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ABSTRACT

This paper explains the design of the PICBIT R4RS Scheme
system which specifically targets the PIC microcontroller
family. The PIC is a popular inexpensive single-chip mi-
crocontroller for very compact embedded systems that has
a ROM on the chip and a very small RAM. The main chal-
lenge is fitting the Scheme heap in only 2 kilobytes of RAM
while still allowing useful applications to be run. PICBIT
uses a novel compact (24 bit) object representation suited for
such an environment and an optimizing compiler and byte-
code interpreter that uses RAM frugally. Some experimental
measurements are provided to assess the performance of the
system.

1 INTRODUCTION

The Scheme programming language is a small yet powerful
high-level programming language. This makes it appealing
for applications that require sophisticated processing in a
small package, for example mobile robot navigation software
and remote sensors.

There are several implementations of Scheme that require
a small memory footprint relative to the total memory of
their target execution environment. A full-featured Scheme
system with an extended library on a workstation may re-
quire from one to ten megabytes of memory to run a simple
program (for instance MzScheme v205 on Linux has a 2.3
megabyte footprint). At the other extreme, the BIT system
[1] which was designed for microcontroller applications re-
quires 22 kilobytes of memory on the 68HC11 microcontrol-
ler for a simple program with the complete R4RS library (mi-
nus file I/O). This paper describes a new system, PICBIT,
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which is inspired from our BIT system and specifically de-
signed for the PIC microcontroller family which has even
tighter memory constraints.

2 THE PIC MICROCONTROLLER

The PIC is one of the most popular single-chip microcontrol-
ler families for low-power very-compact embedded systems
[6]. There is a wide range of models available offering RISC-
like instruction sets of 3 different complexities (12, 14, or
16 bit wide instructions), chip sizes, number of I/O pins,
execution speed, on-chip memory and price. Table 1 lists
the characteristics of a few models from the smallest to the
largest currently available.

BIT was originally designed for embedded platforms with
10 to 30 kilobytes of total memory. We did not distinguish
read-only (ROM) and read-write (RAM) memory, so it was
equally important to have a compact object representation,
a compact program encoding and a compact runtime. More-
over the design of the byte-code interpreter and libraries fa-
vors compactness of code over execution speed, which is a
problem for some control applications requiring more com-
putational power. The limited range of integers (-16384 to
16383) is also awkward. Finally, the incremental garbage
collector used in BIT causes a further slowdown in order to
meet real-time execution constraints [2].

Due to the extremely small RAM of the PIC, it is neces-
sary to distinguish what needs to go in RAM and what can
go in ROM. Table 1 shows that for the PIC there is an order
of magnitude more ROM than RAM. This means that the
compactness of the object representation must be the pri-
mary objective. The compactness of the program encoding
and runtime is much less of an issue, and can be traded-
off for a more compact object representation and speedier
byte-code interpreter. Finally, we think it is probably ac-
ceptable to use a nonincremental garbage collector, even for
soft real-time applications, because the heap is so small.

We call our Scheme system PICBIT to stress that the
characteristics of the PIC were taken into account in its de-
sign. However the system is implemented in C and it should
be easy to port to other microcontrollers with similar mem-
ory constraints. We chose to target the “larger” PIC models
with 2 kilobytes of RAM or more (such as the PIC18F6520)
because we believed that this was the smallest RAM for do-
ing useful work. Our aim was to create a practical system



Model Pins MIPS ROM RAM Price
PIC12C508 8 1 512 × 12 bits 25 × 8 bits $0.90
PIC16F628 18 5 2048 × 14 bits 224 × 8 bits $2.00
PIC18F6520 64 10 16384 × 16 bits 2048 × 8 bits $6.50
PIC18F6720 64 6.25 65536 × 16 bits 3840 × 8 bits $10.82

Table 1: Sample PIC microcontroller models.

that strikes a reasonable compromise between the conflict-
ing goals of fast execution, compact programs and compact
object representation.

3 OBJECT REPRESENTATION

3.1 Word Encoding

In many implementations of dynamically-typed languages all
object references are encoded using words of W bits, where
W is often the size of the machine’s words or addresses [3].
With this approach at most 2W references can be encoded
and consequently at most 2W objects can live at any time.
Each object has its unique encoding. Since many types of
objects contain object references, W also affects the size of
objects and consequently the number of objects that can fit
in the available memory. In principle, if the memory size
and mix of live objects are known in advance, there is an
optimal value for W that maximizes the number of objects
that can coexist.

