BIT: A Very Compact Scheme System for Embedded Applications

Danny Dubé
DIRO
Université de Montréal
dube@iro.umontreal.ca

Abstract

We present an implementation of Scheme for microcontroller
that is very compact and includes a real-time garbage col-
lector. The compiler, which runs on a normal workstation,
produces byte-code from the source program and the byte-
code is linked with a runtime module. With this system,
we demonstrate that it’s clearly possible to run Scheme pro-
grams on a microcontroller with 64 KB of memory such as
the Motorola 68HC11. Executables that include the whole
library can be as little as 22 KB. As a secondary result, the
research on memory management for this system brought us
to create a space-efficient real-time GC algorithm.

1 Introduction

Embedded applications are often implemented by program-
ming microcontrollers in assembly language. Indeed this
provides a high degree of control on the microcontroller and
fast and compact code for simple applications. However this
approach becomes tedious and error prone for more com-
plex applications. For this reason, compilers for higher-level
languages such as Basic, C and Forth have been designed
for microcontrollers. The goal of our work is to show that
Scheme is also a viable alternative for programming micro-
controllers.

To better understand the implementation difficulties and
narrow down the contextual parameters, we will pick a popu-
lar microcontroller family as a target: the Motorola 68HC11.
This controller typically runs at a clock speed of less than 5
MHz, it has a 64 KB address space (ROM and RAM com-
bined), up to 40 I/O pins, five 16 bit registers of which only
one is general purpose, and no floating-point operations.

Copyright (©2000 by the Association for Computing Ma-
chinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or
distributed for profit or direct commercial advantage and
that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publica-
tions Dept., ACM Inc., fax +1 (212) 869-0481, or (permis-
sions@acm.org).

Clearly, coping with the very tight memory constraint is
one of the main problems we face; it implies compact run-
time system, encoding of the Scheme program, and object
representation. Also, since the main application of micro-
controllers is to control or monitor other devices, our system
must have good real-time behavior, that is it must not make
unduly long or unpredictable pauses in the computation, in
particular when garbage collecting.

The subset of Scheme that we target is R*RS (see [2])
with the following exclusions. Port-based textual I/O op-
erations are removed since they don’t make sense anymore.
Numbers are restricted to fiznums because the chip itself
isn’t intended for numerically intensive tasks, it doesn’t sup-
port floating points numbers, and the complete Scheme nu-
merical library is quite big. Error checking isn’t performed.
Indeed, our system is not interactive and there is normally
no way to report the error. So we assume the program is
error free. Our subset does include first-class continuations
(which are useful for multi-threading), garbage collection,
and proper treatment of tail recursion. We don’t aim to
have a very fast implementation; we simply wish to obtain
an implementation that has the same asymptotic complexity
as those of a good implementation.

Numerous issues must be considered in the design of a
very compact Scheme implementation. We begin in Sec-
tion 2 by presenting our byte-compiler with emphasis on
points related to compactness. In Section 3 we discuss the
representation of objects. Our real-time garbage collector
is described in Section 4. We describe the virtual machine
in Section 5. Finally, Section 6 presents some experimental
results.

2 The byte-compiler

To avoid run-time overhead, our system performs a com-
pilation phase on a normal workstation which produces an
executable that is then transferred to the microcontroller.
The executable is composed of a byte-code sequence and a
kernel which can execute this byte-code. The byte-code is
generated from the source program and selected parts of the
Scheme library. The kernel provides the garbage collector
and the byte-code interpreter, which only includes the most
basic Scheme functions.

This section presents the byte-compiler which performs
the compilation phase. We first give an overview of the
compiler and then give more details on the parts that ad-
dress compactness of the resulting executable. Namely, the
Scheme library, the processing of constants and the initial

prog.scm

byte-code
compiler

C
compiler

Figure 1: Compilation process of prog.scm.

int bytecode_len = 2594;
unsigned char bytecodel[]l = {
4, 93, 8, 94, 51, 4, 75, 8, 95, 51, 4, 74,
8, 96, 51, 4, 55, 8, 97, 51, 4, 54, 8, 98

26, 37, 36, 52, 92, 43, 15, 37, 36, 4, 87, 62,
92, 17};

int const_desc_len = 27;
unsigned char const_desc[] = {
o, 2, 52, 0, 1, 48, 52, 0, 12, 72, 101, 108,
108, 111, 32, 119, 111, 114, 108, 100, 33, 0, 2, O,
0, 0, 1k

int nb_scm_globs = 100;
int scm_globs[] = {

45, -24, 50, 57, -11, 71, 136, 150,
-3, -36, 212, 290, -16, 316, -18, -17,
-9, -8, -39, 2546, 2552, 2585, -1, -1,

-1, -1, -1, -1};

Figure 2: C file produced by the byte-compiler for the “Hello
world!” program.

value of variables. The details of the byte-code are pre-
sented independently in the section on the virtual machine
(Section 5).

