Automatic construction of parse trees for lexemes

Danny Dubé

Université Laval
Quebec City, Canada

Danny.Dube®@ift.ulaval.ca

Abstract

Recently, Dubé and Feeley presented a technique that neiesl
analyzers able to build parse trees for the lexemes thatmegi-
lar expressions. While parse trees usually demonstratesheard
is generated by a context-free grammar, these parse tregmnede
strate how a word is generated by a regular expression. Eipisrp
describes the adaptation and the implementation of thhhigae
in a concrete lexical analyzer generator for Scheme. Thetatien
of the technique includes extending it to the rich set of afmes
handled by the generator and reversing the direction of tneep
trees construction so that it corresponds to the naturat-tigy
left construction of the lists in Scheme. The implementatibthe
adapted technique includes modifications to both the gdoera
time and the analysis-time parts of the generator. Useseohév
addition and empirical measurements of its cost are predeBix-
tensions and alternatives to the technique are considered.

Keywords Lexical analysis; Parse tree; Finite-state automaton;

Lexical analyzer generator; Syntactic analysis; Compiler

1. Introduction

In the field of compilation, more precisely in the domain ohsy
tactic analysis, we are used to associate the notion of pameseor
derivation tree, to the notion of context-free grammarsebd, a

parse tree can be seen as a demonstration that a word is tgenera

by a grammar. It also constitutes a convenient structurectsen-
tation for the word. For example, in the context of a compillee

Anass Kadiri

EPITA
Paris, France

Anass.Kadiri@gmail.com

rather short and their structure, pretty simple. Conseityehe no-
tion of parse trees is almost never associated to the notiexioal
analysis using regular expressions. However, we do notssace
ily observe such simplicity in all applications. For instanwhile
numerical constants are generally considered to be siregieal
units, in a programming language such as Scheme [9], there ar
integers, rationals, reals, and complex constants, therev@ no-
tations for the complex numbers (rectangular and polaeyetiare
different bases, and there are many kinds of prefixes anckesiffi
While writing regular expressions for these numbers is rgaable
and matching sequences of characters with the regularssiprs
is straightforward, extracting and interpreting the iatging parts
of a matched constant can be much more difficult and erranepro

This observation has lead Dubé and Feeley [4] to propose a
technique to build parse trees for lexemes when they matgiae
expressions. Until now, this technique had remained pamek w
only as there was no implementation of it. In this work, wecdiee
the integration of the technique into a genuine lexical yaresl
generator, SlLex [3], which is similar to the Lex tool [12] EXcept
that it is intended for the Scheme programming languagelif9].
this paper, we will often refer to the article by Dubé andlBgand
the technique it describes as the “original paper” and thigjiteal
technique”, respectively.

Sections 2 and 3 presents summaries of the original tecaniqu
and SlLex, respectively. Section 4 continues with a few défims.
Section 5 presents how we adapted the original techniqueasat t
could fit into SILex. This section is the core of the paper.tBec
quickly describes the changes that we had to make to SiLex to

word is usually a program and the parse tree (or a reshapgd oneadd the new facility. Section 7 gives a few concrete examples

is often the internal representation of the program. Siimceany
applications, the word is quite long and the structure iregdsy
the grammar is non-trivial, it is natural to insist on buildiparse
trees.

However, in the related field of lexical analysis, the notadn
parse trees is virtually inexistent. Typically, the theima tools
that tend to be used in lexical analysis are regular expmessind
finite-state automata. Very often, the words that are méatied are

* This work has been funded by the National Sciences and Eegie
Research Council of Canada.

Proceedings of the 2006 Scheme and Functional Programmimkisi\bp
University of Chicago Technical Report TR-2006-06

of interaction with the new implementation. The speed ofspar
tree construction is evaluated in Section 8. Section 9 isief br
discussion about related work. Section 10 mentions futumdw

2. Summary of the construction of parse tree for
lexemes

Let us come back to the original technique. We just present a
summary here since all relevant (and adapted) materiabisepted
in details in the following sections.

The original technigue aims at making lexical analyzere &bl
build parse trees for the lexemes that they match. More sebgi
the goal is to make thautomatically generated lexical analyzers
able to do so. There is not much point in using the techniquemen
alyzers that are written by hand. Note that the parse treethase
for the lexemes, not those for the regular expressions thatmthe
latter. (Parse trees for the regular expressions thensedrebe ob-
tained using conventional syntactic analysis [1].) Suchs@tree
is a demonstration of how a regular expression generates@ wo
much in the same way as a (conventional) parse tree demmsstra
how a context-free grammar generates a word. Figure 1réltest
what the parse trees are for a waigb that is generated by both a

left right S
| | | N
. b A c S
/N o
a a a a b €
S — CS|e
(aalb)* cC - A
A — aa

Figure 1. Parse trees for a worghdb that is generated by a regular
expression and a context-free grammar.

regular expression and an equivalent context-free gramiviaite
the parse tree on the right-hand side needs no explandimother
one may seem unusual. It indicates the following: the Klestae
has been used for 2 iterations; in the first iteration, lgfehand
side alternative has been selected and, in the second ovas the
right-hand side alternative; the sub-tree fer is a concatenation
(depicted by the implicit operator). Note that thieft andright la-
bels are used for illustration purposes only. In general,ramber
of alternatives is allowed and the labels are numbered.

One might wonder why parse trees should be built for lexemes.
Typically, compiler front-end implementors tend to restthe lex-
ical elements to relatively simple ones (e.g. identifigtsral char-
acter constants, etc.). Even when more “complex” elemeitts as
string constants are analyzed, it is relatively easy toanaitlecod-
ing function that extracts the desired information fromlthemes.
When some elements are genuinely more complex, their tegatm
is often deferred to the syntactic analysis. However, thegecases
where the nature of the elements is truly lexical and whezsdlare
definitelynot simple. In the introduction, we mentioned the numer-
ical constants in Scheme. These are definitely lexical eisr@o
white space nor comments are allowed in the middle of a cot)sta
yet their lexical structure is quite complex. In Section & ius-
trate how one can benefit from obtaining parse trees for Sehem
numerical constants. Moreover, it is a “chicken-and-egigitkof
issue since, by having more powerful tools to manipulateper
lexical elements, implementors may choose to include anvide
riety of tasks as part of the lexical analysis phase.

The idea behind the technique described in the original pape
is pretty simple. Because the automatically generatedd&xn-
alyzers are usually based on finite-state automata, theitpehis
based on automata too, but with a simple extension. The autgohe
automata are built using straightforward structural iniurcon the
regular expressions to which they correspond. The additidhe
automata consists only in puttirgnstruction commands on some
arcs of the automata. The purpose of the construction comtsrian
simple: letr be a regular expressiod(r), the corresponding au-
tomaton, andv, a word; if a pathP traversesA(r) and causes to
be consumed, then the sequence of construction commanad fou
along P forms a “recipe” that dictates how to build a parse ttee
which is a demonstration thatgeneratesv.