The 2W object encodings can be partitioned, either stati-
cally (e.g. tag bits, encoding ranges, type tables) or dynam-
ically (e.g. BIBOP [4]) or a combination, to map them to a
particular type and representation. A representation is di-
rect if the W bit word contains all the information associated
with the object, e.g. a fixnum or Boolean (the meaning of
“all the information” is left vague). In an indirect represen-
tation the W bit word contains the address in memory (or
an index in a table) where auxiliary information associated
with the object is stored, e.g. the fields of a pair or string.
The direct representation can’t be used for mutable objects
because mutation must only change the state of the object,
not its identity. When an indirect representation is used for
immutable objects the auxiliary information can be stored in
ROM because it is never modified, e.g. strings and numbers
appearing as literals in the program.

Like many microcontrollers, the PIC does not use the
same instructions for dereferencing a pointer to a RAM lo-
cation and to a ROM location. This means that when the
byte-code interpreter accesses an object it must distinguish
with run time tests objects allocated in RAM and in ROM.
Consequently there is no real speed penalty caused by using
a different representation for RAM and ROM, and there are
possibly some gains in space and time for immutable objects.

Because the PIC’s ROM is relatively large and we expect
the total number of immutable objects to be limited, using
the indirect representation for immutable objects requires
relatively little ROM space. Doing so has the advantage that
we can avoid using some bits in references as tags. It means
that we do not have to reserve in advance many of the 2W

object encodings for objects, such as fixnums and characters,
that may never be needed by the program. The handling of

integers is also simplified because there is no small vs. large
distinction between integers. It is possible however that pro-
grams which manipulate many integers and/or characters
will use more RAM space if these objects are not preallo-
cated in ROM. Any integer and character resulting from a
computation that was not preallocated in ROM will have to
be allocated in RAM and multiple copies might coexist. In-
terning these objects is not an interesting approach because
the required tables would consume precious RAM space or
an expensive sweep of the heap would be needed. To lessen
the problem, a small range of integers can be preallocated
in ROM (for example all the encodings that are “unused”
after the compiler has assigned encodings to all the program
literals and the maximum number of RAM objects).

3.2 Choice of Word and Object Size

For PICBIT we decided that to get simple and time-efficient
byte-code interpreter and garbage collector all objects in
RAM had to be the same size and that this size had to be
a multiple of 8 bits (the PIC cannot easily access bit fields).
Variable size objects would either cause fragmentation of the
RAM, which is to be avoided due to its small size, or require
a compacting garbage collector, which are either space- or
time-inefficient when compared to the mark-sweep algorithm
that can be used with same size objects. We considered us-
ing 24 bits and 32 bits per object in RAM, which means no
more than 682 and 512 objects respectively can fit in a 2
kilobyte RAM (the actual number is less because the RAM
must also store the global variables, C stack, and possibly
other internal tables needed by the runtime). Since some en-
codings are needed for objects in ROM, W must be at least
10, to fully use the RAM, and no more than 12 or 16, to fit
two object references in an object (to represent pairs).

With W = 10, a 32 bit object could contain three object
references. This is an appealing proposition for compactly
representing linked data structures such as binary search
tree nodes, special association lists and continuations that
the interpreter might use profitably. Unfortunately many
bits would go unused for pairs, which are a fairly common
data type. Moreover, W = 10 leaves only a few hundred
encodings for objects in ROM. This would preclude running
programs that

1. contain too many constant data-structures (the system
would run out of encodings);

2. maintain tables of integers (integers would fill the
RAM).

But these are the kind of programs that seem likely for mi-
crocontroller applications (think for example of byte buffers,
state transition tables, and navigation data). We decided
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Figure 1: Object representation of the vector #(a b c d e) and the string "123456". To improve readability some of the
details have been omitted, for example the “a” is really the object encoding of the symbol a. The gray area corresponds to
the two tag bits. Note that string leaves use all of the 24 bits to store 3 characters.

that 24 bit objects and W = 11 was a more forgiving com-
promise, leaving at least 1366 (2W−682) encodings for ROM
objects.

