

[[Æ q℄℄ = s = 

0

? T

00

Æ

[[Æ q 

0

℄℄:

s = 

1

? T

00

Æ

[[Æ q 

1

℄℄:



68 CHAPTER 3. ANALYSIS FRAMEWORK

. . .

s = 

j�j�1

? T

00

Æ

[[Æ q 

j�j�1

℄℄:

#f =�  inaessible ase �=

T

00

Æ

[[Æ q ℄℄ = (q

0

; 

0

; dir

0

) =� where (q

0

; 

0

; dir

0

) = Æ(q; ) �=

T

s

[[w℄℄ =

8

<

:

`#', if w = �

`', if w = w

0

T

rt

[[w℄℄ =

8

<

:

#f; if w = �

T

0

rt

[[w

0

℄℄; if w = aw

0

T

0

rt

[[w℄℄ =

8

<

:

#f; if w = �

`a':T

0

rt

[[w

0

℄℄; if w = aw

0

In the generated program: funtion `d' is the implementation of the transition funtion

Æ; funtions `l' and `r' update the tape when doing a transition to the left or to the

right, respetively; funtion `s' does a step in the simulation of the mahine; note that it

veri�es ounters `1' and `2' before doing the step proper; variable `q' holds the urrent

state; variables `lt', `s', and `rt' hold the left part of the tape, the urrent symbol,

and the right part of the tape, respetively; variable `k' ontains the ontinuation of

the exeution after an update of the tape.

2. Removal of syntati sugar. We remove tuple manipulation in the generated program

using these rules:

let (x; y; z) = e

1

e

2

7! let r = e

1

let x = (ar r)

let y = (ar (dr r))

let z = (ar (dr (dr r)))

e

2

(x; y; z) =� as a tuple reation �= 7! x:y:z:#f

We also remove multi-argument funtions and alls:

�x

1

x

2

: : : : e 7! �x

1

: �x

2

: : : : e

e

1

e

2

e

3

: : : 7! (e

1

e

2

) e

3

: : :

Reursive use of these last rules may be required.

3. Elimination of types spei� to the simulation of the Turing mahine. We replae

state, symbol, and diretion onstants by numerial ounterparts. Let us de�ne the
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following oding funtions:

T

Q

: Q! f0; : : : ; jQj � 1g bijetive

T

�

: �! f0; : : : ; j�j � 1g bijetive

T

fL;Rg

: fL;Rg ! f0; 1g bijetive

We replae eah speial onstant by its ode:

q =� 2 Q �= 7! T

Q

[[q℄℄ =� 2 N �=

 =� 2 � �= 7! T

�

[[℄℄ =� 2 N �=

dir =� 2 fL;Rg �= 7! T

fL;Rg

[[dir℄℄ =� 2 N �=

4. Elimination of numbers. In turn, we transform arithmetial expressions and onstants.

We transform the naturals into a unary representation based on lists. Here are the

rules:

e

1

6= e

2

? e

3

: e

4

7! e

1

= e

2

? e

4

: e

3

e

1

= e

2

=� not a binding! �= 7! ((eq e

1

) e

2

)

e + 1 7! (in e)

n =� 2 N �= 7! T

N

[[n℄℄

where:

T

N

[[n℄℄ =

8

<

:

#f; if n = 0

#f:T

N

[[n� 1℄℄; if n > 0

After the numeri operations and onstants are removed, we apply this last rule one

to the whole program:

e 7! let in = �n: #f:n

letre eq = �n1: �n2: n1 ? (n2 ? ((eq (dr n1)) (dr n2))

: #f)

: (n2 ? #f : (#f : #f))

e

5. Removal of syntati sugar (again). We transform many syntati onstruts into

base language onstruts. Eah onstrut should be ompletely eliminated before

ontinuing with the next.
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letre We remove letre-expressions using the following rule:

letre v = (�x: e

1

)

e

2

7! let v = (Y (�v: (�x: e

1

)))

e

2

and add the de�nition of the Y ombinator one to the whole program using this

rule:

e 7! let Y = �f: let g = (�h: (�z: ((f (h h)) z)))

(g g)

e

let We use this rule to remove let-expressions:

let v = e

1

e

2

7! ((�v: e

2

) e

1

)

onditional We replae the `� ? � : �' onstrut by a onditional from the mini-

language:

e

1

? e

2

: e

3

7! (if e

1

e

2

e

3

)

ons We apply the following rule while taking are of respeting the fat that the `:'

operator is right-assoiative:

e

1

:e

2

7! (ons e

1

e

2

)

6. �-onversion and proper labelling. We make sure eah variable has a distint name

and add unique labels to all the expressions of the program.

We an make the following observations about the generated program e

l

0

. First, the only

expressions that may ause an error are the two (ar #f) expressions. By onstrution of

the program, we know that the evaluation of the other expressions annot go wrong.

Seond, the �rst (ar #f) expression, although it would neessarily ause an error if it

were evaluated, does not get evaluated in the �rst plae. It is obvious that ounters `1' and

`2', after beginning with values 0 and 1, respetively, are eah inremented by 1 after eah

simulation step. So the invariant 1 + 1 = 2 is true during the whole evaluation of e

l

0

.

Third, if M aepts w, the evaluation of e

l

0

ends by returning #f as a result. By
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Theorem 3.7, it follows that there is a modelM allowing e

l

0

to be analysed perfetly well.

Fourth, in the opposite ase, M refuses w by entering state q

f

. In this ase, the seond

(ar #f) expression gets evaluated and an error ours. By Theorem 3.6, there annot be

a model allowing e

l

0

to be analysed perfetly well.

Fifth and last observation, ifM loops on w, the evaluation of e

l

0

never ends and no error

ever ours but, nevertheless, e

l

0

is not perfetly analysable. This fat is not neessarily

trivial to verify. We do not provide a omplete and formal proof, we only give the following

reasoning:

1. Let us suppose that e

l

0

an be analysed perfetly well using modelM. Note that we

must have that jValPj <1 forM to be a legal model.

2. Note also that ounters `1' and `2' go through all values in N and N� f0g, respe-

tively, during the in�nite evaluation.

3. The following point is not diretly established by Theorems 3.5 and 3.6, but we will

streth the sope of these a little bit.

In our present ase, the evaluation is in�nite, so our olleting mahine would not

stop omputing and there would be no ahe returned by it. However, we ould

de�ne a variant of the olleting mahine to whih we pass an argument indiating

the maximum number of steps that the mahine should make. In the ase of an in�nite

evaluation, we ould obtain a ahe desribing the beginning of the evaluation. On

top of it, we ould adapt both theorems to make them able to handle partial ahes.

So, we suppose that we have results similar to those given by the theorems despite

the fat that the evaluation is in�nite.

Now, this is where the ounters `1' and `2' ome into play. Eah time the generated

program e

l

0

tests whether the invariant about ounters `1' and `2' is still true, the

expression e

l

test

= (

l

test

(eq (in 1

l

1

)) 2

l

2

) is evaluated. So there are an in�nity of

ontours k 2 Cont and n 2 N suh that post(l

1

; k; T

N

[[n℄℄) and post(l

2

; k; T

N

[[n+ 1℄℄)

are in the ahe.

4

4

We make a slightly abusive use of T

N

as it is supposed to produe ode, not values. However, eah

instane of ode generated by T

N

an only evaluate to a single value, no matter in whih environment or

ontour it is evaluated.
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4. Among the abstrat pairs in ValP, there is neessarily one that is the abstration of

more than one number (of more than one list of Booleans). Let p̂ 2 ValP be that

pair. Moreover, let m 6= n 2 N suh that T

N

[[m℄℄% p̂ and T

N

[[n℄℄% p̂.

5. Let k 2 Cont suh that post(l

1

; k; T

N

[[m℄℄) and post(l

2

; k; T

N

[[m+ 1℄℄) are in the

ahe. Let

^

k 2 Cont and p̂

0

2 ValP abstrat k and T

N

[[m + 1℄℄, respetively. By our

\extended" Theorem 3.5, we know that p̂ 2 �

l

1

;

^

k

and p̂

0

2 �

l

2

;

^

k

. By the ambiguity of

what is abstrated by p̂, we onlude that the abstrat evaluation of the test has to

inlude the possibility that the test is negative, leading to the evaluation of (ar #f).

More preisely, the abstrat evaluation of e

l

test

in ontour

^

k represents the test in(m)

= m + 1 (whih is true and whih is expeted by onservativeness) and the test

in(n) = m + 1 (whih is false). So �

l

test

;

^

k

ontains an expeted abstrat true value

(i.e. 2 ValC [ ValP) and an abstrat false value (i.e. 2 ValB).

6. Beause the test may apparently be false, the expression (ar #f) is abstratly evalu-

ated in ontour

^

k, leading to the violation of a safety onstraint. Sine this reasoning

holds for an arbitrary model, we onlude that e

l

0

annot be analysed perfetly well.

This onludes the proof that the generated program e

l

0

is analysable perfetly well if

and only if M aepts w. Sine UL is undeidable, it is impossible to always be able to

deide if there exists a model that allows an arbitrary e

l

0

to be analysed perfetly well. 2

3.7 Flexibility in Pratie

The exibility of the analysis framework an be illustrated in another way. The framework

is able to imitate many onventional analyses.

For example, we an de�ne models that produe analysis instanes similar to polynomial

variants of Shivers' K-fa [55, 61, 37℄. The proposed models are intended for the analysis

of program e

l

0

.

ValB = f#fg

ValC = f?

C

g [ f�

l

^

k j l 2 4(l

0

) ^ e

l

is a �-expression ^

^

k 2 Contg

ValP = fPg

Cont = f

^

k 2 Lab

�

j j

^

kj � Kg
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k

0

= �

(l;

^

k) =

8

<

:

�

l

^

k; if e

l

is a �-expression

?

C

; otherwise

p(l; v̂

1

; v̂

2

;

^

k) = P

all(l; v̂

1

; v̂

2

;

^

k) = the longest suÆx of

^

kl in Cont

A ontour is a hain of the labels of the enlosing K sites where alls ourred that lead

to the urrent evaluation. It is usually referred to as a all hain. By the de�nition of

Cont, there is only a polynomial number of abstrat ontours (relative to the size of the

program). There is also a polynomial number of values. Pairs are represented oarsely

by a single abstrat pair. Distint �-expressions produe distint losures. Moreover, the

ontour in whih a losure was reated is aptured by the losure. It allows losures to

behave di�erently depending on the evaluation ontext in whih they were reated. That

does not diretly orrespond to remembering the lexial environment but, in favourable

ases, it ats as a good substitute.

Note that in the partiular ase where K = 0, there is only one ontour (�) for the whole

abstrat evaluation and one losure per �-expression.

By its equivalene with the 0-fa, set-based analysis [29, 37℄ is also imitated by an

instantiation of an analysis using our framework.

More elaborate analyses an also be imitated by the framework. The following example

is inspired from one in [37℄. To obtain a more preise analysis, it is sometimes neessary

to distinguish ontours by the type of the values that are manipulated by the program.

The advantage of ontours based on types is that types onstitute the information that is

really used in the onrete evaluation. That is, a program may test whether a partiular

value is a pair, but never tests whether the funtion body being evaluated was alled from

expression e

l

. Contours diretly onveying the really useful information normally improve

the analysis auray more than ontours onveying information that is, in the best of ases,

only orrelated to the useful information. Here is the de�nition of a model using type-based

ontours.

ValB = f#fg

ValC = f?

C

g [ f�

l

^

k j l 2 4(l

0

) ^ e

l

is a �-expression ^

^

k 2 Contg

ValP = fPg
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Cont = f?g [

n

^

k 2 fb;;pg

�

j j

^

kj � L

o

where L is the maximum number of variables

visible from any e

l

2 4(e

l

0

)

k

0

= �

(l;

^

k) =

8

<

:

�

l

^

k; if e

l

is a �-expression and

^

k 6= ?

?

C

; otherwise

p(l; v̂

1

; v̂

2

;

^

k) = P

all(l; v̂

1

; v̂

2

;

^

k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

?; if

^

k = ? or v̂

1

62 ValC or v̂

2

= ?

C

else

b

^

k

0

; if v̂

1

= �

l

^

k

0

and v̂

2

2 ValB else



^

k

0

; if v̂

1

= �

l

^

k

0

and v̂

2

2 ValC else

p

^

k

0

; let v̂

1

= �

l

^

k

0

and v̂

2

2 ValP

The two main di�erenes with this new model are the following. Contours are made

of type indiators instead of labels. And it is the ontour ontained in the invoked losure

that is extended instead of the ontour that prevails when the all ours. The ontour in

whih an expression is evaluated indiates the (top-level) type of the value to whih eah

variable in the environment is bound. The analysis instane obtained using this model has

exponential omplexity in the size of the program. The worst ase ours when the longest

lexial environment in the program ontains a number of variables that is a signi�ant

fration of the size of the program.

Note that an abstrat variable like �

l;

^

k

always exists, even if the number of variables

visible from e

l

and the number of indiators in

^

k do not math. In suh a ase, a minimal

solution to the evaluation onstraints always inludes the assignment �

l;

^

k

= ; beause the

expression never gets evaluated in that ontour.

Despite its great exibility, our framework has its limits. As an instane, the analy-

sis based on polymorphi splitting presented by Jagannathan and Wright [38℄ annot be

imitated by the framework. Polymorphi splitting is presented as a method of obtaining,

in abstrat interpretation, an analogue to the let-polymorphism used in Hindley-Milner

polymorphi type inferene [43℄. Abstrat losures that are bound to a variable in a let-

expression reeive a speial treatment. First, their assoiated ontour is extended when they

are bound to the variable. Next, their ontour is modi�ed by eah referene to the variable.

Moreover, two distint referenes to the variable produe two di�erent modi�ations to the
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losure. This is learly not feasible within our framework. In our ase, a referene to a

variable annot modify the value it is bound to, neither an it modify a part of that value.
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Chapter 4

Demand-Driven Analysis

4.1 A Cyli Proess

Now that we have a preise objetive and a powerful analysis framework, we propose a oarse

sketh of the demand-driven analysis. Demand-driven analysis should start by performing

a preliminary analysis for the program. The preliminary analysis is an inexpensive analysis

that provides relatively oarse initial analysis results. Typially, the preliminary analysis

results do not bring suÆient evidene to let the optimiser to remove all dynami safety tests.

Demand-driven analysis then ontinues with a model-update, re-analysis yle. A model-

update phase proposes and performs hanges on the abstrat model, based on the most

reent analysis results and on the dynami tests that are remaining. Instead of \updated",

we might as well say that the model has been re�ned. The re-analysis phase omputes new

analysis results for the program using the new abstrat model. This yle ontinues until

there are no resoures left for the analysis or all safety tests ould be removed.

Of ourse, this sketh is very general and leads to many questions. We ask some questions

ourselves and bring answers to some of them immediately.

What an one expet from the use of an updated, or re�ned, abstrat model? Normally,

the updated model produes a more aurate analysis instane. This more aurate analysis

may provide analysis results ontaining less superuous values. And, with hane, these al-

low the optimiser to remove some additional safety tests. We use the term more informative

to desribe analysis results that ontain less superuous values.
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While it is lear that analysis results ontaining less superuous values do not automat-

ially imply that some additional safety tests an be removed, it may not be obvious why

a more aurate analysis does not neessarily lead to more informative results. We give an

example senario. Let a program e

l

0

be analysed using model M. Also, let ValP ontain

only one pair. Let e

l

be some expression evaluating only to this pair. Now, for some reason,

a more preise desription of the values to whih e

l

evaluates is required, and, onsequently,

M is re�ned into M

0

suh that ValP

0

ontains nine pairs. The nine pairs indiate the

types of the two values that are stored in the ar- and dr-�elds (three di�erent types

for the ar-�eld and three for the dr-�eld). Suppose that p is hanged aordingly. A

re-analysis is done and suppose that the results obtained for e

l

0

using M

0

reveal that e

l

may evaluate to any of the nine pairs in ValP

0

. Then, in the preise ase of e

l

, the analysis

results are �ner but not more informative.

How an the model be re�ned? In priniple, there is no problem at all if one wants

to re�ne a model sine a model is a simple olletion of framework parameters and new

parameters an easily be hosen, as long as the new model is legal. Of ourse, automati

updates of the model are more involving. It depends a lot on the modelling strategy. But it

is learly feasible. Chapter 5 presents our proposal of a modelling strategy and the means

to update models automatially.

How should the modi�ations to the model be hosen? That is, among hanges to ValP

and p, hanges to ValC and , hanges to Cont and all, or some ombinations of these,

whih should be the most helpful in removing safety tests? This is the most interesting

question. It is not obvious a priori as omputations in the program to analyse an be very

intriate. A hange in the representation of pairs may help to obtain better information as

to whih funtions an be invoked at a ertain all, whih in turn, may ause one of these

funtions not to be passed the Boolean that aused an error in the evaluation of its body.

Here are desirable harateristis of the method that hooses modi�ations to the model.

Naturally, this method should be systemati. Requiring the intervention of the user would

make it unusable. Also, it should tend to selet appropriate, or useful modi�ations. To

expet guarantees that all seleted modi�ations are useful is utopian, as the general task is

unomputable. These reasons are generalities, but a more pratial harateristi, and an

important one, is that we want the method not to beome a large AI program, or an expert

system. We speulate that an AI engine driving the model modi�ations would probably
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obtain better results than a more simple and mehanisti approah. However, we wish to

develop something that has at least some generiity, that ould be adapted to other analyses

or to other languages. As we mention earlier, the real goal is more a proof of onept than

an attempt to get the best possible type analysis. The next setion presents a proposal of

a method for the seletion of modi�ations to the model.

4.2 Generation and Propagation of Demands

We propose a method for the seletion of modi�ations to the model that is based on

demands. Roughly speaking, a demand is a request for the demonstration of a ertain fat

or for the exeution of a ertain ation. It is emitted beause there are good reasons to

believe that its aomplishment would ultimately improve the analysis of the program. Also,

it is emitted beause there are reasons to believe that it does represent an atual fat (in

the ase of a request for demonstration) and onsequently that it might be ahievable.

In a model-update phase, demands are �rst generated, then proessed, usually leading

to the emission of new, subordinate demands. We do not want to give in this hapter a

omplete proposition as to preisely what demands are, how they are generated and how

they are proessed. A omplete proposition is given in Chapter 5. Nevertheless, we present

many general ideas here.

The proessing of the demands is the proess by whih the diret needs of the optimiser,

expressed as the initial demands, are ultimately translated into other demands that are

preise indiations on the way to update the model.

The initial demands are generated at the start of the model-update phase and diretly

mirror the needs of the optimiser. For eah expression for whih a safety test seems to be

still required, aording to the urrent analysis results, a demand is emitted asking for a

demonstration to be made to show that, in fat, the values manipulated by the expression

are all orret ones and no test is required. For example, if a safety test seems to be required

for expression (ar

l

e

l

1

) or (dr

l

e

l

1

), a demand is generated to ask for a demonstration

that, in fat, e

l

1

may only evaluate to pairs. Clearly, the fat that a demand is emitted

implies that the urrent results suggest that e

l

1

may evaluate to something else than pairs.

But the presene of the expression as it is suggests that the programmer believes that e

l

1
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may only evaluate to pairs. The generation of the initial demands ould hardly be a simpler

operation.

Demand proessing uses rules to determine what ations should be done in the hope of

ful�lling the request stated in the demand. The ations to perform depend on the kind of

demand to proess and on the ontext. The ontext inludes the urrent state of the model

and the urrent analysis results. The existene of more than one kind of demands seems

inevitable.

The initial demands are all similar: they all ask to show that a ertain expression may

only evaluate to pairs or to losures. However, other kinds of demands an be generated by

the proessing of the initial demands, and the proessing of their sub-demands, and that

of these new demands, et. Even if di�erent sets of demands may be used for di�erent

demand-driven methods, some kinds of demands seem inevitable. For example, a demand

may ask for a demonstration that a partiular expression does not get evaluated at all.

Or, at least, not in ertain irumstanes. Another example: a demand might ask for a

hange to the model in suh a way that more preise ontours be introdued to ause a

ertain expression to evaluate only to pairs in a partiular ontour, and only to Booleans in

another.

The preise set of demands that is required to implement a model-update phase depends

on the way one models the values and ontours, on the way one wants the demands to be

proessed (the proessing rules), on the kind of sub-demands the proessing rules produe,

et.

Depending on the ontext, the proessing of ertain demands may lead to trivial suess,

or trivial failure, to a modi�ation to the model, or, generally, to a ombination of ations

on some auxiliary data strutures and the emission of new demands. Trivial suess ours

when, for example, the demand asks to show that an expression returns only pairs and that

the urrent analysis results indiate that it is already the ase. Trivial failure ours when,

for example, the demand asks to show that the main expression of the program does not

get evaluated, whih is simply false.

Skethes of proessing rules for typial demands are presented just after an informal

example of demand-driven analysis.
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4.3 A Demand-Driven Analysis Example

We present an example of demand-driven analysis for a small program e

1

. It is not a omplex

program and only one judiious modi�ation to the basi abstrat model will be suÆient to

analyse it perfetly well. The model-update phase that is presented is not very ompliated

but it still provides the opportunity to informally introdue some onsiderations that are

fundamental in the development of a omplete demand-driven approah.

The program to analyse is the following:

(

1

(�

2

f. (

3

f

4

(

5

f

6

(ons

7

#f

8

#f

9

))))

(�

10

x. (if

11

x

12

(ar

13

(pair?

14

x

15

))

(�

16

y. y

17

))))

Its evaluation does not ause an error but it is designed to ause onfusion during a na��ve

analysis, as we see next. The initial model we use for the analysis of e

1

is:

M = (ValB; ValC; ValP; Cont; K; ; p; all)

ValB = f#fg

ValC = f�

2

; �

10

; �

16

g

ValP = fPg

Cont = fKg

(l; k) =

8

<

:

�

l

; if l 2 f2; 10; 16g

�

2

; otherwise

p(l; v

1

; v

2

; k) = P

all(l; f; v; k) = K

The results that we obtain by analysing e

1

usingM are the following. We limit the presen-

tation of the results to that of the � matrix.

�

1;K

= f#f; �

16

g �

2;K

= f�

2

g �

3;K

= f#f; �

16

g �

4;K

= f�

10

g

�

5;K

= f#f; �

16

g �

6;K

= f�

10

g �

7;K

= fPg �

8;K

= f#fg

�

9;K

= f#fg �

10;K

= f�

10

g

�

11;K

= f#f; �

16

g �

12;K

= f#f; �

16

; Pg �

13;K

= f#fg �

14;K

= f#f; Pg

�

15;K

= f#f; �

16

; Pg �

16;K

= f�

16

g �

17;K

= ;

When looking at the results, it is immediately apparent that only one dynami safety test
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is still needed. All alls are safe sine �

2;K

, �

4;K

, and �

6;K

ontain only losures. However,

the only other potentially erroneous expression, e

13

, still needs its safety test beause its

sub-expression, e

14

, may evaluate to something else than pairs. Closer inspetion of the

results shows that the two invoations of �

10

are merged together. For example, the values

it returns (i.e. �

11;K

) inlude the abstrations for both values that are returned during

the onrete evaluation of the program. The parameter `x' (i.e. �

12;K

and �

15;K

) ontains

abstrations for both arguments passed during the onrete evaluation, but it ontains also

�

16

whih is \prematurely" returned by the �rst invoation and passed as an argument in

the seond invoation.

This �rst analysis is onsidered to be the preliminary analysis of the whole demand-

driven approah. The model used in the preliminary analysis is generally very simple, like

in this example. The next step is a model-update phase, sine a safety test is still required

for the program. During the ourse of the model-update phase, we �rst generate initial

demands and then proess them.

There is only one safety test left so we generate only one initial demand. In fat, we

generate only one initial demand for the safety test beause there is only one ontour, also.

The demand diretly mirrors the needs of the optimiser and we will denote it like this:

D

1

� show �

14;K

� ValP

A literal reading of the demand does not make sense. Clearly, with the urrent model,

the ontents of abstrat variable �

14;K

are not restrited to pairs. But the intent is that

something should be done with M in order to eventually have that �

14;K

or, more likely,

speialisations of �

14;K

to all lie inside of the given bound.

What ould speialisations of �

14;K

be? Variable �

14;K

represents the value of e

14

in any

possible evaluation ontexts. This is beause ontour K is unique and, as suh, represents

all evaluation ontexts. But a hange to the model ould introdue di�erent ontours (e.g.

K

1

, K

2

, . . . ). Eah of them would represent a distint subset the evaluation ontexts. So

�

14;K

1

, �

14;K

2

, . . . would represent the value of e

14

in eah set of evaluation ontexts.

Having said that, we an interpret the demand as \do any neessary modi�ations to the

model to have, for any ontour K

0

that is a speialisation ofK, the onstraint �

14;K

0

� ValP

to be satis�ed". Note that the modi�ations to the model need not neessarily introdue

speialisations of K but ould modify the representation of losures or that of pairs to obtain
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the desired e�et.

Now, let us turn to the proessing of D

1

. Ultimately, we want e

14

to return nothing else

than pairs. To ontrol the value of an expression, one normally has to ontrol the soure

of its value. e

14

is a pair?-expression, and the value of that kind of expression depends

solely on the value of its sub-expression. By the semantis of a pair?-expression, it would

be suÆient to have e

15

to return only pairs. So we would generate this new demand:

D

2

� show �

15;K

� ValP

As will be made apparent when we will be involved in the design of proessing rules for

the demands, more than one strategy is usually available. For example, another suÆient

ahievement onsists in proving that e

14

does not get evaluated at all, namely:

D

0

2

� show Æ

14;K

= ;

Consequently, it would not evaluate to any value, and the ar-�eld extration would er-

tainly not operate on non-pairs. Is one of these two proessing methods better than the

other? Are there other ways to proess D

1

?

The answer to the seond question is: yes. But we will explore other possibilities when

we present a omplete approah in Chapter 5. To the �rst question, we answer that the �rst

proessing method is better. Here is the reason. Although the ful�lling of any of D

2

and D

0

2

is suÆient to ful�l D

1

, only D

2

is neessary. That is, �

14;K

� ValP implies �

15;K

� ValP.

But it is not the ase that �

14;K

� ValP implies �

15;K

= ;.

Now, why is it preferable to use suÆient and neessary sub-demands? Beause of the

following reasoning. Sine (ar

13

e

14

) is a part of the program, it is reasonable to expet e

14

to return only pairs. It is not an absolute truth at all, but simply a reasonable assumption.

Sine the demonstration that e

13

returns only pairs is neessary to satisfy D

1

, D

2

seems to

be a reasonable demand. The fat that D

2

is also suÆient makes it even more attrative.

On the other hand, the property expressed in D

0

2

is not neessary, so the program ould

possibly behave in suh a way that the property expressed by D

0

2

is violated while the one in

D

1

is satis�ed nevertheless. It follows that D

0

2

ould be false and, onsequently, impossible

to satisfy. In the ase onsidered in this example, the property in D

0

2

is e�etively false as

e

14

is evaluated.
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Having hosen sub-demand D

2

, we then have to proess it. Although it is tempting to

interpret D

2

as saying \show that `x' an only be bound to pairs", the right interpretation

is more like \show that `x' an only be bound to a pair when e

15

is evaluated". Showing

that e

15

is not evaluated at all would solve our problems but this property is not a neessary

one, again. So we rejet it. Let us study the situation arefully. Currently, `x' seems to

possibly be bound to objets of any type. However, in the ase where `x' is bound to a pair,

the property in D

2

is satis�ed, so it is �ne. And in the ases where `x' is bound to #f or to

a losure, it appears that the property is violated. However, in the #f ase, the onditional

auses e

15

not to be evaluated. Consequently, there is no problem in this ase, too. But let

us suppose that the proessing rules annot make suh a reasoning. So a sensible approah

onsists in �rst separating the ases assoiated to eah type. In simple words, evaluation of

body e

11

should our in di�erent ontours depending on the type of `x'. We express this

new demand by:

D

3

� split �

15;K

?

The `?' is the split point symbol. It indiates where additional preision in the abstrat

values is desired. It means \do the appropriate modi�ations to M so that, in K or in

eah of its eventual substitutes K

1

, . . . , K

n

, e

15

evaluates to values of only one type". If

the request in this demand ould be ahieved, then we would have made progress in the

resolution of our problem sine it would be deomposed into three sub-ases. The sub-ase

in whih `x' is bound to a pair would not be a problem. Neither would the sub-ase in

whih `x' is bound to #f. There would remain the ase where `x' is bound to a losure.

The then-branh of the onditional would be evaluated and ar-�eld extration would be

attempted on #f. But, at least, the situation would be learer beause evaluation in this

ase would neessarily lead to an error, so it would be legitimate to emit this demand:

D

4

� show Æ

15;K

C

= ;

where K

C

would be the ontour in whih `x' is bound to a losure.

But let us not skip important steps. We �rst have to take are of D

3

. Separating

evaluation ontexts to distinguish the type of the values bound to a variable is easy sine

ontours are seleted by the all funtion. And we have total ontrol over all. Let us proess
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D

3

by modifyingM. We inlude only the modi�ations toM:

M

0

= (ValB; ValC; ValP; Cont

0

; K; ; p; all

0

)

Cont = fK;K

B

;K

C

;K

P

g

all(l; f; v; k) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

K

B

; if f = �

10

^ v 2 ValB

K

C

; if f = �

10

^ v 2 ValC

K

P

; if f = �

10

^ v 2 ValP

K; otherwise

Note how the evaluation of the body of �

10

will our in di�erent ontours depending on

the type of the argument. The rest of the program is evaluated in ontour K. Here are the

analysis results that we obtain for e

1

usingM

0

(only the non-empty entries are listed):

�

1;K

= f�

16

g �

2;K

= f�

2

g �

3;K

= f�

16

g �

4;K

= f�

10

g

�

5;K

= f#fg �

6;K

= f�

10

g �

7;K

= fPg �

8;K

= f#fg

�

9;K

= f#fg �

10;K

= f�

10

g

�

11;K

B

= f�

16

g �

12;K

B

= f#fg

�

16;K

B

= f�

16

g

�

11;K

P

= f#fg �

12;K

P

= fPg �

13;K

P

= f#fg �

14;K

P

= fPg

�

15;K

P

= fPg

These results are muh more aurate. We see fewer superuous values in the � matrix.

Obviously, D

3

has been proessed with suess sine `x' ontains only values of the type

indiated by the ontour, if at all, i.e. �

12;K

B

� ValB, �

12;K

C

� ValC, and �

12;K

P

� ValP.

