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Abstra
t

We present an implementation of S
heme for mi
ro
ontroller

that is very 
ompa
t and in
ludes a real-time garbage 
ol-

le
tor. The 
ompiler, whi
h runs on a normal workstation,

produ
es byte-
ode from the sour
e program and the byte-


ode is linked with a runtime module. With this system,

we demonstrate that it's 
learly possible to run S
heme pro-

grams on a mi
ro
ontroller with 64 KB of memory su
h as

the Motorola 68HC11. Exe
utables that in
lude the whole

library 
an be as little as 22 KB. As a se
ondary result, the

resear
h on memory management for this system brought us

to 
reate a spa
e-eÆ
ient real-time GC algorithm.

1 Introdu
tion

Embedded appli
ations are often implemented by program-

ming mi
ro
ontrollers in assembly language. Indeed this

provides a high degree of 
ontrol on the mi
ro
ontroller and

fast and 
ompa
t 
ode for simple appli
ations. However this

approa
h be
omes tedious and error prone for more 
om-

plex appli
ations. For this reason, 
ompilers for higher-level

languages su
h as Basi
, C and Forth have been designed

for mi
ro
ontrollers. The goal of our work is to show that

S
heme is also a viable alternative for programming mi
ro-


ontrollers.

To better understand the implementation diÆ
ulties and

narrow down the 
ontextual parameters, we will pi
k a popu-

lar mi
ro
ontroller family as a target: the Motorola 68HC11.

This 
ontroller typi
ally runs at a 
lo
k speed of less than 5

MHz, it has a 64 KB address spa
e (ROM and RAM 
om-

bined), up to 40 I/O pins, �ve 16 bit registers of whi
h only

one is general purpose, and no 
oating-point operations.
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Clearly, 
oping with the very tight memory 
onstraint is

one of the main problems we fa
e; it implies 
ompa
t run-

time system, en
oding of the S
heme program, and obje
t

representation. Also, sin
e the main appli
ation of mi
ro-


ontrollers is to 
ontrol or monitor other devi
es, our system

must have good real-time behavior, that is it must not make

unduly long or unpredi
table pauses in the 
omputation, in

parti
ular when garbage 
olle
ting.

The subset of S
heme that we target is R

4

RS (see [2℄)

with the following ex
lusions. Port-based textual I/O op-

erations are removed sin
e they don't make sense anymore.

Numbers are restri
ted to �xnums be
ause the 
hip itself

isn't intended for numeri
ally intensive tasks, it doesn't sup-

port 
oating points numbers, and the 
omplete S
heme nu-

meri
al library is quite big. Error 
he
king isn't performed.

Indeed, our system is not intera
tive and there is normally

no way to report the error. So we assume the program is

error free. Our subset does in
lude �rst-
lass 
ontinuations

(whi
h are useful for multi-threading), garbage 
olle
tion,

and proper treatment of tail re
ursion. We don't aim to

have a very fast implementation; we simply wish to obtain

an implementation that has the same asymptoti
 
omplexity

as those of a good implementation.

Numerous issues must be 
onsidered in the design of a

very 
ompa
t S
heme implementation. We begin in Se
-

tion 2 by presenting our byte-
ompiler with emphasis on

points related to 
ompa
tness. In Se
tion 3 we dis
uss the

representation of obje
ts. Our real-time garbage 
olle
tor

is des
ribed in Se
tion 4. We des
ribe the virtual ma
hine

in Se
tion 5. Finally, Se
tion 6 presents some experimental

results.

2 The byte-
ompiler

To avoid run-time overhead, our system performs a 
om-

pilation phase on a normal workstation whi
h produ
es an

exe
utable that is then transferred to the mi
ro
ontroller.

The exe
utable is 
omposed of a byte-
ode sequen
e and a

kernel whi
h 
an exe
ute this byte-
ode. The byte-
ode is

generated from the sour
e program and sele
ted parts of the

S
heme library. The kernel provides the garbage 
olle
tor

and the byte-
ode interpreter, whi
h only in
ludes the most

basi
 S
heme fun
tions.

This se
tion presents the byte-
ompiler whi
h performs

the 
ompilation phase. We �rst give an overview of the


ompiler and then give more details on the parts that ad-

dress 
ompa
tness of the resulting exe
utable. Namely, the

S
heme library, the pro
essing of 
onstants and the initial
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Figure 1: Compilation pro
ess of prog.s
m.

int byte
ode_len = 2594;

unsigned 
har byte
ode[℄ = {

4, 93, 8, 94, 51, 4, 75, 8, 95, 51, 4, 74,

8, 96, 51, 4, 55, 8, 97, 51, 4, 54, 8, 98,

...