It would be interesting to perform an experiment for every
combination of design choice. However, creating a working
implementation for one combination requires considerable ef-
fort. Moreover, it is far from obvious how we could automate
the creation of working implementations for various spaces
of design choice. There are complex interactions between
the representation of objects, the code that implements the
operations on the objects, the GC, and the parts of the com-
piler that are dependent on these design choices.

3.3 Representation Details

For simplicity and because we think ROM usage is not an
important concern for the PIC, we did not choose to repre-
sent RAM and ROM objects differently.

All objects are represented indirectly. That is, they all are
allocated in the heap (RAM or ROM) and they are accessed
through pointers. Objects are divided in three fields: a two
bit tag, which is used to encode type information, and two
11 bit fields. No type information is put on the references
to objects. The purpose of each of the two 11 bit fields (X
and Y ) depends on the type:

00 ⇒ Pair. X and Y are object references for the car and
cdr.

01 ⇒ Symbol. X and Y are object references for the name
of the symbol (a string) and the next symbol in the
symbol table. Note that the name is not necessary in
a program that does not convert between strings and
symbols. PICBIT does not currently perform this op-
timization.

10 ⇒ Procedure. X is used to distinguish the three types
of procedures based on the constant C (number of lamb-
das in the program) which is determined by the com-
piler, and the constant P (number of Scheme primitive
procedures provided by the runtime, such as cons and
null?, but not append and map which are defined in the
library, a Scheme source file):

0 ≤ X < C ⇒ Closure. X is the entry point of the
procedure (raw integer) and Y is an object refer-
ence to the environment (the set of nonglobal free
variables, represented with an improper list).

C ≤ X < C + P ⇒ Primitive. X is the entry point
of the procedure (raw integer) and Y is irrelevant.

X = C + P ⇒ Reified continuation. X is an object
reference to a continuation object and Y is irrele-
vant. A continuation object is a special improper
list of the form (r p . e), where r is the return
address (raw integer), p is the parent continua-
tion object and e is an improper list environment
containing the continuation’s live free variables.

The runtime and P are never modified even when some
primitive procedures are not needed by the compiled
program.

11 ⇒ One of vector, string, integer, character, Boo-
lean or empty list. X is a raw integer that determines
the specific type. For integer, character, Boolean and
empty list, X is less than 36 and Y is also a raw integer.
For the integer type, 5 bits from X and 11 from Y

combine to form a 16 bit signed integer value. For the
vector type, 36 ≤ X < 1024 and X − 36 is the vector’s
length. For the string type, 1024 ≤ X < 2048. To allow
a logarithmic time access to the elements of vectors and
strings, Y is an object reference to a balanced tree of
the elements. A special case for small vectors (length
0 and 1) and small strings (length 0, 1, and 2) stores
the elements directly in Y (and possibly 5 bits of X

for strings of length 2). Figure 1 gives an example of
how vectors and strings are represented. Note that the
leaves of strings pack 3 characters.

4 GARBAGE COLLECTION

The mark-sweep collector we implemented uses the Deutsch-
Schorr-Waite marking algorithm [7]. This algorithm can
traverse a linked data structure without using an auxiliary
stack, by reversing the links as it traverses the data structure
(we call such reversed links “back pointers”). Conceptually
two bits of state are attached to each node. The mark bit
indicates that the node has been visited. The stage bit indi-
cates which of the two links has been reversed.1 When the

1In fact, a trit should be attached to each node instead
of two bits since the stage bit is meaningless when the mark
bit is not set.



marking algorithm returns to a node as part of its backtrack-
ing process using the current back pointer (i.e. the “top of
the stack”), it uses the stage bit to know which of the two
fields contains the next back pointer. The content of this
field must be restored to its original value, and if it is the
first field then the second field must be processed in turn.

These bits of information cannot be stored explicitly in
the nodes because all 24 bits are used. The mark bit is
instead stored in a bit vector elsewhere in the RAM (this
means the maximal number of objects in a 2 kilobyte RAM
is really 655, leaving 1393 encodings for ROM objects).

We use the following trick for implementing the stage bit.
The address in the back pointer has been shifted left by
one position and the least significant bit is used to indicate
which field in the “parent” object is currently reversed. This
approach works for the following reason. Note that stage
bits are only needed for nodes that are part of the chain of
reversed links. Since there are more ROM encodings than
RAM encodings and a back pointer can only point to RAM,
we can use a bit of the back pointer to store the stage bit. A
back pointer contains the stage bit of the node that it points
to.