As expeted, there is no problem in ontours K

B

and K

P

. But the good news is that there

is no problem in ontour K

C

either beause the �rst invoation of �

10

no longer returns �

16

\prematurely" and so the seond invoation does not reeive �

16

as an argument.

The last safety test an now be removed without risk for the safety of the program.

Indeed, 8k 2 Cont: �

14;k

� ValP. On the other hand, if it would not have been the ase

that �

14;K

C

� ValP, then it would have been neessary to ontinue with the proessing of

D

4

.
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4.4 Preliminary Analysis

The hoie of a good initial model to be used in the preliminary analysis is important. We

do not give one here expliitly as it depends on the abstrat value representation strategy.

But there are some priniples that must be onsidered during the hoie of the initial model.

The initial model has to be a ompromise between ontraditory tendenies: an ideal

preliminary analysis should be relatively fast and aurate. The problem with a preliminary

analysis that is too slow is that it may onsume all the work units available to the analyser.

And, in ase of exhaustion of the work units during the preliminary analysis, one has to

hoose between two bad solutions. First bad solution: let the preliminary analysis �nish.

In this ase, the time limit presribed by the user is not respeted. Seond bad solution:

interrupt the preliminary analysis. In this ase, the analysis results have to be ompletely

disarded as the minimal valid solution has not been reahed yet and, onsequently, there

is no guarantee that the results are onservative.

On the other hand, the problem with a preliminary analysis that is not aurate enough

is that the results may be almost unusable. It means that the results ould ontain so

many superuous values that almost all safety tests would seem to be required. It follows

that almost all the work would be left to the model-update, re-analysis yle. The yle is

powerful but the ost of removing one safety test with it is muh greater than the ost of

removing one safety test with the preliminary analysis.

4.5 Model-Update, Re-Analysis Cyle

The proposition of a omplete approah for the yle is presented in Chapter 5. Here, we

only present onsiderations related to the model-update, re-analysis yle and espeially

to demand proessing. Many of the onsiderations have been introdued informally in the

example.

The purpose of the model-update, re-analysis yle is to modify the model in suh a way

that an inreasing number of dynami safety tests an be removed from the exeutable ode

generated for the program to ompile. As proposed, the model-update phase onsists in the

generation and proessing of demands in order to translate the needs of the optimiser into
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presriptions of model updates.

When proessing a demand, the orresponding proessing rule should always translate it

into neessary and, when possible, into suÆient sub-demands. Sub-demands are suÆient

when ahievement of the requests in the sub-demands implies ahievement of the request in

the proessed demand. Sub-demands are neessary when the ahievement of the proessed

demand neessarily implies the ahievement of the sub-demands. It is not always possible

to �nd suÆient and neessary sub-demands, depending on the demand to proess and the

urrent analysis results. We give examples of the four possible ases.

Neessary and suÆient This ase ourred in the demand-driven analysis example. For

demand D

1

:

D

1

� show �

14;K

� ValP where e

14

= (pair?

14

e

15

)

we an emit one sub-demand D

2

:

D

2

� show �

15;K

� ValP

D

2

is suÆient beause its ahievement would automatially imply the ahievement

of D

1

, as a pair?-expression evaluates to a pair when its sub-expression evaluates to

that preise pair. D

2

is also neessary beause the only way we an have that e

14

returns only pairs (or nothing) is to have e

15

to return only pairs (or nothing). This

is the ideal ase.

Neessary but insuÆient Let us onsider a demand D

3

:

D

3

� split �

23;k

? where e

23

= (if

23

e

24

e

25

e

26

)

Suppose that both e

25

and e

26

evaluate to values of more than one types in ontour

k. Sine the value of e

23

is the union of the values of e

25

and e

26

, then it is neessary

to split the values oming from e

25

and e

26

. That is, if the model were magially

modi�ed in suh a way that D

3

is ahieved, we would neessarily observe that, in eah

sub-ontour k

i

speialising k, e

25

would evaluate to values of a single type. Similarly
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for e

26

. So let us emit the following sub-demands:

D

4

� split �

25;k

? D

5

� split �

26;k

?

If both sub-demands are eventually satis�ed, then both branhes of the onditional

will be well-split aording to the type of the values to whih they evaluate. That is, k

will have been replaed by sub-ontours k

1

, k

2

, . . . suh that in eah k

i

, eah branh,

taken individually, evaluates to values of only one type, if at all. But it does not

automatially imply that D

3

is ahieved. In a ontour, say k

7

, e

25

ould evaluate only

to pairs while e

26

ould evaluate only to Booleans, meaning that, in k

7

, e

23

evaluates

to values of more than one type. So the proessing of D

3

produed neessary but

insuÆient sub-demands.

SuÆient but unneessary Let us onsider a demand D

6

:

D

6

� show �

18;K

� ValP where e

18

= (if

18

e

19

e

20

e

21

)

Suppose that e

19

and e

20

evaluate to values of all types and that e

21

evaluates only to

pairs. We ould emit the following sub-demand:

D

7

� show �

19;K

� ValB

The advantage of usingD

7

is that its ahievement is suÆient to ause the ahievement

of D

6

. However, it does not express a neessary property of the omputations made

by the program. To see why, imagine that the model is magially modi�ed in suh

a way that D

6

is ahieved. It ould be the result of having e

20

to return only pairs

and leaving the results of e

19

unhanged. In this ase, the property in D

7

would not

be satis�ed and it ould even be impossible to satisfy D

7

. So, proessing D

6

as we

suggested here is risky.

InsuÆient and unneessary Let us onsider a demand D

8

:

D

8

� show �

31;X

� ValP where e

31

= (

31

e

32

e

33

)

Suppose that �

32;X

= f

1

; 

2

g, �

33;X

= fb; pg (for Boolean and pair), and that the
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results obtained by performing eah possible invoation is summarised in this table:

on b p



1

fb; pg fb; pg



2

fbg fpg

Here is an insuÆient and unneessary sub-demand:

D

9

� show 

1

62 �

32;X

D

9

would be insuÆient beause the loal information urrently available indiates

that it is possible that 

2

would be still alled on b and still returned fbg. Also, D

9

would be unneessary beause the real omputations happening at e

31

ould be that

a onrete losure abstrated by 

1

does get alled on some argument but that the

return value is a pair.

The last ase was inluded in the list for ompleteness. It is not lear how the generation

of unneessary and insuÆient sub-demands ould help in the model-update phase.

In general, unneessary sub-demands should be avoided sine the property they ontain

may possibly be false. Sine there is no hope of ever �nding a demonstration for suh

properties, a onsiderable amount of time ould be lost in the proessing of the unneessary

demands. Note however that it does no harm as far as the safety of the generated exeutable

ode is onerned. Dynami safety tests are removed only when there is indisputable evi-

dene in the analysis results that they are redundant.

The whole demand-driven approah is based on the following reasoning. We use the

arrow `�>' to indiate that the steps in the reasoning are not logial impliations but rea-

sonably reliable onlusions instead.

When a programmer uses a possibly erroneous operation suh as ar, he expets

the safety test to always sueed

�> the safety test truly sueeds all the time

�> there exists a mathematial proof that the safety test always sueeds

�> there exists an abstrat model that forms a demonstration that the safety

test always sueeds
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�> the demand-driven yle an �nd suh an abstrat model through demand

generation and proessing

This reasoning learly shows the di�erene between \trusting the programmer on how to

invest analysis e�orts" and \trusting the programmer on whih safety tests should be omit-

ted". Only the �rst kind of trust is granted as it does not ompromise the safety of the

exeutable ode. The reasoning also illustrates why it is so important to use proessing rules

that produes only neessary sub-demands. By the fat that the initial demand, generated

from the possibly erroneous expression, is most probably neessary, then all its sub-demands

and sub-sub-demands, reursively, are neessary, too. It is then reasonable to expet these

sub-demands to be ahievable. On the other hand, there is no \reasonably reliable" hain

of dedutions to support the belief that an unneessary sub-demand has a good potential

of being satis�able.

The omplete set of demands naturally depends on the whole demand-driven approah.

However, three kinds of demands that we already mentioned previously seem to be un-

avoidable. Namely, bound demands, suh as show �

12;k

� ValP , split demands, suh as

split �

12;k

?, and never demands, suh as show Æ

12;k

= ;. Normally, we expet the pro-

essing rules to be relatively simple for most of the demand kinds and in most situations.

As an instane, the reasonings involved in the example of Setion 4.3 were all reasonable

and intuitive. However, the biggest problems are to be expeted from the proessing of the

demands related to onditionals and all expressions. Espeially from the alls as the un-

deidability of the optimisation task would disappear if alls were removed from the soure

language.

The importane of having neessary demands leads to an important priniple in the

design of the proessing rules. This priniple says that the good ases should always be

separated from the bad ases before an attempt is made to show that some ases do not

our. The wording of the priniple is deliberately vague as it applies to many situations.

The meaning of the priniple is better illustrated by examples.

A �rst example relates to the bound demands. Usually, some values lie inside the bound

and the others, outside. Let us onsider demand D � show �

3;K

� ValC and let us suppose

that �

3;K

ontains abstrat losures and pairs. The losures are the good ases sine their

presene in �

3;K

does not give rise to problems. On the other hand, the pairs are the
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bad ases as D preisely asks for a demonstration that they should not appear in �

3;K

.

One annot take appropriate measures to ahieve D by letting �

3;K

ontain both types of

values. Neither an one do so by trying to eliminate all values from �

3;K

as the resulting

sub-demands would not express neessary properties. Beause, as far as we know, there is

no indiations that losures should not appear in �

3;K

. So, appropriate measures must �rst

inlude a sub-demand asking to make a separation between pairs and losures in �

3;K

. Using

demand D

0

� split �

3;K

?, atually. Only when D

0

has been ahieved an one ontinue

with the normal proessing of D. In the general situation, after the suessful proessing

of D

0

, ontour K has been replaed by speialised versions of K: fK

1

; : : : ;K

n

g = G

_

[ B,

and in ontours K

i

2 G, �

3;K

i

ontains only losures and in ontours K

j

2 B, �

3;K

j

does

not ontain any losure. D is trivially satis�ed in ontours K

i

2 G (the Good ases). In

ontours K

j

2 B suh that �

3;K

j

6= ; (the Bad ases), it is now legitimate to emit a demand

like D

00

j

� show Æ

3;K

j

= ;. Now, D

00

j

is as neessary as D. That is, violation of D auses a

safety test to stay required and violation of D

00

j

does the same.

Here is another example relates to alls. In a single all, some invoations may be

onsidered to be hazardous and some, not. Let us onsider all (

40

e

41

e

42

) in ontour K,

where �

41;K

= f

1

; 

2

g, �

42;K

= fvg, and a demand D asking for a demonstration that 

1

is not invoked on v at e

40

in ontour K. Doing nothing is not an appropriate method to

ahieve D. On the ontrary, emitting demands like show Æ

40;K

= ; or show Æ

41;K

= ; is

not appropriate either as they do not express neessary properties. That is, it may be the

ase that a onrete losure, represented by 

2

is truly invoked on a value, represented by v,

at e

40

in some ontext, represented by K. Consequently, losures 

1

(the bad ase) and 

2

(the good ase) must be separated before any attempt to demonstrate that some expression

does not get evaluated in some ontour is made.

Apart from the fundamental mehanism of generation and proessing of demands, many

onsiderations are related to the infrastruture required by the demand-driven analysis. A

�rst onsideration is that there has to be some kind of onurreny in the model-update,

re-analysis phase. The yle annot proeed by working on the removal of one safety test,

then on another, et. Any safety test may be arbitrarily diÆult to remove, if possible at

all. So a sequential approah for the removal of tests may blok at one of the �rst tests,

leading to the onsumption of all the time units available. This is a bad use of the resoures

as many more safety tests might have been removed by working on all tests onurrently.

This way, all the easily removable tests disappear after little e�ort has been invested on
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them. Only the tests that are the most diÆult to remove, or impossible, remain.

Deriving from the onurreny, there is the problem of the obsolesene of demands.

The e�ort that is invested on some tests frequently results in an update of the model.

This update auses some demands to beome either trivially satis�ed, or expressed in out-

fashioned terms. Demands that are trivially satis�ed not even have to be those that are

responsible for the model update. They beome a simple nuisane as proessing them is a

waste of time. Proper testing may be done before proessing eah demand in order to avoid

wasting time on already satis�ed ones. On the other hand, demands that are expressed

in out-fashioned terms are a more serious problem as their meaning is not related to the

abstrat model anymore. For example, onsider the out-fashioned demand D � split �

7;k

?

where ontour k has been replaed by the more preise ontours k

1

, k

2

, and k

3

. As it is,

D is no longer a valid demand. It should be replaed by speialised demands D

1

, D

2

, and

D

3

where D

i

� split �

7;k

i

?. Continuing to manipulate D is problemati as the following

situation ould our. Eah D

i

may be trivially satis�ed. That is, eah abstrat variable

�

7;k

i

may ontain values of only one type. That would mean that D would be satis�ed.

However, if we interpreted �

7;k

as [

i

�

7;k

i

, then we ould be brought to believe that D is

not satis�ed, as [

i

�

7;k

i

ould ontain values of di�erent types.

A last onsideration onerns the sharing of the abstrat model between threads of de-

mand proessing. Note that the omputation e�ort that is put into proving the redundany

of a partiular safety test an be viewed as a thread in the global, onurrent model-update,

re-analysis phase. Sharing the abstrat model between threads means that, eah time one

of the threads selets an update to the model, it is applied to a single global model. On

the ontrary, not sharing the model means that eah thread has its own private model.

The advantage of sharing is that useful information an ow quikly between threads. And

updating a model means that the new analysis results will mimi the onrete evaluation

more aurately. However, the inonveniene of sharing is that the frequent model updates

oming from all threads ause demands to be frequently rewritten in new terms. These

frequent rewritings tend to ause a proliferation of demands. Hybrid approahes an be

hosen that try to obtain the best of both worlds and keep the inonveniene to a mini-

mum. For example, the model held by a thread is ommuniated to the other threads only

if its orresponding safety test has been proven to be redundant. So only \learly useful"

model updates propagate to the model of the other threads.
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4.6 Disussion

To summarise the ontents of this hapter, we would say that it is a proposal of a demand-

driven analysis being omposed of a preliminary analysis followed by a model-update, re-

analysis yle. Instead of the desription of a omplete approah, the most important

onsiderations to take are of in the design of a omplete approah are highlighted. The

major onsiderations are: the balane between auray and ost in the preliminary anal-

ysis; the onepts of neessity and suÆieny in the proessing of demands; the neessary

onurreny in the yle and its onsequenes; and the eventual sharing of model updates.

Chapter 5 proposes a omplete approah that tries to stay as simple as possible while taking

are of these onsiderations.

Of ourse, without the proposition of a omplete approah and the exeution of exper-

iments, it is hard to evaluate the potential of a demand-driven type analysis. However,

the eventuality that the demand-driven analysis ould be less powerful than an orale in

hoosing an abstrat model ould well be real. That is, an orale would hoose an abstrat

model allowing the program to be analysed perfetly well eah time suh a model exists.

Of ourse, this task is unomputable and we annot expet the demand-driven approah

to do the same in �nite time for eah program. But we ould have hoped that, given an

unbounded amount of time, it has the ability to eventually �nd an appropriate model eah

time suh a model exists while having the freedom to possibly loop eah time the model

does not exist. However, even this redued requirement may not be ahievable. That is,

the demand-driven analysis does not try every possible abstrat model by brute fore. Eah

modi�ation has to be needed aording to the urrent state of the model and the urrent

analysis results. So there exists the possibility that a program ould be so intriate that

no useful suggestion for updating the model is proposed after a ertain point. I.e. that all

useful modi�ations to the model seem to be unneessary.

We expet that a model-update phase based on demand manipulation ought to propose

interesting modi�ations to the model. The expetations ome from the neessity of the

property in eah demand. Neessity that ultimately omes from the supposition of the

programmer being probably right when he believes that some values have to be pairs or

losures. Consequently, we say that alls and ar- and dr-expressions are reliable hints

to have guidane of the demand-driven analysis. Of ourse, these expressions are preisely

those that normally inlude dynami safety tests that the optimiser wants to remove. But
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the legitimay behind the expetations omes from the reliability of the hints and not from

the importane of having the optimiser to perform its task. If the optimisation to perform

were the detetion of alls where inlining of funtions an our,

1

there would not be the

same legitimay. To see why, when the programmer writes a all expression in his program,

that does not mean that he believes that only one funtion an be invoked from this all.

At least, there is no syntati evidene to support the existene of suh a belief. So there

is no reasonable hain of onlusions that we an draw from the all. However, other

reliable soures of properties exist. As an instane, pro�ling

2

an provide statistis about

the exeution of a program and these statistis may reveal the existene of properties with

possibly high degree of reliability. For example, if all losures observed at a ertain all e

l

ame from the same �-expression e

l

0

during eah of the several million invoations having

ourred there, then it is an opportunity for inlining. A demand ould be emitted that

requests a demonstration of the statement that all the losures invoked at e

l

ome from e

l

0

.

1

The inlining is an optimisation tehnique in whih a all is replaed by the body of a funtion, when it

is known that only that funtion ould be invoked at that all.

2

Pro�ling a program onsists in gathering di�erent statistis on the details of the exeution of a program.

The nature of the statistis may vary wildly as they go from exeution frequeny for expressions to the type

of the objets seen at a partiular point in the program.



Chapter 5

Pattern-Based Demand-Driven

Analysis

We now present a omplete approah for performing a demand-driven analysis. That is, we

present partiular hoies for the representation of the abstrat values and abstrat ontours,

the implementation of models, and the global algorithm. The hoies are intended to form

the simplest and most intuitive representation for the abstrat values and ontours. Values

and ontours are based on patterns or, in informal terms, data strutures with holes. A

pattern presents a shallow desription of a onrete value or ontour. It is similar to patterns

found in high-level languages that feature pattern-mathing for the de�nition of funtions.

Models are represented using pattern-mathers.

The hapter starts by giving a omplete presentation of the abstrat models and de-

mands. Then the proessing rules for the demands are presented with a disussion on our

partiular hoies. Next, the whole approah is presented. It is a desription of the ur-

rent prototype. A history of the di�erent attempts to reate a working prototype follows.

Finally, we disuss the pros and ons of the urrent pattern-based approah and mention

extensions to it.
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5.1 Pattern-Based Modelling

We use patterns to represent values and ontours. The syntax of these patterns and their

meaning is �rst presented. The reasons behind the hoie of the patterns follow.

Next, the abstrat models are desribed. It inludes the de�nition of the pattern-

mathers, their use and the properties that they must obey. Algorithms used to update

the pattern-mathers, that is, the abstrat models, are also presented.

Finally, the syntax and meaning of the demands are presented. These are presented in

that setion beause the de�nition of demands is losely related to the patterns and the

representation of values and ontours.

5.1.1 Representation of the Abstrat Values and Contour

The abstrat values are represented using patterns whih are shallow versions of the onrete

values. That is, the type and ontents of the sub-values are known up to a ertain depth.

The depth where the details are still available need not be the same in every part of a value.

At the point where no more details are available, a speial pattern is used to indiate that

anything ould go there. For example, an abstrat pair ould ontain the Boolean #f in its

ar-�eld and the speial any-value pattern in its dr-�eld.

There are two reasons why we have adopted suh a representation. We believe that

it is the simplest and most intuitive representation that still features an arbitrary level of

auray. Also, following the explanations of Setion 3.7, we think that data abstrations

of what is diretly used in the onrete evaluation should perform better than abstrations

that are indiretly linked to the onrete evaluation. For example, we expet to obtain

better results by manipulating abstrat pairs ontaining (inomplete) desription of the two

values they ontain than by manipulating ones memorising at whih label and in whih

ontour they were reated.

Overview

Here is an overview of the abstrat representation for the values of eah type. There is

only one abstrat Boolean sine there is only one onrete Boolean to keep trak of. Pairs
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are more or less shallow representations of onrete pairs. They do not memorise how they

were reated but rather what they ontain. On the other hand, losures remember whih

�-expression they ome from and what ontour was prevailing during their reation. Two

distint �-expressions annot produe the same abstrat losure. However, the memorised

ontour an be an approximation of the one that prevailed at reation time. This may seem

to be in sharp ontradition with the spirit in whih we want to represent abstrat values.

But this apparent ontradition disappears when we see what abstrat ontours are.

The hoie of the representation for the ontours is a diret appliation of the priniple

that the best abstrat representation should be a partial desription of the onrete entity.

Abstrat ontours are essentially shallow versions of lexial environments, but without the

variables. An abstrat ontour is a list of abstrat values where eah abstrat value repre-

sents the value to whih a visible variable is bound to. As abstrat values, abstrat ontours

may feature various degrees of auray in the representation of the value of eah variable.

The �rst value is a bound on the ontents of the variable introdued by the innermost en-

losing �-expression. The last orresponds to the value of the outermost visible variable. By

onstrution of the abstrat models, expressions get abstratly evaluated in ontours that

have a length orresponding to that of the lexial environment.

Syntax

Abstrat values and ontours are denoted using the syntax of the modelling [ontour℄ pat-

terns. We all these modelling patterns to distinguish them from the split patterns that

are introdued later. Figure 5.1 presents the syntax of the modelling patterns. There is a

di�erent modelling pattern for eah type of abstrat value. Also, there is a speial pattern

that represents all values: 8. There is another speial pattern that represents all losures:

�

8

. These speial patterns mark the limits of the desription of the abstrat values. For

example, pattern (#f ; 8) is the notation for the pair mentioned above. The abstrat pair

ontains a Boolean in its ar-�eld and ontains anything in its dr-�eld.

Without the speial patterns, the syntax of modelling patterns ould only denote on-

rete values. In order to be able to identify the type of the abstrat values, model parameters

 and p are not allowed to return 8 as abstrat losure or as abstrat pair, respetively.

Also, to avoid blending all losures together, parameter  is not allowed to return �

8

as

abstrat losure.
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MPat := 8 j

#f j

�

8

j

�

l

k j where l 2 Lab and k 2 MCtPat

(P

1

; P

2

) where P

1

; P

2

2 MPat

MCtPat := (P

1

: : : P

n

) where n � 0 and P

1

; : : : ; P

n

2 MPat

Figure 5.1: Syntax of the modelling patterns

Modelling ontour patterns are represented as lists of patterns. They have as many

entries as there are variables in the environment of the expressions for whih the ontours

are intended. In partiular, the main expression and its immediate sub-expressions get

evaluated in the empty ontour: (). This is normal as there is no variable visible from these

expressions. To illustrate the ontours let us we onsider this partial program:

(

1

(�

2

x: (

3

(�

4

y: e

5

)

. . . ))

. . . )

The ontours in whih e

5

is to be evaluated have two entries: the �rst for the value of

`y', the seond for the value of `x'. For example, a ontour indiating that `x' is a losure

and `y' is a pair looks like:

k = ((8; 8) �

8

)

By onstrution of our abstrat models, it is guaranteed that a referene to `x' made in k

(i.e. from an expression in 4(e

5

)) an only yield losures and a referene to `y' an only

yield pairs.

Conformane

Modelling patterns denote abstrations of onrete values. Most of the abstrat values

happen to represent more than one onrete values. When a onrete value is represented by

an abstrat value, we say that the onrete value onforms to, or is abstrated by, the abstrat

value. Here, we give a formal de�nition of the onformane relation. We use the notation

% (already used in Setion 3.5.1) to denote the \is abstrated by" relation. However,

we give here a new de�nition that gives a diret orrespondene between onrete values

and modelling patterns, without any kind of referene to some analysis results. Figure 5.2
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% � Val�MPat

v % 8

#f % #f

% �

8

; if  2 ValC

los((�

l

x: e); �)% �

l

k; if �%

l

k

pair(v

1

; v

2

)% (P

1

; P

2

); if v

1

% P

1

and v

2

% P

2

%

l

� Env �MCtPat; l 2 Lab

�%

l

(); if � is valid at label l and Dom(�) = ;

�%

l

(P

1

P

2

: : : P

n

); if � is valid at label l,

x is the innermost variable among those in Dom(�),

� x% P

1

;

e

l

1

= (�

l

1

x: e), and

�[x 7! ?℄%

l

1

(P

2

: : : P

n

)

Figure 5.2: De�nition of the onformane relation

presents the de�nition of relation %. The orrespondene between lexial environments

and modelling ontour patterns is also presented. In this ase, a label must be provided

to the relation as an index. We say that an environment is abstrated, at label l, by a

ontour pattern when the values to whih variables are bound onform to the orresponding

abstrat values in the ontour. The label is neessary beause otherwise the same ontour

ould abstrat lexial environments ontaining bindings for di�erent sets of variables. In

Figure 5.2, we use the notation �[x 7! ?℄ to denote an environment idential to � exept

that the new one is not de�ned on `x'. The symbol ? an be seen as an unde�ned value.

An extension to the de�nition of the relation % that we use later is that of the on-

formane between modelling patterns. We say that P

1

onforms to P

2

when all onrete

values that onform to P

1

also onform to P

2

and we denote it by P

1

% P

2

. Verifying the

following property about two modelling patterns P

1

and P

2

:

P

1

% P

2

if

8v 2 Val: v % P

1

) v % P

2

is mathematially sound but does not form an algorithm. However, it is easy to present one.

The onformane relation between modelling ontour patterns is also presented. Tehnially,

the label index is not neessary to ompare ontour patterns diretly anymore beause the

only requirement on them is to be of the same length. But we keep it to let the notation
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% � MPat �MPat

P

1

% 8

#f % #f

�

8

% �

8

�

l

k % �

8

�

l

k

1

% �

l

k

2

; if k

1

%

l

k

2

(P

1

; P

2

)% (P

0

1

; P

0

2

); if P

1

% P

0

1

and P

2

% P

0

2

%

l

� MCtPat �MCtPat l 2 Lab

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

); if there are n visible variables at label l and

P

1

% P

0

1

; : : : ; P

n

% P

0

n

Figure 5.3: Algorithm for the onformane relation between modelling patterns

be onsistent with the onrete-abstrat ase and to keep a onnetion with the following

mathematial de�nition of onformane between ontour patterns:

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

) if

8� 2 Env: � is valid at label l)

�

�%

l

(P

1

: : : P

n

)) �%

l

(P

0

1

: : : P

0

n

)

�

Note that we will never have to test onformane between two ontours that abstrat two

inompatible lexial environments, i.e. lexial environments that have di�erent domains.

Figure 5.3 presents the formal de�nition of an algorithm testing the onformane between

two modelling patterns. Proving that this de�nition of onformane is idential to the

mathematial de�nitions is very simple and so we do not make the proof.

5.1.2 Models

We build upon the de�nition of the abstrat values and de�ne the abstrat models. Abstrat

models are made of a ertain number of pattern-mathers. These pattern-mathers regulate

the auray of the modelling patterns that at as abstrat values. As is soon presented,

abstrat operations on values are performed similarly to onrete operations exept that

pattern-mathers are used to determine the appropriate level of details in the resulting

values. For example, while a onrete pair holding values v

1

and v

2

is pair(v

1

; v

2

), an

abstrat pair holding values v̂

1

and v̂

2

is obtained by passing (v̂

1

; v̂

2

) through a pattern-

mather. The latter may hoose to redue the auray in ertain points of the new pair.
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A theoretial de�nition of pattern-mathers is �rst presented. There are many prop-

erties to whih they must obey. Models are de�ned using these pattern-mathers. Then,

the implementation of the pattern-mathers is desribed. Finally, the algorithms allowing

pattern-mathers (and, onsequently, the abstrat model) to be updated are presented.

Theoretial De�nition of Pattern-Mathers

The task of a pattern-mather onsists in hoosing, for eah onrete value v, a modelling

pattern P that is going to be its orresponding abstrat value. Naturally, P must be hosen

so that v onforms to it. That is, is has to hoose P suh that v % P . We de�ne a pattern-

mather to be a set of modelling patterns. For a onrete value v and a pattern-mather

M , the abstrat value P returned as a representative for v is the element P 2M suh that

v % P .

Note that we just used the words \the abstrat value". That means that suh an abstrat

value must be present in M . This leads to the following property of pattern-mathers. A

orret pattern-mather has to be exhaustive. That is, M is exhaustive if:

8v 2 Val: 9P 2M: v % P

But it is not yet suÆient to allow us to use the words \the abstrat value". For most

of the values in Val, there is more than one pattern to whih it onforms. So there may be

more than one P

0

2M suh that v % P

0

. So a partiular pattern-mather has to ommit to

ertain patterns so that its results are always unique. That is, it has to be non-redundant.

Formally, M is exhaustive and non-redundant if:

8v 2 Val: 9

1

P 2M: v % P

The modelling pattern P hosen by the existential quanti�er is the abstrat value seleted

by the pattern-mather to be the abstrat representative for v.

The preeding example|the onstrution of an abstrat pair|also used a pattern-

mather. However, the pattern-mather was used on a modelling pattern, not on a onrete

value. Normally, it does not make a di�erene. For a modelling pattern P and pattern-

mather M , we simply searh for P

0

2M suh that P % P

0

. However, if P is not aurate
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enough, there may be no appropriate P

0

in M . But, as long as P is aurate enough, we

an use the pattern-mather to �nd an abstrat value that abstrats it.

We present a simple example of modelling pattern that is not aurate enough. Let M

be:

f#f ; �

8

; (8; 8)g

If P = 8, then we annot selet P

0

2 M suh that P % P

0

. P is too inaurate. In fat,

8 is the only modelling pattern that is too inaurate to have an abstrat representative in

M .

Mathematially, seleting an abstrat value in a pattern-mather is equivalent to a pro-

jetion. For v 2 Val [MPat, the abstrat value v

0

2 MPat seleted by the pattern-mather

M is usually di�erent from v. But if we want to selet the abstration for v

0

, we get v

0

again. Intuitively, it makes sense as the task of the pattern-mather is to \erase" unwanted

details in values. One their unwanted details are erased, values do not hange anymore if

they go through the pattern-mather again.

Now that we have a preise de�nition of a pattern-mather, we an introdue the model.

A pattern-based abstrat model is built on a group of pattern-mathers: one for the abstrat

values and the others for the abstrat ontours. All of them have to be exhaustive and non-

redundant. The pattern-mather projeting the abstrat values is used for all three types.

It has to be able to projet all values in Val. We will usually denote it as M

V

. As for the

ontour pattern-mathers, there is one for eah �-expression of the program. The ontour

pattern-mather M

l

selets the ontour in whih the body of a �-expression (�

l

x: e

l

1

) is to

be evaluated when a losure originating from e

l

is invoked.