The automata that are built using the original technique are
non-deterministic. It is well-known that performing lealcanaly-
sis using non-deterministic finite-state automata (NFAjeiserally
slower than using deterministic finite-state automata (PFE¥on-
sequently, conversion of the NFA into DFA is desirable.

The augmented NFA can indeed be converted into DFA. How-
ever, note that a path taken through a DFA while consumingesom

word has little to do with the corresponding path(s) in theANF
because of the presenceefransitions and arbitrary choices fea-
tured by the latter. Since one needs the construction comsnain
the NFA to build a parse tree, there must exist a mechanisnakha
lows one to recover a path through the NFA from a path throbgh t
DFA. The technigue proposes a mechanism that is implemested
ing three tables that preserve the connection between tAcaD&
the NFA. By making a series of queries to these tables, onglés a
to efficiently convert a path through the DFA into a corregfing
path through the NFA. The path through the NFA trivially can b
translated into a sequence on commands that explain howiltiebu
parse tree. To summarize, the process of recognizing a kxech
building a parse tree for it consists in identifying the lexeusing
the DFA in the usual way while taking note of the path, recever
ing the path through the NFA, and then executing the sequeince
commands.

The technique presented in the original paper deals only wit
the most basic regular operators: concatenation, unioah, tiaa
Kleene star. Two distinct representations for the parsestage
introduced: the internal representation and the external dhe
first one manipulates the trees as data structures. Thedeoan
manipulates them under thgirinted form, i.e. as words. Since
the current paper is about lexical analyzers, we only cendide
internal representation of parse trees. Finally, the oalgpaper
presents how one can obtain the complete set of parse trees fo
a wordw that matches a regular expressianindeed, as shown
below, the parse tree needs not be unique. In fact, there €an b
huge numbers (even an infinity) of parse trees, in some cases.
Consequently, sets of parse trees are always represerded am
implicit form only. We consider complete sets of parse titeelse
mainly of theoretical interest and the current paper onlysaters
the construction of a single parse tree for any lexeme.

3. SlLex: a lexical analyzer generator for Scheme

SlLex has originally been designed to be similar to the oggi
Lex tool for the C language. In particular, the syntax of tbgular
expressions and the set of operators are the same. Howeeer, t
actions that specify how to react to the recognition of a resxe
must be written in Scheme as expressions. In SlLex, therectio
return tokens while, in Lex, the actions produce tokens using a
mixture of a returned value and side-effects. The third pathe
specification files for Lex, which contains regular C codessinot
have a counterpart in SlLex. Consequently, the specificdtios

for SlLex include the part for the definition of macros (sharids

for regular expressions) and the part for the rules. SlLdégrsf
various services: many lexical analyzers may be used tyzmal
the same input; counters are automatically updated toatglithe
current position inside of the input; the DFA can be represn
using ordinary (compact) or portable tables, or can be tyrec
implemented as Scheme code.

3.1 Lexemes

We describe the s& of regular expressions supported by SlLex.
All regular expressions ifR are presented in Figure 2. Each kind
of regular expression is accompanied by a short descriptiokits
language. We usE to denote the set of characters of the Scheme
implementation at hand (e.g. thesAil character set). The language
of aregular expressionis denoted by (7). In the figurec ranges
over charactersc(€), i andj ranges over integers,(j € IN),
spec denotes the specification of the contents of a charactes,clas
C'ranges over character class€s{), andv ranges over strings
(v € ¥¥). All variablesr andr; are assumed to be iR. Finally,
pr: R x N x (NU{cc}) — 2% is a repetition function defined

DESCRIPTION REGULAR EXPRESSION LANGUAGE
Ordinary character c c
Any character . > — {newline character }
Newline character \n {newline character }
Character by code \i {character of codei}
Quoted character \c {c}
Character class [spec] cCx
Literal string "y" {v
Parenthesized expressian (r) L(r)
Kleene closure r* pr(r,0,00)
Positive closure rt pr(r,1,00)
Optional expression r’ pr(r,0,1)
Fixed repetition r{i} pr(r,i,1)
At-least repetition r{i, } pr(r,i,00)
Between repetition r{i, 5} pr(r,i,7)
Concatenation 7O« Tn—1 L(ro) ... L(rn-1)
Union T0 | . | Trn—1 L(To) Uu...u L(’/‘nfl)

Figure 2. Regular expressions supported

as:

pr(r,b,B) = | J (L)’
i€N
b<i<B

Many details are omitted in the presentation7ofby lack of
relevance for this paper. For instance, the exact set ohargi
characters and the syntax of the character classes areallgt re
interesting here. For complete information about the syntee
refer the reader to the documentation of SlLex [3]. The irtgour
thing to know about character classes is that an expressied|
matches nothing else than a single character and it doesraatc
characterc if ¢ € C whereC'is the set of characters denoted by
spec.

Operators used to build up regular expressions have differe
priority. We assume that the repetition operatdrs’({s, }, ...)
have higher priority than the (implicit) concatenation @ier and
that the latter has higher priority than the union operatore-
over, we expect unions (and concatenations) to accountl feula
expressions that are united (or concatenated, respeagtiirebther
words, when we write a unioryU. . .Ur,—1, none of the-; should
be a union. Likewise, when we write a concatenatign. . r,_1,
none of ther; should be a concatenation (nor a union, naturally).
Repetition operators, though, can be piled up (e.g. as iressn
a’{2,4}M).

From now on, we forget about the first 5 kinds of regular ex-
pressions. These can all be represented by totally equivahar-
acter classes (equivalent according to their languamkaccord-
ing to their associated parse trees, t0o). For instanceessipnst
and. can be replaced bjf] and[~\n], respectively. As for the lit-
eral strings, we choos®t to forget about them. Although it could
be tempting to replace them by concatenation of charaastédish

by SiLex and the corresppfaiiguages.

correspond to the efficient and purely functional way of diinid

lists in Scheme. Consequently, the rules for the constmaif the
NFA with commands have to be adapted to the larger set of epera
tors and to the direction in which Scheme lists are built.

4. Definitions

There are some terms specific to the domain of lexical arglysi
that need to be defined. At this point, we have already defined
regular expressions along with their language. In the context of
compiler technology, unlike in language theory, we are mdy o
interested in checking if a word matches a regular expression
(i.e. whetherw € L(r)), but also in the decomposition of the input
u (€ X*) into a stream of lexemes that leads to a stream of tokens.
A lexemeis a prefixw of the inputu (u = wu') that matches some
regular expressiom. Based on the matching regular expression
r and the matched lexeme, a token is produced. Examples of
tokens include: the identifier namedace, the reserved keyword
begin, the operator, etc. Typically, the stream of tokens that is
produced by lexical analysis constitutes the input to theastic
analyzer. While the concept of token is variable and dependke
application, the concept of lexeme is standard and can beedkfi
in terms of language theory. Usually, when a lexeiméas been
identified, i.e. when: = wu’, and that the corresponding token
has been produced; is considered to have been consumed and the
remaining input is.’.