One complication is the traversal of the nodes that don’t
follow the uniform layout (with two tag bits), such as the
leaves of strings that contain raw integers. Note that ref-
erences to these nodes only occur in a specific type of “en-
closing” object. This is an invariant that is preserved by the
runtime system. It is thus possible to track this information
during the marking phase because the only way to reach an
object is by going through that specific type of enclosing ob-
ject. For example, the GC knows that it has reached the leaf
of a string because the node that refers to it is an internal
string tree node just above the leaves (this information is
contained in the type bits of that node).

After the marking phase, the whole heap is scanned to link
the unmarked nodes into the free list. Allocation removes
one node at a time from the free list, and the GC process is
repeated when the free list is exhausted.

5 BYTE-CODE INTERPRETER

The BIT system’s byte-code interpreter is relatively slow
compared to other Scheme interpreters on the same plat-
form. One important contributor to this poor performance
is the management of intermediate results. The evaluation
“stack” where intermediate results are saved is actually im-
plemented with a list and every evaluation, including that
of constants and variables, requires the allocation of a pair
to link it to the stack. This puts a lot of pressure on the
garbage collector, which is not particularly efficient because
it is incremental. Moreover, continuations are not safe-for-
space.

To avoid these problems and introduce more opportuni-
ties for optimization by the compiler, we designed a register-
based virtual machine for PICBIT. Registers can be used to
store intermediate results and to pass arguments to proce-
dures. It is only when these registers are insufficient that
values must be saved on an evaluation stack. We still use
a linked representation for the stack, because reserving a
contiguous section of RAM for this purpose would either
be wasteful (stack section too large) or risk stack overflows

(stack section too small). Note that we don’t have the option
of growing the stack and heap toward each other, because
our garbage collector does not compact the heap. Substan-
tial changes to the object representation would be needed to
permit compaction.

The virtual machine has six registers containing object
references: Acc, Arg1, Arg2, Arg3, Env, and Cont. Acc is
a general purpose accumulator, and it contains the result
when returning to a continuation. Arg1, Arg2, and Arg3

are general purpose and also used for passing arguments to
procedures. If there are more than three arguments, Arg3
contains a list of the third argument and above. Env contains
the current environment (represented as an improper list).
Cont contains a reference to a continuation object (which
as explained above contains a return address, a reference to
the parent continuation object and an environment contain-
ing the continuation’s live free variables). There are also the
registers PC (program counter) and NbArgs (number of argu-
ments) that hold raw integers. When calling an inlined prim-
itive procedure (such as cons and null?, but not apply), all
registers except Acc and PC are unchanged by the call. For
other calls, all registers are caller-save except for Cont which
is callee-save.

Most virtual machine instructions have register operands
(source and/or destination). Below is a brief list of the in-
structions to give an idea of the virtual machine’s size and
capabilities. We do not explain all the instruction variants
in detail.

CST addr, r ⇒ Load a constant into register r.

MOV[S] r1, r2 ⇒ Store r1 into r2.

REF(G|[T][B]) i, r ⇒ Read the global or lexical variable at
position i and store it into r.

SET(G|[T][B]) r, i ⇒ Store r into the global or lexical variable
at position i.

PUSH r1, r2 ⇒ Construct the pair (cons r1 r2) and store it
into r2.

POP r1[, r2] ⇒ Store (car r1) into r2 and store (cdr r1)

into r1.

RECV[T] n ⇒ Construct the environment of a procedure with
n parameters and store it into Env. This is normally the
first instruction of a procedure.

MEM[T][B] r ⇒ Construct the pair (cons r1 Env) and store
it into Env.

DROP n ⇒ Remove the n first pairs of the environment in
Env.

CLOS n ⇒ Construct a closure from n (entry point) and Acc

and store it into Acc.

CALL n ⇒ Set NbArgs to n and invoke the procedure in Acc.
Register Cont is not modified (the instruction does not
construct a new continuation).

PRIM i ⇒ Inline call to primitive procedure i.

RET ⇒ Return to the continuation in Cont.



JUMPF r, addr ⇒ If r is false, branch to address addr.

JUMP addr ⇒ Branch to address addr.

SAVE n ⇒ Construct a continuation from n (return point),
Cont, and Env and store it into Cont.