2.1 Overview

Figure 1 shows the compilation process of a Scheme source
program (prog.scm). The program can be written in nor-
mal R*RS Scheme without other constraints other than the
restrictions to the language that we mentioned in the intro-
duction. The file produced by the byte-compiler is actually a
C file containing three declarations of array and their length.
Those contain: the byte-code, the constant descriptors, and
the global variable descriptors. Figure 2 shows an abstract
of the file generated for the Scheme source':

(display "Hello world!")

(newline)

Here’s a brief description of the steps performed by the

byte-compiler:

e Reading of the program.
e Removal of the syntactic sugar.

e Transformation of the program into a node-based ab-
stract syntax tree (AST).

e Inclusion of the required library functions.

e Traversal of the AST:

1 This program uses functions that are not supposed to be sup-
ported by our implementation. Still, we included simplified versions
of write, display, and newline to make tests during the development.

— Gathering of the constants.

Identification of the variable declaration for each
variable access.

Checking for the mutability of the global vari-
ables.

— Counting of the parameters and checking for a
rest parameter.

e Assignment of the initial value of certain variables.

e Another traversal of the AST:

— Propagation of the initial value of known variables
to variable references.

— Optimization, when possible, of call sites.

o Assignment of an index to each global variable.
e Generation of the byte-code.
e Generation of the constant descriptors.

e Generation of the global variable descriptors.

2.2 The Scheme library

The library file 1ib.scm has a special format. It doesn’t
follow the syntax of Scheme programs. It’s divided in four
sections. Each section has a different purpose.

e The first section declares the name of each primitive
Scheme function that is provided by the runtime kernel
and its index. It helps to maintain the consistency
between the list of functions provided by the kernel
and the one expected by the library. Each declaration
is a dotted pair containing a symbol and an integer.

e The second section contains the definition of functions
used internally by the library. The names introduced
here are hidden to the source program.

e The last two sections contain functions that are visible
to the source program. The difference between both is
that the last contains only standard functions. In these
sections, a symbol appearing alone at the top level
indicates that this is a function declared in a previous
section and that it’s visible to the user’s program.

In the last three sections, the syntax is restricted to func-
tion declarations and alias declarations. Function declara-
tions have the form:

(define (name) (A-expression))
and alias declarations:

(define (name) (name))
Note that the value of each global variable of the library is
either a primitive function or a closure with an empty envi-
ronment. This regularity can be exploited to save space, as
we explain in Section 2.4.

Functions of the library are included with the source pro-
gram according to its needs. The inclusion rule is quite sim-
ple: every global variable that is accessed (read or written)
by the program and that is also a visible name of the library
causes the inclusion of the corresponding function. Inclu-
sion is done transitively in the library according to function
dependencies.

Conceptually, the library has a separate name space from
the program. That is, references to the name cons in the

library and in the program don’t resolve to the same vari-
able. This is important to guarantee correct execution of
the library functions even if the program modifies its global
variables. Nevertheless, modifications of the variables con-
taining library functions are rare. So if we detect that the
program doesn’t modify one of its variables, we fold it with
its library counterpart.

Since a sizeable part of the library typically gets included
with programs, its length is important. The library is writ-
ten in a very concise style. For example, the functions memq,
memv, and member, when called, simply call the parame-
terized function general-member with the same parameters
plus an appropriate comparison operator. Similarly, many
n-ary functions, such as +, are implemented as a list folding
using a binary operation.

2.3 Literal constants

Our implementation manipulates two categories of Scheme
objects: immediate and allocated. Immediate objects don’t
have to be allocated in the heap and there are byte-code in-
structions that create them directly. Numbers and booleans
are immediate objects. Allocated objects reside in the heap
and their creation involves calling a memory allocation func-
tion. Pairs and vectors are allocated objects. We concen-
trate here on the allocated ones.

Constants present in the program have to be communi-
cated to the executable so that they are available when their
corresponding expression gets evaluated.

We considered three methods to create the constants at
run time.

e Each constant expression is replaced by a reference to
a new variable. Extra Scheme definitions are added at
the beginning of the program to build the constants
and store them in the appropriate variables.

e An image of the heap already containing the constants
is integrated with the executable. No building code is
necessary. Constant expressions are compiled as sim-
ple “get constant” instructions with an index.

e A description of the constants, which is a string, is in-
tegrated with the executable. At the start of the pro-
gram, some interpretation function decodes the string
and builds the constants. Simple access instructions
get the constants when necessary.

The first method has the disadvantage of making the ex-
tra construction code and the constants themselves coexist.
This is a waste of space. The other two can dispose of the
description of the constants either by making it the initial
heap or by discarding it once the constants are built.