26, 37, 36, 52, 92, 43, 15, 37, 36, 4, 87, 52,

92, 17};

int 
onst_des
_len = 27;

unsigned 
har 
onst_des
[℄ = {

0, 2, 52, 0, 1, 48, 52, 0, 12, 72, 101, 108,

108, 111, 32, 119, 111, 114, 108, 100, 33, 0, 2, 0,

0, 0, 1};

int nb_s
m_globs = 100;

int s
m_globs[℄ = {

45, -24, 50, 57, -11, 71, 136, 150,

-36, -36, 212, 290, -16, 316, -18, -17,

...

-9, -8, -39, 2546, 2552, 2585, -1, -1,

-1, -1, -1, -1};

Figure 2: C �le produ
ed by the byte-
ompiler for the \Hello

world!" program.

value of variables. The details of the byte-
ode are pre-

sented independently in the se
tion on the virtual ma
hine

(Se
tion 5).

2.1 Overview

Figure 1 shows the 
ompilation pro
ess of a S
heme sour
e

program (prog.s
m). The program 
an be written in nor-

mal R

4

RS S
heme without other 
onstraints other than the

restri
tions to the language that we mentioned in the intro-

du
tion. The �le produ
ed by the byte-
ompiler is a
tually a

C �le 
ontaining three de
larations of array and their length.

Those 
ontain: the byte-
ode, the 
onstant des
riptors, and

the global variable des
riptors. Figure 2 shows an abstra
t

of the �le generated for the S
heme sour
e

1

:

(display "Hello world!")

(newline)

Here's a brief des
ription of the steps performed by the

byte-
ompiler:

� Reading of the program.

� Removal of the synta
ti
 sugar.

� Transformation of the program into a node-based ab-

stra
t syntax tree (AST).

� In
lusion of the required library fun
tions.

� Traversal of the AST:

1

This program uses fun
tions that are not supposed to be sup-

ported by our implementation. Still, we in
luded simpli�ed versions

of write, display, and newline to make tests during the development.

{ Gathering of the 
onstants.

{ Identi�
ation of the variable de
laration for ea
h

variable a

ess.

{ Che
king for the mutability of the global vari-

ables.

{ Counting of the parameters and 
he
king for a

rest parameter.

� Assignment of the initial value of 
ertain variables.

� Another traversal of the AST:

{ Propagation of the initial value of known variables

to variable referen
es.

{ Optimization, when possible, of 
all sites.

� Assignment of an index to ea
h global variable.

� Generation of the byte-
ode.

� Generation of the 
onstant des
riptors.

� Generation of the global variable des
riptors.

2.2 The S
heme library

The library �le lib.s
m has a spe
ial format. It doesn't

follow the syntax of S
heme programs. It's divided in four

se
tions. Ea
h se
tion has a di�erent purpose.

� The �rst se
tion de
lares the name of ea
h primitive

S
heme fun
tion that is provided by the runtime kernel

and its index. It helps to maintain the 
onsisten
y

between the list of fun
tions provided by the kernel

and the one expe
ted by the library. Ea
h de
laration

is a dotted pair 
ontaining a symbol and an integer.

� The se
ond se
tion 
ontains the de�nition of fun
tions

used internally by the library. The names introdu
ed

here are hidden to the sour
e program.

� The last two se
tions 
ontain fun
tions that are visible

to the sour
e program. The di�eren
e between both is

that the last 
ontains only standard fun
tions. In these

se
tions, a symbol appearing alone at the top level

indi
ates that this is a fun
tion de
lared in a previous

se
tion and that it's visible to the user's program.

In the last three se
tions, the syntax is restri
ted to fun
-

tion de
larations and alias de
larations. Fun
tion de
lara-

tions have the form:

(define hnamei h�-expressioni)

and alias de
larations:

(define hnamei hnamei)

Note that the value of ea
h global variable of the library is

either a primitive fun
tion or a 
losure with an empty envi-

ronment. This regularity 
an be exploited to save spa
e, as

we explain in Se
tion 2.4.

Fun
tions of the library are in
luded with the sour
e pro-

gram a

ording to its needs. The in
lusion rule is quite sim-

ple: every global variable that is a

essed (read or written)

by the program and that is also a visible name of the library


auses the in
lusion of the 
orresponding fun
tion. In
lu-

sion is done transitively in the library a

ording to fun
tion

dependen
ies.

Con
eptually, the library has a separate name spa
e from

the program. That is, referen
es to the name 
ons in the



library and in the program don't resolve to the same vari-

able. This is important to guarantee 
orre
t exe
ution of

the library fun
tions even if the program modi�es its global

variables. Nevertheless, modi�
ations of the variables 
on-

taining library fun
tions are rare. So if we dete
t that the

program doesn't modify one of its variables, we fold it with

its library 
ounterpart.

Sin
e a sizeable part of the library typi
ally gets in
luded

with programs, its length is important. The library is writ-

ten in a very 
on
ise style. For example, the fun
tions memq,

memv, and member, when 
alled, simply 
all the parame-

terized fun
tion general-member with the same parameters

plus an appropriate 
omparison operator. Similarly, many

n-ary fun
tions, su
h as +, are implemented as a list folding

using a binary operation.