END ⇒ Terminate the execution of the virtual machine.

6 COMPILER

PICBIT’s general compilation approach is similar to the one
used in the BIT compiler. A whole-program analysis of the
program combined with the Scheme library is performed and
then the compiler generates a pair of C files (“.c” and “.h”).
These files must be compiled along with PICBIT’s runtime
system (written in C) in a single C compilation so that some
of the data-representation constants defined in the “.h” file
can specialize the runtime for this program (i.e. the encoding
range for RAM objects, constant closures, etc). The “.h”
file also defines initialized tables containing the program’s
byte-code, constants, etc.

PICBIT’s analyses, transformations and code generation
are different from BIT’s. In particular:

• The compiler eliminates useless variables. Both lexical
and global variables are subject to elimination. Nor-
mally, useless variables are rare in programs. How-
ever, the compiler performs some transformations that
turn many variables into useless ones. Namely, constant
propagation and copy propagation, which replace refer-
ences to variables that happen to be bound to constants
and to the value of immutable variables, respectively.
Variables that are not read and that are not set un-
safely (e.g. mutating a yet undefined global variable)
are deemed useless.

• Programs typically contain literal constant values. The
compiler also handles closures with no nonglobal free
variables as constants (this is possible because there is
a single instance of the global environment). Note that
all library procedures and typically most or all top-level
user procedures can be treated like constants. This way
globally defined procedures can be propagated by the
compiler’s transformations, often eliminating the need
for the global variable they are bound to.

• The compiler eliminates dead code. This is impor-
tant, because the R4RS runtime library is appended to
the program and the compiler must try to discard all
the library procedures that are unnecessary. This also
eliminates constants that are unnecessary, which avoids
wasting object encodings. The dead code elimination
is based on a rather simplistic test: the value of a vari-
able that is read for a reason other than being copied
into a global variable is considered to be required. In
practice, the test has proved to be precise enough.

• The compiler determines which variables are live at
return points, so that only those variables are saved
in the continuations created. Similarly, the environ-
ments stored into closures only include variables that
are needed by the body of the closures. This makes

(define (make-list n x)

(if (<= n 0)

’()

(cons x (make-list (- n 1) x))))

(define (f lst)

(let* ((len (length lst))

(g (lambda () len)))

(make-list 100 g)))

(define (many-f n lst)

(if (<= n 0)

lst

(many-f (- n 1) (f lst))))

(many-f 20000 (make-list 100 #f))

Figure 2: Program that requires the safe-for-space property.

continuations and closures safe-for-space. It is particu-
larly important for an embedded system to be safe-for-
space. For example, an innocent-looking program such
as the one in Figure 2 retains a considerable amount
of data if the closures it generates include unnecessary
variables. PICBIT has no problem executing it.

7 EXPERIMENTAL RESULTS

To evaluate performance we use a set of six Scheme programs
that were used in our previous work on BIT.

empty Empty program.

thread Small multi-threaded program that manages 3 con-
current threads with call/cc.

photovore Mobile robot control program that guides the
robot towards a source of light.

all Program which references each Scheme library proce-
dure once. The implementation of the Scheme library
is 737 lines of Scheme code.

earley Earley’s parser, parsing using an ambiguous gram-
mar.

interp An interpreter for a Scheme subset running code to
sort a list of six strings.

The photovore program is a realistic robotics program
with soft real-time requirements that was developed for the
LEGO MINDSTORMS version of BIT. The source code is
given in Figure 3. The other programs are useful to deter-
mine the minimal space requirements (empty), the space re-
quirements for the complete Scheme library (all), the space
requirements for a large program (earley and interp), and
to check if multi-threading implemented with call/cc is fea-
sible (thread).

We consider earley and interp to be complex applica-
tions that are atypical for microcontrollers. Frequently, mi-
crocontroller applications are simple and control-oriented,
such as photovore. Many implement finite state machines,
which are table-driven and require little RAM. Applica-
tions that may require more RAM are those based on



; This program was originally developed for controlling a LEGO

; MINDSTORMS robot so that it will find a source of light on the floor

; (flashlight, candle, white paper, etc).