The second method implies that the compiler is aware of
the object representation in the runtime down to the individ-
ual bits. It’s more complicated to implement and maintain.
The other two methods isolate the compiler from the choices
of representation in the runtime kernel.

The third method requires some machinery while the sec-
ond doesn’t. Still, this machinery is relatively small and
doesn’t depend on the total size of the constants the way
the first method does. It’s the method that we use.

The encoding process is the following: each constant is
decomposed into individual objects; each distinct object has
an index (this implements sharing between identical con-
stants); objects are ordered in topological order (children
first); information is kept to remember which objects “are”

program constants by themselves; finally, the description
string is produced. The string contains: the number of ob-
jects, the description of each object, the number of con-
stants, the index of the objects that are program constants.
Given this encoding, it’s easy to see that the construction
process done at run time is extremely simple.

2.4 Initial value of variables

Our compiler tries to statically discover the initial value of
some variables. This allows various optimizations to be per-
formed.

The only variables for which the compiler searches the
value are the global variables introduced by the library. The
first reason for this is that it’s very easy with these variables.
Second, we always obtain an important gain in space with
these variables while it may not necessarily be the case with
the other variables.

The first gain comes from a special compilation of the
library code. Note that, because of the special syntax used in
the library, it contains only definitions, and the expressions
contained in these definitions can only be variable references
or simple lambda-expressions. The result of evaluating the
library code is simply to have a number of variables defined.
Since it’s possible to statically determine what function is
contained in each variable, we can omit the code performing
the evaluation of each definition’s expression. Moreover, the
code initializing each definition’s variable can be omitted too
because we can arrange for each global variable to contain
the proper initial value. So our byte-compiler produces byte-
code only for the body of the closures and, when it outputs
the global variables as a C array, it specifies the initial value
of each variable. This is in fact a description of the initial
value: a small negative integer for a primitive function, —1
for false, or a positive integer which is the entry point of a
closure’s body.

The second benefit comes from the optimization of cer-
tain calls. If a call, either in the library or in the program,
uses a known library function, then the operator expres-
sion no longer needs to be evaluated and a direct call to the
function is made. Certain more aggressive optimizations are
performed when some conditions are met. For example, the
operator in the expression (+ x y) is optimized if the vari-
able + isn’t mutated. The call becomes a direct invocation
of the primitive function that adds two numbers.

3 Scheme object representation

Even if it doesn’t influence the size of the executable, the
object representation is of great importance due to the small
memory. A more compact representation can fit more ob-
jects in the heap and so, allows our implementation to run
a broader range of programs.

We consider four issues: the representation of the objects
and their type, of the symbols, of the continuations, and of
the environments. In each case, we present different options
and conclude with our choice.

3.1 The objects and their type

The choices in the representation of the type and value of
the objects are almost unlimited (see [5]). We only consider
four different “pure” representations.

The uniform representation. All objects are heap-allo-
cated. An object reference is the address where it’s

allocated. Every object has an extra field that indi-
cates its type. An advantage is that basic operations
(readings, writings, type tests and GC operations) on
the objects are very simple and similar from type to
type. Their implementation can be shared by all types
and parameterized by the type of the objects.

The tagged pointer representation. For alignment and
memory partitioning reasons, the addresses of heap-
allocated objects may have some bits at known values.
These bits can be used to encode type information.
Moreover, certain bit patterns may indicate that the
object reference is in fact an immediate value. This
way, not all types need to be heap-allocated. It results
in space savings. Sometimes, however, there aren’t
enough bit patterns for all the types and objects of
certain types need an extra-field to encode a sub-type.
Tagging strategies are often complex and basic opera-
tions are implemented differently for most types.

Representation of types by zones. The heap is divided
in zones with one zone for each type. Individual ob-
jects don’t have to carry type information. The type
is recovered from the address of the object by iden-
tifying the zone in which it’s located. We estimate
that this representation can be very compact: almost
all the heap space can serve as “useful” fields. Un-
fortunately, it seems to be very difficult to integrate
that representation with a real-time garbage collector
without falling into a very complex management.

Representation of types by pages. The heap is divided
in pages of equal size. Each page contains only objects
of the same type. The type is recovered by rounding
the address of an object down to the previous page
boundary and obtaining the page’s type. This repre-
sentation has the same advantages and disadvantages
as the representation by zones. Additionally, we have
to deal with the presence of long objects such as strings
and vectors, which should be allowed to be longer than
a page.

We consider that the tagged representation is better than
the uniform representation. This is because of the immedi-
ate objects. After a few hundred objects are created, the
gain in space due to immediate objects is likely to compen-
sate for the more complex implementation of the operators.
We didn’t find any satisfying solution using one of the last
two representations. So our implementation uses a tagged
representation.