In the context of automatic generation of lexical analyzérsre
is typically more than one regular expression, that may match
lexemes. Lexical analyzers are usually specified usingtaofis
rules, each rule being an association between a regular expnessio
r; and anaction «;. An actionc; is some statement or expression
in the target programming language that indicates how tdyme

would denote the same language, we refrain to do so becaise, aokens when lexemes are found to matghThe action normally

we see later, it would change the associated parse treegffiror
ciency reasons, the parse trees for literal strings arerdift from
those for concatenations. The former are cheaper to genta
the latter.

3.2 Incompatibilities with the original technique

The original technique for the construction of parse treedex-
emes cannot be integrated directly into SILex for two reasbirst,
SlLex provides a larger set of operators in regular expoessihan
the one presented in the original paper. Second, the otiginh-
nique builds lists by adding elemertis the right. This does not

has access to the matching lexeme and also has the opppttmnit
create some side effects such as: updating the table of $gmbo
increasing counters, etc. During lexical analysis, thdyaea may
match a prefix of the input with the regular expressigrof any
(active) rule.

Lexical analyzers produced by SiLex, like many other leiica
analyzers, obey some principles when trying to find and selec
matches. SlLex follows thenaximal-munch (aka, longest-match)
tokenization principle. It means that when there is a match between
prefix w; and regular expression; that compete with another
match between prefiw, and expression;, such thatw:| > |w2|,

T([spec],w) = { éjﬂ}v gtﬁ)eﬁ/vilé(e[spec])
v w) = { &{J?L gt;wueaviifse
T((r),w) = T(rw)
(7" yw) = pr(r,w,0,00)
(,w) = pr(r,w,1,00)
(,w) = pr(r,w,0,1)
T(r{i}, w) pr(r,w,i,7)
T(r{i, },w) pr(r,w,i,00)
T(r{i,j}, w) pr(r,w,i,5)
Jwo € X*. ... Jw,_1 € X*.
T(ro...rn—1,w) = {[to,...,tnl] W=wWp...Wn-1A }
V0 <i<n.t;€T(ri,ws)
T(ro|...|rh—1,w) = {#i:t]0<i<n AteT(rw)}
where:
IJneN.b<n<BA
SR | Cr

V0 <i<n.t;€T(rws)

Figure 3. Parse trees for a word that matches a regular expression.

then the former match is preferred. SiLex also gives pyiddtfirst
rules. It means that when there is a match between prefand
expressiomn; that compete with another match betweemandr;,
such thati < j, then the former match is preferred. Note that,
although these two principles uniquely determine, for eaeltch, the characters ab, in order, at the leaves of We can do the same
the length of the lexeme and the rule that matches, they shjngo with our parse trees associated to regular expressionssldsfine
about the parse tree that one obtains for the lexeme. As we seean extraction functiorX : 7 — X* that allows us to do so.

below, a single pair of a regular expression and a word maytkea
more than one parse tree. In such a case, the lexical anéyree
to return any of these.

be generated by a regular expression (or, usually, by axisfnes
grammar).

In particular, let us recall that if we have a parse ttder a
word w according to a context-free grammar, then we can find all

X(w) = w
X(#i:t)
X([to,..47tn,1]) =

I
X

~~
=

5. Adapting the construction of parse trees

Before the adapted technique is presented, the notatidhdqarse
trees is introduced and the parse trees for a word according t 52 Parse trees for lexemes
a regular expression. The following two subsections piteten
finite-state automata that are at the basis of the construci
parse trees. Finally, we consider the issue of convertiegNRA
into DFA.

We can now describe the parse trees for a word that matches a
regular expression. Figure 3 presentsthiinction.T'(r, w) is the
set of parse trees that show hawis generated by. We use the
plural form “parse trees” as there may be more than one pagse t
for a single expression/word pair. Borrowing from the catvfece
grammar terminology, we could say that a regular expressian
be ambiguous.

Note that, once again, we need a repetition functign: R x
¥* x N x (NU {oo}) — 27 to help shorten the definitions for
the numerous repetition operators. The definition of thetigépn

5.1 Syntax of the parse trees

Let us present the syntax of the parse treesZLée the set of all
possible parse treeg. contains basic trees, which are words, and
composite trees, which aselectors and lists.7 is the smallest set
with the following properties.

Yw € X", weT function can be found at the bottom of Figure 3.

VieN. VteT. #i:teT The meaning off'(r',w), for each form ofr’, is explained in

Vn>0. ViENst.0<i<n Vi€eT. the following. Some examples are given. Note that, for ttke 4
[to,...,th-1] €T brevity, we may use single-character regular expressiocis asa

Note that we do not represent parse trees graphically as isinstead of the equivalent class variants sucfaps
customary in presentation of parsing technology. Insteadyse
a notation similar to a data structure (to an algebraic date, tto
be more specific) to represent them. However, the essenagtof b
representations is the same as the purpose of a parse neeive
as an explicit demonstration that a particular word cancéffely

e Caser’ = [spec]. The only valid parse tree, if it exists, is a
single charactee. ¢ has to be a member of the character class
specification and has to be equal to the single character. in
ExamplesT'([ab],a) = {a}; T'([ab],c) = @ = T'([ab], baa).

e Caser’ = "v". The only valid parse tree is and it exists if
w = v. Note that, from the point of view of the parse tree data
type, parse tree is considered to be atomic (or basic), even
though, from the point of view of language theorye X* may
be a composite object. ExamplE("abc”, abc) = {abc}.

Caser’ = (r). Parentheses are there just to allow the user to
override the priority of the operators. They do not have any
effect on the parse trees the are generated.

Casesr’ = r*, v = rt, o = 7' ¢ r{i}, v’

r{i,}, and r’ r{i,j}. The parse trees forw demon-
strate howw can be partitioned intov substringswo, ...,
wn—1, Wheren is legal for the particular repetition operator
at hand, and how eacty; can be parsed using to form a
child parse tred;, with the set of all thet; collected into a
list. The lists may have varying lengths but the child parse
trees they contain are all structured according to the sin-
gle regular expression. Example:T'(a{2,3}", aaaaaa)
{lla, 2], [a,], [a, 2], [[a, 3, a], [a, 2, a]]}.

e Caser’ = rg...rn—1. The parse trees far demonstrate how

w can be partitioned into exactly substringswo, ..., wn—1,
such that eachw; is parsed according to its corresponding
child regular expression;. In this case, the lists have constant
length but the child parse trees are structured accordiagrto
ous regular expressions. Exampl&§abc, abc) = {[a, b, c]};
T(a*ab, aaab) = {[[a, a], a, b]}.