In order to obtain a legal model, M

V

must ontain distint patterns for values of the

three types. That is, it annot be f8g. Also, M

V

must provide distint abstrat losures

for eah �-expression. So this model is not aurate enough:

f#f ; �

8

; (8; 8)g

Indeed, blending all losure together would keep our model from being able to feature sets

of ontours ustomised for eah losure body.

The ontour pattern-mathers do not projet (simple) modelling patterns, but mod-
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elling ontour patterns. Pattern-mather M

l

ontain ontour patterns of length n, where

n is the number of variables in the environment of the body of (�

l

x: e

l

1

). However, what

we presented above about a value pattern-mather applies almost immediately to ontour

pattern-mathers. The only di�erene lies in the meaning of the exhaustiveness property.

Instead, of being able to projet all values in Val, M

l

has to be able to projet all lists of val-

ues of length n. There is no minimal auray required from the ontour pattern-mathers.

An abstrat modelM for program e

l

0

an be built using pattern-mathers provided that

there is a value pattern-mather M

V

and one ontour pattern-mather M

l

per �-expression

e

l

. Eah pattern-mather must be exhaustive and non-redundant. We de�ne eah framework

parameter inM as:

� ValB is f#fg

� ValC is f�

l

k 2M

V

g

� ValP is f(P

1

; P

2

) 2M

V

g

� Cont is

S

l2L

M

l

where L = fl 2 4(e

l

0

) j e

l

is a �-expressiong

� k

0

is ( )

� (l; k) is the projetion by M

V

of �

l

k

� p(l; P

1

; P

2

; k) is the projetion by M

V

of (P

1

; P

2

)

� all(l

1

; �

l

(P

1

: : : P

n

); P; k) is the projetion by M

l

of (P P

1

: : : P

n

)

The de�nition of the �rst �ve parameters is straightforward. On the other hand, the de�-

nition of the three reation funtions deserves some explanation. The  and p funtions

onsist in performing a projetion on a pattern built in a natural way. Patterns �

l

k and

(P

1

; P

2

), respetively, are both projeted using M

V

. The raw losure �

l

k ontains full

ontour information. Some of it is forgotten by the projetion. Similarly, for the raw pair

(P

1

; P

2

). The de�nition of all summarises well the mehanisms implementing our ontour

seletion strategy. Sine ontours are abstrat representatives for lexial environments, the

ontour seleted for the evaluation of the body of a losure reets the lexial environment

by ombining the losure's ontour (the abstrat losure's de�nition environment) and the

argument in the invoation. The ontour that prevails at the site where the invoation
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ours is not onsidered. Neither is the label of the all. The raw ontour (P P

1

: : : P

n

)

is �rst reated and is then projeted using the pattern-mather speialised for invoations

of losures of the form `�

l

', that is, M

l

. Note how the value of the innermost variable, P ,

is inserted at the beginning of the new ontour, maintaining the invariant that the value of

the variables are listed from the innermost to the outermost.

Before we are done with the theoretial presentation of the pattern-based models, we

need to take are of a last problem: that of onsisteny between pattern-mathers. The

projetion of a onrete value using a pattern-mather is always possible, as long as the

pattern-mather is exhaustive and non-redundant. However, not all abstrat values an

be projeted using a pattern-mather, even if the pattern-mather is exhaustive and non-

redundant. Certain abstrat values are too inaurate. That is, too inaurate in at least

some of their sub-omponents. The problem with abstrat values (or ontours) that are

too inaurate is that, when they are used to form a raw pattern P and a projetion of

P is attempted using a pattern-mather M , there may not be any P

0

2 M suh that

P % P

0

. Consequently, the pattern-mathers on whih an abstrat model is built must

represent projetions that return values aurate enough to be inluded into raw patterns

and projeted again by the same or other pattern-mathers.

Let us give an example of a value pattern-mather that produes values that are too

inaurate for its own needs. Let M

V

be:

8

>

>

>

<

>

>

>

:

#f ; �

8

; (8; #f);

(8; �

8

);

(8; (#f ; 8)); (8; (�

8

; 8)); (8; ((8; 8); 8))

9

>

>

>

=

>

>

>

;

Normally, it would not be onsidered as a valid value pattern-mather beause it blends

all losures together. But we prefer to keep the example simple as we are not interested

by losures here. M

V

projets Booleans and losures to their simplest formulation. But

it lets pairs have more details. The type of the value in the dr-�eld of pairs is expliit

and in the ase where this value is a pair too, the ar-�eld of this internal pair ontains

an extra level of details. Note also that all abstrat pairs have no information about the

ontents of their ar-�eld. However, type information on the value in the ar-�eld of pairs

is sometimes required during the onstrution of new pairs. To learly illustrate when the
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problem ours, we onsider the following expression:

(ons

22

#f

23

(ons

24

(�

25

x: x

26

) #f

27

))

Conretely evaluating e

22

in, say, the empty environment `�', gives:

pair(#f; pair(los((�

25

x: x

26

); �); #f))

Just out of uriosity, we may projet this value using pattern-mather M

V

to obtain the

orresponding abstrat value:

(8; (�

8

; 8))

However, during an abstrat evaluation of e

22

, the abstrat value must be built step by

step. So the reation of the inner pair (evaluation of e

24

) produes the following raw and

projeted pattern:

(�

25

(); #f)

M

V

7! (8; #f)

The reation of the outer pair (evaluation of e

22

) produes:

(#f ; (8; #f))

M

V

7! ?

The projetion annot be done beause the internal abstrat pair is not aurate enough to

be handled by M

V

.

This was an example of the value pattern-mather not being onsistent with itself. But

to obtain a valid pattern-based model, it is not only neessary for M

V

to produe abstrat

values aurate enough for its own needs, but it must do the same for the needs of eah M

l

,

and eah M

l

must produe ontours aurate enough for the needs of M

V

. Indeed, by the

de�nition of the reation funtions  and p, M

V

is used to projet raw patterns ontaining

abstrat values and ontours oming from itself and from the di�erent M

l

, respetively.

And by the de�nition of the seletion funtion all, all the M

l

are used to projet raw

ontour patterns ontaining abstrat values oming from M

V

(and from losure ontours

oming themselves from M

V

). So the implementation of abstrat models has to ensure that

onsisteny is maintained between the pattern-mathers after eah model update.
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Implementation of Pattern-Mathers

The mathematial de�nition of pattern-mathers is simple and preise but if pattern-

mathers were diretly implemented this way, projetions would be rather ineÆient. So,

instead, pattern-mathers are implemented as deision trees. A fast traversal of a pattern

allows the pattern-mather to determine what the result of the projetion is. The traversal

takes linear time in the size of the pattern. More preisely, it takes time linear in the size

of the inspeted part of the pattern. Some sub-parts of a pattern need not be inspeted as

they are mathed to the sub-pattern 8 in the pattern-mather.

We have adopted a breadth-�rst traversal of the patterns. Note that a depth-�rst traver-

sal would work too. In fat, any valid order would work; as long as any part of the pattern is

inspeted before its sub-parts are. But we have a reason to prefer the breadth-�rst traversal.

During a demand-driven analysis, there typially are onsiderable di�erenes in the level

of details needed in some values (or ontours) ompared to that in other values. For example,

the pairs having a non-pair in the dr-�eld may be uninteresting for the analysis while those

having a pair in the dr-�eld may beome very detailed in both �elds. When oarse and

detailed values oexist, the point at whih there is a distintion between the two kinds of

values ours at a low depth in the pattern (beause a oarse value is not very deep, to start

with). So, in order to avoid onsidering unneessary details in the uninteresting values,

the inspetion of the distinguishing point should appear as high as possible in the deision

tree. When a breadth-�rst traversal is used, this point annot appear below a ertain depth

beause traversing all levels above the point an only introdue a bounded number of stages

in the deision tree. On the other hand, if a depth-�rst traversal is used, an arbitrary

number of points may have to be inspeted before the distinguishing point is reahed. This

is beause full-detail inspetion is neessary as long as the point distinguishing uninteresting

and interesting values is not met. To ome bak to the example, a deision tree performing

a depth-�rst traversal of the pairs would have to inspet the value in the ar-�eld with full

preision in the eventuality that the pairs are interesting, i.e. in the eventuality that the

dr-�eld ontains a pair. Complete traversal of the value in the ar-�eld may be arbitrarily

long. So a depth-�rst traversal may lead to a deision tree that is exaggerately big if a bad

ase ours.

Now, let us desribe the data strutures used to implement the pattern-mathers. First,
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PM := PM

O

j PM

C

j PM

L

PM

O

:= Onode [Val )M ℄ j where M 2 PM

Onode [ValB )M

1

; ValC )M

2

; ValP )M

3

℄

where M

1

;M

2

;M

3

2 PM

PM

C

:= Cnode [Lab)M ℄ j where M 2 PM

Cnode [l

1

)M

1

; : : : ; l

n

)M

n

℄ where M

1

; : : : ;M

n

2 PM

and fl

1

; : : : ; l

n

g =

fl 2 Lab j e

l

is a �-expr.g

PM

L

:= Leaf P where P 2 MPat [MCtPat

Figure 5.4: Implementation of the pattern-mathers

the deision tree is made of inspetion nodes|the internal nodes|and of result nodes|the

leafs. The leafs ontain the results of the projetion of raw patterns. There are two kinds

of inspetion nodes: the objet nodes and the losures nodes. The two kinds of inspetion

nodes both ome in two variants: the blind variant and the disriminating variant. An

objet node expets a value and (possibly) disriminates on the type of the value. A losure

node expets a losure and (possibly) disriminates on the label attahed to the losure. A

blind variant does not inspet its orresponding sub-pattern and has a single sub-tree. A

disriminating variant inspets its orresponding sub-pattern and dispathes the remainder

of the traversal to one of its sub-trees depending on the type or the label.

Figure 5.4 presents the data strutures used to represent deision trees. The inspetion

nodes are built with a onstrutor that indiates if they are objet or losure nodes. Then

a list of alternatives follows. We believe that the notation for the alternatives speaks for

itself. The leaf nodes ontain modelling patterns or modelling ontour patterns, depending

on whether they are part of a value or ontour pattern-mather, respetively.

The breadth-�rst traversal of data strutures typially requires a queue to temporarily

hold the sub-strutures until they are traversed. It is the ase for the traversal of patterns.

The general treatment for a pattern depends on the inspetion node variant that is inspeting

it. When the inspetion node is blind, the pattern is simply extrated from the queue. When

the inspetion node is disriminating, the pattern is extrated from the queue and then its

sub-patterns, when they exist, are inserted in the queue for future inspetion. One may

have noted that the data strutures used to implement the pattern-mathers do not inlude

nodes to inspet ontour patterns expliitly. The inspetion of ontours always starts by

breaking them into the individual values they ontain and inserting eah value one after the
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pm : PM� hqueue of MPati ! MPat [MCtPat

pm(Onode [Val )M ℄; P / q) = pm(M; q)

pm(Onode [ValB )M

1

; : : :℄; #f / q) = pm(M

1

; q)

pm(Onode [: : : ; ValC )M

2

; : : :℄; P / q) = pm(M

2

; q / P );

if P = �

8

or P = �

l

(P

1

: : : P

n

)

pm(Onode [: : : ; ValP )M

3

℄; (P

1

; P

2

) / q) = pm(M

3

; q / P

1

/ P

2

)

pm(Cnode [Lab)M ℄; P / q) = pm(M; q)

pm(Cnode [: : : ; l

i

)M

i

; : : :℄; �

l

i

(P

1

: : : P

n

) / q) = pm(M

i

; q / P

1

/ : : : / P

n

)

pm(Leaf P; [ ℄) = P

Figure 5.5: Algorithm for pattern-mathing

other in the queue.

Queues are denoted using square brakets and queue elements are separated by ommas.

Insertion is performed to the right and extration, to the left of queues. The projetion of

(simple) modelling pattern P is done by using [P ℄ as an initial queue. The projetion is

done by omputing:

pm(M

V

; [P ℄)

where `pm' is the pattern-mathing funtion. The projetion of modelling ontour pattern

(P

1

: : : P

n

) using pattern-mather M

l

is done by omputing:

pm(M

l

; [P

1

; : : : ; P

n

℄)

Figure 5.5 presents the algorithm that performs projetions using the pattern-mathers. It

takes a pattern-mather node and a queue of values as arguments. To make the algorithm

easier to read, we use a view

1

on queues, denoted by `/', to indiate both insertions and

extrations. As usual, insertions are done to the right of queues and extrations, to the left.

The objet nodes aept all kinds of modelling patterns. But the losure nodes expet

only modelling patterns of losures. By onstrution of the pattern-mathers, a losure is

1

A view is an impliit transformation that is performed on data strutures to present them under a

di�erent aspet, or point of view, that is more helpful. Views are used both in pattern-mathing and in the

onstrution of values. Here is an example using a Haskell-like syntax. We an extrat the �rst two elements

of a list along with the rest of the list using the pattern a:b:xs. However, if the real intent was to obtain

a list of the �rst two elements and the rest of the list, the use of the onatenation view, ++, in pattern

[a,b℄++xs, would be more natural. In the �rst pattern, it is the real onstrutor that is used to perform

the pattern-mathing. But in the seond, a �titious but more onvenient representation of the values is

obtained by the use of the ++ view.
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always the next pattern to extrat from the queue eah time pattern-mathing goes through

a losure node. Also, a leaf always oinide with an emptied queue. This is guaranteed by

onstrution of the pattern-mathers.

Let us have a loser look at the algorithm. When an objet node is reahed, four ases

are possible: the node is blind or the node is disriminating and the extrated pattern is

that of a Boolean, that of a losure, or that of a pair. A blind node simply disards the

pattern. In the other ases, sub-patterns, if they exist, are inserted bak into the queue.

In the Boolean ase, there is no sub-pattern to insert bak. In the losure ase, the whole

losure is inserted bak for future examination by a losure node. The inspetion of the

label of the losure, if it ours at all, is onsidered to be an operation done deeper by one

level in the pattern than the inspetion of its type. In the pair ase, both sub-patterns are

inserted bak into the queue.

When a losure node is reahed, there are only two ases: the node is blind or it is

disriminating on the label of the �-expression from whih the extrated losure originates.

When the node is blind, the label and the whole losure are not onsidered and the losure

is disarded. When the node is disriminating, there is a ase for eah �-expression label.

The ontour of the losure is broken and the values it ontains are inserted into the queue,

from the �rst to the last.

When a leaf is reahed, the result of the projetion is simply extrated from the leaf and

returned.

The presented data strutures and pattern-mathing algorithm provide an implementa-

tion for the abstrat models that is relatively fast. The raw patterns that must be projeted

beause of the use of reation funtions of the model an be proessed in linear time with

the size of the part of the pattern that is inspeted by the deision trees.

Model Updates

An update of the model onsists in hanging one or a few of the pattern-mathers to make

them more aurate. That is, more aurate with respet to the projetion results and more

aurate with respet to their inspetion of the projeted patterns. A single model update

may require more than one hange to the same pattern-mather. Typially, this is the ase

for M

V

. The hanges to the pattern-mathers must be done with are. In partiular, the
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SPat := ? j

�

?

j

�

l

k j where l 2 Lab and k 2 SCtPat

(P

1

; P

2

) j where P

1

2 SPat and P

2

2 MPat

(P

1

; P

2

) where P

1

2 MPat and P

2

2 SPat

SCtPat := (P

1

: : : P

i�1

P

i

P

i+1

: : : P

n

) where P

i

2 SPat

and 8j 2 f1; : : : ; ng � fig: P

j

2 MPat

Figure 5.6: Syntax of the split patterns

pattern-mathers must stay onsistent with the others. However, a systemati updating

proedure that ensures that the updates are done properly is relatively easy to elaborate.

The �rst tools we need to desribe are the split patterns and the split ontour patterns.

The split patterns speify a point in the abstrat values or abstrat ontours where an

inrease in preision is sought. Split patterns are usually generated by the proessing of

demands. Figure 5.6 presents their syntax. The `?' sign is alled the split point. Every

split (ontour) pattern ontains exatly one split point. Normally, the split point auses the

values to be more aurate by one extra level. But, in order to stay as general as possible,

we do not rely on that supposition.

The syntax of the split patterns allows one to indiate whih abstrat values should be

a�eted by the update. For example, the following two patterns are not equivalent:

(�

8

; ?) (8; ?)

Both ask for additional auray in the representation of the value in the dr-�eld of pairs.

But the �rst asks for additional auray only for the pairs that have a losure in their

ar-�eld while the seond asks it for all pairs. Naturally, more omplex restritions an

be expressed using the \modelling part" of the patterns. However, there are limitations

related to the fat that patterns are traversed in a breadth-�rst manner. For example, the

following patterns desribe the same split:

�

12

((�

8

; #f) ?) �

12

((8; 8) ?)

beause the node a�eted by the split point is higher in the deision tree than those or-

responding to the �elds of the pair. So, the hoie between blindness and disrimination
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for the higher node annot depend on the path that is followed in lower nodes. Even if,

onretely, updates are performed diretly on deision trees, here, we prefer to desribe the

update proess while onsidering pattern-mathers to be sets.

The model update requests take the form of one or more pattern-mather update requests.

Pattern-mather update requests are denoted using the syntax:

update M with P where M 2 PM and P 2 SPat

In fat, the name of the pattern mather is important. The reasons are presented later.

As an example, the proessing of demands might generate the following pattern-mather

update requests:

update M

2

with (?)

update M

V

with �

4

(?)

update M

4

with (#f ?)

Eah pattern-mather update request an be proessed individually.

The �rst step in the proessing of a pattern-mather update request like:

update M

V

with P or update M

l

with k

onsists in simplifying the pattern P|or k. Unneessary details ought to be removed from

the pattern sine they do not have an inuene on the signi�ation of the pattern. We

illustrate the simpli�ation by using one again the above example:

�

12

((�

8

; #f) ?) 7! �

12

((8; 8) ?)

The implementation of the simpli�ation is relatively simple. It only requires a breadth-�rst

traversal of the pattern. The elements of the pattern are noted. Sine there is no deision

tree to guide the traversal, expliit markers are manipulated along with the sub-patterns.

The `O' and `C' markers indiate objet and losure inspetions, respetively. When the split

point is found, the rest of the traversal operates an erasure of the remaining sub-patterns.

The top of the pattern is then rebuilt on top of these simpli�ed sub-patterns. Figure 5.7

presents the algorithm formally. `S' is an overloaded funtion that simpli�es both split

patterns and split ontour patterns. Funtion `S

Q

' deonstruts and reonstruts the higher

parts of the pattern. Funtion `S

?

Q

' is the detail-erasure operation. Note that a queue is
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S : SPat! SPat

S(P ) = P

0

where P

0

/ [ ℄ = S

Q

([ ℄ / O P )

S : SCtPat! SCtPat

S((P

1

: : : P

n

)) = (P

0

1

: : : P

0

n

)

where P

0

n

/ : : : / P

0

1

/ [ ℄ = S

Q

([ ℄ / O P

1

/ : : : / O P

n

)

S

Q

: hqueue of fO; Cg � (SPat [MPat)i ! hqueue of (SPat [MPat)i

S

Q

(O 8 / q) = S

Q

(q) / 8

S

Q

(O ? / q) = S

?

Q

(q) / ?

S

Q

(O #f / q) = S

Q

(q) /#f

S

Q

(O P / q) = q

0

/ P

0

; if P is �

8

, �

?

, or �

l

k

where P

0

/ q

0

= S

Q

(q / C P )

S

Q

(O (P

1

; P

2

) / q) = q

0

/ (P

0

1

; P

0

2

)

where P

0

2

/ P

0

1

/ q

0

= S

Q

(q / O P

1

/ O P

2

)

S

Q

(C �

8

/ q) = S

Q

(q) / �

8

S

Q

(C �

?

/ q) = S

?

Q

(q) / �

?

S

Q

(C �

l

(P

1

: : : P

n

) / q) = q

0

/ �

l

(P

0

1

: : : P

0

n

)

where P

0

n

/ : : : / P

0

1

/ q

0

= S

Q

(q / P

1

/ : : : / P

n

)

S

?

Q

: hqueue of fO; Cg �MPati ! hqueue of MPati

S

?

Q

(O P / q) = S

?

Q

(q) / 8

S

?

Q

(C P / q) = S

?

Q

(q) / �

8

S

?

Q

([ ℄) = [ ℄

Figure 5.7: Simpli�ation of split patterns

used for the deonstrution of the pattern and another for the reonstrution. The order

of the sub-patterns in the reonstrution queue is reversed. Figure 5.8 shows a trae of the

simpli�ation of the above example.

The next step in the proessing of a pattern-mather update request onsists in ensuring

that the pattern-mathers remain onsistent. Updating a ertain pattern-mather may lead

to a asade of updates. This is beause the updated values may be reated by projeting

raw patterns obtained from other values and these other values might not be aurate

enough yet. Figure 5.9 shows the rules that are used to generate new update requests from

omplex ones in order to maintain onsisteny. The new requests have to go through the

rules themselves, and so on, until a base ase is reahed. The set of requests obtained this

way an be proessed in any order by the third step: the model ould be in an inonsistent

state during the update, but one all the pattern-mather update requests are ahieved,
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S(�

12

((�

8

; #f) ?))

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([O �

12

((�

8

; #f) ?)℄)

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

S

Q

([C �

12

((�

8

; #f) ?)℄)

2
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6

6

6

6

6

6

6

6

6

6

6

6
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6
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8
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2

6

6
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6
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6

6

6

6

6

6

6

4
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Figure 5.8: Example of simpli�ation of a split pattern

update M

V

with ? ! none

update M

V

with �

?

! none

update M

V

with �

l

(P

1

P

2

: : : P

n

) ! update M

l

0

with (P

1

P

2

: : : P

n

)

where e

l

0

= (�

l

0

x: e

l

00

) and l 2 4(l

00

)

update M

V

with (P

1

; P

2

) ! update M

V

with P

1

, if P

1

2 SPat

update M

V

with (P

1

; P

2

) ! update M

V

with P

2

, if P

2

2 SPat

update M

l

with (P

1

P

2

: : : P

n

) ! update M

V

with P

1

, if P

1

2 SPat

update M

l

with (P

1

P

2

: : : P

n

) ! update M

V

with �

l

(P

2

: : : P

n

), if P

1

62 SPat

Figure 5.9: Generation of pattern-mather update requests to ensure onsisteny

it beomes onsistent again. Figure 5.10 ontinues the example of Figure 5.8 and lists the

pattern-mather update requests that ensure a onsistent update of the model. The example

supposes that �-expression e

12

is an immediate sub-expression of �-expression e

7

and that

�-expression e

7

is an immediate sub-expression of �-expression e

3

.

The third step is the sliing of patterns. The pattern in a pattern-mather update

request may be asking for an inrease in auray that adds more than one extra level in the

onerned abstrat values. To avoid manipulating omplex update situations, we perform

sliing on the pattern. The sliing of a pattern transform it in a sequene of patterns of

inreasing auray. It makes sure that nodes in the deision tree are upgraded from the
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update M

V

with �

12

((8; 8) ?)

! update M

7

with ((8; 8) ?)

! update M

V

with �

7

(?)

! update M

3

with (?)

! update M

V

with ?

Figure 5.10: Example of an update request and the sub-requests generated for onsisteny

highest to the lowest. Visually, the sequene of patterns have a split point that moves further

away from the top when we onsider them in the order they appear in the sequene. The

split point moves further away from the top in a breadth-�rst order. Figure 5.11 presents

the sliing algorithm formally. The sequene that is produed by the algorithm is denoted

using the syntax of queues. However, insertions to the front of the sequene are done using

the `.' operator. The `map' funtion is the usual funtion. It takes a funtion and a sequene

as arguments and applies the funtion to eah element of the sequene, produing a new

sequene. On the ontrary of to the preeding step, the patterns obtained with the sliing

algorithm are ordered and the order must be respeted. Figure 5.12 shows a split pattern

and the sequene of patterns obtained by sliing it. Notie how a split point is inserted for

eah point of the sub-pattern that is not a \universal" one, i.e. 8 or �

8

.

The fourth step onsists in applying the simpli�ed, onsistent, and slied patterns to the

pattern-mathers. Let us onsider a pattern-mather update request like:

update M

V

with P or update M

l

with k

We suppose that the order among the slied patterns produed by the sliing algorithm

is respeted. The upgrade may not even be neessary if the node to upgrade is already

disriminating. Even if upgrades are atually performed on deision trees, we prefer to

present upgrades on set-based pattern-mathers to keep things simpler. Also, we give the

textual explanations only for an update of M

V

. The operations are almost idential in the

ase of the update of M

l

.

When we update M

V

with a split pattern P , some of the modelling patterns in M

V

hange while others do not. So we need a tool to deide whih modelling patterns are

a�eted by P . To ful�l our needs, we extend the % relation to make it able to test if

a modelling pattern onforms to a split pattern. If we deree that `?' is equivalent to 8
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S : SPat! hsequene of SPati

S(P ) = map (� (P

0

/ [ ℄): P

0

) �

where ( ; �) = S

Q

([ ℄ / P )
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n
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n
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0

n

)) �
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Q
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1

/ : : : / P

n

)

S

Q

: hqueue of fO; Cg � (SPat [MPat)i !
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S
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0
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Figure 5.11: Sliing of split patterns

S ( (�

12

(?); (#f ; 8)) ) =

h

? , (?; 8) , (�

8

; ?) ,

(�

?

; (8; 8)) , (�

12

(8); (?; 8)) , (�

12

(?); (#f ; 8))

i

Figure 5.12: Example of the sliing of a split pattern
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% � MPat � (MPat [ SPat)

: : : (rules for the MPat �MPat ases)

P % ?

�

8

% �

?

�

l

k % �

?

�

l

k

1

% �

l

k

2

; if k

1

%

l

k

2

(P

1

; P

2

)% (P

0

1

; P

0

2

); if P

1

% P

0

1

and P

2

% P

0

2

%

l

� MCtPat � (MCtPat [ SCtPat) l 2 Lab

: : : (rule for the MCtPat �MCtPat ases)

(P

1

: : : P

n

)%

l

(P

0

1

: : : P

0

n

); if these are n visible variables at label l and

P

1

% P

0

1

; : : : ; P

n

% P

0

n

Figure 5.13: Extension of the de�nition of onformane between modelling and split patterns

(and that `�

?

' is equivalent to `�

8

'), then, by the sliing, we an always deide whether

eah pattern in M

V

onforms to P . Indeed, the only point in whih onforming patterns in

M

V

may not be as preise as P is exatly at the split point. The deree is reasonable as,

although `?' asks for higher auray, it has not ommitted to a partiular hoie among

the available options. Figure 5.13 presents the extension to %. The extension makes use of

the previous de�nition without any speial indiation.

With the help of the onformane relation, it is now easy to express the algorithm that

upgrades the inspetion points. Figure 5.14 presents the algorithm. A pattern-mather

update request `update M

V

with P ' is performed by the (overloaded) funtion `U ' and the

resulting pattern-mather is U(M

V

; P ). Basially, eah modelling pattern in M

V

is �rst

tested for onformane to the split pattern. If it is onforming, it is \exploded" into more

aurate modelling patterns, if it is not already aurate enough. When 8 is exploded, it

provides the basi patterns of the three types. When `�

8

' is exploded, it provides the basi

patterns of all losures of the program. The program is assumed to be e

l

0

. Note that some

ases are not treated by u. This is beause of the onformane test previously made: the

de�nition of u ontains only the possible ases.

A small example of upgrading is presented in Figure 5.15. The value pattern-mather for

a little program is upgraded using pattern P = �

10

(8 ?). The urrent state ofM

V

is shown.

Note that M

V

is preise enough to be ready to be split using P . This is always the ase

beause of the sliing of split patterns. We suppose that the program has two �-expressions,
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U : PM� SPat

U(M

V

; P ) =
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P

0
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V
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u P
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0
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u k
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g

!
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Figure 5.14: Algorithm for the upgrade of inspetion points in pattern-mathers
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e

5

and e

10

, having respetively one and two variables in their lexial environment.

If the upgrade of pattern-mathers is done diretly on the deision trees, it an be made

more eÆient. Essentially, the eÆient algorithm onsists in performing the onformane

test and the (eventual) node upgrade together. Branhes of the trees that do not onform

to the pattern are unhanged. Branhes that onform may hange, depending on the fat

that the inspetion node orresponding to the split point is blind or not. Projetion results

at the leafs must be updated to reet the inrease in auray. Essentially, the update of

the leafs is done similarly to u. Note that the upgrade of a blind node into a disriminating

node hanges the use of the queue. New blind nodes have to be introdued on lower

levels in the trees to onsume the sub-patterns that are to be inserted in the queue by

the new disriminating node. As an instane, when a blind objet node is turned into a

disriminating node, two blind objet nodes have to be added in the \pair" branh and a

blind losure node has to be added in the \losure" branh. No new node is required in the

\Boolean" branh as no sub-pattern gets inserted in the queue when #f is enountered.

5.1.3 Demands

We present the di�erent kinds of demands that we manipulate during the demand proessing

phases of the demand-driven analysis. Most of these kinds were introdued informally in

the previous hapter as \inevitable" ones. We now give a omplete presentation of eah

kind along with its syntax and meaning.

Figure 5.16 presents the syntax of demands. The �rst three kinds of demands were

informally mentioned in the previous hapter. The bad all demands are added to the list.

Here is a preise desription of eah kind of demands. Eah demand more or less diretly

asks for modi�ations to the abstrat model.

Bound demands. Demand `show �

l;k

� B' requests a demonstration that e

l

, when eval-

uated in ontour k, provides only values ontained in bound B. The possible bounds

inlude eah of the three types (ValB, ValC, and ValP) and also the values ating as

true Boolean values in onditionals (ValTrues = ValC [ ValP). The demonstration

obtained when the demand is ahieved usually have ontour k split into a ertain

number of more speialised ontours k

1

; : : : ; k

n

suh that 8 1 � i � n: �

l;k

i

� B. The
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Figure 5.15: Example of the upgrade of a pattern-mather
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Demand := show V � B j where V 2 �-var, B 2 Bound

split V P j where V 2 Splittee, P 2 SPat

show V = ; j where V 2 Æ-var

bad-all l f v k where l 2 Lab, f; v 2 MPat, k 2 MCtPat

Bound := ValB j ValC j ValP j ValTrues

Splittee := ValC j ValP j V where V 2 �-var [ �-var [ -var

�-var := �

l;k

where l 2 Lab, k 2 MCtPat

�-var := �

x;k;l

where x 2 Var, k 2 MCtPat, l 2 Lab

-var := 

;k

where  2 MPat, k 2 MCtPat

Æ-var := Æ

l;k

where l 2 Lab, k 2 MCtPat

Figure 5.16: Syntax of the demands
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S %-.& ?; if (#f 2 S ^ S n f#fg 6= ;) _

(S \ T 6= ; ^ S n T 6= ;)

where T = f(P

1

; P

2

) j P

1

; P

2

2MPatg

S %-.& �

?