Figure 3 shows the actual tagging chosen for our im-
plementation. The 0 and 1 digits are the tags. An N bit
represents immediate information, that is, part of a number
or index. An A bit represents a part of an address®>. An X
bit indicates that the value isn’t important. It’s put to 1 in
our implementation. Three of the types cannot be encoded
directly in the reference. They need sub-typing information.
So, some bits of the first field of those objects are tagged.
The R bits encode a return address in the byte-code. The L
bits indicate the length of a variable-sized object.

The domain of the integers is —16384 to 16383. It’s even
more restricted than what one would expect on a 16 bit
microcontroller but it’s the best we can do without allocat-
ing the integers in the heap. There can exist at most 8192
heap-allocated objects. This is more than enough given the

2The A bits don’t exactly represent an address. In fact, they encode
the index of the handle to the object (see Section 4).

Type Representation
Integers NNNNNNNNNNNNNNN1
Pairs OOAAAAAAAAAAAAAQ
Closures O1AAAAAAAAAAAAAQ
Other heap-allocated types | 10AAAAAAAAAAAAAQ
Symbols 11NNNNNNNNNNNN1O
Characters 11XXNNNNNNNNOOOO
Kernel functions 11NNNNNNNNNNO100
Booleans 11XXXXXXXXXN1000
Empty list 11XXXXXXXXXX1100
Sub-type First field
Continuations RRRRRRRRRRRRRRR1
Vectors LLLLLLLLLLLLLLOO
Strings LLLLLLLLLLLLLL10

Figure 3: Tags in our implementation.

maximum size of the heap except for the pairs in certain
circumstances. In the worst case, the number of references
could be a limiting factor in the allocation of pairs. 4096
symbols can be represented, which is a large limit. The
other immediate types are completely covered. The encod-
ing of the first field of the continuations indirectly creates a
limit of 32768 on the size of the byte-code. As we show later,
this limit is reasonable since the byte-code is very compact.
Vectors and strings are limited to a length of less than 8192
fields.

3.2 Symbols

There are some interesting possibilities with the symbols.
First, it isn’t clear whether we should represent symbols as
objects having a field for a name. Second, if we want to
be able to compare symbols efficiently, we have to maintain
their uniqueness. This requires some kind of table with the
names of all the symbols. Third, symbols aren’t removed
from this table. Knowing that, we consider the following
representations:

e A symbol is a two-field object: one reference to its
name and one link to the next symbol in the table. The
whole table is a kind of list of strings but its skeleton
is made of symbols instead of pairs.

e A symbol is a variable-sized object that directly con-
tains its name (plus a link).

e A symbol is a simple index in a table of names. This
way, the symbol becomes a non-allocated object and
the table of names can be represented compactly as,
for instance, a vector of strings.

The second option is the least interesting because varia-
ble-sized objects are heavy to manipulate. It’s better to
avoid creating such a new type. The third option saves a
field per symbol compared to the first one and is as compact
as the second. Also, it introduces no new allocated type. So
we adopt that representation for the symbols.

There’s a little problem with the third representation
as it’s been presented. In order for it to be as compact
as the second representation, the table of names has to be
full. Otherwise, it’s less compact. The problem with a full
table is that each time a new symbol is to be created, the
table has to be extended to contain the new name. Creating

a longer vector and copying its content each time a new
symbol appears is quite inefficient. So, in practice, each
time the vector is full, we replace it by a vector that is 4/3
times longer. This strategy makes our representation a little
bit less space-efficient than the second, but the loss can be
reduced by changing the ratio.

3.3 Continuations

We consider three possibilities for the representation of con-
tinuations. First, a continuation can be represented by a
stack. When call/cc is called, a copy of the stack is cre-
ated in the heap. Second, the source can be CPS-converted
(see [7]). The reification of the current continuation becomes
natural and there are no concrete continuation types to im-
plement. Third, a continuation can be an ad hoc structure
that saves the current state of computation.

The stack implementation doesn’t allow the sharing of
common parts between different continuations. At least not
in a simple implementation. Since we decided to keep contin-
uations mostly to allow multi-threading, the representation
should be efficient. The CPS-conversion has a tendency to
increase the size of programs, which isn’t desirable. So we
use an ad hoc structure. It’s a fixed-sized object able to save
the registers of the virtual machine executing the byte-code
(see Section 5). Among the registers that are saved, there
is the one that contains the current continuation. So, con-
ceptually, the continuation is a chain of these fixed-sized ad
hoc objects. Programs are left in direct style.

3.4 Environments

Due to their central role, environments need to be repre-
sented efficiently. Note that we don’t consider global vari-
ables, only local ones. Here are some representations.

Associative lists. It’s the simplest representation to use
in a Scheme interpreter. However, they aren’t space
efficient since they carry identifiers unnecessarily. In a
compiled system like ours, identifiers can be discarded
completely.

Lists. It’s also a very simple implementation. It takes one
pair per variable. Each access to a variable is made
using a position in the list.