Caser’ =719 | ... | Tn_1. A parse tree forw demonstrates
how w can be parsed according to one of the child regular
expressions. It indicates which of the child expressioag ()
matchedw and it contains an appropriate child parse tree (for
w according tor;). Example:T'(a*|(aa) " [a"a’, a) = {#0 :

(al, #2 : [[a], [1], #2 : [, [a]]}-

FunctionT has some interesting properties. The first one is that
parse trees exist only for words that match a regular exjoress
formally, T'(r,w) # @ if and only if w € L(r). The second
one is that, from any parse tree for a word according to a aegul
expression, we can extract the word back; formally,df 7'(r, w),
thenX (t) = w.

Depending on the regular expression, the “amount” of ambigu
ity varies. The union operator tends to additively increhsenum-
ber of different parse trees produced by the child exprassion
the other hand, the concatenation operator tends to polatigm
increase the number of different parse trees. Even moreragtr
some of the repetition operators tend to increase the nuexper
nentially and even infinitely. Let us give instances of suhéases.

of a parse tree under construction. All the parse tree aoctsin
commands are meant to operate on a stack.

The commands used by the original technique are: “push con-
stant”, “wrap in selector”, and “extend list”. The “push spant”
command has a constant tre@s operand and performs the fol-
lowing operation: it modifies the stack it is given by pushing
The “wrap in selector” command has a numbexs operand and
performs the following operation: it modifies the stack bgtffpop-
ping a treet, by building the selecto#: : ¢, and then by pushing
#i : t back. Finally, the “extend list” command has no operand
and performs the following operation: it modifies the stagKitst
popping a tree and then a list, by addingt at the end of [to form
I’, and then by pushiny back.

As explained above, the Scheme language does feature lists
but these lists are normally (efficiently) accessed by tbatfand
not by the end. Strictly speaking, Scheme lisé® be extended
efficiently by the end but only in a destructive manner. Wederto
avoid going against the usual programming style used intiomal
languages and choose to adapt the original technique to mhake
compatible with the natural right to left construction ofté in
Scheme.

This choice to adapt the original technique to build listar
right to left has an effect on the way automata with commanmes a
traversed. In the adapted technique, we have the propeatyith
a path traverses an automaton forwards and consumes somge wor
then the sequence of commands foandhe reversed path forms
a recipe to build a parse tree for the word. Thus, the nextasect
presents a technique to build finite-state automata withncanas
similar to that of the original paper except for the factg the have
a larger set of regular expression operators and that thenemiis
are placed differently in the automata.

5.4 Automata with construction commands

We present the construction rules for the finite-state aatarwith
commands. The construction rules take the form of a proeadur
that takes a regular expressiorand builds the automatod (r).

A is defined by structural induction on regular expressiorse T
construction rules are similar to those prescribed by Theamp14]

but with commands added on the edges. The rules are presented
Figures 4 and 5.

Each construction rule produces an automaton with distin-
guished entry and exit states namednd ¢, respectively. When
an automatom (r) embeds another oné(r’), we depictA(r’') as
a rectangle with two states which are the entry and exit state

Letther;'s be expressions that lead to one or two parse trees for any A(+'). In each automator (r), there is no path going fromto p

non-empty word and none fer Thenrg | ... | Tn—1,70...7n-1,
((ro)™)*, and((ro)*)* produce additive, polynomial, exponential,
and infinite increases, respectively.

5.3 Strategy for the construction of parse trees

In the original paper, itis shown how the construction ofsgdrees

using edges aofi(r) only. In other words, any path fromto p, if it
exists, has to go through at least one edge added by a suimgund
automaton. The parse tree construction commands are steimg u
a compact notation. A “push constant” command with opetasd
denoted bypush ¢. A “wrap in selector” command with operand
i is denoted bysel i. An “extend list” command is (of course)

for lexemes can be automated. The technique is an extension o denoted bycons.

Thompson'’s technique to construct finite-state automath [he
extension consists in addimgnstruction commands on some of
the edges of the automata. Essentially, each time a pathghran

We mention, without proof, the few key properties of the au-
tomata. Letr be a regular expression aitbe a path that traverses
A(r) from entry to exit. First, the sequence of commands that are

automaton causes some word to be consumed, then the segfience met by following P backwards causes exactly one parse tree to be

commands found along that path forms a “recipe” for the coest
tion of a parse tree for the word.

pushed. More precisely, if we take a stacknd apply on it all the
commands that we meet by following backwards, then the net

In general, a parse tree may be an assemblage of many subeffect of these commands is to push exactly one parse oae .

trees. These sub-trees cannot all be built at once. Theyreated
one after the other. Consequently, the sub-trees thatrasdgl built
have to be kept somewhere until they are joined with the cthier
trees. It was shown that a data structure as simple as a stk w
providing the appropriate facilities to remember and gizekyparts

Second, the automata are correct in the sense that if the tvard
is consumed alon@ is w, thent € T'(r, w). Third, the automata
are exhaustive with respect T0in the sense that, for any € R,

w € L(r),t € T(r,w), and stacks, then there exists a paththat
traversesA(r), that consumes), and whose reversed sequence of

Co

e MG
ACv"). (wherev =co...cn1) i

O S aorn®
A((r)) = A(r)

A(r) = A(r{0,})

A(r®) = A(r{1,})

Ar’) = A(r{0,1})

A(r{i}) = A(r{i,i})

m

A(r{0, }):

cons

A(r{i, }):

(wherei > 1)

() a0 @5) v 7

L A(r) pu:h“

Figure 4. Construction rules for the automata with commands (Part I).

commands causesto be pushed ow. These properties can be
proved straightforwardly by structural induction @

5.5 Using deterministic automata

For efficiency reasons, it is preferable to use a DFA instdaal o
NFA. As explained above, the NFA obtained using functibmay
be converted into a DFA to allow fast recognition of the lexam
but three tables have to be built in order to be able to trémglaths
through the DFA back into paths through the original NFA.

We assume the conversion of the NFA into a DFA to be a
straightforward one. We adopt the point of view that deterstic
states are sets of non-deterministic states. Then, oumgsigun
says that the deterministic state that is reached afterucoing
some wordw is exactly the set of non-deterministic states that can
be reached by consuming!