; if �

8

2 S _

(�

l

k; �

l

0

k

0

2 S ^ l 6= l

0

)

S %-.& �

l

(P

1

: : : P

n

); if P

i

2 SPat ^ T %-.& P

i

where T =

(

P

0

i

�

l

(P

0

1

: : : P

0

n

) 2 S ^

�

l

(P

0

1

: : : P

0

n

)

9

\ �

l

(P

1

: : : P

n

)

)

S %-.& (P

1

; P

2

); if P

i

2 SPat ^ T %-.& P

i

where T =

n

P

0

i

(P

0

1

; P

0

2

) 2 S ^ (P

0

1

; P

0

2

)

9

\
(P

1

; P

2

)

o

Figure 5.17: Algorithm for the \is spread on" relation
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Figure 5.18: De�nition of the \have a non-empty intersetion" relation

property �

l;k

� B may not (and need not) neessarily be satis�ed literally.

2

Most of the time, bound demands are generated as initial demands and diretly express

the needs of the optimiser.

The set of bounds that an be used in bound demands may seem restrited. One

may estimate that more omplex bounds are neessary. However, by the hoie of the

demand proessing rules, bound demands are quikly transformed into other demands.

The four di�erent bounds that are mentioned are just suÆient for our approah.

Never demands. Demand `show Æ

l;k

= ;' asks for a demonstration that e

l

is not really

evaluated in ontour k. One again, various modi�ations to the abstrat model

are generally needed among whih there is typially a split of ontour k into more

speialised ones, k

1

; : : : ; k

n

, suh that 8 1 � i � n: Æ

l;k

i

= ;.

Usually, never demands are generated beause there is evidene that, if the expression

gets evaluated, then it neessarily leads to an error.

Split demands. These demands ask for an inrease in the auray of the modelling. The

splittee is the entity for whih greater auray is required, i.e. that should be split.

The desired improvement in auray is spei�ed by the split pattern. There are

split demands that diretly ask for an update of the model. These have ValC or

2

Moreover, after the split of k is done, k no longer exists. So, stritly speaking, talking about abstrat

variable �

l;k

is an abuse of notation.
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ValP as splittee. The others ask for inreased auray|or separation|in the values

ontained in an abstrat variable. The abstrat variable represents the value of an

expression (�

l;k

), the value of a referene to a variable (�

x;k;l

), or the return value of

a losure (

;k

).

Split demands having an abstrat variable as splittee are mainly generated to separate

the so-alled good ases from the bad ases. In the previous hapter, we explain the

importane of separating good and bad ases before any attempt to remove the bad

ases is made.

A splittee of the form �

x;k;l

denotes a referene to `x' in ontour k and from label

l. Reall that this is di�erent from the abstrat variable �

x;k

. The ontours that

are valid where the variable is bound and those where the variable is referened may

di�er ompletely. For example, it is the ase when the referene ours in an expression

deeply nested inside of the losure that introdued the binding to the variable.

Split demands on abstrat variables request that the model be modi�ed in suh a

way that (in the ase of a splittee from `�-var') k is split into speialised ontours

k

1

; : : : ; k

n

suh that, in eah k

i

, the values fall on only one side of the pattern. To

formally express this onept, we need the help of the \is spread on" relation to

indiate when abstrat values happen not fall all on the same side of the pattern.

Figure 5.17 gives a formal de�nition of this relation. The spread relation between a

set of values S and a split pattern P is denoted by S %-.& P . In turn, this relation

is based on another one: the \have a non-empty intersetion". This one indiates

if two split or modelling patterns have an intersetion, i.e. if there exists a onrete

value that is abstrated by both patterns. We write P

1

9

\ P

2

when patterns P

1

and

P

2

have a non-empty intersetion. Figure 5.18 formally de�nes the relation. Again,

we deree that split pattern `?' abstrats all values and `�

?

' abstrats all losures. So,

the ahievement of `split �

l;k

P ' onsists in modifying the abstrat model suh that

k is speialised into k

1

; : : : ; k

n

suh that 81 � i � n: :(�

l;k

i

%-.& P ). Similarly for other

split demands where the splittee is an abstrat variable.

To help to understand the meaning of %-.&, we use a piture. Imagine that the set of

all modelling patterns lie on a (two-dimensional) plan. Sine patterns are disrete

entities, we will imagine them as sand granules. Now, our set of abstrat values S

is represented by a subset of these granules. Imagine that our split pattern P is a

riddle|a oarse sieve. It has a ertain number of holes. It may be as vast as the plan or
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may oupy only a tiny fration of the plan. Testing whether S %-.& P hold is equivalent

to sifting the sand granules using the riddle: let the sand granules levitate above the

ground, eah at their respetive x and y oordinates; let the riddle lie between the

granules and the ground; and �nally let the granules fall free. Some granules fall into

the riddle, some do not. Among the granules that fall into the riddle, some may go

through a di�erent hole than others. We say that the sand was spread over the riddle

if more than one hole was passed through by the sand. The granules that fell outside

of the riddle do not matter.

With the test S %-.& P , a similar thing ours. Some abstrat values do not have an

intersetion with P : they fall outside of P . Others fall into P and pass through one of

the \holes" of P , depending on the type or on the label of a sub-pattern. Moreover,

some values may even be too oarse to be able to go through one of the holes; they

get stuk on P . Let us give some examples:

� pattern P = (?; 8) sifts pairs; it has three holes that are (#f ;8), (�

8

;8), and

((8;8);8); Booleans and losures fall outside of P ; 8 annot go through P but

annot fall outside either;

� pattern P = ? has three holes and no values an fall outside of it;

� pattern P = (�

12

(�

8

#f); (�

?

; #f)) oupies a small fration of the plan and

has as many holes as there are �-expressions in the program.

So S %-.& P holds if there is a value in S that gets stuk in P or if there are values in

S going through di�erent \holes" of P . Values having no intersetion with P do not

matter.

Bad all demands. Demand `bad-all l f v k' asks for a demonstration that the desribed

invoation atually does not our. The invoation is that of losure f on argument

v at all e

l

in ontour k. The ahievement of this demand usually requires to �rst

perform hanges on the abstrat model and then to have all \bad" speialisations of

the invoations not to our.

Bad all demands originate from the proessing of never demands. In order to show

that a ertain expression (that happens to be the body of a losure) does not get

evaluated, it is neessary to show that ertain alls do not our.

Call site monitoring. Although all site monitoring is not a kind of demand, we mention

it here simply to introdue its syntax. When a all expression e

l

has to be monitored,
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we write the pseudo-demand `monitor-all l k'. It spei�es in whih ontour the

monitoring must be done.

We intentionally omit to explain what monitoring is exatly. We simply mention that

it onsists in taking ations to ahieve all bad all demands related to the spei�ed

all site.

5.2 Demand Proessing

We present the proessing rules for the demands. The proessing rules for eah kind of

demands are presented in the following setions. They are onsidered in the following order:

the bound demands, the never demands, the bad all demands, and the split demands.

The proessing of the split demands is learly the most involving. Then, we ontinue by

desribing the monitoring of all sites. Finally, we present an important funtion that is

used to minimally separate ouples aording to some given property: the Split-Couples

funtion (s) is useful in the proessing of a few demands.

The demand proessing rules depend on a ertain number of hypothesis. They suppose

that the omplete demand-driven approah is the one presented in a later setion. Changing

the global approah would require some adaptation of the proessing rules. As desribed,

the proessing rules are intended to be used during a model-update phase. Let e

l

0

be the

program to analyse. The urrent abstrat model is

M = (ValB; ValC; ValP; Cont; ( ); ; p; all)

and is built on the pattern-mathers

fM

V

g [ fM

l

j (�

l

x: e) 2 4(e

l

0

)g

The analysis results for the program usingM are assumed to be available as

R = (�; �; ; Æ; �; �; �) = FW(e

l

0

;M)

Despite the hypotheses that we pose, many proessing rules take are of more ases than

it is stritly neessary. This is beause, most of the time, it is simpler to treat all ases,
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even impossible ones, than to argue why some of them are impossible.

We show the results of proessing a demand using a double arrow. It is usually preeded

by a ondition. It looks like:

If some ondition:

)results

Most of the results of demand proessing are emissions of new demands. But some results

onstitute one or many model updates. When the proessing of a demand is omplete

and does not emit sub-demands, a omment is added to indiate whether its proessing is

suessful. Comment (suess) indiates that the demand is ahieved. Comment (failure)

indiates that the demand annot be ahieved. Normally, demands that depend on the

failed demand annot be ahieved either. As we explain during the desription of the

global demand-driven approah, the omments are ignored. We insert them to make the

presentation learer. However, a modi�ed approah ould make use of the omments.

5.2.1 Bound Demands

Let us onsider bound demand D � `show �

l;k

� B' where B is one of the four bounds.

When D is proessed, one of three situations an our. The �rst is that the bound is

respeted, so D is trivially ahieved:

If �

l;k

� B:

)(suess)

The seond situation ours when no value resulting from the evaluation of e

l

in k lies

inside of B. This is a relatively simple situation as only bad ases our. Only bad values

an ome from e

l

so the suÆient and neessary way to ahieve D is by showing that e

l

does not get evaluated in k at all:

If �

l;k

\B = ;:

)show Æ

l;k

= ;

Note that, if �

l;k

is empty, we an say that, in fat, it falls into the �rst two situations.

However, the �rst situation is more favourable and should be used. Eah time the onditions

attahed to a situation are met, this situation should be onsidered to have priority over
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the next ones as we list the more favourable situations �rst.

The last situation ours when there are both good and bad ases. That is, when there

are values that lie inside of the bound and others, outside. The �rst step in trying to ahieve

D then onsists in separating the good and bad ases:

Otherwise:

)split �

l;k

?

Beause of the simpliity of the valid bounds, a split demand requesting the values in �

l;k

to

be split aording to their (top-level) type is suÆient to separate good ases from bad ases.

In the eventuality that this new demand is ahieved, then a reiteration of the proessing of

D (in fat, of its speialisations) will be able to proeed using one of the �rst two situations.

5.2.2 Never Demands

Let us onsider never demand D � `show Æ

l;k

= ;' to be the demand to proess. The

�rst and simplest situation ours when the property to verify is already true. Then, the

demand is trivially ahieved:

If Æ

l;k

= ;:

)(suess)

Another simple situation onsists inD asking for a demonstration that the program does

not get evaluated in the main ontour, whih is patently false. The abstrat interpretation

of the program, for analysis purpose, is started by the onstraint Æ

l

0

;( )

� ValB. It follows

that D fails:

If l = l

0

and k = ( ):

)(failure)

The other situations require some ative proessing. First, note that, most of the time,

the fat that an expression is evaluated is ontrolled by its parent expression, i.e. by e

l

0

,

where l

0

= parent(l).

3

Often, the evaluation of e

l

depends only on the fat that e

l

0

is

3

The attentive reader may notie that we do not mention the ase where l = l

0

and k 6= ( ). This is beause

e

l

0

is not inside the body of a losure. Its evaluation annot be triggered beause of some invoation. So the

only way e

l

0

gets evaluated is by the starting onstraint whih uses ontour ( ). Consequently, for all k 6= ( ),

we have that Æ

l

0

;k

= ;, and this ase is aught by the �rst situation.
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evaluated too. But let us start by onsidering the speial ases �rst.

If e

l

0

= (�

l

0

x: e

l

), the events that ause the evaluation of e

l

in ontour k are that some

losure originating from e

l

0

gets invoked and all selets k as the ontour in whih e

l

ought

to be evaluated. So, in order to try to ahieve D, a demonstration that eah suh invoation

annot happen is needed. Bad all demands are emitted for eah invoation leading to the

evaluation of e

l

in k. If all of these sub-demands are eventually ahieved, then D learly

beomes so, too:

If e

l

0

= (�

l

0

x: e

l

):

)

n

bad-all l

00

(�

l

0

k

00

) v k

0

(l

00

; (�

l

0

k

00

); v; k

0

) 2 �

k

o

The situation in whih e

l

0

is a onditional and e

l

is its then-branh is a speial ase as

it is not true that e

l

is evaluated if and only if e

l

0

is. In fat, e

l

is not evaluated if and only

if the test in e

l

0

does not return \true" values (losures and pairs). So D is ahieved if and

only it an be showed that the test returns nothing else than \false" values:

If e

l

0

= (if

l

0

e

l

00

e

l

e

l

000

):

)show �

l

00

;k

� ValB

The situation in whih e

l

is the else-branh of e

l

0

is symmetri to the then-branh

situation:

If e

l

0

= (if

l

0

e

l

00

e

l

000

e

l

):

)show �

l

00

;k

� ValTrues

The remaining situations are all those in whih e

l

is evaluated if and only if e

l

0

is. Those

inlude the ase where e

l

is the test of the onditional e

l

0

and the ases where e

l

0

is not a

�-expression nor a onditional. The appropriate proessing in these situations is to ask for

a demonstration that e

l

0

does not get evaluated either (at least in ontour k):

Otherwise:

)show Æ

l

0

;k

= ;

5.2.3 Bad Call Demands

Let us onsider demand D � `bad-all l f v k'. Sine the parameters in D desribe the

irumstanes of an invoation, we know that e

l

is a all. Let e

l

= (

l

e

l

0

e

l

00

). In proessing
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D, the �rst situation that we ould fae is that of D being trivially ahieved. The desribed

invoation does not our if at least one of f and v does not appear at the all in the

spei�ed ontour:

If f 62 �

l

0

;k

or v 62 �

l

00

;k

:

)(suess)

Otherwise, the invoation really ours. At least, aording to the urrent analysis

results. The natural proessing for this bad all would onsist in separating the spei�ed

invoation from the others, if they exist, and then trying to show that e

l

does not get

evaluated in the sub-ontour that ontains the spei�ed invoation. Prior separation of the

spei�ed invoation from the others, if they exist, is essential, sine the other invoations

need not neessarily be bad. Indeed, the other invoations may even represent atual

onrete invoations, and, as suh, should not be subjet to an attempt to demonstrate

that they do not our. Non-ourrene of the other invoations is not neessary.

However, we do not proess D in the way we just desribed. The desribed method lead

to too many splits. Imagine that many losures are invoked on many di�erent arguments at

e

l

in k, and that half of the invoations are onsidered to be bad. The desribed proessing

requires every bad invoation to be ompletely separated from all the others. But the only

separation that is really needed is one that separates all bad alls from all (presumably) good

alls. This global separation may be muh simpler than the ombination of all individual

separations. So instead of immediately taking measures to ahieve D, we prefer to put it in

a log of bad alls. Later, all bad alls related to e

l

and ontour k are proessed together in

what we designate as the monitoring of e

l

in k. We denote the log of bad alls by L

BC

and

the invoations that are marked as bad for all e

l

in ontour k are listed in L

BC

(l; k).

Otherwise:

)Insert (f; v) in L

BC

(l; k)

Flag (l; k) as a andidate for monitoring

5.2.4 Split Demands

The proessing of a split demand `split V P ' depends onsiderably on the splittee V .

Proessing of the demand for eah kind of splittee is presented in separate setions.
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Diret Split on the Model

A diret split on the model is requested by a demand like D � `split V P ' where V is

ValC or ValP. No matter whih of the two splittees is used in D, the demand is proessed

identially. The value pattern-mather is updated using P :

)Update M

V

with P

Split on �-Variables

The splits on �-variables are the most involving part of the demand proessing. Let us

onsider split demand D � `split �

l;k

P '. The simplest situation is the one in whih D is

trivially ahieved. It ours when the values in the abstrat variable are not spread on the

pattern:

If :(�

l;k

%-.& P ):

)(suess)

Otherwise, the omplexity of the proessing beomes immediately apparent. The values

in the abstrat variable are spread on the pattern and some measures have to be taken in

order to ause this spreading to disappear. We know that the values in an �-variable result

from the abstrat interpretation of expression e

l

. And the interpretation of e

l

depends on

the kind of expression it is. So, similarly to the proessing of never demands that depended

on the kind of the parent expression, the proessing of split demands on �-variables depends

on the kind of the expression itself. We onsider eah kind of expression in turn.

Boolean Constant Let e

l

= #f

l

. This situation is atually impossible, as we explain

next, but we inlude it for ompleteness. Abstrat variable �

l;k

ontains either all Booleans

(ValB) or nothing, depending on whether e

l

gets evaluated in ontour k or not. If �

l;k

=

ValB, inspetion of eah possible split pattern P

0

shows that we annot have that �

l;k

%-.& P

0

.

Intuitively, this is beause abstrat Booleans in ValB represent perfetly aurately the

onrete Boolean. A onrete value by itself annot be spread on a split pattern. And

if �

l;k

= ;, then there learly in no spreading. But we give the proessing rule for D

nevertheless and we indiate that D is trivially ahieved:

If e

l

= #f

l

:
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)(suess)

Variable Referene Let e

l

= x

l

. Proessing D is very simple as it translates diretly

into a split demand on a �-variable:

If e

l

= x

l

:

)split �

x;k;l

P

Call Let e

l

= (

l

e

l

0

e

l

00

). This situation is the diÆult one. Here are a ouple of reasons.

First, the result of the evaluation of e

l

omes from the invoation of eah losure on eah

argument and blending the individual results together. So the values in �

l;k

are not diretly

funtion of the values in �

l

0

;k

and �

l

00

;k

. Seond, the alls are responsible for making our

mini-language a Turing-omplete one. Without them, analysing a program ould simply

onsist in onretely evaluating it, given the guarantee not to loop.

In order to proess D, the result of eah invoation has to be inspeted. For losure f

invoked on argument v, with return values in 

f;k

0

, for some k

0

, there are three ases: 

f;k

0

has no intersetion with P , 

f;k

0

is not spread on P , or 

f;k

0

is spread on P . In the �rst

ase, the invoation does not ontribute to the value of �

l;k

in a way that is observable by

P . In the seond ase, we an determine into whih \hole" of P the result of the invoation

falls. In the third ase, we annot even determine into whih \hole" the invoation falls.

The treatment of eah invoation is di�erent depending on the ase to whih it belongs.

Invoations having an empty return value or a return value that has no intersetion with

P are ignored.

Invoations having a return value that is spread on P lead to a request for having a more

preise desription of the omputations ourring in the invoked losure. Eventually, the

more preisely desribed losure may have return values that ease to be spread on P . That

is, 

f;k

0

may be replaed by a number of more speialised invoation results, eah ausing

no spreading on P . Being able to determine in whih \hole" of P eah invoation result

goes is vital to a suessful proessing of D. Until the invoation of f on v is split into

non-spreading evaluation results, it annot be used to selet useful splits on sub-expressions

e

l

0

and e

l

00

.

Invoations having a return value that is not spread on P are immediately used in
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seleting splits on the sub-expressions of e

l

. The return value of suh an invoation goes

through a single \hole" of P but that does not automatially mean that all non-spreading

return values, one united together, do not spread on P . In order to make progress in

the ahievement of D, non-spreading return values are olleted together along with their

orresponding losure-argument ouple. The Split-Couples funtion is then used to selet

splits on the losure omponent and/or on the argument omponent. That is, on the value of

e

l

0

and that of e

l

00

, respetively. The s funtion selets splits suh that inompatible ouples

are separated by the splits. We say that two ouples (f

1

; v

1

) and (f

2

; v

2

) are inompatible

if their assoiated return values 

f

1

;k

1

and 

f

2

;k

2

go through di�erent \holes" of P . If all

the splits seleted by s are to be ahieved, then no inompatible ouples will appear in the

same ontour anymore.

We give the proessing rule and then give an example:

If e

l

= (

l

e

l

0

e

l

00

):

)

8

<

:

split 

f;k

0

P

f 2 �

l

0

;k

\ ValC ^ v 2 �

l

00

;k

^

k

0

= all(l; f; v; k) ^ 

f;k

0

%-.& P

9

=

;

[

n

split �

l

0

;k

P

0

P

0

2 B

o

[

n

split �

l

00

;k

P

00

P

00

2 C

o

where A =

8

>

>

>

<

>

>

>

:

((f; v); 

f;k

0

)

f 2 �

l

0

;k

\ ValC ^ v 2 �

l

00

;k

^

k

0

= all(l; f; v; k) ^

9v

0

2 

f;k

0

: v

0

9

\ P ^ : (

f;k

0

%-.& P )

9

>

>

>

=

>

>

>

;

(B; C) = s(A; P )

In our example, we onsider demand D =� `split �

l;k

?' where e

l

= (

l

e

l

0

e

l

00

). So we

want to have k (and possibly other abstrat entities) split into k

1

; : : : ; k

n

so that, for eah

1 � i � n, the ontents of �

l;k

i

is of a single type, if not empty. In order to have an atual

situation with whih we an work, let us suppose that two di�erent losures may be invoked

on two di�erent values. That is, �

l

0

;k

= ff

1

; f

2

g and �

l

00

;k

= fv

1

; v

2

g. For onveniene, we

also suppose that f

1

and f

2

originate from two di�erent �-expressions and that v

1

and v

2

are

values of di�erent types. These last onvenient suppositions are used below to keep things

simple. During abstrat interpretation, eah losure is invoked on eah argument and eah

time a ontour is seleted by all. We denote by k

ij

the ontour seleted when f

i

is invoked

on v

j

, for i; j 2 f1; 2g. That is, k

ij

= all(l; f

i

; v

j

; k). Let the spreading or non-spreading
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on ? of the result of eah invoation be given by this table:

: (

f

1

;k

11

%-.& ?); 

f

1

;k

12

%-.& ?;



f

2

;k

21

%-.& ?; and : (

f

2

;k

22

%-.& ?)

Finally, let us suppose that ; 6= 

f

1

;k

11

� ValB and that ; 6= 

f

2

;k

22

� ValP.

Using this information, we are able to illustrate the proessing of D. First among all

the return values 

f

i

;k

ij

, none is empty. So none is ignored. Seond, we must take are

of the return values that are spread over ?, namely 

f

1

;k

12

and 

f

2

;k

21

. For eah, a split

demand is emitted that requests that they be split using pattern ?. Finally, we take are

of non-spreading return values 

f

1

;k

11

and 

f

2

;k

22

. Individually, they are non-spreading but,

olletively, they are spread on ?. So the set A desribing the ouples is built:

A = f((

1

; v

1

); 



1

;k

11

); ((

2

; v

2

); 



2

;k

22

)g

The two ouples in A are inompatible beause their assoiated return values go through

di�erent \holes" of ?. The �rst ouple goes through the \Boolean hole" and the seond goes

through the \pair hole". Sine the ouples are distint, at least one of the omponents must

be distint. In our ase, both omponents di�er. The s funtion omputes an eonomial

way to separate the two ouples in A relatively to pattern ?. It returns one of the two

following splitting strategies:

(f�

?

g; ;) or (;; f?g)

meaning that either a split should be performed on the �rst omponents to separate them

based on the losure label or a split should be performed on the seond omponents to

separate them based on the type. Splitting both omponents would be zealous. If we

suppose that the �rst strategy is adopted, then the �nal result of proessing D is:

)split 

f

1

;k

12

?

split 

f

2

;k

21

?

split �

l

0

;k

�

?

�-Expression Let e

l

= (�

l

x: e

l

0

). When this situation is being onsidered, we know that

it is beause �

l;k

%-.& P . And sine �

l;k

= f(l; k)g, then P is of the form �

l

k

0

. So we

translate D into a diret model update demand:
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If e

l

= (�

l

x: e

l

0

):

)split ValC P

Conditional Let e

l

= (if

l

e

l

0

e

l

00

e

l

000

). The proessing for the onditional expression

shares some similarity with that of the all. The evaluation result, �

l;k

, is the union of

some sub-evaluations; here, the two branhes of the onditional. Eah sub-evaluation result

spreads on P has to be split �rst. The non-spreading results are used to selet splits on sub-

expressions of e

l

; here, this ours when both branhes are non-spreading but inompatible

and a split on the test has to be emitted.

We �rst onsider the ase where the evaluation result of at least one of the branhes is

spread on P . Sine the evaluation result of e

l

remains spread on P as long as the result of

at least one branh is, then it is neessary to split the result for eah suh branh. It is too

early to be able to determine if a split on the test is required or not.

If e

l

= (if

l

e

l

0

e

l

00

e

l

000

) ^ (�

l

00

;k

%-.& P _ �

l

000

;k

%-.& P ):

)

n

split �

l

(n)

;k

P l

(n)

2 fl

00

; l

000

g ^ �

l

(n)

;k

%-.& P

o

The other ase onsists in having the result for both branhes not to be spread on P .

But, sine we know that �

l;k

%-.& P , these results must be inompatible. To ahieve D, the

neessary and suÆient sub-demand to generate is to ask for both branhes not to evaluate

in the same ontour. So the ases where the test evaluates to a true value must be separated

from the ases where the test evaluates to a false value. So a sub-demand is emitted that

asks for the split of the result of the test on its type. In fat, this is slightly exessive as

a ValB/ValC/ValP distintion is requested when only a ValB/ValTrues one is required.

However, the split pattern syntax that we have hosen annot express a split oarser than

`?'.

If e

l

= (if

l

e

l

0

e

l

00

e

l

000

):

)split �

l

0

;k

?

Pair Constrution Let e

l

= (ons

l

e

l

0

e

l

00

). Keeping in mind that �

l;k

%-.& P , quik

inspetion of the di�erent kinds of split patterns allows us to onlude that P is of the

form (P

0

; P

00

). One of P

0

and P

00

is a split pattern. We proess D simply by emitting a

sub-demand that asks for the sub-split to be performed on the appropriate sub-expression
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of e

l

:

If e

l

= (ons

l

e

l

0

e

l

00

) ^ P = (P

0

; P

00

) ^ P

0

2 SPat:

)split �

l

0

;k

P

0

If e

l

= (ons

l

e

l

0

e

l

00

) ^ P = (P

0

; P

00

):

)split �

l

00

;k

P

00

Note that the proposed proessing in the situation where we have a pair onstrution

expression is suÆient. But it is less lear whether it is neessary. To see why, we give

an example. Let P = ((8; 8); �

?

). Of ourse, the value of e

l

00

has to be split using �

?

in

a way or another. But is it really �

l

00

;k

that should be split? Note that P spei�es that

additional auray is requested only when the ar-�eld of the pair ontains a pair. Maybe

the appropriate proessing onsists in �rst splitting �

l

0

;k

using ? and, when this is done, we

have k speialised into, say, k

B

, k

C

, and k

P

. We would then split �

l

00

;k

P

using �

?

. That

is, we would split the value of e

l

00

only in the ontour in whih e

l

0

evaluates to pairs. We

believe that it is not obvious at all whether this more elaborate way of splitting is easier or

more pro�table. A split on �

l

00

;k

?

has to be made for some k

?

, anyway.

Sine the split sub-pattern in (P

0

; P

00

), that is, P

0

or P

00

, has to be propagated to e

l

0

or

e

l

00

anyway, the question an be summarised like this: Should more auray be requested

on the non-splitting side in order to (possibly) failitate the splitting on the splitting side?

We have deided that the answer would be: no. Only the sub-pattern on the splitting side

is propagated. No additional auray is requested from the non-splitting side.

CAR-Field Aess Let e

l

= (ar

l

e

l

0

). Sine D asks for inreased auray in the

representation of the value of e

l

, then a new demand should be emitted that requests

inreased auray in the representation of the ar-�eld of the pairs that ome from e

l

0

.

That is, sine P is the split pattern appearing in the request onerning e

l

, (P; 8) should be

the one appearing in the request onerning e

l

0

. However, a veri�ation that the abstrat

domain ValP is aurate enough for (P; 8) must be done. Indeed, it is pointless to ask for

a split of �

l

0

;k

using (P; 8) if the abstrat pairs are not distinguishable by (P; 8). If ValP

is not aurate enough, a diret model update demand is emitted. Otherwise, the normal

proessing is performed.

If e

l

= (ar

l

e

l

0

) ^ ValP is aurate enough for (P; 8):
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)split �

l

0

;k

(P; 8)

If e

l

= (ar

l

e

l

0

):

)split ValP (P; 8)

Verifying that ValP is aurate enough for (P; 8) is relatively simple. The abstrat pairs

in ValP result from projetions using M

V

. The veri�ation proeeds by testing whether

there is a modelling pattern in M

V

having an intersetion with (P; 8) but for whih we

annot deide in whih \hole" it passes through. In other words, if there is a modelling

pattern in M

V

that is spread on (P; 8):

ValP is aurate enough for (P; 8)

,

8 v 2M

V

: : (fvg %-.& (P; 8))

This proessing for D is an instane of the reation of omplex split patterns using

simpler ones. Also, it justi�es our hoie of the meaning of split demands, as presented in

Setion 5.1.3 that says that values having no intersetion with the split pattern are ignored.

The split of �

l

0

;k

using (P; 8) is onerned only with pairs oming from e

l

0

. Non-pairs oming

from e

l

0

do not ontribute to the value of e

l

and, as suh, are not onerned by the split

pattern (P; 8). The fat that their presene leads to errors is an independent problem.

CDR-Field Aess Let e

l

= (dr

l

e

l

0

). The proessing of D is ompletely symmetri to

that of a demand onerning a ar-�eld aess.

If e

l

= (dr

l

e

l

0

) ^ ValP is aurate enough for (8; P ):

)split �

l

0

;k

(8; P )

If e

l

= (dr

l

e

l

0

):

)split ValP (8; P )

Pair Membership Test Let e

l

= (pair?

l

e

l

0

). The proessing of D is trivial, the split

pattern is propagated to the sub-expression without modi�ation:

If e

l

= (pair?

l

e

l

0

):

)split �

l

0

;k

P
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To see why this proessing is adequate, eah form of split patterns has to be onsidered.

If P = ?, then to make the distintion ValP/ValB on the value of e

l

, it is neessary to make

the distintion ValP/ValP on the value of e

l

0

. The split pattern ? is then used. P annot

be �

?

nor be of the form �

l

k, beause �

l;k

%-.& P . Finally, if P = (P

0

; P

00

), then only the

pairs oming from e

l

are onerned. Sine these pairs are the same as those oming from

e

l

0

, P itself must be used in the split of �

l

0

;k

.