2.3 Literal 
onstants

Our implementation manipulates two 
ategories of S
heme

obje
ts: immediate and allo
ated. Immediate obje
ts don't

have to be allo
ated in the heap and there are byte-
ode in-

stru
tions that 
reate them dire
tly. Numbers and booleans

are immediate obje
ts. Allo
ated obje
ts reside in the heap

and their 
reation involves 
alling a memory allo
ation fun
-

tion. Pairs and ve
tors are allo
ated obje
ts. We 
on
en-

trate here on the allo
ated ones.

Constants present in the program have to be 
ommuni-


ated to the exe
utable so that they are available when their


orresponding expression gets evaluated.

We 
onsidered three methods to 
reate the 
onstants at

run time.

� Ea
h 
onstant expression is repla
ed by a referen
e to

a new variable. Extra S
heme de�nitions are added at

the beginning of the program to build the 
onstants

and store them in the appropriate variables.

� An image of the heap already 
ontaining the 
onstants

is integrated with the exe
utable. No building 
ode is

ne
essary. Constant expressions are 
ompiled as sim-

ple \get 
onstant" instru
tions with an index.

� A des
ription of the 
onstants, whi
h is a string, is in-

tegrated with the exe
utable. At the start of the pro-

gram, some interpretation fun
tion de
odes the string

and builds the 
onstants. Simple a

ess instru
tions

get the 
onstants when ne
essary.

The �rst method has the disadvantage of making the ex-

tra 
onstru
tion 
ode and the 
onstants themselves 
oexist.

This is a waste of spa
e. The other two 
an dispose of the

des
ription of the 
onstants either by making it the initial

heap or by dis
arding it on
e the 
onstants are built.

The se
ond method implies that the 
ompiler is aware of

the obje
t representation in the runtime down to the individ-

ual bits. It's more 
ompli
ated to implement and maintain.

The other two methods isolate the 
ompiler from the 
hoi
es

of representation in the runtime kernel.

The third method requires some ma
hinery while the se
-

ond doesn't. Still, this ma
hinery is relatively small and

doesn't depend on the total size of the 
onstants the way

the �rst method does. It's the method that we use.

The en
oding pro
ess is the following: ea
h 
onstant is

de
omposed into individual obje
ts; ea
h distin
t obje
t has

an index (this implements sharing between identi
al 
on-

stants); obje
ts are ordered in topologi
al order (
hildren

�rst); information is kept to remember whi
h obje
ts \are"

program 
onstants by themselves; �nally, the des
ription

string is produ
ed. The string 
ontains: the number of ob-

je
ts, the des
ription of ea
h obje
t, the number of 
on-

stants, the index of the obje
ts that are program 
onstants.

Given this en
oding, it's easy to see that the 
onstru
tion

pro
ess done at run time is extremely simple.

2.4 Initial value of variables

Our 
ompiler tries to stati
ally dis
over the initial value of

some variables. This allows various optimizations to be per-

formed.

The only variables for whi
h the 
ompiler sear
hes the

value are the global variables introdu
ed by the library. The

�rst reason for this is that it's very easy with these variables.

Se
ond, we always obtain an important gain in spa
e with

these variables while it may not ne
essarily be the 
ase with

the other variables.

The �rst gain 
omes from a spe
ial 
ompilation of the

library 
ode. Note that, be
ause of the spe
ial syntax used in

the library, it 
ontains only de�nitions, and the expressions


ontained in these de�nitions 
an only be variable referen
es

or simple lambda-expressions. The result of evaluating the

library 
ode is simply to have a number of variables de�ned.

Sin
e it's possible to stati
ally determine what fun
tion is


ontained in ea
h variable, we 
an omit the 
ode performing

the evaluation of ea
h de�nition's expression. Moreover, the


ode initializing ea
h de�nition's variable 
an be omitted too

be
ause we 
an arrange for ea
h global variable to 
ontain

the proper initial value. So our byte-
ompiler produ
es byte-


ode only for the body of the 
losures and, when it outputs

the global variables as a C array, it spe
i�es the initial value

of ea
h variable. This is in fa
t a des
ription of the initial

value: a small negative integer for a primitive fun
tion, �1

for false, or a positive integer whi
h is the entry point of a


losure's body.

The se
ond bene�t 
omes from the optimization of 
er-

tain 
alls. If a 
all, either in the library or in the program,

uses a known library fun
tion, then the operator expres-

sion no longer needs to be evaluated and a dire
t 
all to the

fun
tion is made. Certain more aggressive optimizations are

performed when some 
onditions are met. For example, the

operator in the expression (+ x y) is optimized if the vari-

able + isn't mutated. The 
all be
omes a dire
t invo
ation

of the primitive fun
tion that adds two numbers.