1 Note that this assumption precludes full minimization af BIFA. SILex
currently does not try to minimize the DFA it builds. The asgtion is
sufficiently strong to ensure that paths through the NFA camelgsovered

We may now introduce the three tablégec, f, andg. Ta-
ble g indicates how to reach a stajefrom the non-deterministic
start state using only-transitions. It is defined only for the
non-deterministic states that are contained in the detéstid
start state. Tablef indicates how to reach a non-deterministic
stateq from some state in a deterministic stateusing a path
that consumes a single charactert is usually not defined ev-
erywhere. Tabledcc indicates, for a deterministic state which
non-deterministic state inaccepts on behalf of the same rulesas
It is defined only for accepting deterministic states.

Let us have a wordv = ¢y ...cn—1 that is accepted by the
DFA and letPp = so...s, be the path that is taken when
is consumed. Eack; is a deterministic states is the start state,
ands,, is an accepting state. Note that an accepting state does not
simply accept, but it accepts on behalf of a certain ruleatn,fan
accepting deterministic state may contain more than onepiog)

but it may happen to be unnecessarily strong. More invesiigahould be
made to find a sufficient and necessary condition on the csiover

Alr{0.0}): > pu:h[]
’
. push [] >Q
@/c% A p:sh[]Q])
;
g
. A(r) ——r
o
. A(r) p:sh[]
A(r{i,7}): (wherei > 1)
>% A _’c';s_’ Air) p:sh[]@
. A(r) pu:h[]
c’;n's
. A(r) p:sh[]
Alro . rn1). (Wheren = 2):
>% Alro) _’c;'s_’A(""”*) pu:h[]
oro 1@ A @)=
i 5 > 5
seloi—lA(mH) :

Figure 5. Construction rules for the automata with commands (Part I1)

non-deterministic states, each on behalf of its corresipgnadile.
In such a case, the deterministic state accepts on behalfeof t
rule that has highest priority. The non-deterministic p&th that
corresponds t@p is recovered backwards portion by portion. The
idea consists in determining non-deterministic stgt@So<i<n
and portions of patf P; }o<i<» such that: each; is in s;; eachP;
starts aty;_1, ends at;, and consumes;_1, except forP,, which
starts at the non-deterministic start state, endg zand consumes
€; gn 1S a State that accepts on behalf of the same rulg, as

The recovery is initialized by determining, directly from s,,
using the querydcc(sy,). Next, the main part of the recovery con-
sists in an iteration, with going fromn down to 1. At stepi,
given ¢;, one can determine portion of pafh and intermedi-
ate non-deterministic statg_,. P; is obtained from the query
f(si-1,ci—1,¢:). By doing so,q;—1 is also obtained as it is the
source state aP;. As the final part of the recovery, is obtained

using the query(go). Then pathPy is simply the linkage of all
the portions together; i.éd?y = Py - ... P,.

Note that the preceding explanation contains some minar ina
curacies. First, tableg and g do not exactly contain portions of
path butreversed ones. Indeed, recall that the NFA presented in
this paper are such that commands must be executed in the orde
in which they are met when following paths backwards. Second
there is no need to recover pafty (or its reverse) explicitly. It
is sufficient to keep references to the portions that fd?m and
to later execute the commands by following the portions dre a
ter the other. Better yet, one may eagerly execute the cominan
contained in each portion as the latter gets determined Why,
it is unnecessary to rememb&s nor its portions. Only the cur-
rent state of the construction stack needs to be preserast].dne
may observe that the sole purpose of the portions of patbdiar
tablesf andg is to be followed in order to recover the parse tree

construction commands. It is possible to skip the step ofeximg

a portion of path into a sequence of commands by directlyrggor
sequences of commandsjfirandg. It not only saves time by avoid-
ing the conversion but also because sequences of commants ca

Third, a phase which used to clean up the NFA between the
elimination of thee-transitions and the conversion of the NFA
into a DFA has been eliminated. It eliminated useless states
renumbered the remaining states. The modification of thebeusn

no longer than the paths from which they are extracted sihce a interfered with the construction of the three new tables el
most one command gets attached to each arc. One must bel carefiquick and dirty solution has been to completely omit the phas
in the case of tabl¢ because a mere sequence of commands would The generated analyzers would benefit from the re-intracluctf

not indicate which non-deterministic state is the origirthe por-
tion of path. Consequently, the latter also has to be retubyef.

To recapitulate: a query(q) provides the sequence of commands
that would be met by following someconsuming path from the
non-deterministic start state gdbackwards; a query(s, ¢, ¢) pro-
vides a pair of a non-deterministic statec s and the sequence of
commands that would be met by following someonsuming path
from ¢’ to ¢ backwards.

Remember that some regular expressions are ambiguous. Let
be an ambiguous expression amda word that has at least two
parse trees. We said that, in the context of automaticategeed
lexical analyzers, it is sufficient to build only one parseetifor
w. In other words, from the patkp that traverses the DFA, it is
sufficient to recover only oney) of the corresponding paths that
traverse the NFA. Indeed, by the use of fixed tabieg, and Acc,
the recovery ofPy from Pp andw is deterministic. Essentially, the
choices among all possible paths are indirectly made whejuan
values are placed into tables entries that could have retteiry of
numerous valid values. Nevertheless, even if in practiocg single
lexical analyzer produces parse trees in a deterministitnera it
remains more convenient to specify the parse tree congnuas a
non-deterministic process.

6. Modifications to SlLex

The addition of parse trees to SlLex has little impact on tlag w
SlLex is used. The only visible modification is the presentcarn
additional variable in the scope of the actions. The naméisf t
variable isyyast, for Abstract Syntax Tre& An action may refer
to this variable as any other variable provided by SlLexhsas

yytext, which contains the lexeme that has just been matched,

yyline, which contains the current line number, etc.

While the observable behavior of SlLex has not changed much,

the clean-up phase and, in order to do so, some adaptatiofdsho
be made to the currently abandoned phase or to the impletizenta
of the table construction.

Fourth, we added the implementation of the constructiortlaad
printing of the three tables. The construction of the talhedénly
consists in extracting reachability information from thiaggh of the
NFA.

The next modifications were made to the analysis-time module
Fifth, the lexical analyzers had to be equipped with instatation
to record the paths that are followed in the DFA. Also, retpifs
the construction of parse trees when appropriate have hkta

Sixth, we included the functions that build parse trees vithen
are given a path through the DFA, the recognized lexeme, lznd t
three tables.

Up to this point, the modifications aimed only at providing th
parse tree facility when the tables of the DFA are represamag
the ordinary format. So, at last, we modified both the gerarat
time and the analysis-time modules so that parse trees etadd
be built when the DFA is represented using portable tables or
Scheme code. In the case of the portable tables, it requingdioe
creation of simple conversion functions to print a portal@esion
of tablesf and g at generation time and to translate the portable
tables back into the ordinary format at analysis time. Indhge of
the DFA as Scheme code, the modifications are more complex as
extra code must be emitted that takes care of the recorditigeof
path through the DFA and the requests for the constructi@aisfe
trees. Note that the functions that perform the very constrn of
the parse trees are the same no matter which format for thestab
of the DFA is used. It means that the construction of parsstie
an interpretative process (based on queries to the thries}abven
when the DFA is implemented efficiently as code.