Split on �-Variables

Let D � `split �

x;k;l

P '. Proessing D results in a diret model update. However, some

information has to be gathered in order to �nd the appropriate ontour pattern-mather

and to produe the right split ontour pattern. The �rst step onsists in �nding the position

of variable `x' in ontour k. Reall that k is an abstrat version of the lexial environment

and that \bounds" on the possible values that eah variable an take are listed from the

innermost variable to the outermost. Let e

l

i

2 4(e

l

0

) be the �-expression that binds `x':

(�

l

i

x: (: : : (�

l

i+1

y

i+1

: (: : : (�

l

n

y

n

: e

l

0

n

) : : :)) : : :))

where e

l

2 4(e

l

0

n

). In other words, we have that the e

l

j

are �-expressions, for 1 � j � n,

and that:

(�

l

1

y

1

: e

l

0

1

) 2 4(e

l

0

)

(�

l

2

y

2

: e

l

0

2

) 2 4(e

l

0

1

)

: : :

(�

l

i�1

y

i�1

: e

l

0

i�1

) 2 4(e

l

0

i�2

)

(�

l

i

x: e

l

0

i

) 2 4(e

l

0

i�1

)

(�

l

i+1

y

i+1

: e

l

0

i+1

) 2 4(e

l

0

i

)

: : :

(�

l

n

y

n

: e

l

0

n

) 2 4(e

l

0

n�1

)

e

l

2 4(e

l

0

n

)

So k = (P

n

: : : P

i+1

P

i

P

i�1

: : : P

1

) and P

i

is the bound on the value of `x' in ontour k.

The intent is to update k suh that its P

i

pattern is split into speialisations. Note that the

pattern-mather that must be updated isM

l

n

. UpdatingM

l

n

using the split ontour pattern
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\ : (MPat [ SPat)� (MPat [ SPat)! (MPat [ SPat)

P

1

\ P

2

is unde�ned if P

1

; P

2

2 SPat

8 \ P

2

= P

2

P

1

\ 8 = P

1

? \ P

2

= ?

P

1

\ ? = ?

#f \#f = #f

�

8

\ P

2

= P

2

; if P

2

is �

8

, �

?

, or �

l

k

P

1

\ �

8

; = P

1

; if P

1

is �

?

or �

l

k

�

?

\ P

2

= �

?

; if P

2

is �

l

k

P

1

\ �

?

= �

?

; if P

1

is �

l

k

�

l

(P

1

: : : P

n

) \ �

l

(P

0

1

: : : P

0

n

) = �

l

((P

1

\ P

0

1

) : : : (P

n

\ P

0

n

))

(P

1

; P

2

) \ (P

0

1

; P

0

2

) = (P

1

\ P

0

1

; P

2

\ P

0

2

)

Figure 5.19: De�nition of the intersetion operator between patterns

(P

n

: : : P

i+1

P P

i�1

: : : P

1

) would almost be what we want exept that more than ontour k

may get updated. Instead, we ompute the intersetion between P and P

i

and use the result

in the split ontour pattern. That is, we updateM

l

n

using (P

n

: : : P

i+1

(P\P

i

) P

i�1

: : : P

1

).

The de�nition of the intersetion is presented in Figure 5.19. This de�nition is that of a

funtion omputing the intersetion between patterns. It it di�erent from the

9

\ relation

whose purpose is simply to determine whether some onrete value is abstrated by both

its arguments. The \ funtion produe a pattern representing the intersetion of the input

patterns as long as it makes sense. That is, the patterns must have an intersetion (aording

to

9

\) and they must not both be split patterns.

4

The result of the proessing of D is thus:

If k = (P

n

: : : P

1

) ^

(�

l

1

y

1

: e

l

0

1

) 2 4(e

l

0

) ^

(�

l

j

y

j

: e

l

0

j

) 2 4(e

l

0

j�1

), 8 2 � j � n ^

e

l

2 4(e

l

0

n

) ^

y

i

is in fat x

)Update M

l

n

with (P

n

: : : P

i+1

(P \ P

i

) P

i�1

: : : P

1

)

Note that the value of a variable is generally ontrolled through many abstrat values and

ontours. In the general ase, M

l

i

must be updated to provide more aurate ontours,

4

The intersetion between a split pattern and a modelling pattern may lead to a resulting pattern that

is less aurate. This is beause the split point (?) has priority over the modelling pattern it is interseted

with. When this situation ours, the resulting pattern is a split pattern but it does not ause a real update

on the pattern-mather.
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whih allows M

V

to be updated to provide more aurate losures of the form �

l

i+1

k

i+1

,

whih in turn allows M

l

i+1

to be updated to provide more aurate ontours, . . . , whih

allows M

l

n

to be updated to provide more aurate ontours. However, a single update

request is emitted and we let the rules that ensure onsisteny do the rest.

Split on -Variables

Let D � `split 

f;k

P '. The proessing of D appears trivial when we note that the return

value of a losure f , when its body is evaluated in ontour k, is preisely the result of the

evaluation of the body in ontour k. The only thing that has to be done is to reover the

label of the body of the losure and emit a new split demand:

If f = �

l

k

0

^ e

l

= (�

l

x: e

l

0

):

)split �

l

0

;k

P

5.2.5 Call Site Monitoring

As explained in the proessing of bad all demands, undesirable invoations are logged into

the bad-all log and they are taken are of later. When the invoation of f on v, denoted

as (f; v), is put into the bad-all log for all site e

l

and ontour k, denoted as L

BC

(l; k), the

all site is agged for future monitoring. Eventually, the demand-driven analysis goes into

a all site monitoring phase and monitors eah all site that has been agged.

We desribe the proessing of the ommand C = `monitor-all l k', that is, the moni-

toring of all site e

l

in ontour k. We insist on the fat that C is not a demand, but simply

a ommand. One proessed, C annot be onsidered as ahieved. Even if eah demand

that results from the proessed of C is eventually ahieved, C still annot be onsidered as

ahieved. New undesirable invoations ourring at e

l

in ontour k may be disovered later

and a new monitoring would be required.

Let e

l

= (

l

e

l

0

e

l

00

). Let A be the set of all invoations ourring at e

l

in k denoted in the

form of ouples:

A = (�

l

0

;k

\ ValC)� �

l

00

;k

and L

BC

(l; k) ontains those that are bad invoations. The �rst situation that we may fae
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in proessing C is that no invoation in A is marked as bad. Then the monitoring trivially

sueeds:

If (�

l

0

;k

\ ValC)� �

l

00

;k

\ L

BC

(l; k) = ;:

)(suess)

The seond situation is the one in whih all invoations in A are marked as bad. None

should be allowed to our. Then the adequate proessing onsists in requesting a demon-

stration that e

l

does not evaluate in ontour k:

If (�

l

0

;k

\ ValC)� �

l

00

;k

� L

BC

(l; k):

)show Æ

l;k

= ;

Note that A ontains only ouples that represent invoations ourring at e

l

in k. The other

ouples, i.e. those in:

(�

l

0

;k

\ (ValB [ ValP)) � �

l

00

;k

represent illegal invoations as it is not a losure that is to be invoked.

The last situation is the one in whih bad invoations and good invoations (invoations

not yet onsidered as bad) appear in A. The appropriate proessing onsists in emitting

demands that separate the good from the bad ases. If all these demands are eventually

ahieved, then the �rst or seond situations will apply in the di�erent speialised ontours.

One again, the Split-Couples funtion is used:

Otherwise:

)

�

split �

l

0

;k

P

1

j P

1

2 B

	

[

�

split �

l

00

;k

P

2

j P

2

2 C

	

where A = (�

l

0

;k

\ ValC)� �

l

00

;k

(B; C) = s (A; L

BC

(l; k))

5.2.6 Split-Couples Funtion

The Split-Couples funtion is used in two plaes in the proessing of \demands": in the split

of an �-variable where the expression involved is a all; in the monitoring of a all site. One

might have noted that s is overloaded. In the �rst ase, it reeives a set of ouple-result

pairs and a split pattern. In the seond, it reeives two sets of ouples. Both type signatures



140 CHAPTER 5. PATTERN-BASED DEMAND-DRIVEN ANALYSIS

for s are given here:

s : 2

(MPat�MPat)�2

MPat

� SPat ! 2

SPat

� 2

SPat

s : 2

MPat�MPat

� 2

MPat�MPat

! 2

SPat

� 2

SPat

Despite the di�erenes in the uses, the task is essentially the same: ouples are grouped

into equivalene lasses and splits operating on the �rst or on the seond omponents of

the ouples must be produed suh that all non-equivalent ouples have been separated by

splits. So we desribe the implementation of s in two steps: omputing the equivalene

lasses, �nding splits to separate them.

Let us �nd the equivalene lasses in the �rst use of Split-Couples. Suppose it is used as

s(�; P ). � is a set of ouple-result pairs like ((f; v); S) where (f; v) desribes an invoation

and S is the result of the invoation. P is a split pattern. By the onstrution of �, there

are no two ouple-result pairs that have the same ouple. Also, we expet that, in eah

ouple-result pair ((f; v); S) 2 �, S is non-empty, has some intersetion with P , and is not

spread on P . These onditions ensure that the following de�nition of relation R on ouples

is one of an equivalene relation:

(f

1

; v

1

) R (f

2

; v

2

) , :

�

(S

1

[ S

2

)%-.& P

�

where ((f

1

; v

1

); S

1

); ((f

2

; v

2

); S

2

) 2 �

Basially, R says that two ouples are related if their assoiated return values go through

the same \hole" of P . The desired equivalene lasses are those indued by R on the set

f(f; v) j ((f; v); S) 2 �g.

Let us do the same in the seond use of Split-Couples. Suppose it is used as s(S; T ).

S is the set of invoations that our. T is the set of undesirable invoations. We de�ne

relation R this way:

(f

1

; v

1

) R (f

2

; v

2

) , ((f

1

; v

1

); (f

2

; v

2

) 2 T ) _ ((f

1

; v

1

); (f

2

; v

2

) 62 T )

Basially, R says that two ouples are related if they are both good or both bad. The desired

equivalene lasses are those indued by R on S.

From this point on, we an now onsider that we have a set of ouples and that a olour

has been assigned to eah ouple. The number of olours may be muh smaller than the
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�

�

�

�

Æ

Æ

Æ

Æ

4

4

4

4

Figure 5.20: Example of ouples to separate

number of ouples. For example, when the ouples have been separated into good and bad

alls, there are two olours. To help to understand the task of separating the ouples, we

hoose an illustration that represent ouples of di�erent olours. The ouples are presented

in Figure 5.20 as points on the plan. They are depited using di�erent symbols to represent

di�erent olours. Two ouples having the same x-oordinate have the same �rst omponent

but di�erent seond omponents. Similarly for ouples having the same y-oordinate.

The separation task now onsists (in 2D-points terminology) in drawing vertial and

horizontal lines (separators) that delimit retangles in whih points of a single olour lie.

The simplest separation onsists in drawing a omplete grid of lines suh that eah retangle

ontains at most one point. However, separations made of fewer separators are desirable

beause, onretely, eah separator translates into a split demand that is emitted on one of

the two sub-expressions of a all. Sine we annot presume that any demand is trivial to

ahieve, demands should be generated with parsimony. A more eonomial but still na��ve

method of separation of the ouples onsists in introduing as many vertial separators as

neessary and then to introdue horizontal separators only in the olumns that require some.

Figure 5.21 presents the separation that is obtained if we proeed this way. It is learly

better than the grid strategy. But it is possible to do better by trying to take advantage of

the distribution of the ouples. Figure 5.22 presents a more lever separation of the ouples.

It introdues only 7 separators ompared to the 11 introdued by the na��ve method.

The illustration using points and olours does not orrespond to the ouples/equivalene-

lasses with high �delity but highlights the main onerns: the separators are uni-dimension-

al and they should be introdued in small numbers. We an now present the implementation

of the proess of separation for the lasses of ouples. Sine horizontal and vertial separators
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Figure 5.21: Example of a na��ve separation
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Figure 5.22: Example of a more lever separation
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Figure 5.23: Implementation of the Split-Couples funtion (to be ontinued . . . )

seem to have a similar ost a priori, our approah looks for separators by inspeting both

omponents of the ouples level by level. In fat, a breadth-�rst traversal of both omponents

simultaneously is performed in order to have a balane in the omplexity of the split patterns

that are seleted in eah dimension. The separation method tries di�erent strategies in a

dynami-programming fashion and selets a shortest separation strategy.

Figure 5.23 presents the implementation of the separation phase of the s funtion. The

algorithm onsists in �rst taking the (non-empty) equivalene lasses among the ouples

in S indued by relation R and inserting the two omponents of eah ouple into a queue.

Queues are used for both traversing the omponents of the ouples and for reonstrut-

ing split patterns. The split patterns are then extrated from the reonstrution queues.

Note that these patterns are intended to split ouples, and not just one of the two om-

ponents. However, as we do in the proessing of split demands on �-variables related to

ons-expressions, we keep only the split pattern among the pair of patterns. Costs for the

di�erent strategies are returned with the reonstrution queues.
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Figure 5.23: Implementation of the Split-Couples funtion (ontinued . . . )



5.2. DEMAND PROCESSING 145

Let us desribe the implementation. The main funtion for the separation of ouples is

s

0

, whih takes the set of ouples passed to s and the equivalene relation R. It ats as an

interfae in front of the entral funtion s

0

Q

. Couples are grouped into equivalene lasses,

represented as sets, and these equivalene lasses are grouped into a sequene. We denote

sequenes using square brakets instead of urly braes and all set operations an be used

on the sequenes, like de�nition in omprehension and membership test. We use sequenes

to ontain the equivalene lasses instead of sets not that muh beause they are ordered,

but beause the same element an appear more than one in a sequene. This feature is

useful beause, eventually, lasses may simply onsist of a set ontaining the empty queue

and it is important to be able to distinguish whether there is one or more of these lasses.

Central funtion s

0

Q

operates quite similarly to the sliing algorithm that is desribed

in the setion on model update. The di�erene lies in the fat that a sequene of sets of

queues is manipulated instead of a single queue and that, at eah possible split point, a split

may, or may not, be introdued. As in all algorithms performing a breadth-�rst traversal of

patterns, the patterns in the deonstrution queues are marked as either objet nodes (O)

or as losure nodes (C). A non-terminal step in the operations of s

0

Q

onsists in omputing

a separation strategy for an objet node or for a losure node. Note that, for a ertain

invoation of s

0

Q

, if one queue in some set in the sequene has length l, then all queues

have length l. Also, if the �rst element to be extrated from that queue is of the objet

kind, then it is also the ase for all queues. Similarly for the losure kind. Computing a

separation strategy for an objet node onsists in omputing one using the blind auxiliary

funtion s

0

O8

, omputing another using the disriminating auxiliary funtion s

0

O ?

, and

seleting the \best" of both strategies. A strategy has an in�nite ost when it does not

provide a proper separation. When both strategies have an in�nite ost, taking the \best"

onsists in taking any strategy among the two. Computing a separation strategy for a

losure node proeeds in a similar way, using auxiliary funtions s

0

C8

and s

0

C ?

.

Blind auxiliary funtions s

0

O8

and s

0

C 8

elaborate separation strategies by hoosing not

to insert a split at the urrent inspetion point. Conretely, the �rst element of eah queue

is disarded. This means that the information that remains in the equivalene lasses for

performing the separation is redued. However, the advantage is that no new separator

is introdued at this point. The shortened queues are passed to s

0

Q

to let it elaborate a

separation strategy based on the remaining information. The splits that it proposes are

then updated to allow omplete patterns to eventually be reonstruted.
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Disriminating auxiliary funtion s

0

O ?

elaborates a separation strategy by hoosing to

perform a split at the urrent inspetion point. Queues that have a Boolean, a losure,

or a pair as their �rst element are taken separately. So three speialised versions of the

equivalene lasses are obtained. A separator is introdued. The ost of the resulting

strategy is the sum of the osts of the sub-strategy for eah speialised partition, plus

one for the additional separator. Sine a split is done, the sub-patterns of the inspeted

patterns beome apparent and queues are updated aordingly at deonstrution and at

reonstrution. Disriminating auxiliary funtion s

0

C ?

proeeds in a similar manner with

losure inspetion nodes. However, instead of making three versions of the partition based

on the type, jLj speialised versions are made, where L is the set of labels of �-expressions.

For s

0

O ?

and s

0

C ?

, an immediate split may be impossible if there is a queue that ontains

an \ambiguous" pattern. That is, if a queue ontains `8' or `�

8

', respetively. In suh a

ase, the separation strategy is marked as having an in�nite ost. It is then rejeted by

upper levels in the separation strategy seletion.

We ome bak to the desription of the di�erent ases in s

0

Q

. The �rst terminal ases

are the suess of a separation strategy. The equivalene lasses are suessfully separated

if there is at most one lass left. No separator is required and the ost of the separation

strategy is 0. The other terminal ase is the failure of a separation strategy. The separation

fails if there remains at least two equivalene lasses ontaining empty queues. This means

that no information remains about the original ouples and inompatible ones annot be

distinguished. An in�nitely ostly strategy is returned. Suh a failure is not an extraor-

dinary event. It simply means that insuÆient separators are seleted in upper stages of

the separation strategy seletion. Note that the omplete seletion proess annot fail as

introduing separators at every inspetion point is guaranteed to produe a suessful strat-

egy. Finally, there is a \lean-up" non-terminal ase. It removes empty lasses from the

sequene. An empty lass ours when no representative of a ertain type (or losure label)

an be found among the queues of a ertain lass during a previous speialisation.

This ompletes the desription of the implementation of the Split-Couples funtion.

Sine its internal operations are slightly omplex, we present a short example illustrating

the omputations it makes. Let us onsider the ouples formed by the invoations of �

3

()

and �

5

() on #f and �

8

. Note that, normally, modelling pattern �

8

is not supposed to be

manipulated diretly as a value. But we need to split very simple ouples in order to keep

the example to a reasonable size. Suppose that the ouple (�

5

(); #f) is marked as bad.
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The main omputations that are made to split the ouples are the following:

s(f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); #f); (�

5

(); �

8

)g; f(�

5

(); #f)g)

s

0

(f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); #f); (�

5

(); �

8

)g; R)

where R = f(�

3

(); #f); (�

3

(); �

8

); (�

5

(); �

8

)g

2

[ f(�

5

(); #f)g

2

2

6

6

6

4

s

0

Q

([f[O �

3

(); O #f ℄; [O �

3

(); O �

8

℄; [O �

5

(); O �

8

℄g; f[O �

5

(); O #f ℄g℄)

: : :

) (f[8; ?℄; [?; �

8

℄; [#f ; �

?

℄g; 3)

) (f?; �

?

g; f?g)

The omputations made by entral funtion s

0

Q

are shown in Figure 5.24. Despite the

smallness of the input to s, an impressive amount of omputations has to be performed.

In the trae of the omputations performed by s

0

Q

, the main ideas are illustrated.

The trae of eah use of the entral funtion or of an auxiliary funtion is presented in a

separate box. With the notable exeption that blind auxiliary funtions only use s

0

Q

one

and no separate box is depited for these uses of s

0

Q

. Funtion s

0

Q

uses either auxiliary

funtions s

0

O8

and s

0

O ?

when the next pattern in the queues is of the objet kind, and

s

0

C8

and s

0

C ?

when the next pattern is of the losure kind. Eah time, the best of both

resulting strategies is returned. Blind auxiliary funtions s

0

O8

and s

0

C8

simply onsume

the �rst pattern in eah queue, sometimes leading to equivalene lasses ontaining only

empty queues. Disriminating auxiliary funtion s

0

O ?

separates its input queues into those

that start with a Boolean, those that start with a losure, and those that start with a pair.

Sub-strategies are elaborated for eah new partitions of queues. They are then ombined

together with the addition of a queue ontaining parts of a new split pattern performing the

disrimination diretly introdued by s

0

O ?

itself. Similarly, s

0

C ?

separates its input queues

into those that start with a losure having 3 as a label and those that start with a losure

having 5 as a label. Note how the reonstrution queues are modi�ed depending on whih

type or whih label they are the result for. Unfortunately, not all ases appearing in the

implementation of s

0

are illustrated in the example. But a omplete one would likely result

in a huge trae. We tried to keep a balane between ompleteness and omprehensibility.
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Figure 5.24: Example of omputation made by Split-Couples
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5.2.7 Remarks

We onlude the setion on demand proessing with a few remarks. The �rst one is the

observation that we took are of hoosing proessing rules that emit suÆient and neessary

sub-demands. In the presentation of ertain proessing rules, we mentioned that some of

the emitted split demands are more aggressive than what is really needed. For example, it

is the ase in the proessing of bound demands, in the proessing of split demands on �-

variables where the expression is a pair onstrution, and with the split demands presribed

by funtion s. However, these demands annot be designed as unneessary sine the

property they express is indeed true. In fat, all split demands are neessary. This may

seem surprising but it should be noted that the abstrat interpretation tries to be a simpli�ed

representative of the onrete interpretation. And in onrete interpretation, at most one

value is the result of eah evaluation of an expression in a onrete ontour. That onrete

value, taken alone, annot be spread on any split pattern. Sine the abstrat evaluation of

an expression in an abstrat ontour represents a (usually in�nite) union of (non-spreading)

onrete evaluations, it is legitimate to ask for a split of this evaluation into non-spreading

abstrat evaluations. The split demand may not be ahievable but, at least, the property

it expresses is true.

We have hosen split demands to be the main tool in the translation of the needs of

the optimiser into model update presriptions. They are the basi operations that are

performed to prepare the analysis results for adequate proessing of bound, never, and

bad all demands. However, in most of the ases, we ould proeed otherwise and bound

demands ould be proessed and transformed mostly into new bound demands. For example,

the proessing of D � `show �

l;k

� B', for B being some modelling pattern, or union of

modelling patterns, ould easily be done by emitting new bound and never demands when

e

l

is #f

l

, (if

l

e

l

0

e

l

00

e

l

000

), (ons

l

e

l

0

e

l

00

), (ar

l

e

l

0

), (dr

l

e

l

0

), or (pair?

l

e

l

0

). By having an

update of the model additionally, expressions x

l

and (�

l

x: e

l

0

) ould easily be proessed too.

Also, never demands, whih an be seen as speial variants of bound demands operating

on Æ-variables, ould be proessed by emitting new bound, never, and bad all demands.

However, the proessing of bad all demands and that of D, where e

l

= (

l

e

l

0

e

l

00

), would be

problemati. Consider proessing D knowing that:

�

l

0

;k

= ffg
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�

l

00

;k

= fvg

all(l; f; v; k) = k

0



f;k

0

6� B

Should the new bound demand `show 

f;k

0

� B' be emitted, blaming f for the violation of

the bound? Or should a demand be emitted that asks for a demonstration that the all does

not our at all? If so, by emitting `show Æ

l

0

;k

= ;' or by emitting `show Æ

l

00

;k

= ;'? At

least one of the three properties expressed in these demands has to be true. But whih one?

Always hoosing the right one would require an orale. And emitting three \or-related"

demands seems, if not impossible, far from obvious. So it seems that split demands are

unavoidable if adequate proessing of demands like D is desired. And sine split demands

and their omplex proessing is neessary, we hose to use them extensively and simplify

the proessing of the other demands.

The �nal remark about our proessing rules is that the rules always propose a single

\plan" to ahieve the proessed demands. As we mention in the previous remark, in some

situations, it would be useful to be able to express things like this set of properties or that

one needs to be veri�ed to ahieve the proessed demand. Sine we hose not to allow the

exeution of alternate plans, only a single plan is allowed and onsequently it must inlude

only neessary demands. This may unduly delay the ahievement of the proessed demands.

Indeed, if it were possible to propose two plans, the normal, neessary plan ould oexist

with an alternate, aggressive plan that would immediately try to show a property that is only

probably true. The knowledge that a property is probably true ould ome from pro�ling

statistis on the program, for example. The proessed demand would be ahieved as soon

as one of the plans is ompleted. Typially, the aggressive plan would \have guessed right"

and sueed quikly. But sometimes it would result in the launh of unfeasible demands

that ould ause a onsiderable waste of analysis e�orts. It would ertainly be interesting

to investigate on the value of allowing alternate plans in the future.

5.3 Complete Approah

Now that all the neessary tools have been presented, we an desribe the omplete demand-

driven analysis approah. As mentioned in the previous hapter, the demand-driven analysis

is divided in two parts. A preliminary analysis is �rst performed and then the demand-
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driven yle is entered.

The preliminary analysis simply onsists in analysing the program e

l

0

using the initial

model. The yle needs these preliminary results in order to start. The initial model is

relatively oarse. There is one abstrat Boolean, one abstrat pair, one abstrat losure

per �-expression, and one abstrat ontour for the body of eah �-expression plus the main

ontour (). More formally, the initial modelM

0

is built on the following pattern-mathers:

M

V

= f#f ; (8; 8)g [ f�

l

(8 : : : 8

| {z }

n(l) times

) j l 2 Lg

M

l

= f( 8 : : : 8

| {z }

n(l)+1 times

)g; l 2 L

where L = fl 2 4(l

0

) j e

l

is a �-expressiong

n(l) = number of variables visible at label l

In short, M

0

is the simplest model that does not mix the three types of values and the

losures oming from di�erent �-expressions. We believe that M

0

is a good ompromise

between simpliity and auray. IfM

0

were oarser, the quality of the preliminary analysis

results would be too low. Also, extra mehanisms would have to be added in the set

of demands and the demand proessing rules to take anonymous losures or values into

aount. On the other hand, ifM

0

were more aurate, more time would be spent in the

preliminary analysis without evidene that this extra auray is useful at all. The demand-

driven yle is better informed to hoose whih part of the abstrat model ought to be made

more aurate.

The demand-driven yle is the repetition of the model-update and re-analysis phases.

The yle ends when there is no time left or there are no more dynami safety types tests to

remove. The model-update phase onsists in making a modi�ation to the abstrat model

through demand proessing. The re-analysis phase simply performs an analysis of the

program using the newly updated model. Hopefully, the modi�ation to the model makes

the new analysis results more preise. Note that there is no guarantee that the modi�ation

leads to more preise results. Note also that what we mean by \more preise" is not having

analysis results expressed using more preise abstrat values, but having analysis results

that are more informative, or, stated di�erently, less overly onservative. For example,
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suppose that among the analysis results, we have that:

�

l;k

= f(8; 8)g

and that, after a model update and a re-analysis (assuming that k has not been speialised):

�

l;k

=

8

>

>

>

<

>

>

>

:

(#f ; #f); (�

8

; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

); ((8; 8); �

8

);

(#f ; (8; 8)); (�

8

; (8; 8)); ((8; 8); (8; 8))

9

>

>

>

=

>

>

>

;

These new results are expressed using more preise abstrat values but they are not more

preise themselves. What we know is that e

l

, when evaluated in ontour k, an produe any

pair. These new results are not less onservative. However, if the new results are:

�

l;k

=

8

>

>

>

<

>

>

>

:

(#f ; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

);

(�

8

; (8; 8))

9

>

>

>

=

>

>

>

;

we an say that they are more preise, or more informative.

The model-update phase proeeds by generating and proessing demands and then se-

leting a partiular model update. The idea is that the initial demands diretly reet the

needs of the optimiser and that the proessing of demands is a kind of translation from the

needs of the optimiser to presriptions of model updates. All suggestions of model update

that an be obtained from the urrent analysis results are gathered and the seletion ours

among the suggestions. In order to gather the suggestions of model update, the demands

that are normally proessed by modifying the model are kept apart without being proessed.

Only those that do not modify the model are proessed.

The exeution of the model-update phase onsists in maintaining a set of demands to

proess. When there are no more demands to proess, a seletion ours among the model-

modifying demands that have been gathered. The demands that are put in the set initially

are those reeting the needs of the optimiser. These initial demands orrespond exatly

to the onstraints that would be violated if the safety onstraints for the program using

the urrent model were generated and onfronted to the analysis results. Formally, these
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demands are:

n

show �

l

0

;k

� ValC (

l

e

l

0

e

l

00

) 2 4(l

0

) ^ k 2 Cont ^ �

l

0

;k

6� ValC

o

[

8

>

>

>

<

>

>

>

:

�

(ar

l

e

l

0

) 2 4(l

0

) _ (dr

l

e

l

0

) 2 4(l

0

)

�

^

show �

l

0

;k

� ValP k 2 Cont ^

�

l

0

;k

6� ValP

9

>

>

>

=

>

>

>

;

One the initial demands are inserted in the set, demand proessing starts. A demand is

extrated from the set and proessed provided that it is not a model-modifying demand.

Otherwise it is inserted in the set of model-modifying demands. The proessing of an

ordinary demand usually auses the emission of new demands. So proessing ontinues

until the set of demands to proess is empty. Of ourse, veri�ations are done to ensure

that a demand is not proessed more than one. If the set of demands to proess beomes

empty, but there are all sites to monitor, the monitoring of all those sites is triggered.

The monitoring usually auses new demands to be emitted. If there is no site to monitor,

then the demand proessing has ompleted. If the allotted time expires during demand

proessing, the proessing is stopped and the seletion is done immediately.

The model-modifying demands are of the form:

split ValC P

split ValP P

split �

x;k;l

P

The seletion of the model update is done on a spae onsumption basis. In our proto-

type, the data strutures for the abstrat model and the analysis results use a onsiderable

amount of spae. So the riterion that is used to selet the \best" model update onsists in

trying to minimise the amount of spae used by the model and the results. Despite the fat

that this riterion is relatively na��ve, it is quite e�etive. A model update that leads to more

preise analysis results is favoured beause the number of abstrat values propagated during

the analysis using the proposed model has a tendeny to derease. However, inluding the

size of the abstrat model in the riterion is ruial beause it ensures that the gains in

the size of the results are not obtained by ausing the model to expand too muh. The

inonveniene assoiated to this riterion is that a re-analysis has to be performed for eah

model update proposal.
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A summary of the omplete demand-driven approah is presented in Figure 5.25. Many

operations are only informally spei�ed. They are italiised to indiate that their de�nition

an found elsewhere. Here is the meaning of eah variable of the algorithm. The urrent

abstrat model is M. The urrent analysis results are R. The set of demands to proess

is S. The demands already seen in this period of the yle are in T . The model-modifying

demands are kept in U . Variable F ontains the all sites agged for future monitoring.