Blocks of bindings. It’s possible to do better than what
lists do and still have a very simple implementation.
We can take advantage of simultaneous bindings like
those of a let expression to group the bound variables
together in a block. Access to variables are made using
the number of binding levels (or blocks) and the posi-
tion in the block. Single-variable bindings can still be
represented by pairs and multi-variable bindings can
be represented by vectors. The representation with
vectors is more compact than with a sequence of pairs
in case of multi-variable bindings.

Blocks of bindings with display. Instead of only a link
to the next block, we can have a display, and thus
have a link to every surrounding binding block. Access
to variables can always be done in constant time, no
matter the lexical distance. Still, this representation,
compared to simple blocks of bindings, only improves
the speed. In space requirements, it can only be worse.

Flat representation of closures. The advantage of this
representation is the selection of the variables to keep

(define make-thunkl (define make-thunk2

(let ((a (£f1 1)) (lambda (a)
(b (£2 2)) (let* ((b (f1 a))
(c (£3 3))) (c (£2 b))
(lambda (d) (d (£3 ©)))
(lambda () (lambda () (g d)))))

(list a b ¢ d)))))

Figure 4: Thunks with different environments.

in the environment (see [4]). On the other hand, a
new block of variables is created each time a closure
is. Moreover, it isn’t a representation for general en-
vironments since it can only represent the definition
environments of closures. A representation for invoke-
time bindings still has to be present.

Of the first four representations, the one using simple
binding blocks is clearly the best. Unfortunately, the fifth
representation is incomparable with the others. Figure 4
shows two functions that create thunks. The thunks pro-
duced by the first function have a more compact represen-
tation using blocks. Those produced by the second, using
flat closures. In the first case, it’s the sharing of the blocks
between environments that is advantageous. In the second,
it’s the selection of variables.

We prefer the representation with blocks because it’s sim-
pler, complete and doesn’t require a new data type.

4 Garbage collection

Implementing a real-time garbage collector is quite a chal-
lenge and on a microcontroller even more so. We will first
discuss about special requirements on the memory manager.
We then give an overview of the technique we designed.

4.1 Requirements

The fact that the microcontroller doesn’t have much mem-
ory means that the heap is quite small. It’s tempting to
assume that a blocking GC on such a small heap would be
fast enough. But microcontrollers like ours aren’t very fast.
A complete GC cycle may provoke pauses that are too long
for many control tasks. So we need a true real-time GC in
order to provide a really useful system.

Our GC must compact live data in some way. We cannot
afford to let the fragmentation ruin the possibilities of allo-
cation of long objects. For example, it doesn’t take many
badly positioned small objects in a heap of 40 KB to block
the allocation of a string of only 400 characters: only 100.

Many real-time GC algorithms use two semi-spaces, that
is, the heap is separated in two halves. During the GC
cycle, live objects are transfered from a semi-space to the
other. The transfer has the effect of compacting the objects
together. This process avoids fragmentation from forming.
Still, the use of semi-spaces represents a serious waste of
space.

In fact, we didn’t find a real-time GC technique in the
literature that tries to minimize the waste of space. We
proposed a new GC technique that addresses exactly that
problem.

Before describing it, we give our definition of a real-time
memory manager. Of course, a real-time implementation
cannot execute every operation within a bounded amount
of time. Some of those are long operations, even when the

e VM
D | / handle
- % section
] pe— /
free o
handles storage
section

/
% -+ | pair .-+ | string
/

Figure 5: Sketch of the heap with handles.

GC doesn’t work at all. What we expect from a real-time
implementation is that an operation shouldn’t get longer by
an unpredictable amount of time.

More formally, let ¢ >= 1, T(op), the time required to
perform ‘op’ on a non-real-time system when the GC isn’t
invoked (in the ideal case), and RT(op), the time required to
perform ‘op’ on a real-time system (in the worst case), then
RT(op) < ¢ * T(op). This real-time property holds only if
the program doesn’t try to keep too many live objects. The
performance of any GC degrades when the heap is too full.

For information on GC in general, see [8].

4.2 Overview of the GC

Our GC technique (for a complete description, see [3]) is
basically an adaptation of a mark and compact blocking GC
using ideas from Brooks (see [1]). The first phase consists in
incrementally marking all the live objects of the heap. The
second compacts the marked objects by sliding them to the
bottom of the heap. The program continues to run while
the GC does its work.

One of the major difficulties in garbage-collecting while
the program continues to run is to update pointers to ob-
jects that are moved by the GC. Since an object may have
an arbitrary number of references to it, it’s impossible to
update them all at the moment the object is moved without
causing an important pause in the execution of the program.
A solution to this problem is to use handles.