Note that, although SlLex gives the impression that paesestr
are always available to actions, SlLex is lazy with their stounc-

there are many changes that have been made to the implemention. It builds them only for the actions thsdemto access the vari-
tation of SiLex. The most important changes were made in the ableyyast. The path followed into the DFA is always recorded,

generation-time modules. First, the original version dfeXlused
to convert many regular expression operators into simpleng in
order to handle as few native operators as possible. It wagdo
so during syntactic analysis of the regular expressionsekam-
ple, SiLex eliminated some forms by converting strings liké
into concatenations, by breaking complex repetition djpesanto

a combination of simpler ones and concatenations, and kirspl
large concatenations and unions into binary ones. Whilk sao-
versions do not change the language generated by the exmgess
they do change the set of valid parse trees for most or all words.
The new version has to represent most syntactic forms asahey
pear in the specification files. Still, there are now new opputies
to translate simple forms, such a8, v+, r?, andr{:}, into the
more general forms{b, B}, which have to be supported anyway.

however. Still, SILex’s laziness substantially reducesdhtra cost
caused by the addition of the parse trees as most of it coroes fr
the construction of trees, not the recording of paths.

The current state of the prototype is the following. Thegnée
tion is complete enough to work but the code needs a serieas<l
up. The three additional tables for DFA to NFA correspongesie
much too large. The implementation of the mechanisms fdn pat
recording and parse tree construction is not really optuahifor
speed.

7. Examples of parse tree construction for
lexemes

We present a few concrete examples of the use of parse tree con

Second, the construction rules for the automata have beengiryction using SiLex. We first start by describing the Scheep-

changed to correspond to the new list of syntactic forms and t
conform to the specifications of Figures 4 and 5. Of course, th
representation of the arcs (in the NFA) had to be extendetiato t
commands could be attached.

2 Actually, we consider the namgyast to be rather inappropriate as the
parse trees that the new variable contains are indeed ete syntax trees.
Still, since the version of SiLex that we are working on useg hame, we
prefer to stick to the current conventions.

resentation of the parse trees.

7.1 Representation of parse trees in Scheme

The representation of trees ih in Scheme is direct. A list tree
[to,...,tn—1] becomes a Scheme li§6o ... S,_1) where each
S; is the Scheme representationtpf Next, a selecto##: : t also
becomes a Scheme liét S) wherei remains the same arfticor-
responds ta. Finally, a wordw may take two forms in Scheme.

If w is a parse tree that originates from a string regular exjmess
"w", then it becomes a Scheme string", otherwisew is neces-
sarily one-character long and it becomes a Scheme chasaater

7.2 Simple examples

Let us consider the following short SiLex specification file:
hh
a{2,4}
a{0,3}

(1ist ’rulel yyast)
(list ’rule2 yyast)

where only some sequencesacdire deemed to be legal tokens and
where the actions simply return tagged lists containingpese
trees that are produced. If we generate a lexical analyaer this
specification file and ask it to analyze the inpakaa, then it will
produce the following two results before returning the efifite
token:

(rulel (#\a #\a #\a #\a))
(rule2 (#\a))

Both parse trees indicate that the matched lexemes were afade
repetitions of the character which is consistent with the shape of
the regular expressions. Note how the first token had to beras |
as possible, following the maximal-munch tokenizatiompiple.

Now, let us consider a more complex example. The following
specification file allows the analyzer-to-be to recognizbeBme
strings:

hh
ACETNNT NN NN+ yyast

One must not forget about the necessary quoting of specahch
ters" and\. If we feed the analyzer generated from this specifica-
tion with the following Scheme string:

"Quote \" and \\!"

then the analyzer returns a parse tree that denotes a segokenc

three sub-trees, where the middle one is a sequence of 14 sub-

sub-trees, where each is a selector among the three basig str
elements:

(#\II

(0 #\Q) (0 #\uw) (0 #\o) (0 #\t) (0 #\e)
(0 #\space) (1 "\\\"") (0 #\space)
(0 #\a) (0 #\n) (0 #\d) (0 #\space)
2 "\\\\") (0 #\!))

#\n)

to provide a parse tree for the lexeme. In Figure 6, we presesit
atively complete specification for the Scheme numbers. Nt
we restrict ourselves to numbers in base 10 only and that wvetdo
handle the unspecified digits denoted#yl'he specification file is
mostly made of macros and there is a single rule which takes th
parse tree for the number and passes it to a helper function.

The helper function is very simple as it only has to travehse t
tree andrebuild the number. This reconstruction is made easy by
the fact that the hierarchical structure of the lexeme atingrto the
regular expression is clearly exposed and that any “chdieaVeen
various possibilities is indicated by the tree. Figure 7spris the
implementation of our helper function, which is less thae bon-
dred lines of very systematic code. The reader needs nossetly
study it closely—the font is admittedly pretty small—as thain
point here is to show the size and the shape of the code. If we we
to complete our implementation to make it able to handle tiie f
syntax, it would be necessary to add many macros in the speecifi
tion file but the helper function would not be affected much.

8. Experimental results

In order to evaluate the cost of the construction of parsestrere
ran a few experiments. The experiments consist in analytiag
equivalent of 50 000 copies of the following 10 numbers (as if
were a giant 500 000-line file).

32664

-32664

32664/63

+32664/63

-98327E862

+i
-453.3234e23+34.2323e12111
+.326641i

-3266.4063e-5
+32664/630@-7234.12312

We used three different lexical analyzers on the input. Tis¢ fi
one is a lexical analyzer generated by the original versi@iloex.
The second one is generated by the new version of SiLex aidl bui
a parse tree for each of the recognized lexemes. The third one
is also generated using the new version of SiLex but it doés no
ask for the construction of the parse trees (i.e. the acto@s chot
accesyyast). This last analyzer is used to evaluate the cost of the
instrumentation added to record the path through the DFA.

The lexical analyzers have been generated by (either veo§jo
SlLex to be as fast as possible; that is, their DFA is impleiegas
Scheme code and they maintain no counters to indicate tiherdur

These two examples may not be that convincing when it comes position in the input. The lexical analyzers have been ctedpi

to justifying the implementation of automatic construntif parse
trees for lexemes. However, the one below deals with a regula
expression that is way more complex.