Naturally, the ouples desribing the bad invoations (losure and argument) are kept in

the bad-all log L

BC

. Variables D and S

0

at as temporaries and ontain a demand and a

set of demands, respetively.

5.4 Example of Demand-Driven Analysis

We illustrate the demand-driven analysis algorithm by analysing a small program. Despite

its small size, it is designed to be relatively intriate. At least, for an analyser. A trae

of the exeution of the demand-driven analysis is given. The proessing of eah demand

and its e�ets are presented. The trae inludes the set of demands to proess, markers

to distinguish the model-modifying demands, the bad-all log and the agged all sites.

The evolution of the abstrat model through the updates is presented. Also, exerpts of

the urrent analysis results are shown in order to bring some justi�ation to the presented

demand proessing. Let us begin the example.

The program to analyse is the following:

(

1

(�

2

swap.

(

3

swap

4

(ar

5

(

6

swap

7

(ons

8

(�

9

x. x

10

)

(ons

11

(�

12

y. #f

13

)

#f

14

))))))

(�

15

p. (ons

16

(dr

17

p

18

) (ar

19

p

20

))))

Essentially, a funtion `swap' is de�ned and used by the \main program". `Swap' takes

a pair and returns a new pair where the ar- and dr-�elds have been swapped. The

main program builds a #f-terminated list ontaining the identity funtion and a onstant

funtion. It then alls `swap' on the list and extrats the ar-�eld from the result. This is

equivalent to dropping the head of the list. Finally, it alls `swap' on this shortened list. It

is easy for a human reader to onvine himself that this program does not lead to an error

when it is evaluated. Consequently, it is natural to hope that the demand-driven analysis
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M :=M

0

; R := FW(e

l

0

;M) /* preliminary analysis */

while there is time /* demand-driven yle */

S := finitial demandsg; T := S; U := ;; F := ;;

L

BC

(l; k) = ;; 8 l 2 4(l

0

); k 2 Cont;

if S = ; then exit

do

while there is time and S 6= ; /* demand proessing */

let D 2 S; S := S � fDg

if D is model-modifying then

U := U [ fDg

else if D � `bad-all l f v k' then

proess D with agged ouple (l; k) put in F , if neessary

else

proess D with emitted demands in S

0

S := S [ (S

0

� T ); T := T [ S

0

end if

end while

while there is time and F 6= ; /* all site monitoring */

let (l; k) 2 F ; F := F � f(l; k)g

proess `monitor-all l k' with emitted demands in S

0

S := S [ (S

0

� T ); T := T [ S

0

end while

while there is time and S 6= ;

if U = ; then

exit

else

let D be the best demand in U /* seletion of a . . . */

proess D with modi�ed model in M /* . . . model update */

end if

R := FW(e

l

0

;M) /* re-analysis */

end while

Figure 5.25: Algorithm for the demand-driven analysis
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will be able to eliminate all dynami type tests. We will see that it indeed does so.

The abstrat model used to perform the preliminary analysis is based on the following

pattern-mathers:

M

V

=

8

>

>

>

<

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(8; 8)

9

>

>

>

=

>

>

>

;

M

2

= f(8)g

M

9

= f(8 8)g

M

12

= f(8 8)g

M

15

= f(8)g

Note how the value pattern-mather ontains one abstrat value per type, exept for the

losure type where there is one abstrat losure per �-expression. The ontour pattern-

mathers for the invoation of eah kind of losures are the trivial ones.

Here is an exerpt of the results olleted by the preliminary analysis:

R : �

2;()

= f�

2

()g; �

4;(8)

= f�

15

()g;

�

6;(8)

= f(8; 8)g; �

7;(8)

= f�

15

()g;

�

18;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g;

�

20;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g

Only the results that are pertinent for the example are presented.

Now that the preliminary analysis has been performed, the demand-driven yle an

start. We show a trae of the �rst model-update phase. We add omments throughout

the presentation of the di�erent model-update phases. Comments are indiated similarly to

footnotes. A sign like

99

g

is put on top of the arrows separating the numerous steps of the

model-update phases. The orresponding omment is given in the text. Here is the trae of

the �rst model-update phase:

8

<

:

show �

18;(8)

� ValP

show �

20;(8)

� ValP

9

=

;

1

g

)

8

<

:

show �

20;(8)

� ValP

split �

18;(8)

?

9

=

;

)

8

<

:

split �

18;(8)

?

split �

20;(8)

?

9

=

;

2

g

)

8

<

:

split �

20;(8)

?

[split �

p;(8);18

?℄

9

=

;

3

g

)

8

<

:

[split �

p;(8);18

?℄

[split �

p;(8);20

?℄

9

=

;
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1

g

The �rst set ontains the initial demands. A quik examination of the program reveals

that there are six expressions that may require a dynami safety test. However, the results

of the preliminary analysis indiate that four of the expressions do not really need a test.

So the remaining two tests are taken are of by the emission of these two initial demands.

The arrow indiates that an elementary step of the demand-driven algorithm is performed.

In this ase, there exists a demand to proess, so the arrow indiates that the �rst demand

is proessed. In all the traes, we take the onvention that the �rst demand to proess is

taken are of and that the eventual new demands are added at the end of the set. Normally,

we will not desribe the proessing of the demands themselves. The proessing rules are

quite preise and the information that they need about the analysis results that is needed

is presented in the orresponding result exerpt.

2

g

The newly emitted demand is a model-

modifying demand. To indiate that it should not be proessed, we enlose it into square

brakets.

3

g

The demand-proessing ends beause there is no more demand to proess. Also,

there is no all site to monitor.

The demand proessing of this �rst model-update phase has produed two model update

suggestions. Next, a seletion is made to hoose the update to perform on the abstrat

model. In this ase, both demands have exatly the same e�et on the model. The update

on the model auses pattern-mather M

15

to be updated. Here is its new de�nition:

M

15

= f(#f); (�

8

); ((8; 8))g

Now, when `swap' is invoked, its body is not always evaluated in the same ontour. The

ontour depends on the type of the argument that is passed to `swap'. Intuitively, this �rst

update makes sense as it is neessary to know whether `p' is a pair or not before we an do

a ar- or dr-�eld extration on it.

Using this new, updated model, a re-analysis of the program is performed. Here is an
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exerpt of the new analysis results:

R : �

4;(8)

= f�

15

()g;

�

5;(8)

= f#f ; �

9

(8); �

12

(8); (8; 8)g;

�

18;(#f )

= f#fg; �

20;(#f)

= f#fg;

�

18;(�

8

)

= f�

9

(8); �

12

(8)g; �

20;(�

8

)

= f�

9

(8); �

12

(8)g;

�

18;((8;8))

= f(8; 8)g; �

20;((8;8))

= f(8; 8)g;

�

(#f )

= f(3; (�

15

()); #f ; (8))g;

�

(�

8

)

=

8

<

:

(3; (�

15

()); (�

9

(8)); (8));

(3; (�

15

()); (�

12

(8)); (8))

9

=

;

Note that we do not inlude information on the value of expressions e

2

, e

6

, and e

7

again

sine it was already determined at the beginning of the �rst yle that they did not need a

dynami safety test. However, that on e

4

is needed for the next model-update phase and is

mentioned nevertheless. Note that an updated model annot lead to worse analysis results.

This is why we onsider the ases of e

2

, e

4

, e

6

, and e

7

to be losed.

Based on these new analysis results, a seond demand-proessing phase an start. Note

how the remaining initial demands are expressed in more preise terms beause of the

updated model. Also, demands are still neessary in only two of the three ontours sine

ontour `((8; 8))' means that `p' annot ontain anything else than pairs. Whih is perfetly

satisfatory for the extration of the �eld of a pair. Here is the trae of the seond demand-

proessing phase:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show �

18;(#f)

� ValP

show �

18;(�

8

)

� ValP

show �

20;(#f)

� ValP

show �

20;(�

8

)

� ValP

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � � )

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show Æ

18;(#f)

= ;

show Æ

18;(�

8

)

= ;

show Æ

20;(#f)

= ;

show Æ

20;(�

8

)

= ;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � �

)

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

show Æ

17;(#f )

= ;

show Æ

17;(�

8

)

= ;

show Æ

19;(#f )

= ;

show Æ

19;(�

8

)

= ;

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

)

4 steps

� � � )

8

<

:

show Æ

16;(#f)

= ;

show Æ

16;(�

8

)

= ;

9

=

;

4

g

)

8

<

:

show Æ

16;(�

8

)

= ;

bad-all 3 (�

15

()) #f (8)

9

=

;

5

g

)

8

>

>

>

<

>

>

>

:

bad-all 3 (�

15

()) #f (8)

bad-all 3 (�

15

()) (�

9

(8)) (8)

bad-all 3 (�

15

()) (�

12

(8)) (8)

9

>

>

>

=

>

>

>

;
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6

g

)

8

>

>

>

<

>

>

>

:

bad-all 3 (�

15

()) (�

9

(8)) (8)

bad-all 3 (�

15

()) (�

12

(8)) (8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

>

>

>

=

>

>

>

;

)

2 steps

� � � )

�

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

�

7

g

)

8

>

<

>

:

monitor-all 3 (8)

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

8

g

)

8

>

<

>

:

split �

5;(8)

?

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

9

g

)

8

>

<

>

:

[split ValP (?; 8)℄

L

BC

(3; (8)) =

�

(�

15

();#f);

(�

15

(); �

9

(8));

(�

15

(); �

12

(8))

�

9

>

=

>

;

4

g

The proessing of this never demand onsists in �nding all invoation irumstanes

leading to the seletion of ontour `(#f)' and involving a losure originating from parent

�-expression e

15

. It appears that the single irumstane logged in �

(#f)

involves a losure

originating from e

15

, so it beomes a bad all demand.

5

g

Similarly, the two irumstanes

beome bad all demands.

6

g

The bad all demand is not trivially ahieved so it must be

inserted into the bad-all log. We denote this insertion by indiating the state of the log at

the bottom of the set. Also, we ag the onerned all site by underlining its appearane as

an index in the log.

7

g

There is no more demand to proess. However, there is a agged all

site. A monitor ommand is emitted and the ag is removed from the all site.

8

g

The all

site only impliates funtion `swap' and arguments of all types. Only the pair is allowed as

an argument. Consequently, a split demand is emitted to request a separation of the good

and the bad ases.

9

g

Finally, a model-modifying demand is emitted and there are no more

demand to proess and no all site to monitor.

The unique model-modifying demand is neessarily seleted. It requests an update on

the representation of the pairs. Pattern-mather M

V

is updated and beomes:

M

V

=

8

>

>

>

<

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(#f ; 8); (�

8

; 8); ((8; 8); 8)

9

>

>

>

=

>

>

>

;

With the new model, a re-analysis is performed and we an observe these new analysis
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results:

R : �

4;(8)

= f�

15

()g; �

5;(8)

= f#f ; (�

8

; 8)g;

�

6;(8)

= f(#f ; 8); ((8; 8); 8)g;

�

7;(8)

= f�

15

()g; �

8;(8)

= f(�

8

; 8)g;

�

16;((8;8))

= f(#f ; 8); ((8; 8); 8)g;

�

17;((8;8))

= f#f ; (�

8

; 8)g; �

18;(#f)

= f#fg;

�

18;(�

8

)

= ;; �

20;(#f)

= f#fg;

�

20;(�

8

)

= ;; 

�

15

();((8;8))

= f(#f ; 8); ((8; 8); 8)g;

�

(#f)

= f(3; (�

15

()); #f ; (8))g

The results reveal that, in fat, `swap' is not alled on any losure. However, there is no

evidene that it is not alled on #f and the two remaining initial demands try to remedy

to the situation in the next demand-proessing phase:

8

<

:

show �

18;(#f)

� ValP

show �

20;(#f)

� ValP

9

=

;

)

2 steps

� � � )

8

<

:

show Æ

18;(#f)

= ;

show Æ

20;(#f)

= ;

9

=

;

)

2 steps

� � �

)

8

<

:

show Æ

17;(#f )

= ;

show Æ

19;(#f )

= ;

9

=

;

)

2 steps

� � � )

n

show Æ

16;(#f)

= ;

o

)

n

bad-all 3 (�

15

()) #f (8)

o

)

n

L

BC

(3; (8)) = f

(�

15

();#f)

g

o

)

8

<

:

monitor-all 3 (8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

5;(8)

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

6;(8)

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split 

�

15

();((8;8))

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

16;((8;8))

(?; 8)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

17;((8;8))

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

[split ValP (8; ?)℄

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

Only one model-modifying demand is generated and it is automatially seleted. It asks

for another improvement in the representation of the pairs. One again, pattern-mather

M

V

is updated and it now inludes abstrat pairs that are uniformly spei�ed one level
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deep:

M

V

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

#f ;

�

2

(); �

9

(8); �

12

(8); �

15

();

(#f ; #f); (�

8

; #f); ((8; 8); #f);

(#f ; �

8

); (�

8

; �

8

); ((8; 8); �

8

);

(#f ; (8; 8)); (�

8

; (8; 8)); ((8; 8); (8; 8))

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

A re-analysis with the new model leads to the following results:

R : �

4;(8)

= f�

15

()g; �

5;(8)

= f#f ; (�

8

; #f)g;

�

6;(8)

= f(#f ; �

8

); ((8; 8); �

8

)g;

�

7;(8)

= f�

15

()g; �

8;(8)

= f(�

8

; (8; 8))g;

�

16;((8;8))

= f(#f ; �

8

); ((8; 8); �

8

)g;

�

17;((8;8))

= f#f ; (�

8

; #f)g; �

18;(#f )

= f#fg;

�

18;((8;8))

= f(�

8

; #f); (�

8

; (8; 8))g; �

20;(#f )

= f#fg;



�

15

();((8;8))

= f(#f ; �

8

); ((8; 8); �

8

)g; �

(#f )

= f(3; (�

15

()); #f ; (8))g

Unfortunately, they do not allow the removal of the last two safety tests, yet. The same

two initial demands are emitted for the next demand-proessing phase:

8

<

:

show �

18;(#f)

� ValP

show �

20;(#f)

� ValP

9

=

;

)

14 steps

� � � )

8

<

:

split �

17;((8;8))

?

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

split �

18;((8;8))

(8; ?)

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

)

8

<

:

[split �

p;((8;8));18

(8; ?)℄

L

BC

(3; (8)) = f

(�

15

();#f)

g

9

=

;

Only one model-modifying demand is generated by the demand-proessing phase. Its

appliation to the model auses the update of pattern-mather M

15

:

M

15

= f(#f); (�

8

); ((8; #f)); ((8; �

8

)); ((8; (8; 8)))g

Before this modi�ation, the analysis of the behaviour of `swap' was onfusing both invoa-

tions of `swap'. Remember that the �rst invoation involves the whole list and the seond,

the shortened list. Eah time, the abstrat invoation of `swap' sees a pair oming as an

argument. So the values for both invoations were blended together. With this last update,

the analysis no longer onfuses both invoations and now eah invoation has its own return

value. The seond invoation involves only the shortened list originating from the return
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value of the �rst invoation.

A re-analysis using this last model provides the desired results. Namely, these ontain:

R :

�

18;(#f )

= ;; �

20;(#f)

= ;

whih ompletes the demonstration that no safety test is required for the whole program.

The presented example illustrates the exeution of the demand-driven analysis on a

simple program. But also, it is remarkable to see how the algorithm did it all without oming

lose to \understand" the program or being intelligent in a human sense. The only expertise

in type analysis is present in the design of the global approah and mainly in the design

of the proessing rules. But even in the proessing rules, there is no long body of domain-

spei� knowledge; only relatively short, sensible tests and transformations. Nevertheless,

the whole approah is remarkably intelligent. Empirial evaluation of its performanes are

presented in Chapter 6.

5.5 Development of the Prototype

The presented prototype is not a �rst attempt that has happened to immediately work

well. Many previous prototypes have been built and tried. The attentive reader may have

notied some details that suggest that previous approahes were used: the (suess) and

(failure) omments that are ignored; many kinds of demands that an never happen to

be trivially ahieved, namely bad all demands; the split demands with ValC as a splittee

that an never be emitted.

5.5.1 Resolution-Like Proessing of Demands

The �rst prototypes did not proeed with a model-update re-analysis yle but were doing

a kind of request resolution �a la Prolog. That explains the presene of the (suess) and

(failure) omments. Reahing (suess) meant that the urrent demand was trivially

ahieved and reahing (failure) meant that the urrent demand ould not be ahieved.

When many sub-demands were emitted by the proessing of the urrent demand, they were

onsidered to be linked by a logial-and operator, i.e. the urrent demand was ahieved if



5.5. DEVELOPMENT OF THE PROTOTYPE 163

all its sub-demands were ahieved.

This resolution-like approah had many problems. For example, the natural proessing

for a bound demand is �rst to separate the good ases from the bad ases and then to

show the impossibility of the bad ases. This proessing requires an ordering in time that

annot be expressed using simple Boolean operators. So sequening operators were intro-

dued. Their task onsisted in triggering the proessing of a ertain demand, waiting for its

ahievement, and then emitting another demand. In fat, a omplete system of pakage of

things to do, alled wills, were implemented to take are of the presriptions issued by the

proessing of demands. Wills ould inlude the emission of groups of demands, sequenes of

other wills, and other ommands that we mention below. Wills were intended to implement

all the mehanisms needed for performing the resolution of the demands in a resolution-like

fashion. They were pretty omplex.

Another problem with the resolution-like approah was that of the model updates be-

ing performed during the resolution proess. The exeution of a will doing a sequening

operation typially onsists in waiting for a model update to ause the �rst sub-demand to

sueed in order to trigger the proessing of the next one. This partiular will is spei�ally

designed to deal with suh updates. However, the proessing of other demands might be

a�eted by the model update. For example, alls are expressions with a very omplex inter-

pretation and they an be a�eted by almost any model update. So, a demand onerning a

all that is proessed at the beginning of the demand-driven analysis usually does not lead

to the same set of sub-demands as if it were proessed later. It typially beomes easier

to proess as the model evolves. So the prototypes had two mehanisms to deal with the

proessing of diÆult demands. The �rst was that the demand ould be re-emitted by its

will. For example, when a demand annot be ompletely proessed (typially beause a

separation of good and bad ases has to be performed �rst), its will onsists in a sequening

operator that �rst emitted split demands for the separation and then emitted the original

demand again. If the splits are eventually ahieved, then the new proessing of the demand

an happen within new, separated results.

The problem with this re-emission after the separation is ompleted is that, often, the

requested separation is too omplex. Indeed, at the beginning of the demand-driven analysis,

the analysis results may be too inaurate and the proessing of a demand onerning a

all may produe a will that asks for a separation that is exessively ambitious. So the
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split demands involved in the separation may never be ahieved. However, the analysis

results typially beome more aurate as the demand-driven analysis progresses. The

proessing of the same demand, if done later, would lead to the request of a muh more

sober separation step, inreasing the hanes of its realisability. To take advantage of the

progressive improvement of the analysis results, we added another mehanism: a wake-up

all for the omplex demands. If there is a wake-up all that is set for a ertain demand and

that the demand is not ahieved within a ertain amount of time, then it is automatially

re-emitted. In order to determine whih demands have been proessed, sine when, whether

they are ahieved or not, et., we added a demand log. It was a omplex data struture

with fast aess and in whih all existing demands were noted along with their related

informations. Another problem that the demand log helped to deal with was that of the

yli demands. Cyli demands often appear when, for example, two funtions are mutually

reursive and the result of eah one depends on that of the other. A split demand on the

result of the �rst leads to the emission of a split demand (among other) on the result of the

other, whih in turn leads to the same �rst demand. The demand log allowed to verify if

a demand was already in the waiting queue to be proessed or has already been proessed

and possesses a will.

Periodially reproessing a demand ould be expensive as a new will ould possibly be

reated, whih lead to the possible emission of similar demands as before. So, for ertain

kinds of demands, we instead performed periodi heks to see if they now happened to be

ahieved, due to some update of the model. When a demand was disovered to be ahieved

during a hek, we would delete the whole \searh" tree that represented its resolution

proess and send a suess signal to its parent demands. One an imagine the omplexity

of suh an operation beause of the wills, wake-up alls, demand log that are involved in

the resolution proess.

All these mehanisms were introdued in the suessive prototypes in order to try to

make the demand-driven analysis work. All of this was terribly omplex and, on top of

that, it did not work satisfatorily. The main problems that we �nally identi�ed through

extensive experiments were: the proessing of a demand rarely bene�ts from the most

up to date analysis results; many demands ontinued to be \resolved" while it ould be

established from the urrent analysis results that they were now useless (not to onfuse

with \ahieved").
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5.5.2 Model-Update Seletion and Re-Analysis Cyle

From these observations, we deided to make a major hange in the demand-driven analysis

proedure and deided that, eah time the model was hanged, demand proessing had to

be restarted from srath. At �rst glane, it seems like a terrible waste of resoures. Indeed,

the initial demands have to be generated eah time, many similar demands have to be

proessed eah time. The reader ould witness that redundany in the example of demand-

driven analysis in the previous setion. But the bene�ts learly outweigh the inonvenienes:

only the demands that are needed aording to the urrent analysis resoures are generated

and proessed. As soon as new results indiate that suh or suh property no longer needs to

be veri�ed, the orresponding demand does not get emitted. The model-modifying demands

that are proposed by the demand proessing now have a very high degree of pertinene.

The new problem is that the demand-proessing phase of the yle usually proposes

more than one model-modifying demands. Our �rst strategy onsisted in seleting all of

them. We immediately saw an improvement in the intelligene of the prototype. It ould

disover fats that stayed ompletely unsuspeted by the previous prototypes. However,

it aused a massive expansion of the abstrat model. During the demand-driven analysis,

the analysis results were rapidly improving in quality but they were expressed in so many

preise values that they were expanding very quikly, too. After only a few minutes of

exeution, the prototype needed more than a gigabyte of memory spae.

So we deided to use a seletion riterion. The �rst one simply onsisted in measuring

the inrease in size of the abstrat model and seleting the model-modifying demand that

aused the smallest inrease. It sueeded in keeping the model to a reasonable size but

it had the tendeny to hoose demands that do not really help in making the results more

informative. Consequently, the results quikly expanded as they were always denoting the

same information but in ever �ner terms. Nevertheless, for some benhmarks, this ontrol

on the size of the model, plus the high pertinene of the proposed model-modifying demands

resulted in suessful analyses, where previous prototypes stagnated or exploded.

We hanged the riterion for a slightly more lever one: its measures the inrease in

the size of both the model and the results and selets the least inrease-ausing demand.

Despite the fat that this riterion is not muh more lever than the previous one, it happens

to be really useful. It is the one that is used in the urrent prototype and allows the latter
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to analyse perfetly well many of the benhmarks that we submit to it.

In onlusion, we say that it is pratially the most na��ve design of demand-driven

analysis that allowed us to obtain a working prototype. The \more lever" approah of

having a resolution of demands �a la Prolog did not work properly. Although the yli

approah of performing demand proessing from srath and re-analysing after eah model

update seems to imply some resoure waste, it turns out to be eonomial in the demands

that it insists on proessing.

5.6 Disussion

To onlude with the pattern-based demand-driven analysis, we make a few omments. We

believe that the pattern-based analysis is the simplest instane of demand-driven analy-

sis that has a reasonably high power. The meaning of the patterns as abstrat values is

straightforward. There are only a few kinds of demands that need to be manipulated and

the rules to proess them are relatively intuitive. Moreover, the pattern-based instane

respets the intent expressed in the presentation of demand-driven analyses in general that

we should avoid reating an expert system with an extensive knowledge base to obtain a

good type analysis.

The pattern-based approah has somehow a redued power ompared to the onept of

demand-driven analysis in general. Not neessarily theoretially, but in pratie. Theoret-

ially, the modelling of the onrete values and evaluation ontexts using patterns is not

less powerful than the generi modelling allowed by the analysis framework: a orretly

terminating program still an be analysed perfetly well using a model based on patterns.

Indeed, the orretly terminating program runs only for a ertain time; so it reates values

and manipulates environments that have only a ertain depth (if written as syntax trees);

so hoosing pattern-mathers that only projet details that are beyond this depth would

allow to simulate with perfet auray the onrete omputations.

In pratie, however, the program runs for an unknown time and a priori manipulates

arbitrarily big and deep values. The pattern-based modelling is intrinsially myopi and

fails to apture many kinds of properties applying to the values. For example, for long

enough lists, the di�erene between lists having an even length and those having an odd
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length annot be made. By inspetion of the �rst few levels of a list, it is lear that it is

impossible to determine how many other pairs are linked in the list. On the other hand,

with the general modelling provided by the analysis framework, it is easy to hoose ValP

and p suh that pairs that start lists of even and odd length are distinguished.

Despite its myopia, the pattern-based modelling, in ombination with the analysis re-

sults, may sometimes disover non-super�ial properties of the values manipulated by a

program. Consider a simple program that manipulates two kinds of lists: lists of losures

and lists of pairs. Suppose that both kinds of lists are terminated by #f. Let us pretend

that we are the analyser ourselves and that an orale told us that the program only ma-

nipulates those two kinds of lists. Then we ould identify whih of the two kinds of lists

we are manipulating in a myopi fashion: if the �rst pair ontains a losure, then it is the

head of a losure list; otherwise, it is the head of a pair list. The real analyser an disover

the same invariant (without the help of an orale, of ourse) by exploiting the ontents of

the log of pair reation irumstanes, i.e. the � matrix. First, let us observe what the log

ontains when there is only one abstrat pair, i.e. when ValP = f(8; 8)g:

�

(8;8)

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

( ; � (: : :); #f ; );

( ; � (: : :); (8; 8); );

( ; (8; 8); #f ; );

( ; (8; 8); (8; 8); );

: : :

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

These irumstanes illustrate the best possible ase for the analysis results. Note that we

intentionally omitted to give the labels and ontours where the pairs are reated and the

details from the losures stored into the pairs. The omitted details are not useful to the

example. The information in the log only indiates that lists are #f-terminated and that

they ontain losures and pairs. But if we now observe the ontents of the log if the model

were updated to have pairs that are distinguished by the type of the value in their ar-�eld,

i.e. ValP = f(#f ; 8); (�

8

; 8); ((8; 8); 8)g:

�

(#f ;8)

= ;

�

(�

8

;8)

= f( ; � (: : :); #f ; ); ( ; � (: : :); (�

8

; 8) ); : : :g

�

((8;8);8)

= f( ; ( ; 8); #f ; ); ( ; ( ; 8); ((8; 8); 8); ); : : :g

Again, these results also illustrate the best possible ase for the analysis results. Observe
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that pairs having a losure in the ar-�eld are either terminated by #f or have a losure

list in the dr-�eld; pairs having a pair in the ar-�eld are either terminated by #f or

have a pair list in the dr-�eld. This property of the lists an be disovered by the analyser

beause the di�erent kinds of lists have a super�ial di�erene that is suÆient to distinguish

them.

On the ontrary, if there are two kinds of lists and that these two kinds are only dif-

ferentiated deeply, the analyser annot �nd the distintion. For example, suppose that the

program manipulates these two kinds of lists: both are lists of Booleans, but one kind is

#f-terminated and the other is terminated by a losure. Then, if we onsider two suÆ-

iently long lists, one that is #f-terminated and the other not, then there is no super�ial

di�erene between them. So they have to be represented by the same abstrat value (by the

projetion through the value pattern-mather). The best the pattern-based analyser ould

do is to determine that the lists ontain Booleans and are terminated by a Boolean or a

losure. Only short lists ould be lassi�ed orretly. However, by diretly using generi

models aepted by the analysis framework, a model an be hosen suh that pairs are

di�erent depending on the type of the value that terminates the list they are the head of.

We �nish by asking, and answering, the following question: Sine any orretly termi-

nating program an be analysed perfetly well using an appropriate pattern-based model,

is the pattern-based demand-driven analysis always able to eventually analyse the program

perfetly well? Unfortunately, the answer is: No. Intuitively, it is relatively easy to aept

this answer. It is beause the analyser starts with a oarse model, may only obtain obsure

analysis results, and may not be able to disover the appropriate model updates before there

is no more useful information it an extrat from the results. However, stritly speaking,

this explanation is not suÆient. But in Chapter 6, experiments show that our prototype

is not able to analyse perfetly well some of the benhmarks.



Chapter 6

Experimental Results

We have run some experiments on a prototype implementation of the pattern-based demand-

driven analysis. But before we present the results of these experiments, we �rst give some

details on the implementation of the prototype. And then we desribe the method used to

measure the e�etiveness of the demand-driven analysis. Finally, we present the results and

make omments.

6.1 Current Implementation

The prototype is implemented in a rather na��ve way. No speial e�ort has been made

to make it partiularly eÆient, in time and in spae. The abstrat values and abstrat

ontours are implemented almost as we have presented them in the previous hapter. They

are represented using simple, easy to read Sheme data made of lists, symbols and numbers.

For example, here is the representation of two abstrat values:

(#f ; �

8

) 7! (pair (bool) (los any))

�

12

(8 #f 8) 7! (los 12 (vals (bool) vals))

This representation is quite spae onsuming and ould ertainly be redued to a more

ompat form.

During the analyses, values and ontours of this kind are reated and projeted using

the pattern-mathers. Their projetion involves their deonstrution using a queue. Conse-
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quently, this proess is also time onsuming. However, a feature of the implementation of the

pattern-mathers redues the spae onsumption. During a single analysis, the abstrations

that result from the projetions using the pattern-mathers are not reated from srath.

Instead, they are taken from the leaves of the pattern-mathers. So the values stored in the

�, �, , and Æ matries are the same objets (in the sense of eq?) as those already present

in the pattern-mathers. However, the tuples found in the �, �, and � matries are built

during the analysis even if their ontents are already existing objets. Naturally, the data

strutures implementing the matries themselves must also be reated.

The onsiderable amount of data strutures that are needed in order to perform the

analyses auses a loss of time eÆieny due to the stress on memory management. Also,

the repeated projetions of abstrations add to the ineÆieny.

The implementation of the sets that hold the values of eah matrix entry is eÆient.

However, operations on the sets rely on an ordering relation between abstrations that is

quite heavy. To determine the relative order of two abstrations, the relation traverses the

lists and atoms until a di�erene is found. These omparisons ause a large onsumption of

time.

In fat, the major soure of time onsumption in the prototype is the need to re-analyse

the program from srath eah time a model-modifying demand is evaluated by the seletion

riterion. With models that are inreasingly omplex during the whole demand-driven

analysis, the repeated analyses inur a tremendous ost. When one wathes the trae that

is produed by the prototype, it is perfetly obvious that almost all the time is spent in

the demand seletion step. Even in the prototype that used only the size of the model as

a riterion, almost all of the time was spent in the analyses. The demand generation and

proessing steps are faster by orders of magnitude.