3 S
heme obje
t representation

Even if it doesn't in
uen
e the size of the exe
utable, the

obje
t representation is of great importan
e due to the small

memory. A more 
ompa
t representation 
an �t more ob-

je
ts in the heap and so, allows our implementation to run

a broader range of programs.

We 
onsider four issues: the representation of the obje
ts

and their type, of the symbols, of the 
ontinuations, and of

the environments. In ea
h 
ase, we present di�erent options

and 
on
lude with our 
hoi
e.

3.1 The obje
ts and their type

The 
hoi
es in the representation of the type and value of

the obje
ts are almost unlimited (see [5℄). We only 
onsider

four di�erent \pure" representations.

The uniform representation. All obje
ts are heap-allo-


ated. An obje
t referen
e is the address where it's



allo
ated. Every obje
t has an extra �eld that indi-


ates its type. An advantage is that basi
 operations

(readings, writings, type tests and GC operations) on

the obje
ts are very simple and similar from type to

type. Their implementation 
an be shared by all types

and parameterized by the type of the obje
ts.

The tagged pointer representation. For alignment and

memory partitioning reasons, the addresses of heap-

allo
ated obje
ts may have some bits at known values.

These bits 
an be used to en
ode type information.

Moreover, 
ertain bit patterns may indi
ate that the

obje
t referen
e is in fa
t an immediate value. This

way, not all types need to be heap-allo
ated. It results

in spa
e savings. Sometimes, however, there aren't

enough bit patterns for all the types and obje
ts of


ertain types need an extra-�eld to en
ode a sub-type.

Tagging strategies are often 
omplex and basi
 opera-

tions are implemented di�erently for most types.

Representation of types by zones. The heap is divided

in zones with one zone for ea
h type. Individual ob-

je
ts don't have to 
arry type information. The type

is re
overed from the address of the obje
t by iden-

tifying the zone in whi
h it's lo
ated. We estimate

that this representation 
an be very 
ompa
t: almost

all the heap spa
e 
an serve as \useful" �elds. Un-

fortunately, it seems to be very diÆ
ult to integrate

that representation with a real-time garbage 
olle
tor

without falling into a very 
omplex management.

Representation of types by pages. The heap is divided

in pages of equal size. Ea
h page 
ontains only obje
ts

of the same type. The type is re
overed by rounding

the address of an obje
t down to the previous page

boundary and obtaining the page's type. This repre-

sentation has the same advantages and disadvantages

as the representation by zones. Additionally, we have

to deal with the presen
e of long obje
ts su
h as strings

and ve
tors, whi
h should be allowed to be longer than

a page.

We 
onsider that the tagged representation is better than

the uniform representation. This is be
ause of the immedi-

ate obje
ts. After a few hundred obje
ts are 
reated, the

gain in spa
e due to immediate obje
ts is likely to 
ompen-

sate for the more 
omplex implementation of the operators.

We didn't �nd any satisfying solution using one of the last

two representations. So our implementation uses a tagged

representation.

Figure 3 shows the a
tual tagging 
hosen for our im-

plementation. The 0 and 1 digits are the tags. An N bit

represents immediate information, that is, part of a number

or index. An A bit represents a part of an address

2

. An X

bit indi
ates that the value isn't important. It's put to 1 in

our implementation. Three of the types 
annot be en
oded

dire
tly in the referen
e. They need sub-typing information.

So, some bits of the �rst �eld of those obje
ts are tagged.

The R bits en
ode a return address in the byte-
ode. The L

bits indi
ate the length of a variable-sized obje
t.

The domain of the integers is �16384 to 16383. It's even

more restri
ted than what one would expe
t on a 16 bit

mi
ro
ontroller but it's the best we 
an do without allo
at-

ing the integers in the heap. There 
an exist at most 8192

heap-allo
ated obje
ts. This is more than enough given the

2

The A bits don't exa
tly represent an address. In fa
t, they en
ode

the index of the handle to the obje
t (see Se
tion 4).

Type Representation

Integers NNNNNNNNNNNNNNN1

Pairs 00AAAAAAAAAAAAA0

Closures 01AAAAAAAAAAAAA0

Other heap-allo
ated types 10AAAAAAAAAAAAA0

Symbols 11NNNNNNNNNNNN10

Chara
ters 11XXNNNNNNNN0000

Kernel fun
tions 11NNNNNNNNNN0100

Booleans 11XXXXXXXXXN1000

Empty list 11XXXXXXXXXX1100

Sub-type First �eld

Continuations RRRRRRRRRRRRRRR1

Ve
tors LLLLLLLLLLLLLL00

Strings LLLLLLLLLLLLLL10

Figure 3: Tags in our implementation.

maximum size of the heap ex
ept for the pairs in 
ertain


ir
umstan
es. In the worst 
ase, the number of referen
es


ould be a limiting fa
tor in the allo
ation of pairs. 4096

symbols 
an be represented, whi
h is a large limit. The

other immediate types are 
ompletely 
overed. The en
od-

ing of the �rst �eld of the 
ontinuations indire
tly 
reates a

limit of 32768 on the size of the byte-
ode. As we show later,

this limit is reasonable sin
e the byte-
ode is very 
ompa
t.