(define narrow-sweep 20) ; width of a narrow "sweep"

(define full-sweep 70) ; width of a full "sweep"

(define light-sensor 1) ; light sensor is at position 2

(define motor1 0) ; motor 1 is at position A

(define motor2 2) ; motor 2 is at position C

(define (start-sweep sweeps limit heading turn)

(if (> turn 0) ; start to turn right or left

(begin (motor-stop motor1) (motor-fwd motor2))

(begin (motor-stop motor2) (motor-fwd motor1)))

(sweep sweeps limit heading turn (get-reading) heading))

(define (sweep sweeps limit heading turn best-r best-h)

(write-to-lcd heading) ; show where we are going

(if (= heading 0) (beep)) ; mark the nominal heading

(if (= heading limit)

(let ((new-turn (- turn))

(new-heading (- heading best-h) ))

(if (< sweeps 20)

(start-sweep (+ sweeps 1)

(* new-turn narrow-sweep)

new-heading

new-turn)

; the following call is replaced by #f in the modified version

(start-sweep 0

(* new-turn full-sweep)

new-heading

new-turn)))

(let ((reading (get-reading)))

(if (> reading best-r) ; high value means lots of light

(sweep sweeps limit (+ heading turn) turn reading heading)

(sweep sweeps limit (+ heading turn) turn best-r best-h)))))

(define (get-reading)

(- (read-active-sensor light-sensor))) ; read light sensor

(start-sweep 0 full-sweep 0 1)

Figure 3: The source code of the photovore program.

multi-threading and those involved in data processing such
as acquisition, retransmission, and, particularly, encoding
(e.g. compressing data before transmission).

7.1 Platforms

Two platforms were used for experiments. We used a Linux
workstation with a a 733 MHz Pentium III processor and
gcc version 2.95.4 for compiling the C program generated
by PICBIT. This allowed quick turnaround for determin-
ing the minimal RAM required by each program and direct
comparison with BIT.

We also built a test system out of a PIC18F6720 micro-
controller clocked with a 10 MHz crystal. We chose the
PIC18F6720 rather than the PIC18F6520 because the larger
RAM and ROM allowed experimentation with RAM sizes
above 2 kilobytes and with programs requiring more than 32
kilobytes of ROM. Note that because of its smaller size the
PIC18F6520 can run 4 times faster than this (i.e. at 10 MIPS

with a 40 MHz clock). In the table of results we have extrap-
olated the time measurements to the PIC18F6520 with a 40
MHz clock (i.e. the actual time measured on our test system
is 4 times larger). The ROM of these microcontrollers is of
the FLASH type that can be reprogrammed several times,
making experimentation easy.

C compilation for the PIC was done using the Hi-Tech
PICC-18 C compiler version 8.30 [5]. This is one of the best
C compilers for the PIC18 family in terms of code genera-
tion quality. Examination of the assembler code generated
revealed however some important weaknesses in the context
of PICBIT. Multiplying by 3, for computing the byte ad-
dress of a 24 bit cell, is done by a generic out-of-line 16 bit
by 16 bit multiplication routine instead of a simple sequence
of additions. Moreover, big switch statements (such as the
byte-code dispatch) are implemented with a long code se-
quence which requires over 100 clock cycles. Finally, the C
compiler reserves 234 bytes of RAM for internal use (e.g. in-
termediate results, parameters, local variables) when com-



PICBIT BIT

Min Byte- ROM Min Byte-

Program LOC RAM code req. RAM code

empty 0 238 963 21819 2196 1296

photovore 38 294 2150 23050 3272 1552

thread 44 415 5443 23538 2840 1744

all 173 240 11248 32372 2404 5479

earley 653 2253 19293 35329 7244 6253

interp 800 1123 17502 35525 4254 7794

Table 2: Space usage in bytes for each system and program.

piling the test programs. Note that we have taken care not
to use recursive functions in PICBIT’s runtime, so the C
compiler may avoid using a general stack. We believe that a
hand-coding of the system in assembler would considerably
improve performance (time and RAM/ROM space) but this
would be a major undertaking due to the complexity of the
virtual machine and portability would clearly suffer.