Beause of that, our urrent measure of the amount of resoures to invest in the demand-

driven analysis is not reliable. The amount of resoures is measured in the number of

proessed demands. Sine the proessing of demands is far from being the major ost,

the measure does not represent very aurately the amount of resoures that are available.

Using a measure like the CPU time would be preferable. At least, it is so from the point of

view of the user of the system. From our urrent point of view, the advantage of the urrent

measure is that it measures the amount of reasoning the demand-driven analysis an do.

Indeed, the leverness of the approah omes mostly from the proessing of demands.
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6.2 Test Methodology

6.2.1 What is Measured?

For eah benhmark, we ount the number of safety tests that an be removed from the

program. It is important to note the distintion between the fat that these tests are

dynami and the fat that we remove their stati ourrenes in the program text. We ount

the number of stati ourrenes of the tests, not the number of dynami uses of the tests.

One might objet that \ounting the stati ourrenes of the tests is farther from

measuring the onrete improvement in the exeution time of the program than ounting

their dynami uses". We agree, but we answer that \it is not farther by muh". Let us give

our reasons.

The number of dynami uses does not have a relation to the exeution time of the

program that is as tight as we may expet at �rst. Many other fators impat on the

exeution time: the \useful" omputations made by the program, the hidden run-time tasks

suh as memory management, the interation with the operating system, the partiular

mahine on whih the program runs, et. In general, it is hazardous to predit what is the

impat on the exeution time of the program when it has been determined that only 50%

of the uses of dynami tests were required. In some situations, the savings on the safety

tests are overshadowed by the remainder of the program tasks and little improvement of the

exeution time is observed. On the other hand, the frequeny of the dynami tests during

the omputations might be so high that the redution in the exeution time ould be lose to

that of the number of uses of safety tests. In exeptional ases, the improvement ould even

be over 50% if the optimizations help the ode to be smaller and to behave more favourably

in relation to the ahe memory and if they improve the branh predition suess rate in

the proessor.

For the exat same reasons, diretly taking the improvement of the exeution time of

the programs as a measure of the e�etiveness of the analysis is not representative.

Using the number of stati ourrenes of safety tests in the program text has many

advantages. It exlusively depends on the analysis and the program. No external fators

an inuene the measure. The suess of our analysis in the removal of the di�erent safety

tests depends more on the intrinsi diÆulty of the program. Consequently, we believe it
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gives a more stable measure of the e�etiveness of the analysis. For instane, it annot

happen to obtain very good results on a partiular benhmark beause it eliminated a few

very frequently used tests and, the next time, to obtain poor results beause it eliminated

many rarely used tests. A measure of the dynami uses of the safety tests is more sensitive

to \luk". Moreover, there is no reason to believe that frequently used tests are harder or

easier to eliminate than rarely used ones. Our measure is insensitive to the inputs of the

program while it is exeuted. Or ourse, our mini-language does not inlude input/output

operations, but a onrete language for whih the analysis ould eventually be implemented

should inlude input/output.

Finally, ounting the number of stati ourrenes of safety tests is ommon in the �eld

of stati analyses. Also, it is ompatible with the goal we gave ourselves at the beginning

of the doument: to try to remove as many safety tests as possible.

6.2.2 Benhmarks

The e�etiveness of the analysis is evaluated using a variety of benhmarks. They vary from

small to medium size. There are a few toy programs, adaptations of some of the Gabriel

benhmarks, and other programs. Many benhmarks involve numerial omputations. Some

have a more symboli nature. Most are written or translated, ompletely or partly, by hand

from Sheme. Some are automatially ompiled from a subset of Sheme into the syntax of

the mini-language.

Before we present eah benhmark, we need to disuss a few issues regarding their

translation. The most important issue onerns the use of letre-expressions. As we

know, the mini-language does not inlude letre-expressions (it does not even inlude let-

expressions). In order to obtain benhmarks written in the mini-language, letres are

redued into lets plus uses of the well known \Y" ombinator. For eah benhmark, we

used two di�erent translations. One in whih variable Y is �rst bound to an appropriate

funtion and in whih eah reursive funtion gets reated by alling Y on a partially

reursive funtion. The other in whih eah reursive funtion is reated using a private Y

ombinator. Clearly, having one global Y ombinator makes the program harder to analyse

beause every reursive funtion is reated using the same �-expression oming from Y.

Naturally, the returned losure remembers its assoiated partially reursive funtion but
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(letre

1

foo = (�

2

x. (

3

foo

4

x

5

))

(

6

foo

7

#f

8

))

(a) Original program

(let

1

Y = (�

2

f. (let

3

g = (�

4

h. (�

5

z. (

6

(

7

f

8

(

9

h

10

h

11

)) z

12

)))

(

13

g

14

g

15

)))

(let

16

foop = (�

17

foof. (�

18

x. (

19

foof

20

x

21

)))

(let

22

foo = (

23

Y

24

foop

25

)

(

26

foo

27

#f

28

))))

(b) Translation with global Y

(let

1

foo = (let

2

f = (�

3

foo2. (�

4

x. (

5

foo2

6

x

7

)))

(let

8

g = (�

9

h. (�

10

z. (

11

(

12

f

13

(

14

h

15

h

16

)) z

17

)))

(

18

g

19

g

20

)))

(

21

foo

22

#f

23

))

() Translation with private Y

Figure 6.1: Translation of letre-expressions

the analyser has to disover that by itself. On the other hand, private Y ombinators

allow reursive funtions from distint letres to be reated from distint �-expressions.

Certainly, this does not make the task as easy as if the analyser knew how to handle

letre-expressions diretly but nevertheless it helps a lot. Figure 6.1 shows both kinds of

translation for the little benhmark loop.

Many benhmarks involve numerial omputations. But we know that the mini-language

does not inlude numbers. Consequently, a redution step used in the elaboration of the

benhmarks onsists in getting rid of the numbers by replaing them by lists of Booleans.

Only the naturals and a few arithmeti operations are supported. The numbers are enoded

in unary. Thus, the onstant `3' appearing in the program is translated into:

(ons #f (ons #f (ons #f #f)))

The \numerial lists" do not have any speial status and are manipulated as ordinary values

by the mini-language.
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The benhmarks written in the Sheme subset may inlude empty lists, both Booleans,

numbers (naturals), pairs, vetors, losures of any (non-variable) arity, and symbols. A

subset of the standard library is provided. The extra speial forms are letre and let,

provided that they inlude only one binding. Also, the expression to whih the variable

is bound in letre-expressions must be a �-expression. Programs written in this subset

of Sheme are translated into the mini-language plus let, letre, and unary numbers.

Eah Sheme objet is represented by a pair of the mini-language. The pair ontains a

type tag (a small number) and the value enoded in a type-dependent way. The neessary

library funtions are inluded. The Sheme type disipline is enfored and a Sheme type

error leads to the evaluation of the mini-language expression (ar #f). Wrapping and

unwrapping instrumentation is added throughout the translated program. Programs thus

translated tend to expand onsiderably. Figure 6.2 shows the translation of a very small

expression. The ode expansion is evident.

We now desribe eah benhmark:

dr-safe De�nition and use of a seure version of the dr funtion. Written in the extended

mini-language.

loop An in�nite loop. Written in the extended mini-language.

2-1 Computes the indiated subtration. Written in the extended mini-language.

map-easy Two uses of map on the same list using two di�erent funtions. Written in the

extended mini-language.

map-hard A use of map on two di�erent lists using two di�erent funtions. Eah funtion

an only be applied on the elements of its orresponding list. Otherwise, an error

would our. This simple benhmark is reported in [37℄ as being impossible to analyse

perfetly well by the k-fa analysis, no matter how big k is. Written in the extended

mini-language.

�b Computes the 7th Fibonai number. Adapted from a Gabriel benhmark. Written in

the extended mini-language.

gd Computes the greatest ommon divisor of 3 and 5. Written in the extended mini-

language.
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(if (= 2 3) #f '(32 a))

7!

(let

1

true = (ons

2

4

3

(ons

4

#f

5

#f

6

))

(let

7

false = (ons

8

4

9

#f

10

)

(let

11

wrap-num = (�

12

n. (ons

13

2

14

n

15

))

(let

16

null = (ons

17

0

18

#f

19

)

(let

20

wrap-los =

(�

21

n. (�

22

. (ons

23

1

24

(�

25

m. (if

26

(=

27

n

28

m

29

) 

30

(ar

31

#f

32

))))))

(let

33

test = (�

34

x. (if

35

(=

36

(ar

37

x

38

) 4

39

) (dr

40

x

41

) x

42

))

(let

43

all = (�

44

x. (if

45

(=

46

(ar

47

x

48

) 1

49

) (dr

50

x

51

) (ar

52

#f

53

)))

(let

54

wrap-sym = (�

55

l. (ons

56

6

57

l

58

))

(let

59

dummy = #f

60

(let

61

= =

(

62

(

63

wrap-los

64

2

65

)

(�

66

x. (�

67

y. (if

68

(=

69

(ar

70

x

71

) 2

72

)

(if

73

(=

74

(ar

75

y

76

) 2

77

)

(if

78

(=

79

(dr

80

x

81

) (dr

82

y

83

)) true

84

false

85

)

(ar

86

#f

87

))

(ar

88

#f

89

)))))

(let

90

ons = (

91

(

92

wrap-los

93

2

94

)

(�

95

x. (�

96

y. (ons

97

3

98

(ons

99

x

100

y

101

)))))

(if

102

(

103

test

104

(

105

(

106

(

107

(

108

all

109

=

110

) 2

111

)

(

112

wrap-num

113

2

114

))

(

115

wrap-num

116

3

117

)))

false

118

(

119

(

120

(

121

(

122

all

123

ons

124

) 2

125

) (

126

wrap-num

127

32

128

))

(

129

(

130

(

131

(

132

all

133

ons

134

) 2

135

)

(

136

wrap-sym

137

(ons

138

97

139

#f

140

)))

null

141

))))))))))))))

Figure 6.2: Translation from the Sheme subset to the extended mini-language
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tak Computes the Takeuhi funtion on 18, 12, and 6. Adapted from a Gabriel benhmark.

Written in the extended mini-language.

n-queens Counts the number of solutions to the problem of the n-queens, for n = 4.

Written in the extended mini-language.

ak Computes the Akermann funtion on 4 and 0. Adapted from a Gabriel benhmark.

Written in the extended mini-language.

SKI Interpreter for programs written using the well known S, K, and I ombinators. The

SKI program is that of an in�nite loop. Written in the extended mini-language.

hange Computes the optimal strategy for returning the hange using oins taken from

unlimited supplies of oins of 25/, 17/, 4/, 3/, and 1/. The optimal hange return

onsists in minimising the number of oins. The result of the omputation is a vetor

of pairs. Eah pair ontains the optimal strategy for making hange for the amount

orresponding to its position in the vetor. The strategy is expressed by a pair ontain-

ing the optimal number of oins and the most valuable oin needed by this strategy.

For amounts greater than the length of the vetor, the most valuable oin must be

seleted until the remaining amount is handled by the vetor. Written in the Sheme

subset.

interp Interpreter for the Sheme subset. The program it interprets is:

(letre ((foo (lambda () (foo)))) (foo))

The interpreter does not hek whether the operations performed by the program it

interprets are valid. So an illegal operation in the interpreted program auses the

interpreter to do an illegal operation itself. Written in the Sheme subset.

ps-QS-s Generation and sort of a list of numbers. The list ontains the numbers 1 to 28

in \random" order. The numbers are generated by the suessive powers of 2 modulo

29. The list is then sorted using the Quiksort algorithm. The program is written in

ontinuation-passing style (CPS) exept for the initial de�nition of the CPS versions

of the library funtions. Written in the Sheme subset.

ps-QS-m The same program but translated by hand in the extended mini-language. In-

deed, apart from the empty lists terminating the lists of numbers, the other values are
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diretly present in the extended mini-language.

Appendix A presents the listing of eah benhmark.

6.3 Results

We present the results of the experiments on the benhmarks in Table 6.1. Eah benhmark

has been translated into the mini-language in two versions: one with a global Y ombinator

and one with a Y ombinator for eah letre-expression. A limit of 10000 \work units" has

been allowed for the analysis of eah benhmark. The mahine running the benhmarks is a

PC with a 1.5 GHz Athlon CPU, 2 GByte RAM, and running RH Linux kernel 2.4.18-5smp.

Gambit-C 4.0 was used to ompile the demand-driven analysis.

The meaning of eah olumn is the following. The olumn labelled Y indiates whether

the benhmark is the version with one Global Y ombinator or with Private Y ombinators.

The olumn labelled size indiates the size of the benhmark, as measured by the number of

expressions. The olumns labelled total, pre, and post indiate the number of ourrenes

of safety tests present in the non-optimised program, in the optimised program based on the

preliminary analysis results, and in the optimised program after demand-driven analysis,

respetively. The olumn labelled during gives a trae of the evolution of the number of

safety tests through the analysis. An item of the form n�t indiates that n safety tests

are still neessary after t work units have been onsumed. The olumns labelled units and

time indiate how many work units and how muh CPU time, respetively, were onsumed

by the whole analysis proess.

Only partial results ould be obtained for the benhmarks written in the Sheme subset

and for the global Y version of ps-QS-m. The exeution of the demand-driven analysis

on these onsumed too muh memory and it had to be stopped. Consequently, they are

analysed using the 0-fa only. No post information is available for them. Nevertheless, we

insist on mentioning the benhmarks as they ould serve as a basis for omparison if future

improvements of the implementation of the demand-driven analysis eventually allows these

to be analysed. The size of the interp benhmark may seem partiularly impressive, but

it is mainly due to the expressions that reate the \Sheme symbols".

Looking at the results of the experiments on the other benhmarks, we easily note
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Y size total pre during post units time(s)

dr-safe G 17 4 1 0 5 0.04

P 17 4 1 0 5 0.03

loop G 32 11 0 0 1 0.04

P 26 9 0 0 1 0.03

2-1 G 48 15 2 1�7 0 47 0.51

P 42 13 2 1�7 0 48 0.42

map-easy G 82 26 6 4�19 0 134 3.12

P 76 24 6 4�19 0 134 2.83

map-hard G 96 33 9 6�38 5�254 3�305 1�520 0 1399 115.54

P 101 35 4 2�118 0 284 8.42

fib G 141 40 12 12 10000 2204.95

P 168 50 5 4�16 3�29 2�39 1�46 0 358 13.87

gd G 257 77 8 7�25 6�47 5�66 4�82 1 10000 11482.90

3�95 2�105 1�112

P 328 103 6 5�19 4�35 3�48 2�58 1�65 0 8509 1633.34

tak G 202 46 9 9 10000 2967.36

P 218 52 4 3�13 2�23 1�30 0 240 18.22

n-queens G 372 121 51 51 10000 23028.97

P 454 151 11 10�34 9�65 8�93 5 10000 2667.07

7�118 6�140 5�1750

ak G 162 49 5 4�16 3�29 2�39 1�46 1 10000 5786.97

P 189 59 3 2�10 1�17 0 200 12.51

SKI G 285 46 19 15�91 13�173 11�323 4 10000 1238.40

9�397 7�473 6�543

5�1474 4�3584

P 290 48 17 13�52 11�98 9�138 8�212 0 899 98.90

5�249 4�358 3�567 1�673

hange G 2371 717 377 [377℄ [0℄ 3227.67

P 2519 771 329 [329℄ [0℄ 1944.26

interp G 42056 1348 762 [762℄ [0℄ 17251.09

P 42292 1434 678 [678℄ [0℄ 9597.56

ps-QS-s G 2042 584 277 [277℄ [0℄ 11273.67

P 2157 626 242 [242℄ [0℄ 7705.23

ps-QS-m G 693 211 58 [58℄ [0℄ 71.47

P 808 253 16 14�49 13�92 12�132 1 10000 3356.97

11�169 10�203 9�234

8�262 7�287 6�309 5�328

4�344 3�357 2�444

1�1121

Table 6.1: Experimental results
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that having private Y ombinators make the analysis muh simpler. It is the ase for the

preliminary analysis and for the omplete demand-driven analysis.

In fat, the demand-driven analysis is able to remove all safety tests when private Y

ombinators are used exept in the ases of the n-queens and of the ps-QS-m benhmarks.

In these two ases, the demand-driven analysis is nevertheless able to improve on the re-

sults obtained by the preliminary analysis. These results are remarkable, given that the Y

ombinator is quite intriate. Also, in the benhmarks that use the subtration, a pretty

diÆult property has to be demonstrated. The property says that, when an expression suh

as (� x y) is evaluated, y is never greater than x. In fat, subtration is implemented using

a all to a funtion that is inserted during the redution that removes the numbers from the

extended mini-language. The funtion assumes that its arguments respet the property. If

they do not, the funtion eventually attempts to extrat the dr-�eld of the Boolean #f

that ends the unary representation of x. In the 2-1, fib, gd, tak, and ak benhmarks,

the property neessarily had to be demonstrated sine these rely on the subtration.

When a global Y ombinator is used, on the other hand, the analysis obtains results of

a pretty variable quality. The problem is that all reursive funtions are blended together

by Y and when there is no easily detetable di�erene in the behaviour of these funtions,

then the analysis does not realise that a \good move" onsists in reating distint reursive

funtions for uses of Y on distint partially reursive funtions.

Note that there is no lear relation between the size of the benhmarks and the suess of

the demand-driven analysis on them. Certainly, the style of programming has a muh bigger

impat, as demonstrated by the di�erene introdued by global and private Y ombinators.

On top of the diÆulty reated by their size, we expet the benhmarks written in Sheme

to be diÆult to analyse beause of their style, also. Eventually, their style may even have

a bigger impat than their size. The main reason is that all Sheme values are enapsulated

in pairs using speial purpose funtions and that this enapsulation may produe a masking

e�et similar to that of the global Y ombinator. As an instane, two Sheme funtions

introdued by distint letre-expressions beome very diÆult to distinguish: they both

are represented as pairs; their ar-�eld ontains the same \losure" type tag and their

dr-�eld ontains funtions reated by the wrap-num funtion, whose task is to hek the

number of arguments that are to be passed; the hek funtion then ontains a referene

to the distint \raw" reursive funtions. If a global Y ombinator is to be used on top
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unrolling 1 2 4 8 16

units 176 280 532 1276 3724

time(s) 10.59 24.34 79.97 374.34 2325.77

Table 6.2: The e�et of the size of a program on the analysis

of that, the di�erene between both raw reursive funtions is even more diÆult to make.

The di�erene appears only in the referenes to the partially reursive funtions the losure

from Y has aptured. It is not lear if even a very improved demand-driven analysis ould

ever be disriminating enough for these benhmarks.

Note that, when the demand-driven analysis has some suess in removing safety tests, it

usually is able to �nd the opportunities rather quikly. This suggests that relatively modest

investments in analysis time an usually be fruitful. At least, provided that the program is

\analysable". When it is not, it seems that onsiderable time investments in the analysis

do not help. This is a happy result sine it means that the demand-driven analysis should

be used with a rather limited amount of resoures, whih tends to make it more pratial.

We ran another kind of experiment. We wanted to obtain a measure of the time re-

quired by the demand-driven analysis on a family of programs that have exatly the same

programming style. To do so, we have modi�ed the ak benhmark and unrolled the re-

ursive funtion by various fators. Figure 6.3 shows the aspet of the resulting programs.

For eah unrolling level i, the number of safety tests in the resulting program is 43 + 19i if

no optimisation is done. There remain 3 after the preliminary analysis. And the demand-

driven analysis removes the remaining tests. The times required by the omplete analysis

for di�erent unrolling levels are presented in Table 6.2. The measures indiate that the total

time required by the omplete analysis grows between quadratially and ubially with the

level of unrolling. This is ertainly better than the exponential behaviour expeted of a

type analysis that uses lexial-environment ontours.

We also ran experiments onerning the inputs used in some of the benhmarks. Mem-

bers of the jury of this dissertation have expressed the onern that some benhmarks used

very small input values. For example, the ak benhmark ontains the omputation of the

Akermann funtion on arguments 4 and 0, whih produes only 13 as a result. It is obvious

that it is heaper by orders of magnitude to evaluate this benhmark than to analyse it.

Analysing suh a program does not seem very worthwhile. Consequently, we present a few
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Figure 6.3: Unrolling of the ak benhmark

test time(s)

ak 4 0 18.5

ak 4 4 19.0

ak 10 10 19.8

test time(s)

fib 7 20.5

fib 50 25.2

test time(s)

gd 3 5 2375.8

gd 3 6 4167.5

Table 6.3: The e�et of the inputs on the analysis times

experiments in Table 6.3 that show the impat of the programs inputs on the analysis times.

These experiments were run on a di�erent mahine and at a di�erent time. They were run

on a PC with a 1.2 GHz Athlon CPU, 1 GByte RAM, and running RH Linux kernel 2.4.9.

Clearly, the time required to run the �rst benhmarks is longer than the time required

to analyse them. The measures show that, roughly, benhmarks ak and fib remain as

diÆult to analyse, no matter what the input numbers are. On the other hand, the gd

benhmark beomes muh harder to analyse when one of its inputs is only inreased by

one. This may seem surprising at �rst sine the numbers manipulated by the �rst two

benhmarks are giganti (even delirious in the ase of ak) while those manipulated by the

last one are very small. However, the di�erene omes from the fat that the demonstration

of the safety of the �rst benhmarks only has to partition the naturals into f0g, f1g, f2g,

and the rest, while the demonstration for the last benhmark has to distinguish eah number

involved in the omputations. It is easy to realise the diÆulty of suh demonstrations when

one remembers that numbers are enoded as lists.
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A last experiment was onduted to prove an aÆrmation made in the previous hap-

ter: that the pattern-based demand-driven analysis may fail to analyse perfetly well some

programs, even if the amount of resoures is unlimited. We let the analyser do its work

on the SKI benhmark (with global Y) until it stopped by itself. After the onsumption of

29560 work units, it stopped by lak of proposal of model-modifying demands.



Chapter 7

Conlusions

7.1 Contributions

Our goal was to obtain a type analysis of very high quality that is not prohibitively expensive.

We think that we have reahed our goal by proposing the demand-driven analysis: the

program is repetitively analysed using abstrat models that are inreasingly speialised

for the task at hand; the updates of the abstrat model are direted by the proessing of

demands, whih onstitutes the means to translate the needs of the optimiser into proposals

of updates to the abstrat model.

Stati analysis of programs is a lassial domain in the �eld of ompilation (see [3℄).

However, all proposed stati analyses share the harateristi that their underlying abstrat

model is onstant. Even if some ompilers o�er a spetrum of analyses of varying strength,

it remains the responsibility of the user to selet himself the desired analysis. In any ase,

the analysis ertainly does not adapt to the given program while the ompilation ours.

To improve stati analysis: we proposed an analysis where the abstrat model is modi�-

able through the use of an analysis framework; we proposed and realised an implementation

of abstrat models based on patterns suh as those used in many programming languages

suh as ML, Haskell, or Prolog; we introdued the onept of demands that are requests for

the ahievement of desirable tasks; the demands are generated aording to the needs of the

optimiser, are translated following preise rules|the demand proessing rules|and result

in spei� proposals of update of the abstrat model so that the analyser beomes better
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equipped to analyse suessfully the program. Most of the theoretial basis behind the

approah has been proved in the dissertation. Finally, the approah has been implemented

and tested. It exhibits an impressive leverness in the diÆulty of the fats that it is able

to disover in order to enable the optimisations.

Expet for the onepts of stati analysis, abstrat interpretation (see [19℄), and param-

eterisable analysis (at ompiler implementation time, though, not at ompile time, see [11℄),

our whole work is original. Two papers present parts of our ontributions [21, 22℄.

7.2 Related Work

As we underline in the exposition of our ontributions, we had to propose ourselves almost

everything that we have presented, so it is not surprising to �nd that there is virtually no

related work. In fat, the most losely related work is so more by the name than by the

ideas.

Demand-driven analyses are presented by Duesterwald et al [23, 24℄, by Agrawal [1, 2℄,

and by Heintze and Tardieu [31℄. The analyses that are presented are a data-ow analysis,

a simultaneous data-ow and all graph analysis, and a pointer analysis, respetively. In

essene, these works onsist in taking lassial stati analyses and turning them into lazy

versions. That is, the presented analyses are able to produe only parts of the results that

the lassial ones ompute and to redue the neessary amount of omputations aordingly.

The demands represent the need for a spei� part of the results. Demand proessing rules

are used to determine the minimal subset of omputations that is neessary to produe only

those parts. In eah ase, the original analysis is very simple and, not too surprisingly, the

demand proessing rules turn out to be quite simple, too.

Other work also shares similar names. But they are used in the ompilation of languages

featuring lazy evaluation. They have a ompletely di�erent purpose: they are normal

analyses that ompute informations about demands on the suspended omputations of the

programs. They are usually referred to as stritness analyses. For the sake of information,

suh works are presented in [13℄, [47℄, and [52℄, for example.
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7.3 Future Work

As our work is not exatly a polished, re�ned solution to a well-delimited problem but more

a bold leap into a whole new methodology in stati type analysis, it brings with it a lot of

new questions, problems, and things to try. We briey mention some.

7.3.1 On the Pattern-Based Analysis

A lot of additional work ought to be done on the pattern-based demand-driven analysis

itself.

Speeding Up the Analysis

In order to make the demand-driven type analysis really pratial, its speed must be im-

proved. We propose some means to make it faster.

First, the approah would be muh faster if the numerous re-analyses were not always

omputed from srath. Indeed, a single modi�ation to the abstrat model does not ne-

essarily imply that the new analysis results ompletely hange. A kind of inremental

re-analysis ould be implemented. That is, given a model M, the orresponding analysis

results R, and an updated modelM

0

, the new analysis results R

0

ould be obtained more

eÆiently than by performing a re-analysis from srath. A way to do it onsists in having

a mehanism that allows the analyser to retrat from R the abstrations that have been

re�ned (and only these) and then to propagate the re�ned values instead. At the beginning

of the proess of analysing the program, we expet the model to be so oarse that any

update would onern a major fration of the abstrations but, as the model beomes more

re�ned, model updates should involve only a very small fration of the abstrations and the

retration and propagation sweep should beome minor.

Seond, the diret manipulation of the na��vely represented abstrations during the anal-

yses is ostly and more eÆient representations should be onsidered. Indies for the ab-

strations instead of the abstrations themselves would be more lightweight. Bit vetors are

often employed to implement set operations, also.

Third, the representation of the ontours ould be optimised and they ould be restrited
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to ontain only the environment variables to whih there is a referene. In most of the losure

bodies, only a fration of all the visible variables are really referened. The orresponding

ontours should only list the values of these.

Aggressive, Risky Strategies

In the urrent approah, the demand proessing rules produe a single set of new demands

and these demands are restrited to be neessary and suÆient. The uniqueness of the

strategy ould be abandoned. The rules ould still produe the same onservative strategy

but, additionally, more aggressive and risky strategies. These would not need to be made

of neessary demands, but of suÆient ones. The multipliity of strategies would make the

analyser tolerant to the failure of the aggressive strategies and allow it to fall bak to the

onservative ones when neessary.

Better Seletion of Model-Modifying Demands

The urrent riterion for the seletion of the \best" model-modifying demand is very na��ve.

A more appropriate riterion should measure the quality of the information ontained in

the analysis results. Sometimes, good (informative) analysis results need to be verbose.

Also, the urrent method onsists in seleting a model-modifying demand after the

other and aumulating the updates without onsidering other sequenes of updates. This

sequene of updates an be viewed as a searh for an ideal model. Now, single-threaded

searhes have the inonveniene of being easy to trap in \loal optima". Browsing through

elementary AI referenes for searh methods ould be pro�table. For example, a kind of

best-�rst searh ould be more e�etive than our greedy searh.

Extension to Sheme

Our demand-driven type analysis is intended for the mini-language but should be extended

to over a dynamially-typed funtional language suh as Sheme. We expet the greatest

hallenge to ome partly from separate ompilation (not a standard feature but a part

of most Sheme implementations) and from ontinuations but, most of all, from the side-

e�ets reated by define, set!, and a few standard library funtions. Indeed, the heart
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of the pattern-based approah relies on the absene of side-e�ets. Contours, by de�nition,

represent the value of the variables in the lexial environment. But what does it mean

to be in a ontour where, say, `x' is onstrained to ontain a pair and then a side-e�et

mutates its ontents to a vetor? Does the ontour stays the same and we allow vetors to

be ontained in variable `x' despite the fat that the ontours says that the bound on the

possible values of `x' ought to be the pairs? Or does the ontour instantaneously hanges

when the side-e�et ours?

7.3.2 Alternate Modelling

The pattern-based modelling of values and evaluation ontexts is just a hoie of ours and a

di�erent modelling ould be used while maintaining the fat that the demand-driven analysis

uses abstrat interpretation.

The Use of Labels

We should try a modelling of the pairs that produe abstrations that remember the label of

the ons-expressions that reated them. However, reall that we argued that pairs are never

disriminated on the basis of their origins in the onrete interpretation. So they should not

be in the abstrat interpretation either. Also, abstrat pairs without labels help in avoiding

a proliferation of abstrations having the same meaning. But the point of reation may

arry a lot of information as the programmer may have di�erent plans for pairs reated in

di�erent parts of the programs.

Regular Trees

Patterns, and even patterns that inlude reation site labels, are shallow representations of

onrete values. Of ourse, we showed that deep invariants ould sometimes be disovered

through the use of the information kept in the log matries of the analysis framework.

Regular trees, on the ontrary, naturally express deep invariants of the onrete values. A

sound mathematial basis omes along with them. Analyses using regular trees should be

onsidered. They have been used by Aiken (and ollaborators) in [5, 4, 6℄ and presented by

Courelle in [18℄. The results by Aiken showed an impressive representation power but did
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not seem to be eÆient enough.

7.3.3 Extensions

Other Languages

Although we expliitly aim at analysing dynamially-typed languages, we believe that the

type analysis ould be useful in some statially-typed languages, too. Indeed, statially-

typed languages suh as ML and Haskell feature algebrai types. The partiular hoie of

a onstrutor is not determined at ompile time. In many situations (suh as prior to the

extration of the �rst element of a list), a dynami test must be performed to ensure that an

appropriate onstrutor is being manipulated. These dynami tests are perfetly analogous

to the safety types tests made in Sheme, for example. And they inur similar run-time

penalties, too.