Ve
tors and strings are limited to a length of less than 8192

�elds.

3.2 Symbols

There are some interesting possibilities with the symbols.

First, it isn't 
lear whether we should represent symbols as

obje
ts having a �eld for a name. Se
ond, if we want to

be able to 
ompare symbols eÆ
iently, we have to maintain

their uniqueness. This requires some kind of table with the

names of all the symbols. Third, symbols aren't removed

from this table. Knowing that, we 
onsider the following

representations:

� A symbol is a two-�eld obje
t: one referen
e to its

name and one link to the next symbol in the table. The

whole table is a kind of list of strings but its skeleton

is made of symbols instead of pairs.

� A symbol is a variable-sized obje
t that dire
tly 
on-

tains its name (plus a link).

� A symbol is a simple index in a table of names. This

way, the symbol be
omes a non-allo
ated obje
t and

the table of names 
an be represented 
ompa
tly as,

for instan
e, a ve
tor of strings.

The se
ond option is the least interesting be
ause varia-

ble-sized obje
ts are heavy to manipulate. It's better to

avoid 
reating su
h a new type. The third option saves a

�eld per symbol 
ompared to the �rst one and is as 
ompa
t

as the se
ond. Also, it introdu
es no new allo
ated type. So

we adopt that representation for the symbols.

There's a little problem with the third representation

as it's been presented. In order for it to be as 
ompa
t

as the se
ond representation, the table of names has to be

full. Otherwise, it's less 
ompa
t. The problem with a full

table is that ea
h time a new symbol is to be 
reated, the

table has to be extended to 
ontain the new name. Creating



a longer ve
tor and 
opying its 
ontent ea
h time a new

symbol appears is quite ineÆ
ient. So, in pra
ti
e, ea
h

time the ve
tor is full, we repla
e it by a ve
tor that is 4=3

times longer. This strategy makes our representation a little

bit less spa
e-eÆ
ient than the se
ond, but the loss 
an be

redu
ed by 
hanging the ratio.

3.3 Continuations

We 
onsider three possibilities for the representation of 
on-

tinuations. First, a 
ontinuation 
an be represented by a

sta
k. When 
all/

 is 
alled, a 
opy of the sta
k is 
re-

ated in the heap. Se
ond, the sour
e 
an be CPS-
onverted

(see [7℄). The rei�
ation of the 
urrent 
ontinuation be
omes

natural and there are no 
on
rete 
ontinuation types to im-

plement. Third, a 
ontinuation 
an be an ad ho
 stru
ture

that saves the 
urrent state of 
omputation.

The sta
k implementation doesn't allow the sharing of


ommon parts between di�erent 
ontinuations. At least not

in a simple implementation. Sin
e we de
ided to keep 
ontin-

uations mostly to allow multi-threading, the representation

should be eÆ
ient. The CPS-
onversion has a tenden
y to

in
rease the size of programs, whi
h isn't desirable. So we

use an ad ho
 stru
ture. It's a �xed-sized obje
t able to save

the registers of the virtual ma
hine exe
uting the byte-
ode

(see Se
tion 5). Among the registers that are saved, there

is the one that 
ontains the 
urrent 
ontinuation. So, 
on-


eptually, the 
ontinuation is a 
hain of these �xed-sized ad

ho
 obje
ts. Programs are left in dire
t style.

3.4 Environments

Due to their 
entral role, environments need to be repre-

sented eÆ
iently. Note that we don't 
onsider global vari-

ables, only lo
al ones. Here are some representations.

Asso
iative lists. It's the simplest representation to use

in a S
heme interpreter. However, they aren't spa
e

eÆ
ient sin
e they 
arry identi�ers unne
essarily. In a


ompiled system like ours, identi�ers 
an be dis
arded


ompletely.

Lists. It's also a very simple implementation. It takes one

pair per variable. Ea
h a

ess to a variable is made

using a position in the list.

Blo
ks of bindings. It's possible to do better than what

lists do and still have a very simple implementation.

We 
an take advantage of simultaneous bindings like

those of a let expression to group the bound variables

together in a blo
k. A

ess to variables are made using

the number of binding levels (or blo
ks) and the posi-

tion in the blo
k. Single-variable bindings 
an still be

represented by pairs and multi-variable bindings 
an

be represented by ve
tors. The representation with

ve
tors is more 
ompa
t than with a sequen
e of pairs

in 
ase of multi-variable bindings.

Blo
ks of bindings with display. Instead of only a link

to the next blo
k, we 
an have a display, and thus

have a link to every surrounding binding blo
k. A

ess

to variables 
an always be done in 
onstant time, no

matter the lexi
al distan
e. Still, this representation,


ompared to simple blo
ks of bindings, only improves

the speed. In spa
e requirements, it 
an only be worse.