7.3 Lexical analysis of Scheme numbers

Scheme provides a particularly rich variety of numbersifiate-
gers to complex numbers. It also provides a “syntax” for tktere
nal representation of all these kinds of numbers. An implaore
has much work to do in order to handle all the kinds of numiars.
particular, when it comes teading them. There are so many cases
that reading them in aad hoc way tends to be error-prone.

using Gambit-C version 3.0 with most optimizations turnadthe
resulting C files have been compiled using GCC version 3.8/5 w
the ‘-03’ switch. The analyzers were executed on a 1400 MHz Intel
Pentium 4 processor with 512 MBytes of memory.

The execution times for the three analyzers are 15.3 seconds
39.8 seconds, and 20.2 seconds, respectively. Clearlgitmyithe
parse trees incurs a serious cost as the execution timetahipéss.
This is not that surprising given the complexity of buildiagarse
tree compared to the simplicity of a mere recognition usiij-A.
However, the third measurement indicates that the addetlins
mentation causes the operations of the DFA to take signtfican

Even when one automates part of the process by using an autodonger. The increase is about by a third. While the increasatich

matically generated lexical analyzer to scan Scheme nusnbely
half of the problem is solved. Indeed, merely knowing thag |

less than in the case of parse tree construction, it isesl hccept-
able. Construction of parse trees can be seen as a sopleidtaa

eme is the external representation of a Scheme number dbes noeration that is relatively rarely performed. One might gtaaore

provide any easy way to recover the internal representditanm
the lexeme. That is, it is not easy unless the lexical anaigzable

easily to pay for a service that he does use. However, tha egst
due to the instrumentation is a cost without direct benefit thiat

; Regular expression for Scheme numbers
; (base 10 only, without ’#’ digits)

digit [0-9]

digit10 {digit}

radix10 ""|#[dD]

exactness " #[iT] |#[eE]

51gn |||||||+|||||_||

exponent_marker [eEsSfFdD1L]

suffix ""|{exponent_marker}{sign}{digit10}+

prefix10 {radix10}{exactness}|{exactness}{radix10}

uinteger10 {digit10}+

decimall0 ({uinteger10}|"."{digit10}+|{digit10}+"."{digit10}*) {suffix}
ureallO {uinteger10}|{uinteger10}/{uinteger10}|{decimal10}
reall0 {sign}{ureall0}

complex10 {real10}|{real10}@{real10}|{real10}? [-+]{ureal10}7[iI]
num10 {prefix10}{complex10}

number {num103}

hhh

{number} (lex-number yyast)

Figure 6. SlLex specification for the essentials of the lexical sureibf Scheme numbers.

; Companion code for Scheme numbers (1
(let ((tttt (list-ref ttt 1)))
(define lex-number (* (digit10+ tttt) (expt 10.0 (- e2 (length tttt))))))
(lambda (t) (else
(letx ((digit (let* ((ttttl (list-ref ttt 0))
(lambda (t) (tttt2 (list-ref ttt 2)))
(- (char->integer t) (char->integer #\0)))) (* (digit10+ (append ttttl tttt2))
(digit10 (expt 10.0 (- e2 (length tttt2))))))))))
(lambda (t) (ureall0
(digit t))) (lambda (t)
(exactness (let ((tt (cadr t)))
(lambda (t) (case (car t)
(case (car t) (0
((0) (lambda (x) x)) (uinteger10 tt))
((1) (lambda (x) (x 1.0 x))) [€¢D)
(else (lambda (x) (if (exact? x) x (inexact->exact x))))))) (/ (uinteger10 (list-ref tt 0))
(sign (uinteger10 (list-ref tt 2))))
(lambda (t) (else
(if (= (car t) 2) (decimall0 tt))))))
-1 (realll
1)) (lambda (t)
(digit10+ (* (sign (list-ref t 0)) (ureal1l0 (list-ref t 1)))))
(lambda (t) (opt
(let loop ((n 0) (t t)) (lambda (op t default)
(if (null? t) (if (null? t)
n default
(loop (+ (* 10 n) (digit10 (car t))) (cdr t)))))) (op (list-ref t 0)))))
(suffix (complex10
(lambda (t) (lambda (t)
(if (= (car t) 0) (let ((tt (cadr t)))
0 (case (car t)
(let ((tt (cadr t))) (0
(* 1.0 (reall0 tt))
(sign (list-ref tt 1)) (D
(digit10+ (list-ref tt 2))))))) (make-polar (reall0 (list-ref tt 0))
(prefix10 (reall0 (list-ref tt 2))))
(lambda (t) (else
(exactness (list-ref (cadr t) (- 1 (car t)))))) (make-rectangular
(uinteger10 (opt real1l0 (list-ref tt 0) 0)
(lambda (t) (* (if (char=? (list-ref tt 1) #\+) 1 -1)
(digit10+ t))) (opt ureall0 (list-ref tt 2) 1))))))))
(decimall0 (num10
(lambda (t) (lambda (t)
(let* ((e2 (suffix (list-ref t 1))) ((prefix10 (list-ref t 0))
(tt (list-ref t 0)) (complex10 (list-ref t 1)))))
(ttt (cadr tt))) (number
(case (car tt) (lambda (t)
0) (num10 t))))
(x (digit10+ ttt) (expt 10 e2))) (number t))))

Figure 7. Implementation of a helper function for the lexical anatysf numbers.

one cannot get rid of, even when parse tree constructioniesl
never used.

9. Discussion

As far as we know, the original technique is the only one thaltes
automatically generated lexical analyzers able to build@#rees
for lexemes using only finite-state tools and this work is onéy
implementation of it.

Generated lexical analyzers always give access to the statch
lexemes. It is essential for the production of tokens indakanal-
ysis. To also have access to information that is autométiest
tracted from the lexemes is a useful feature. However, wheh s
a feature is provided, it is typically limited to the abilitp ex-
tract sub-lexemes that correspond to tagged (e.g. usirand\))
sub-expressions of the regular expression that matchdsxtme.
Techniquely, for efficiency reasons, it is thesition and thelength
of the sub-lexemes that get extracted. The IEEE standard.100
describes, among other things, which sub-lexemes must be ex
tracted [7]. Ville Laurikari presents an efficient techrégo extract
sub-lexemes in a way that complies with the standard [11¢uin
opinion, extraction by tagging is too restrictive. The mpinblem
is that, when a tagged sub-expression lies inside of a tEpetp-
erators (or inside of what is sometimes calletbe-linear context)
and this sub-expression matches many different parts ofengi
lexeme, only one of the sub-lexemes is reported. So extrably
tagging starts to become ineffective exactly in the siaretiwhere
the difficulty or the sophistication of the extraction woufdke au-
tomated extraction most interesting.