7.2 Memory Usage

Each of the programs was compiled with BIT and with
PICBIT on the Linux workstation. To evaluate the com-
pactness of the code generated, we measured the size of the
byte-code (this includes the table of constants and the ROM
space they occupy). We also determined what was the small-
est heap that could be used to execute the program without
causing a heap overflow. Although program execution speed
can be increased by using a larger heap it is interesting to
determine what is the absolute minimum amount of RAM
required. The minimum RAM is the sum of the space taken
by the heap, by the GC mark bits, by the Scheme global
variables, and the space that the PICC-18 C compiler re-
serves for internal use (i.e. 234 bytes). The space usage is
given in Table 2. For each system, one column indicates the
smallest amount of RAM needed and another gives the size
of the byte-code. For PICBIT, the ROM space required on
the PIC when compiled with the PICC-18 C compiler is also
indicated.

The RAM requirements of PICBIT are quite small. It is
possible to run the smaller programs with less than 512 bytes
of RAM, notably photovore which is a realistic application.
RAM requirements for PICBIT are generally much smaller
than for BIT. On earley, which has the largest RAM re-
quirement on both systems, PICBIT requires less than 1/3
of the RAM required by BIT. BIT requires more RAM than
is available on the PIC18F6520 even for the empty program.

The size of the byte-code and constants is up to 3 times
larger for PICBIT than for BIT. The largest programs
(earley and interp) take a little more than 32 KB of
ROM, so a microcontroller with more memory than the
PIC18F6520 is needed. The other programs, including all

which includes the complete Scheme library, fit in the 32 KB
of ROM available on the PIC18F6520.

Under the tight constraints on RAM that we consider
here, even saving space by eliminating Scheme global vari-
ables is crucial. Indeed, large programs or programs that
require the inclusion of a fair part of the standard library
use many global variables. Fortunately, the optimizations
performed by our byte-compiler are able to remove almost

Program In sources After UFE After UGE
empty 195 0 0
photovore 210 43 0
thread 205 92 3
all 195 195 1
earley 231 142 0
interp 302 238 2

Table 3: Global variables left after each program transfor-
mation.

RAM Total Avg. GC Avg. GC
size run time interval pause time
512 84 0.010 0.002
1024 76 0.029 0.005
1536 74 0.047 0.007
2048 74 0.066 0.009
2560 74 0.085 0.011
3072 74 0.104 0.013

Table 4: Time in seconds for various operations as a function
of RAM size on the photovore program.

all of them. Table 3 indicates the contribution of each pro-
gram transformation at eliminating global variables. The
first column indicates the total number of global variables
found in the user program and the library. The second one
indicates how many remain after useless function elimination
(UFE). The third one indicates how many remain after use-
less global variables have been eliminated (UGE). Clearly,
considerable space would be wasted if they were kept in the
executable.

7.3 Speed of Execution

Due to the virtual machine’s use of dynamic memory al-
location, the size of the RAM affects the overall speed of
execution even for programs that don’t perform explicit al-
location operations. This is an important issue on a RAM
constrained microcontroller such as the PIC. Garbage collec-
tions will be frequent. Moreover, PICBIT’s blocking collec-
tor processes the whole heap at each collection and thereby
introduces pauses in the program’s execution that deterio-
rate the program’s ability to respond to events in real-time.

We used photovore, a program with soft real-time require-
ments, to measure the speed of execution. The program was
modified so that it terminates after 20 sweep iterations. A
total of 2791008 byte-codes are executed. The program was
run on the PIC18F6720 and an oscilloscope was used to mea-
sure the total run time, the average time between collections
and the average collection pause. The measures, extrapo-
lated to a 40 MHz PIC18F6520, are reported in Table 4.

This program has few live objects throughout its execu-
tion and all collections are evenly spaced and approximately
the same duration. The total run time decreases with RAM
size but the collection pauses increase in duration (because
the sweep phase is proportional to the heap size). The du-
ration of collection pauses is compatible with the soft real-
time constraints of photovore even when the largest possible



RAM size is used. Moreover the collector consumes a rea-
sonably small portion (12% to 20%) of the total run time,
so the program has ample time to do useful work. With the
larger RAM sizes the system executes over 37000 byte-codes
per second.

The earley program was also tested to estimate the du-
ration of collection pauses when the heap is large and nearly
full of live objects. This program needs at least 2253 bytes of
RAM to run. We ran the program with slightly more RAM
(2560 bytes) and found that the longest collection pause is
0.063 second and the average time between collections is
0.085 second. This is acceptable for such an extreme situ-
ation. We believe this to be a strong argument that there
is little need for an incremental collector in such a RAM
constrained system.