Flat representation of 
losures. The advantage of this

representation is the sele
tion of the variables to keep

(define make-thunk1

(let ((a (f1 1))

(b (f2 2))

(
 (f3 3)))

(lambda (d)

(lambda ()

(list a b 
 d)))))

(define make-thunk2

(lambda (a)

(let* ((b (f1 a))

(
 (f2 b))

(d (f3 
)))

(lambda () (g d)))))

Figure 4: Thunks with di�erent environments.

in the environment (see [4℄). On the other hand, a

new blo
k of variables is 
reated ea
h time a 
losure

is. Moreover, it isn't a representation for general en-

vironments sin
e it 
an only represent the de�nition

environments of 
losures. A representation for invoke-

time bindings still has to be present.

Of the �rst four representations, the one using simple

binding blo
ks is 
learly the best. Unfortunately, the �fth

representation is in
omparable with the others. Figure 4

shows two fun
tions that 
reate thunks. The thunks pro-

du
ed by the �rst fun
tion have a more 
ompa
t represen-

tation using blo
ks. Those produ
ed by the se
ond, using


at 
losures. In the �rst 
ase, it's the sharing of the blo
ks

between environments that is advantageous. In the se
ond,

it's the sele
tion of variables.

We prefer the representation with blo
ks be
ause it's sim-

pler, 
omplete and doesn't require a new data type.

4 Garbage 
olle
tion

Implementing a real-time garbage 
olle
tor is quite a 
hal-

lenge and on a mi
ro
ontroller even more so. We will �rst

dis
uss about spe
ial requirements on the memory manager.

We then give an overview of the te
hnique we designed.

4.1 Requirements

The fa
t that the mi
ro
ontroller doesn't have mu
h mem-

ory means that the heap is quite small. It's tempting to

assume that a blo
king GC on su
h a small heap would be

fast enough. But mi
ro
ontrollers like ours aren't very fast.

A 
omplete GC 
y
le may provoke pauses that are too long

for many 
ontrol tasks. So we need a true real-time GC in

order to provide a really useful system.

Our GC must 
ompa
t live data in some way. We 
annot

a�ord to let the fragmentation ruin the possibilities of allo-


ation of long obje
ts. For example, it doesn't take many

badly positioned small obje
ts in a heap of 40 KB to blo
k

the allo
ation of a string of only 400 
hara
ters: only 100.

Many real-time GC algorithms use two semi-spa
es, that

is, the heap is separated in two halves. During the GC


y
le, live obje
ts are transfered from a semi-spa
e to the

other. The transfer has the e�e
t of 
ompa
ting the obje
ts

together. This pro
ess avoids fragmentation from forming.

Still, the use of semi-spa
es represents a serious waste of

spa
e.

In fa
t, we didn't �nd a real-time GC te
hnique in the

literature that tries to minimize the waste of spa
e. We

proposed a new GC te
hnique that addresses exa
tly that

problem.

Before des
ribing it, we give our de�nition of a real-time

memory manager. Of 
ourse, a real-time implementation


annot exe
ute every operation within a bounded amount

of time. Some of those are long operations, even when the



�

�

�

�

�

�

�

�

free

handles

�

6

��

?

VM

pair string

�

?

?

��

6

� �

?

. . .. . .. . .

. . .

handle

se
tion

storage

se
tion

Figure 5: Sket
h of the heap with handles.

GC doesn't work at all. What we expe
t from a real-time

implementation is that an operation shouldn't get longer by

an unpredi
table amount of time.

More formally, let 
 >= 1, T(op), the time required to

perform `op' on a non-real-time system when the GC isn't

invoked (in the ideal 
ase), and RT(op), the time required to

perform `op' on a real-time system (in the worst 
ase), then

RT(op) � 
 � T(op). This real-time property holds only if

the program doesn't try to keep too many live obje
ts. The

performan
e of any GC degrades when the heap is too full.

For information on GC in general, see [8℄.

4.2 Overview of the GC

Our GC te
hnique (for a 
omplete des
ription, see [3℄) is

basi
ally an adaptation of a mark and 
ompa
t blo
king GC

using ideas from Brooks (see [1℄). The �rst phase 
onsists in

in
rementally marking all the live obje
ts of the heap. The

se
ond 
ompa
ts the marked obje
ts by sliding them to the

bottom of the heap. The program 
ontinues to run while

the GC does its work.

One of the major diÆ
ulties in garbage-
olle
ting while

the program 
ontinues to run is to update pointers to ob-

je
ts that are moved by the GC. Sin
e an obje
t may have

an arbitrary number of referen
es to it, it's impossible to

update them all at the moment the obje
t is moved without


ausing an important pause in the exe
ution of the program.

A solution to this problem is to use handles.