In fat, we an onsider the typing system of Sheme to be implemented as a single

algebrai type that inludes many di�erent onstrutors. The main type means \Sheme

objet" and the onstrutors mean number, harater, et. To push the point further, we

say that even if Sheme programs do not inlude type annotations, they usually respet an

impliit type disipline that is muh striter than the full dynamism that Sheme allows.

We believe that Sheme programs and ML and Haskell programs often have very similar

data strutures with omparable type signatures, even if no stati veri�ation of the types

is done in the �rst ase.

Pro�ling

Having pro�ling statistis about the program to analyse would be very useful to the demand-

driven analysis. It would put a realisti prie on the safety tests or, onversely, a realisti

pro�t estimation on the eventual removal of these tests. It is folklore in omputer siene

that exeution ours 90% of the time in only 10% of the program. The work units invested

in the demand-driven analysis would be used in a more pro�table way if they enabled

optimisations on more frequently exeuted ode.
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Di�erent Soures of Initial Demands

We are able to say that our demands express reasonable requests beause they orrespond

to neessary properties of the program. The basis of this neessity is that run-time errors

probably will not our. Consequently, initial demands are only generated from expressions

where run-time errors ould our. In an extended system, initial demands ould be gener-

ated from di�erent soures. However, various degrees of reliability should be attributed to

these soures. That is, the on�dene that the properties must be true varies from a soure

to another. For example, during the ompilation of a omplete program along with the

neessary library funtions, a higher degree of reliability should be granted to the demands

originating from expressions in the library funtions. Indeed, these are normally written

with extreme are while it is doubtful that the program should be onsidered to be as seure

as the library.

If pro�ling were used, a whole family of optimiser needs ould be taken are of by the

analyser. For example, the information needed by the optimiser to perform inlining is not

related to safety issues at all. But if pro�ling statistis show that, at ertain all sites,

the same losures are always invoked, then some kind of redibility ould be granted to a

demand requesting the demonstration of the onjetured (but desirable) property.

Certainty Analysis

If a future extension of the demand-driven analysis allows the demand proessing rules to

speulatively generate aggressive non-neessary strategies, it would be useful to know whih

strategies are more likely to fail or, even, whih are sure to fail. Pro�ling information helps

in deiding whih are likely to fail. But in order to know that an aggressive strategy is sure

to fail, we have to know that a partiular non-neessary property is ertainly false. For

example, let us suppose that the proessing of a demand D would be greatly simpli�ed if

it ould be shown that losure  does not get invoked at e

l

. Suppose also that the stated

property is not a neessary one. An aggressive strategy might try to ahieve the desired

demonstration. However, if we knew that  is indeed invoked at e

l

in at least one oasion,

the analyser would avoid to make a useless attempt with this aggressive strategy.

That kind of information is knowledge that something does our. Analyses used for

optimisation purposes never gather that kind of knowledge. They are onservative analyses
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and they gather a superset of all that happens. The information that we need in the present

ase is of the opposite nature: it is a subset of all that happens. All the fats reported by

suh an analysis are sure to happen. We all suh an analysis a ertainty analysis. Its

results would be useful for the evaluation of the pertinene of various strategies.

Other Kinds of Analyses

The general approah of generating and proessing demands that express neessary prop-

erties ould be tried on other analyses than type analysis. Its natural appliations are the

analyses related to safety issues. It should adapt well to numerial range analysis, for in-

stane. Suh an analysis determines in whih range all the numerial values ontained in a

variable must lie. This information is then used to optimise aesses to arrays sine one or

both bound heks may possibly be dropped.

By using pro�ling statistis to obtain suggestions of plausible properties, the (non-type)

analysis need not neessarily be related to safety issues. It appears that most of the opti-

misations are not related to safety. For example, inlining (see [9, 39℄), eager evaluation in

lazy languages (with the help of stritness analyses, see [14, 13, 47, 52℄), register alloation

(with the help of liveliness analysis and pointer or alias analysis, see [3, 17, 65, 31℄), stak

alloation to replae heap alloation (see [25, 53℄), seletion of eÆient representation for

the values (see [32, 33, 54℄), reyling of heap objets (see [35, 36℄), elimination of dead ode

(see [3, 40℄), stati branh predition (using numerial analysis, though, see [48℄), et.

7.3.4 Demand Propagation Calulus

We merely make an allusion to this subjet as it is no more than a vague idea by ours. A

demand-driven type analysis ould be based on a pure demand propagation alulus and

not relying on abstrat interpretation of the programs at all. We imagine that the result

would be a kind of reverse abstrat interpretation where bounds on aeptable values are

propagated bakward in the program instead of sets of possibles values being propagated

forward. However, we are not able to guess what would be the power of suh an approah

or whether it would be equivalent to something that is already known.
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Appendix A

Benhmarks

The soure of eah benhmark is presented next. All benhmarks exept hange, interp,

and ps-QS-s are written in the syntax of the extended mini-language. These benhmarks

have to be redued to the basi mini-language and �-onverted before the demand-driven

analysis an operate on them. On the other hand, the hange, interp, and ps-QS-s

benhmarks are written in Sheme syntax. Before they an be proessed by the demand-

driven analysis, they �rst have to be translated from Sheme to the extended mini-language

and then undergo the same redutions as the other benhmarks.

A.1 Soure of the dr-safe Benhmark

(let

1

dr-safe = (�

2

l. (if

3

(pair?

4

l

5

) (dr

6

l

7

) #f

8

))

(

9

dr-safe

10

(

11

dr-safe

12

(ons

13

#f

14

(�

15

x. x

16

)))))

A.2 Soure of the loop Benhmark

(letre

1

foo = (�

2

x. (

3

foo

4

x

5

))

(

6

foo

7

#f

8

))
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A.3 Soure of the 2-1 Benhmark

(�

1

2

2

1

3

)

A.4 Soure of the map-easy Benhmark

(letre

1

map =

(�

2

op. (�

3

l. (if

4

l

5

(ons

6

(

7

op

8

(ar

9

l

10

)) (

11

(

12

map

13

op

14

) (dr

15

l

16

))) #f

17

)))

(let

18

d = (ons

19

(�

20

x. x

21

) (ons

22

#f

23

#f

24

))

(let

25

list = (ons

26

d

27

(ons

28

d

29

(ons

30

d

31

#f

32

)))

(let

33

op1 = (�

34

y. (

35

(ar

36

y

37

) #f

38

))

(let

39

op2 = (�

40

z. (ar

41

(dr

42

z

43

)))

(ons

44

(

45

(

46

map

47

op1

48

) list

49

) (

50

(

51

map

52

op2

53

) list

54

)))))))

A.5 Soure of the map-hard Benhmark

(letre

1

map =

(�

2

op. (�

3

l. (if

4

l

5

(ons

6

(

7

op

8

(ar

9

l

10

)) (

11

(

12

map

13

op

14

) (dr

15

l

16

))) l

17

)))

(let

18

op1 = (�

19

x. (ar

20

x

21

))

(let

22

op2 = (�

23

y. (

24

y

25

#f

26

))

(letre

27

loop =

(�

28

data. (let

29

res1 = (

30

(

31

map

32

op1

33

) (ar

34

data

35

))

(let

36

res2 = (

37

(

38

map

39

op2

40

) (dr

41

data

42

))

(

43

loop

44

(ons

45

(ons

46

(ons

47

#f

48

#f

49

) (ar

50

data

51

))

(ons

52

(�

53

w. #f

54

) (dr

55

data

56

)))))))

(

57

loop

58

(ons

59

#f

60

#f

61

))))))

A.6 Soure of the fib Benhmark

(letre

1

�b = (�

2

n. (if

3

(<=

4

n

5

1

6

) n

7

(+

8

(

9

�b

10

(�

11

n

12

1

13

)) (

14

�b

15

(�

16

n

17

2

18

)))))

(

19

�b

20

7

21

))
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A.7 Soure of the gd Benhmark

(letre

1

mod = (�

2

x. (�

3

d. (�

4

x

5

(�

6

(=

7

x

8

d

9

) d

10

))))

(letre

11

gd = (�

12

b. (�

13

s. (if

14

(=

15

s

16

0

17

) b

18

(

19

(

20

gd

21

s

22

)

(

23

(

24

mod

25

b

26

) s

27

)))))

(let

28

gd = (�

29

x. (�

30

y. (if

31

(>=

32

x

33

y

34

) (

35

(

36

gd

37

x

38

) y

39

)

(

40

(

41

gd

42

y

43

) x

44

))))

(

45

(

46

gd

47

3

48

) 5

49

))))

A.8 Soure of the tak Benhmark

(letre

1

tak = (�

2

x. (�

3

y. (�

4

z. (if

5

(<=

6

x

7

y

8

)

z

9

(

10

(

11

(

12

tak

13

(

14

(

15

(

16

tak

17

(�

18

x

19

1

20

)) y

21

) z

22

))

(

23

(

24

(

25

tak

26

(�

27

y

28

1

29

)) z

30

) x

31

))

(

32

(

33

(

34

tak

35

(�

36

z

37

1

38

)) x

39

) y

40

))))))

(

41

(

42

(

43

tak

44

18

45

) 12

46

) 6

47

))

A.9 Soure of the n-queens Benhmark

(letre

1

make-list =

(�

2

n. (�

3

v. (if

4

(=

5

n

6

0

7

) #f

8

(ons

9

v

10

(

11

(

12

make-list

13

(�

14

n

15

1

16

)) v

17

)))))

(letre

18

list-ref =

(�

19

l. (�

20

n. (if

21

(=

22

n

23

0

24

) (ar

25

l

26

) (

27

(

28

list-ref

29

(dr

30

l

31

))

(�

32

n

33

1

34

)))))

(letre

35

list-set =

(�

36

l. (�

37

n. (�

38

v. (if

39

(=

40

n

41

0

42

)

(ons

43

v

44

(dr

45

l

46

))

(ons

47

(ar

48

l

49

)

(

50

(

51

(

52

list-set

53

(dr

54

l

55

)) (�

56

n

57

1

58

)) v

59

))))))

(letre

60

nq =

(�

61

n.

(�

62

i.

(�

63

sw.

(�

64

s.

(�

65

se.

(if

66

(=

67

i

68

0

69

)

1

70

(letre

71

loop =

(�

72

j.

(if

73

(=

74

j

75

n

76

)

0

77

(+

78
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(if

79

(

80

(

81

list-ref

82

sw

83

) j

84

)

(if

85

(

86

(

87

list-ref

88

s

89

) j

90

)

(if

91

(

92

(

93

list-ref

94

se

95

) j

96

)

(let

97

sw = (dr

98

(

99

(

100

(

101

list-set

102

sw

103

) j

104

) #f

105

))

(let

106

s = (

107

(

108

(

109

list-set

110

s

111

) j

112

) #f

113

)

(let

114

se = (ons

115

(ons

116

#f

117

#f

118

)

(

119

(

120

(

121

list-set

122

se

123

) j

124

) #f

125

))

(

126

(

127

(

128

(

129

(

130

nq

131

n

132

) (�

133

i

134

1

135

)) sw

136

) s

137

)

se

138

))))

0

139

)

0

140

)

0

141

)

(

142

loop

143

(+

144

j

145

1

146

)))))

(

147

loop

148

0

149

))))))))

(let

150

nqueens =

(�

151

n. (let

152

ags = (

153

(

154

make-list

155

(�

156

2

157

n

158

)) (ons

159

#f

160

#f

161

))

(

162

(

163

(

164

(

165

(

166

nq

167

n

168

) n

169

) ags

170

) ags

171

) ags

172

)))

(

173

nqueens

174

4

175

))))))

A.10 Soure of the ak Benhmark

(letre

1

ak = (�

2

m. (�

3

n. (if

4

(=

5

m

6

0

7

) (+

8

n

9

1

10

)

(if

11

(=

12

n

13

0

14

)

(

15

(

16

ak

17

(�

18

m

19

1

20

)) 1

21

)

(

22

(

23

ak

24

(�

25

m

26

1

27

))

(

28

(

29

ak

30

m

31

) (�

32

n

33

1

34

)))))))

(

35

(

36

ak

37

4

38

) 0

39

))

A.11 Soure of the SKI Benhmark

(letre

1

append =

(�

2

l1. (�

3

l2. (if

4

(pair?

5

l1

6

) (ons

7

(ar

8

l1

9

) (

10

(

11

append

12

(dr

13

l1

14

)) l2

15

))

l2

16

)))

(letre

17

eval =

(�

18

exp. (if

19

(ar

20

(ar

21

exp

22

))

(

23

eval

24

(

25

(

26

append

27

(ar

28

exp

29

)) (dr

30

exp

31

)))

(let

32

 = (ar

33

exp

34

)

(let

35

rest = (dr

36

exp

37

)

(if

38

(pair?

39

rest

40

)

(let

41

arg1 = (ar

42

rest

43

)

(let

44

rest = (dr

45

rest

46

)

(if

47

(pair?

48

(dr

49



50

))

(if

51

(pair?

52

rest

53

)



A.11. SOURCE OF THE SKI BENCHMARK xxix

(let

54

arg2 = (ar

55

rest

56

)

(let

57

rest = (dr

58

rest

59

)

(if

60

(pair?

61

(dr

62

(dr

63



64

)))

(if

65

(pair?

66

rest

67

)

(let

68

arg3 = (ar

69

rest

70

)

(let

71

rest = (dr

72

rest

73

)

(

74

eval

75

(ons

76

(ons

77

arg1

78

(ons

79

arg3

80

#f

81

))

(ons

82

(ons

83

arg2

84

(ons

85

arg3

86

#f

87

))

rest

88

)))))

exp

89

)

(

90

eval

91

(ons

92

arg1

93

rest

94

)))))

exp

95

)

(

96

eval

97

(ons

98

arg1

99

rest

100

)))))

exp

101

)))))

(

102

eval

103

(ons

104

(ons

105

(ons

106

(ons

107

#f

108

(ons

109

#f

110

(ons

111

#f

112

#f

113

)))

(ons

114

(ons

115

(ons

116

#f

117

(ons

118

#f

119

#f

120

))

(ons

121

(ons

122

(ons

123

(ons

124

#f

125

(ons

126

#f

127

(ons

128

#f

129

#f

130

)))

(ons

131

(ons

132

#f

133

#f

134

) #f

135

))

(ons

136

(ons

137

#f

138

#f

139

) #f

140

))

#f

141

))

#f

142

))

(ons

143

(ons

144

(ons

145

(ons

146

#f

147

(ons

148

#f

149

(ons

150

#f

151

#f

152

)))

(ons

153

(ons

154

(ons

155

(ons

156

#f

157

(ons

158

#f

159

(ons

160

#f

161

#f

162

)))

(ons

163

(ons

164

(ons

165

#f

166

(ons

167

#f

168

#f

169

))

(ons

170

(ons

171

#f

172

(ons

173

#f

174

(ons

175

#f

176

#f

177

))) #f

178

))

#f

179

))

(ons

180

(ons

181

(ons

182

(ons

183

#f

184

(ons

185

#f

186

(ons

187

#f

188

#f

189

)))

(ons

190

(ons

191

(ons

192

#f

193

(ons

194

#f

195

#f

196

))

(ons

197

(ons

198

#f

199

(ons

200

#f

201

#f

202

)) #f

203

))

#f

204

))

(ons

205

(ons

206

#f

207

#f

208

) #f

209

))

#f

210

))

#f

211

))

(ons

212

(ons

213

(ons

214

#f

215

(ons

216

#f

217

#f

218

))

(ons

219

(ons

220

(ons

221

(ons

222

#f

223

(ons

224

#f

225

(ons

226

#f

227

#f

228

)))
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(ons

229

(ons

230

#f

231

#f

232

) #f

233

))

(ons

234

(ons

235

#f

236

#f

237

) #f

238

))

#f

239

))

#f

240

))

#f

241

))

(ons

242

(ons

243

#f

244

#f

245

) #f

246

)))))

A.12 Soure of the hange Benhmark

(let ((queue-empty

(ons '() '())))

(let ((queue-insert

(lambda (q x)

(if (null? (ar q))

(ons (ons x '()) '())

(ons (ar q) (ons x (dr q)))))))

(let ((queue-top

(lambda (q)

(ar (ar q)))))

(let ((queue-pop

(lambda (q)

(let ((head (dr (ar q))))

(if (null? head)

(ons (reverse (dr q)) '())

(ons head (dr q)))))))

(let ((queue->list

(lambda (q)

(append (ar q) (reverse (dr q))))))

(let ((stratv->stratf

(lambda (v)

(let ((len (vetor-length v)))

(let (( (dr (vetor-ref v 0))))

(lambda (M)

(if (< M len)

(vetor-ref v M)

(let ((n (quotient (+ (- M (- len 1)) (-  1)) )))

(let ((pl (vetor-ref v (- M (* n )))))

(ons (+ n (ar pl)) ))))))))))

(letre

((ret

(lambda (oins)

(if (null? (dr oins))

(list->vetor (ons (ons 0 1) '()))

(let (( (ar oins)))
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(let ((rest (dr oins)))

(let ((v (ret rest)))

(let ((f (stratv->stratf v)))

(let ((initq (queue-insert queue-empty (ons 0 ))))

(letre

((loop2

(lambda (M wq nb- sq)

(if (= nb- )

(list->vetor (queue->list sq))

(let ((strat-hi (queue-top wq)))

(let ((wq (queue-pop wq)))

(let ((nb- (if (= (dr strat-hi) )

(- nb- 1)

nb-)))

(let ((sq (queue-insert sq strat-hi)))

(let ((strat-lo (f M)))

(if (< (+ (ar strat-hi) 1)

(ar strat-lo))

(let ((strat

(ons (+ (ar strat-hi) 1)

)))

(let ((wq (queue-insert wq strat)))

(loop2 (+ M 1) wq (+ nb- 1) sq)))

(let ((wq

(queue-insert wq strat-lo)))

(loop2 (+ M 1)

wq

nb-

sq))))))))))))

(letre

((loop1

(lambda (M wq nb-)

(if (< M )

(loop1 (+ M 1)

(queue-insert wq (f M))

nb-)

(loop2 M wq nb- queue-empty)))))

(loop1 1 initq 1))))))))))))

(ret (ons 25 (ons 17 (ons 4 (ons 3 (ons 1 '()))))))))))))))))

A.13 Soure of the interp Benhmark

(letre ((zip
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(lambda (l1 l2)

(if (null? l1)

'()

(ons (ons (ar l1) (ar l2)) (zip (dr l1) (dr l2)))))))

(let ((apply

(lambda (f)

(lambda (args) (apply f args)))))

(let

((std-alist

(append

(append

(append

(append (append (ons (ons 'null? (apply null?)) '())

(ons (ons 'boolean? (apply boolean?)) '()))

(append (ons (ons 'number? (apply number?)) '())

(ons (ons 'equal? (apply equal?)) '())))

(append (append (ons (ons '= (apply =)) '())

(ons (ons '< (apply <)) '()))

(append (ons (ons '<= (apply <=)) '())

(ons (ons '+ (apply +)) '()))))

(append (append (append (ons (ons '- (apply -)) '())

(ons (ons '* (apply *)) '()))

(append (ons (ons 'quotient (apply quotient))

'())

(ons (ons 'ons (apply ons)) '())))

(append (append (ons (ons 'ar (apply ar)) '())

(ons (ons 'dr (apply dr)) '()))

(append (ons (ons 'adr (apply adr)) '())

(ons (ons 'addr (apply addr)) '())))))

(append

(append

(append (append (ons (ons 'adddr (apply adddr)) '())

(ons (ons 'length (apply length)) '()))

(append (ons (ons 'reverse (apply reverse)) '())

(ons (ons 'append (apply append)) '())))

(append

(append (ons (ons 'asso (apply asso)) '())

(ons (ons 'vetor-length (apply vetor-length)) '()))

(append (ons (ons 'vetor-ref (apply vetor-ref)) '())

(ons (ons 'list->vetor (apply list->vetor)) '()))))

(append

(append

(append

(ons (ons 'map (lambda (args)

(let ((f (ar args)))

(map (lambda (x) (f (ons x '())))

(adr args)))))
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'())

(ons (ons 'apply (lambda (args) ((ar args) (adr args))))

'()))

(append (ons (ons 'symbol? (apply symbol?)) '())

'()))

'())))))

(let ((standard-environment

(lambda (v)

(dr (asso v std-alist)))))

(letre ((ev

(lambda (exp env)

(if (boolean? exp)

exp

(if (number? exp)

exp

(if (symbol? exp)

(env exp)

(let ((kw (ar exp)))

(if (equal? kw 'quote)

(adr exp)

(if (equal? kw 'lambda)

(let ((fpars (adr exp)))

(let ((body (addr exp)))

(lambda (apars)

(let ((alist (zip fpars apars)))

(ev body

(lambda (v)

(let ((a (asso v alist)))

(if a (dr a) (env v)))))))))

(if (equal? kw 'if)

(if (ev (adr exp) env)

(ev (addr exp) env)

(ev (adddr exp) env))

(if (equal? kw 'let)

(let ((binding (ar (adr exp))))

(let ((var (ar binding)))

(let ((val (ev (adr binding) env)))

(ev (addr exp)

(lambda (v)

(if (equal? v var) val (env v)))))))

(if (equal? kw 'letre)

(let ((binding (ar (adr exp))))

(let ((var (ar binding)))

(let ((l-e (adr binding)))

(letre ((env2 (lambda (v)

(if (equal? v var)

(ev l-e env2)
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(env v)))))

(ev (addr exp) env2)))))

((ev (ar exp) env)

(map (lambda (e) (ev e env))

(dr exp)))))))))))))))

(let ((eval (lambda (exp) (ev exp standard-environment))))

(eval

(ons 'letre

(ons

(ons (ons 'foo

(ons (ons 'lambda

(ons '()

(ons (ons 'foo '()) '())))

'()))

'())

(ons (ons 'foo '()) '()))))))))))

A.14 Soure of the ps-QS-s Benhmark

(let ((CPS-=

(lambda (x y k) (k (= x y)))))

(let ((CPS-if

(lambda (res k1 k2) (if res (k1) (k2)))))

(let ((CPS-*

(lambda (x y k) (k (* x y)))))

(let ((CPS-modulo

(lambda (x y k) (k (modulo x y)))))

(let ((CPS-ons

(lambda (x y k) (k (ons x y)))))

(let ((CPS-null?

(lambda (x k) (k (null? x)))))

(let ((CPS-ar

(lambda (x k) (k (ar x)))))

(let ((CPS-dr

(lambda (x k) (k (dr x)))))

(let ((CPS-<

(lambda (x y k) (k (< x y)))))

(let ((CPS-<=

(lambda (x y k) (k (<= x y)))))

(let ((CPS-append

(lambda (x y k) (k (append x y)))))

(let ((CPS-k

(lambda (res) res)))
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(let ((gen-list

(lambda (g p k1)

(letre ((loop

(lambda (n a k2)

(CPS-= n 1

(lambda (tmp1)

(CPS-if tmp1

(lambda ()

(k2 a))

(lambda ()

(CPS-* n g

(lambda (tmp2)

(CPS-modulo tmp2 p

(lambda (tmp3)

(CPS-ons n a

(lambda (tmp4)

(loop tmp3 tmp4

k2))))))))))))))

(CPS-ons 1 '()

(lambda (tmp5)

(loop g tmp5

k1)))))))

(letre ((filter

(lambda (pred? l k3)

(CPS-null? l

(lambda (tmp6)

(CPS-if tmp6

(lambda ()

(k3 '()))

(lambda ()

(CPS-ar l

(lambda (tmp7)

(pred? tmp7

(lambda (tmp8)

(CPS-if tmp8

(lambda ()

(CPS-ar l

(lambda (tmp9)

(CPS-dr l

(lambda (tmp10)

(filter pred? tmp10

(lambda (tmp11)

(CPS-ons tmp9 tmp11

k3))))))))

(lambda ()

(CPS-dr l

(lambda (tmp12)
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(filter pred? tmp12

k3))))))))))))))))

(letre ((quiksort

(lambda (l k4)

(CPS-null? l

(lambda (tmp13)

(CPS-if tmp13

(lambda ()

(k4 '()))

(lambda ()

(CPS-ar l

(lambda (pivot)

(CPS-dr l

(lambda (rest)

(filter

(lambda (n k5)

(CPS-< n pivot

k5))

rest

(lambda (lows)

(filter

(lambda (n k6)

(CPS-<= pivot n

k6))

rest

(lambda (highs)

(quiksort lows

(lambda (tmp14)

(quiksort highs

(lambda (tmp15)

(CPS-ons pivot tmp15

(lambda (tmp16)

(CPS-append tmp14 tmp16

k4))))))))))))))))))))))

(gen-list 2 29

(lambda (tmp17)

(quiksort tmp17

CPS-k))))))))))))))))))

A.15 Soure of the ps-QS-m Benhmark

(let

1

CPS-= = (�

2

x. (�

3

y. (�

4

k. (

5

k

6

(=

7

x

8

y

9

)))))

(let

10

CPS-if = (�

11

res. (�

12

k1. (�

13

k2. (if

14

res

15

(

16

k1

17

#f

18

) (

19

k2

20

#f

21

)))))
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(let

22

CPS-� = (�

23

x. (�

24

y. (�

25

k. (

26

k

27

(�

28

x

29

y

30

)))))

(let

31

CPS-modulo = (�

32

x. (�

33

y. (�

34

k. (

35

k

36

(�

37

x

38

(�

39

(=

40

x

41

y

42

) y

43

))))))

(let

44

CPS-ons = (�

45

x. (�

46

y. (�

47

k. (

48

k

49

(ons

50

x

51

y

52

)))))

(let

53

CPS-null? = (�

54

x. (�

55

k. (

56

k

57

(if

58

x

59

#f

60

(ons

61

x

62

x

63

)))))

(let

64

CPS-ar = (�

65

x. (�

66

k. (

67

k

68

(ar

69

x

70

))))

(let

71

CPS-dr = (�

72

x. (�

73

k. (

74

k

75

(dr

76

x

77

))))

(let

78

CPS-< = (�

79

x. (�

80

y. (�

81

k. (

82

k

83

(<

84

x

85

y

86

)))))

(let

87

CPS-<= = (�

88

x. (�

89

y. (�

90

k. (

91

k

92

(<=

93

x

94

y

95

)))))

(let

96

CPS-append =

(�

97

x. (�

98

y. (�

99

k. (letre

100

loop =

(�

101

l. (if

102

l

103

(ons

104

(ar

105

l

106

)

(

107

loop

108

(dr

109

l

110

)))

y

111

))

(

112

k

113

(

114

loop

115

x

116

))))))

(let

117

CPS-k = (�

118

res. res

119

)

(let

120

gen-list =

(�

121

g.

(�

122

p.

(�

123

k1.

(letre

124

loop =

(�

125

n.

(�

126

a.

(�

127

k2.

(

128

(

129

(

130

CPS-=

131

n

132

) 1

133

)

(�

134

tmp1.

(

135

(

136

(

137

CPS-if

138

tmp1

139

) (�

140

dummy. (

141

k2

142

a

143

)))

(�

144

dummy.

(

145

(

146

(

147

CPS-�

148

n

149

) g

150

)

(�

151

tmp2.

(

152

(

153

(

154

CPS-modulo

155

tmp2

156

) p

157

)

(�

158

tmp3.

(

159

(

160

(

161

CPS-ons

162

n

163

) a

164

)

(�

165

tmp4. (

166

(

167

(

168

loop

169

tmp3

170

) tmp4

171

)

k2

172

))))))))))))))

(

173

(

174

(

175

CPS-ons

176

1

177

) #f

178

)

(�

179

tmp5. (

180

(

181

(

182

loop

183

g

184

) tmp5

185

) k1

186

)))))))

(letre

187

�lter =

(�

188

pred?.

(�

189

l.

(�

190

k3.

(

191

(

192

CPS-null?

193

l

194

)

(�

195

tmp6.

(

196

(

197

(

198

CPS-if

199

tmp6

200

) (�

201

dummy. (

202

k3

203

#f

204

)))

(�

205

dummy.

(

206

(

207

CPS-ar

208

l

209

)

(�

210

tmp7.

(

211

(

212

pred?

213

tmp7

214

)

(�

215

tmp8.

(

216

(

217

(

218

CPS-if

219

tmp8

220

)

(�

221

dummy.

(

222

(

223

CPS-ar

224

l

225

)

(�

226

tmp9.

(

227

(

228

CPS-dr

229

l

230

)
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(�

231

tmp10.

(

232

(

233

(

234

�lter

235

pred?

236

) tmp10

237

)

(�

238

tmp11.

(

239

(

240

(

241

CPS-ons

242

tmp9

243

)

tmp11

244

)

k3

245

)))))))))

(�

246

dummy.

(

247

(

248

CPS-dr

249

l

250

)

(�

251

tmp12. (

252

(

253

(

254

�lter

255

pred?

256

) tmp12

257

)

k3

258

))))))))))))))))

(letre

259

quiksort =

(�

260

l.

(�

261

k4.

(

262

(

263

CPS-null?

264

l

265

)

(�

266

tmp13.

(

267

(

268

(

269

CPS-if

270

tmp13

271

) (�

272

dummy. (

273

k4

274

#f

275

)))

(�

276

dummy.

(

277

(

278

CPS-ar

279

l

280

)

(�

281

pivot.

(

282

(

283

CPS-dr

284

l

285

)

(�

286

rest.

(

287

(

288

(

289

�lter

290

(�

291

n. (�

292

k5. (

293

(

294

(

295

CPS-<

296

n

297

)

pivot

298

)

k5

299

))))

rest

300

)

(�

301

lows.

(

302

(

303

(

304

�lter

305

(�

306

n. (�

307

k6.

(

308

(

309

(

310

CPS-<=

311

pivot

312

) n

313

)

k6

314

))))

rest

315

)

(�

316

highs.

(

317

(

318

quiksort

319

lows

320

)

(�

321

tmp14.

(

322

(

323

quiksort

324

highs

325

)

(�

326

tmp15.

(

327

(

328

(

329

CPS-ons

330

pivot

331

) tmp15

332

)

(�

333

tmp16.

(

334

(

335

(

336

CPS-append

337

tmp14

338

)

tmp16

339

)

k4

340

)))))))))))))))))))))

(

341

(

342

(

343

gen-list

344

2

345

) 29

346

)

(�

347

tmp17. (

348

(

349

quiksort

350

tmp17

351

) CPS-k

352

))))))))))))))))))