A handle is a pointer that is unique to each object and
that always points to the current position of the object. All
“references” to an object go through its handle. The vir-
tual machine and the objects themselves don’t possess the
address of other allocated objects, they simply have the ad-
dress of their handle. This implies that read and write oper-
ations now require two memory accesses instead of one. On
the other hand, the handles allow the GC to move an object
and update all the references to it by changing the value of
its handle.

Figure 5 presents a sketch of the heap when our GC
is used. Handles are kept in a separate section. The true
content of the objects is located in the storage section. When
an object is created, sufficient space is reserved in the storage
section and a free handle is assigned to point to this space.
This handle remains the same as long as the object exists,
no matter how many times the object is moved. When an
object is collected, its handle is linked back into the chain
of free handles.

storage

I — section

Figure 6: Long objects are incrementally slid down.

Unfortunately, the handle section must have a fixed size.
Its size depends on the size of the smallest objects. In our
implementation, the fraction of the heap occupied by this
section is 1/5. Nevertheless, the space lost because of the
handle section is much smaller than the space lost in a two
semi-space heap.

The usage of handles eliminates the need for a read bar-
rier for short objects since the handles always point on their
object. However, a write barrier is still needed to avoid col-
lecting live objects. This a classic problem with real-time
garbage collectors. To solve it, we use a Dijkstra barrier.
The access to long objects is more complicated and read
and write barriers must be used. This is because the GC
cannot move a long object atomically. The object has to be
momentarily separated in two parts. During this time, ac-
cess to one of its fields is done either in the new (moved) part
or in the old (not yet moved) part. Figure 6 illustrates this
situation with a long object named O2. It has a new part
(02), an old part (02"), and a part (O2') that is currently
being slid atomically by the GC.

The sharing of the time between the program and the GC
is ruled by a time bank. It’s a counter indicating how much
work the GC can do before it has to give the control back to
the program. Each allocation adds some units to the time
bank. If the time bank is positive, the GC immediately goes
to work and so, until the bank is empty or negative. All the
work involved in a GC cycle is divided in small, constant-
time work units. The allocation of an object of length [
adds R x![time units to the bank, R being a constant, which
ensures that the program gets the control back after a pause
of O(l) time units. That makes the GC work in real-time.

The constant R is adjusted so that, by the time the rest of
the free space gets allocated, the GC completes its cycle. So,
in the worst case, the GC provides new free space exactly
when the current free space is exhausted. R is called the
GC'’s ratio of work. It’s a function of the maximal fraction
() of the heap that can be occupied by live objects. If it’s
known that the “live” heap occupation is never higher than
a, then R will always be sufficiently large. However, this is
only theory because, in practice, obtaining the fraction « is
too difficult. So, in our implementation, R is computed at
the beginning of every GC cycle and its value is sufficiently
high to guarantee that this cycle finishes in time.

5 The virtual machine

The development of our virtual machine was done in two
stages. The first machine is very simple. The second is
optimized so that the byte-code generated by the compiler
is much smaller. We will use the first one for most of the
explanations because it’s simpler.

5.1 A simple virtual machine

The first virtual machine has a few specialized registers: PC
is the index of the next instruction, VAL is the accumulator,

0 (description) Get immediate constant.

1 (index) Get allocated constant.

2-5 (operand;) [(operand.)] Read variable.
6-9 (operand;) [(operandz)] Write variable.
10 Make closure.

11 (address) Conditional jump.

12 (address) Unconditional jump.

13 (address) Save continuation.

14 Restore continuation.

15 Initialize argument list.

16 Push argument.

17 Apply.

18 (index) Apply kernel function.

19 Flush environment.

20-23 (size) Make binding block.

24 Stop.

25 Save argument list.

26 Restore argument list.

Figure 7: Instructions of the first virtual machine.
C*[(set! (var) (exp)) | =
o C[(exp) |
e Write variable (operand,;) [(operand,)]

e Restore continuation

Figure 8: Compilation rule for set! in terminal position.

ENV is the current environment, ARGS is the current list of
arguments, PREV_ARGS is a list of lists of arguments, CONT
is the current continuation.

Figure 7 shows the index and the name of the instruc-
tions of the machine. Some instructions have many indices.
This is because there are variants for local/global variables,
for short/long operands, and for blocks with/without a rest
parameter. Access to local variables are specified by “blocks
to jump over” and “position in the block” pairs of operands.
The second operand is omitted in certain cases: when the
designated block has only one variable, the second operand
can be assumed to be 0.

The compilation rules are quite straightforward. The
only part that is a little more sophisticated is the set of rules
for calls. It all depends on what we know about the operator:
we know nothing, or it’s a kernel function, a closure from the
library, or the direct result of a lambda-expression. Figure 8
shows one of the compilation rules. The C* and C functions
are the compilation functions in terminal and non-terminal
position, respectively.