To compare the execution speed with other systems we
used PICBIT, BIT, and the Gambit interpreter version 3.0
on the Linux workstation to run the modified photovore

program. PICBIT and BIT were compiled with “-O3” and
a 3072 byte RAM was used for PICBIT, and a 128 kilo-
byte heap was used for BIT (note that BIT needs more than
3072 bytes to run photovore and PICBIT can’t use more
RAM than that). The Gambit interpreter used the default
512 kilobyte heap. The run time for PICBIT is 0.33 sec-
ond. BIT and Gambit are respectively 3 times and 5 times
faster than PICBIT. Because of its more advanced virtual
machine, we expected PICBIT to be faster than BIT. After
some investigation we determined that the cause was that
BIT is performing an inlining of primitives that PICBIT is
not doing (i.e. replacing calls to the generic “+” procedure
in the two argument case with the byte-code for the binary
addition primitive). This transformation was implemented
in an ad hoc way in BIT (it relied on a special structure
of the Scheme library). We envision a more robust trans-
formation for PICBIT based on a whole-program analysis.
Unfortunately it is not yet implemented. To estimate the
performance gain that such an optimization would yield, and
evaluate the raw speed of the virtual machines, photovore’s
source code was modified to directly call the primitives. The
run time for PICBIT dropped to 0.058 second, making it
slightly faster than Gambit’s interpreter (at 0.064 second)
and roughly twice the speed of BIT (at 0.111 second). The
speed of PICBIT’s virtual machine is quite good, especially
when the small heap is taken into account.

8 CONCLUSION

We have described PICBIT, a system intended to run
Scheme programs on microcontrollers of the PIC family. De-
spite the PIC’s severely constrained RAM, nontrivial Scheme
programs can still be run on the larger PIC models. The
RAM space usage and execution speed is surely not as good
as can be obtained by programming the PIC in assembly lan-
guage or C, but it is compact enough and fast enough to be
a plausible alternative for some programs, especially when
quick experimentation with various algorithms is needed.
We think it is an interesting environment for compact soft
real-time applications with low computational requirements,
such as hobby robotics, and for teaching programming.

The main weaknesses of PICBIT are its low speed and
high ROM usage. The use of a byte-code interpreter, the

Figure 4: Heap occupancy during execution of interp.

very compact style of the library, and the intricate object
representation are all contributors to the low speed. This is
a result of the design choices that strongly favor compact-
ness. The use of a byte-code interpreter allows the micro-
controller to run large programs that could not be handled
if they were compiled to native code. The library makes ex-
tensive use of higher-order functions and code factorization
in order to have a small footprint. Specialized first-order
functions would be faster at the expense of compactness.
The relatively high ROM space requirements are a bit of
a disappointment. We believe that the runtime could be
translated into more compact native code. Barring changes
to the virtual machine, improvements to the C compiler or
translation by hand to assembler appear to be the only ways
to overcome this problem.

PICBIT’s RAM usage is the most satisfactory aspect of
this work but many improvements can still be made, espe-
cially to the byte-compiler. The analyses and optimizations
that it performs are relatively basic. Control-flow, type, and
escape analyses could provide the necessary information for
more ambitious optimizations, such as inlining of primitives,
unboxing, more aggressive elimination of variables, conver-
sion of heap allocations into static or stack allocations, strip-
ping of useless services in the runtime, etc. The list is end-
less.

As an instance of future (and simple) improvement, we
consider implementing a compact representation for strings
and vectors intended to flatten the trees used in their repre-
sentation. The representation is analogous to CDR-coding:
when many consecutive cells are available, a sequence of
leaves can be allocated one after the other, avoiding the need
for linkage using interior nodes. The position of the objects
of a sequence is obtained by pointer arithmetics relatively
to a head object that is intended to indicate the presence of
CDR-coding. Avoiding interior nodes both increases access
speed and saves space. Figure 4 illustrates the occupancy of
the heap during the execution of interp. The observations
are taken after each garbage collection. In the graph, time
grows from top to bottom. Addresses grow from left to right.
A black pixel indicates the presence of a live object. There
are 633 addresses in the RAM heap. The garbage collector
has been triggered 122 times. One can see that the distri-
bution of objects in the heap is very regular and does not
seem to deteriorate. Clearly, there are many long sequences
of free cells. This suggests that an alternative strategy for
the allocation of long objects has good chances of being suc-
cessful.
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