A handle is a pointer that is unique to ea
h obje
t and

that always points to the 
urrent position of the obje
t. All

\referen
es" to an obje
t go through its handle. The vir-

tual ma
hine and the obje
ts themselves don't possess the

address of other allo
ated obje
ts, they simply have the ad-

dress of their handle. This implies that read and write oper-

ations now require two memory a

esses instead of one. On

the other hand, the handles allow the GC to move an obje
t

and update all the referen
es to it by 
hanging the value of

its handle.

Figure 5 presents a sket
h of the heap when our GC

is used. Handles are kept in a separate se
tion. The true


ontent of the obje
ts is lo
ated in the storage se
tion. When

an obje
t is 
reated, suÆ
ient spa
e is reserved in the storage

se
tion and a free handle is assigned to point to this spa
e.

This handle remains the same as long as the obje
t exists,

no matter how many times the obje
t is moved. When an

obje
t is 
olle
ted, its handle is linked ba
k into the 
hain

of free handles.

O1 O2

O2

0

O2

00

O3 O4

. . . . . .

�

�

storage

se
tion

Figure 6: Long obje
ts are in
rementally slid down.

Unfortunately, the handle se
tion must have a �xed size.

Its size depends on the size of the smallest obje
ts. In our

implementation, the fra
tion of the heap o

upied by this

se
tion is 1=5. Nevertheless, the spa
e lost be
ause of the

handle se
tion is mu
h smaller than the spa
e lost in a two

semi-spa
e heap.

The usage of handles eliminates the need for a read bar-

rier for short obje
ts sin
e the handles always point on their

obje
t. However, a write barrier is still needed to avoid 
ol-

le
ting live obje
ts. This a 
lassi
 problem with real-time

garbage 
olle
tors. To solve it, we use a Dijkstra barrier.

The a

ess to long obje
ts is more 
ompli
ated and read

and write barriers must be used. This is be
ause the GC


annot move a long obje
t atomi
ally. The obje
t has to be

momentarily separated in two parts. During this time, a
-


ess to one of its �elds is done either in the new (moved) part

or in the old (not yet moved) part. Figure 6 illustrates this

situation with a long obje
t named O2. It has a new part

(O2), an old part (O2

00

), and a part (O2

0

) that is 
urrently

being slid atomi
ally by the GC.

The sharing of the time between the program and the GC

is ruled by a time bank. It's a 
ounter indi
ating how mu
h

work the GC 
an do before it has to give the 
ontrol ba
k to

the program. Ea
h allo
ation adds some units to the time

bank. If the time bank is positive, the GC immediately goes

to work and so, until the bank is empty or negative. All the

work involved in a GC 
y
le is divided in small, 
onstant-

time work units. The allo
ation of an obje
t of length l

adds R� l time units to the bank, R being a 
onstant, whi
h

ensures that the program gets the 
ontrol ba
k after a pause

of O(l) time units. That makes the GC work in real-time.

The 
onstantR is adjusted so that, by the time the rest of

the free spa
e gets allo
ated, the GC 
ompletes its 
y
le. So,

in the worst 
ase, the GC provides new free spa
e exa
tly

when the 
urrent free spa
e is exhausted. R is 
alled the

GC's ratio of work. It's a fun
tion of the maximal fra
tion

(�) of the heap that 
an be o

upied by live obje
ts. If it's

known that the \live" heap o

upation is never higher than

�, then R will always be suÆ
iently large. However, this is

only theory be
ause, in pra
ti
e, obtaining the fra
tion � is

too diÆ
ult. So, in our implementation, R is 
omputed at

the beginning of every GC 
y
le and its value is suÆ
iently

high to guarantee that this 
y
le �nishes in time.

5 The virtual ma
hine

The development of our virtual ma
hine was done in two

stages. The �rst ma
hine is very simple. The se
ond is

optimized so that the byte-
ode generated by the 
ompiler

is mu
h smaller. We will use the �rst one for most of the

explanations be
ause it's simpler.

5.1 A simple virtual ma
hine

The �rst virtual ma
hine has a few spe
ialized registers: p


is the index of the next instru
tion, val is the a

umulator,



0 hdes
riptioni Get immediate 
onstant.

1 hindexi Get allo
ated 
onstant.

2-5 hoperand

1

i [hoperand

2

i℄ Read variable.

6-9 hoperand

1

i [hoperand

2

i℄ Write variable.

10 Make 
losure.

11 haddressi Conditional jump.

12 haddressi Un
onditional jump.

13 haddressi Save 
ontinuation.

14 Restore 
ontinuation.

15 Initialize argument list.

16 Push argument.

17 Apply.

18 hindexi Apply kernel fun
tion.

19 Flush environment.

20-23 hsizei Make binding blo
k.

24 Stop.

25 Save argument list.

26 Restore argument list.

Figure 7: Instru
tions of the �rst virtual ma
hine.