5.2 The final machine

The final virtual machine has a different instruction set. We
don’t present every detail, just the main classes of modifi-
cations to the first machine:

e Specialized instructions. Some original instructions
are almost always used with the same operands. In
these cases, we created instructions that are special-
ized for those typical operands. For instance, 90% of
the local variables that are read are located in one
of these locations: (0, 0), (0, 1), (0, 2), (1, 0),
(1, 1), and (2, 0).

e Merged instructions. Some instructions always pre-
cede or follow some other instructions. For example,
the instruction “Save continuation” always precedes
the instruction “Initialize argument list”. So, an in-
struction that does both operations was created.

e New instructions; such as “Pop the first block from the
environment”.

o Automatic push. The instruction “Push argument” is
so frequent that we made it implicit. All instructions
that produce a value directly add it to the argument
list. An explicit “Pop argument” has to be done when
the pushed value isn’t desired.

This new virtual machine allows the byte-code to be
much more compact. We have two benchmarks: one is a
little program that forces the inclusion of all the library;
the other is a module taken from a bigger project (a parser
generator).

When they are compiled for the first virtual machine,
they both produce about 10 500 bytes of byte-code. When
they are compiled for the second machine, they produce
about 5400 and 5600 bytes, respectively. Also, it demon-
strates that our entire R*RS Scheme library fits in less that
5.5 KB of byte-code, which is surprisingly compact.

6 The actual implementation

Although our goal was to demonstrate that a Scheme im-
plementation for the 68HC11 is possible, we actually made
no tests directly on the chip.

6.1 The byte-code compiler

The byte-compiler is able to handle all the subset of Scheme
that we wanted to support. We didn’t really take care of
making it fast. Its speed is reasonable, though. In only
8 seconds, it’s able to compile Aubrey Jaffer’s test file for
Scheme implementations [10] while it’s interpreted by the
scm interpreter [9] which is running on a 150 MHz DEC Al-
pha. The test file is a 27 KB source, in which we commented
out the sections concerning I/0, bignum, and flonum func-
tions.

Only very minor additions to the byte-compiler are re-
quired to adapt to a real microcontroller. In fact, it only
needs additional primitive function declarations in the li-
brary corresponding to the addition of primitive functions
in the kernel. Those functions are necessary to actually con-
trol the chip.

Implementation Size of interpreter
fools 1.3.2 [12] 288 KB
minischeme 0.85 [13] 95 KB
scm 4el [9] 368 KB
siod 3.0 [14] 166 KB
bit (byte-code interpreter 72 KB

with full library)

Figure 9: Size of different small Scheme implementations.

6.2 The runtime system

A weakness of our current runtime is that it doesn’t proceed
with the creation of the constants the way it’s described in
Section 2.3: it doesn’t discard the description of the con-
stants. So, when the executable runs, it keeps both the
description and the constants themselves.

Also, the runtime kernel is written in C. Our system
requires a C compiler that produces executable code for the
microcontroller. As we mentioned above, additional kernel
functions are required to give to the executable the means
to control the chip. Still, it shouldn’t be that much work.
It would be a more important piece of work to translate the
kernel into assembly language in order to obtain an even
more compact executable.

6.3 Experiments

We made a test off-chip to verify if it is possible to fit our
executables on the 68HC11. We used a modified gcc com-
piler [11] that produces code for the 68HC11. The code that
it produces is poor. The main problem seems to be that gcc
expects many registers on the target machine. The 68HC11
has only one all-purpose register. So the back-end has to
pretend that there are enough registers and has to simulate
their existence using cells in memory.

Still, we obtained an executable of 22 KB for the kernel
and the complete library. Even if they are far from ideal,
the results allow us to conclude that integration into the
68HC11 is already possible. The same experiment on an
H8 (a microcontroller with more registers used in the Lego
Mindstorms robot) gave a 15KB executable.

We compared the size of our executables on a DEC Alpha
workstation with other “small” implementations. Figure 9
shows the results. The only implementation whose size is
close to ours is minischeme. But this implementation is
far from being R*RS compliant. These comparisons aren’t
necessarily fair, though, because the other implementations
are interactive interpreters. The bit byte-compiler fits in
72 KB with the full library but it doesn’t include an eval-
uation function to perform interaction. It is possible that
an adaptation of one of the other interpreters to an off-line
version might give good results.

Our implementation performs poorly when it comes to
time efficiency. It’s roughly 10 times slower than scm and 5
times slower than the Gambit interpreter (gsi [15]). While
we took care of the space-efficiency aspects, we didn’t bother
about the speed as long as it stayed reasonably (asymptot-
ically) efficient.

The main sources of inefficiency come from the memory
management and the virtual machine. First, even in the best
conditions, our GC is quite inefficient (see [6]). Second, we
don’t try to reduce the GC overhead by grouping the collec-
tion phases into coarser, less frequent phases. So the GC is

called during most of the allocations. Third, our virtual ma-
chine keeps the arguments of a call in a list. It means that a
pair must be allocated for each argument. Given that mem-
ory management is slow, this process becomes pretty heavy.
Finally, the concise style in which the library is written adds
to the inefficiency. Higher-order functions are intensively
used, even in many apparently basic operations.