Since the conventional way of producing parse trees cansist
in using a syntactic analyzer based on context-free granechr
nology, one might consider using just that to build parsest®r
his lexemes. For instance, one could identify lexemes usiD§A
and then submit the lexemes to a subordinate syntactic zaraly
to build parse trees. Alternatively, one could abandondistate
technology completely and directly ussanner-less syntactic an-
alyzer. However, both options suffer from the fact that grails
based on context-free grammars are much slower than these ba
on finite-state automata. Moreover, an ambiguous regularesx
sion would be translated into an ambiguous context-fremngrar.
Our technique handles ambiguous expressions withoutgmobut
most parsing technology cannot handle ambiguous grami@érs.
course, there exist parsing techniques that can handlegamis
grammars, such as Generalized LR Parsing [10, 15], the \Earle
algorithm [5], or the CYK algorithm [8, 17, 2], but these elxiti
worse than linear time complexity for most or all ambiguotemng-
mars. Finally, it is possible to translate any regular eggi@n into
an unambiguous left- or right-linear grammar [6]. Howetleg, re-
sulting grammar would be completely distorted and wouldl lea
parse trees that have no connection to the parse trees @anéesx
that we introduced here.

10. Future work

¢ We intend to complete the integration of automatic parse tre
construction into SlLex and to clean up the whole implementa
tion.

¢ Parse tree construction could be made faster. In partjcukan

states that areot marked, the instrumentation that records the
path in the DFA could be omitted.

All tables generated by SlLex ought to be compacted but the
one for f, in particular, really needs it. Recall thgttakes a
three-dimensional input and returns a variable-lengtiputuia
pair that contains a sequence of commands).

Some or all of the following regular operators could be added
SlLex: the difference (denoted by, say;—r2), the complement
(), and the intersection-(&r2). Note that, in the case of the
complement operator, there would be no meaningful notion of
a parse tree for a lexeme that matchmedn the case of the
differencer; — r2, the parse trees for a matching lexeme
would be the demonstration that generatesv. Finally, in the
case of the intersection, for efficiency reasons, only orn®f
sub-expressions should be chosen to be the one that dittates
shape of the parse trees.

The parse trees act as (too) detailed demonstrations. Almos
always, they will be either transformed into a more conve-
nient structure, possibly with unnecessary details drdppe
completely consumed to become non-structural information
other words, they typically are transient data. Consedyeént
means that only their informational contents were impdrtan
and that they have been built as concrete data structures to n
purpose. In such a situation, deforestation techniqugsfiéd

be used so that the consumer of a parse tree could virtually tr
verse it even as it is virtually built, making the actual dons-

tion unnecessary.

11. Conclusion

This paper presented the adaptation and the implementztitie
automated construction of parse tree for lexemes. The igodn
that has been adapted was originally presented in 2000 b§ Bruth
Feeley. It has been implemented and integrated in SILexieale
analyzer generator for Scheme.

The adaptation was a simple step as it consisted only in modi-
fying the automaton construction rules of the original téghe so
that the larger set of regular operators of SlLex was hanaiheldso
that the way the parse trees are built match the right-taiegction
in which lists are built in Scheme.

The implementation was a much more complicated task. Fortu-
nately, SiLex, like the original technique, is based on thestruc-
tion of non-deterministic automata that get converted uheter-
ministic ones. Still, most parts of the generator had to bdifizal
more or less deeply and some extensions also had to be mdwie to t
analysis-time module of the tool. Maodifications have beenedio
the representation of the regular expressions, to the wayoin-
deterministic automata are built and represented, to theetsion
of the automata into deterministic ones, to the printing lbfe®’s
tables, to the generation of Scheme code that forms paitie déx-
ical analyzers, to the algorithm that recognize lexemed,tarthe
(previously inexistent) construction of the parse trees.

The new version of SiLex does work, experiments could be run,
but the implementation is still somehow disorganized. The-c
struction of parse trees is a pretty costly operation coegps the
normal functioning of a deterministic automaton-basedckdxan-

the DFA is represented as Scheme code, the functions thatalyzer and, indeed, empirical measurements show thatéssive

build the trees ought to be specialized code generated fiem t
information contained in the three tables.

e The penalty that is strictly due to the additional instrutagion
(i.e. when no parse trees are requested) ought to be rediced.
way to improve the situation consists in marking the detafmi
istic states that may reach an accepting state that cormrdspo
to a rule that requests the construction of a parse tree., Téven

use roughly triples the execution time of an analyzer.

Acknowledgments

We wish to thank the anonymous referees whose comments reall
helped to improve this paper.

References

[1] A. V. Aho, R. Sethi, and J. D. Ulliman.Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, USA, 1986.

[2] J. Cocke and J. T. Schwartz. Programming languages aid th
compilers: Preliminary notes. Technical report, Courastitute of
Mathematical Sciences, New York University, 1970.

[3] D. Dubé. Scheme Implementation of Lex, 2001.
http://www.iro.umontreal.ca/ dube/silex.tar.gz.

[4] D. Dubé and M. Feeley. Efficiently building a parse treeni a
regular expressiorActa Informatica, 37(2):121-144, 2000.

[5] J. Earley. An efficient context-free parsing algorith@ommunica-
tions of the ACM, 13(2):94-102, feb 1970.

[6] J. E. Hopcroft and J. D. Ullmanlintroduction to automata theory,
languages and computation. Addison-Wesly Publishing Company,
1979.

[7] IEEE std 1003.1, 2004 Edition.

[8] T. Kasami. An efficient recognition and syntax-analyaligorithm for
context-free languages. Technical Report AFCRL-65-758FArce
Cambridge Research Lab, Bedford, MA, USA, 1965.

[9] R. Kelsey, W. Clinger, and J. Rees (eds.). Revisegport on
the algorithmic language SchemeHigher-Order and Symbolic
Computation, 11(1):7-105, aug 1998.

[10] B. Lang. Deterministic techniques for efficient norteteninistic
parsers. InProceedings of the 2nd Colloquium on Automata,
Languages and Programming, pages 255-269, London, UK, 1974.
Springer-Verlag.

[11] Ville Laurikari. NFAs with tagged transitions, theipaversion to
deterministic automata and application to regular exjpoass In
Proceedings of the 7th International Symposium on String Processing
and Information Retrieval, pages 181-187, sep 2000.

[12] M. E. Lesk. Lex—a lexical analyzer generator. TechhiReport 39,
AT&T Bell Laboratories, Murray Hill, NJ, USA, 1975.

[13] J. Levine, T. Mason, and D. BrownLex & Yacc. O'Reilly, 2nd
edition, 1992.

[14] K. Thompson. Regular expression search algoritGommunications
of the ACM, 11(6):419-422, 1968.

[15] M. Tomita. Efficient parsing for natural languagésFast Algorithm
for Practical Systems, 1986.

[16] P. L. Wadler. Deforestation: transforming programsliminate trees.
Theoretical Computer Science, 73(2):231-248, 1990.

[17] D. H. Younger. Recognition and parsing of context-fleeguages in
time n3. Information and Control, 10(2):189-208, 1967.