6.4 Improvements

This work could be extended in many ways:

e Drop the unnecessary machinery that rebuilds the al-
located constants. If no constants of a certain type
have to be rebuilt, the construction code specific to
this type becomes useless. Also, when it’s possible, the
description string of the constants should be dropped
after decoding.

e Drop the symbol names when possible. Sometimes,
only the identity of the symbols is required, not their
name.

e Add other number representations. From the most
useful to the least: flonums, bignums, complex, ratio-
nals.

e Provide a better implementation of environments. En-
vironment representations that are tailored to the local
needs of the Scheme expressions would be preferable.

e Improve the time efficiency.

e Provide the user with flags to give him control of the
inclusion of features and declare properties about his
program.

e Use various analyses well known in speed optimization
areas, but that can be put to contribution in space
optimization areas too. Such analyses include flow
analyses (see [7]), dead code analyses, representation
analyses, useless-variable detection, and storage use
analyses.

7 Conclusion

Our goal was to determine whether it’s possible to program
microcontrollers such as the 68HC11 in Scheme. The two
major constraints concern size and real-time-ness of the im-
plementation. In order to obtain a small implementation, we
took advantage of the non-interactivity of microcontroller
applications and separated the implementation in a byte-
code compiler and a runtime kernel. The compiler is de-
signed to run on a normal workstation. It produces byte-
code, which added to the runtime kernel, provides a small
executable code to transfer to the microcontroller.

We took great care in our design to favor space efficiency.
Choices concern: run-time representation of Scheme objects
like type information and environments; memory manage-
ment, which has to be real-time; the virtual machine em-
bedded in the runtime kernel and its associated byte-code.
In general, we selected the most compact approaches as long
as they stayed reasonably simple and that they didn’t com-
promise the asymptotic complexity of Scheme programs.

Our results clearly demonstrate that it’s feasible to pro-
gram microcontrollers in Scheme. Scheme sources, once
compiled, become byte-codes several times smaller. The
two biggest weaknesses are the low speed of the execution,

about 10 times slower than one of the fastest Scheme inter-
preters available, and the poor performance of the C com-
piler that translates the runtime kernel to microcontroller
machine code.

References

[1]

[2]

(3]

[4]

[5]

[6]

R. A. Brooks. Trading data space for reduced time and
code space in real-time collection on stock hardware. In
Proceedings of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 108-113, aug 1984.

W. Clinger and J. R. (editors). Revised® Report on the
Algorithmic Language Scheme, 1991.

D. Dubé, M. Feeley, and M. Serrano. Un gc temps réel
semi-compactant. In Actes des Journées Francophones
des Langages Applicatifs 1996, jan 1996.

M. Feeley and G. Lapalme. Closure generation based
on viewing lambda as epsilon plus compile. Journal of
Computer Languages, 17(4):251-267, 1992.

D. Gudeman. Representing type information in dynam-
ically typed language. Technical Report TR 93-27, De-
partment of Computer Science, The University of Ari-
zona, oct 1993.

M. Larose and M. Feeley. A compacting incremental
collector and its performance in a production quality
compiler. In Proceedings of the International Sympo-
sium on Memory Management (ISMM-98), volume 34,
pages 1-9, 1998.

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

O. Shivers. The semantics of scheme control-flow analy-
sis. In Proceedings of the Symposium on Partial Evalua-
tion and Semantics-based Program Manipulation, pages
190-198, jun 1991.

P. R. Wilson. Uniprocessor garbage collection tech-
niques. Lecture Notes in Computer Science, 637:1-42,
sep 1992.

Author: Aubrey Jaffer.
ftp://ftp.cs.indiana.edu/pub/ —

— scheme-repository/imp/scméel.tar.gz

Author: Aubrey Jaffer.
ftp://ftp.cs.indiana.edu/pub/ —

— scheme-repository/code/lang/test.scm

Author: Otto Lind.

ftp://wattson.ee.ualberta.ca/pub/ —
— motorola/68hcll/gcc/gcc-6811-fsf.tar.gz

Author: Jonathan Lee.
ftp://ftp.cs.indiana.edu/pub/ —
— scheme-repository/imp/fools.1.3.2.tar.gz

Author: Atsushi Moriwaki.
ftp://ftp.cs.indiana.edu/pub/ —

— scheme-repository/imp/minischeme.tar.gz

Author: George Carrette.
ftp://ftp.cs.indiana.edu/pub/ —

— scheme-repository/imp/siod-3.0.tar.gz

Author: Marc Feeley.
ftp://ftp.iro.umontreal.ca/pub/ —
— parallele/gambit/gambc.tgz