C

�

[[ (set! hvari hexpi) ℄℄ =

� C[[ hexpi ℄℄

� Write variable hoperand

1

i [hoperand

2

i℄

� Restore 
ontinuation

Figure 8: Compilation rule for set! in terminal position.

env is the 
urrent environment, args is the 
urrent list of

arguments, prev args is a list of lists of arguments, 
ont

is the 
urrent 
ontinuation.

Figure 7 shows the index and the name of the instru
-

tions of the ma
hine. Some instru
tions have many indi
es.

This is be
ause there are variants for lo
al/global variables,

for short/long operands, and for blo
ks with/without a rest

parameter. A

ess to lo
al variables are spe
i�ed by \blo
ks

to jump over" and \position in the blo
k" pairs of operands.

The se
ond operand is omitted in 
ertain 
ases: when the

designated blo
k has only one variable, the se
ond operand


an be assumed to be 0.

The 
ompilation rules are quite straightforward. The

only part that is a little more sophisti
ated is the set of rules

for 
alls. It all depends on what we know about the operator:

we know nothing, or it's a kernel fun
tion, a 
losure from the

library, or the dire
t result of a lambda-expression. Figure 8

shows one of the 
ompilation rules. The C

�

and C fun
tions

are the 
ompilation fun
tions in terminal and non-terminal

position, respe
tively.

5.2 The �nal ma
hine

The �nal virtual ma
hine has a di�erent instru
tion set. We

don't present every detail, just the main 
lasses of modi�-


ations to the �rst ma
hine:

� Spe
ialized instru
tions. Some original instru
tions

are almost always used with the same operands. In

these 
ases, we 
reated instru
tions that are spe
ial-

ized for those typi
al operands. For instan
e, 90% of

the lo
al variables that are read are lo
ated in one

of these lo
ations: (0, 0), (0, 1), (0, 2), (1, 0),

(1, 1), and (2, 0).

� Merged instru
tions. Some instru
tions always pre-


ede or follow some other instru
tions. For example,

the instru
tion \Save 
ontinuation" always pre
edes

the instru
tion \Initialize argument list". So, an in-

stru
tion that does both operations was 
reated.

� New instru
tions; su
h as \Pop the �rst blo
k from the

environment".

� Automati
 push. The instru
tion \Push argument" is

so frequent that we made it impli
it. All instru
tions

that produ
e a value dire
tly add it to the argument

list. An expli
it \Pop argument" has to be done when

the pushed value isn't desired.

This new virtual ma
hine allows the byte-
ode to be

mu
h more 
ompa
t. We have two ben
hmarks: one is a

little program that for
es the in
lusion of all the library;

the other is a module taken from a bigger proje
t (a parser

generator).

When they are 
ompiled for the �rst virtual ma
hine,

they both produ
e about 10 500 bytes of byte-
ode. When

they are 
ompiled for the se
ond ma
hine, they produ
e

about 5400 and 5600 bytes, respe
tively. Also, it demon-

strates that our entire R

4

RS S
heme library �ts in less that

5:5 KB of byte-
ode, whi
h is surprisingly 
ompa
t.

6 The a
tual implementation

Although our goal was to demonstrate that a S
heme im-

plementation for the 68HC11 is possible, we a
tually made

no tests dire
tly on the 
hip.

6.1 The byte-
ode 
ompiler

The byte-
ompiler is able to handle all the subset of S
heme

that we wanted to support. We didn't really take 
are of

making it fast. Its speed is reasonable, though. In only

8 se
onds, it's able to 
ompile Aubrey Ja�er's test �le for

S
heme implementations [10℄ while it's interpreted by the

s
m interpreter [9℄ whi
h is running on a 150 MHz DEC Al-

pha. The test �le is a 27 KB sour
e, in whi
h we 
ommented

out the se
tions 
on
erning I/O, bignum, and 
onum fun
-

tions.

Only very minor additions to the byte-
ompiler are re-

quired to adapt to a real mi
ro
ontroller. In fa
t, it only

needs additional primitive fun
tion de
larations in the li-

brary 
orresponding to the addition of primitive fun
tions

in the kernel. Those fun
tions are ne
essary to a
tually 
on-

trol the 
hip.



Implementation Size of interpreter

fools 1.3.2 [12℄ 288 KB

minis
heme 0.85 [13℄ 95 KB

s
m 4e1 [9℄ 368 KB

siod 3.0 [14℄ 166 KB

bit (byte-
ode interpreter 72 KB

with full library)

Figure 9: Size of di�erent small S
heme implementations.

6.2 The runtime system

A weakness of our 
urrent runtime is that it doesn't pro
eed

with the 
reation of the 
onstants the way it's des
ribed in

Se
tion 2.3: it doesn't dis
ard the des
ription of the 
on-

stants. So, when the exe
utable runs, it keeps both the

des
ription and the 
onstants themselves.

Also, the runtime kernel is written in C. Our system

requires a C 
ompiler that produ
es exe
utable 
ode for the

mi
ro
ontroller. As we mentioned above, additional kernel

fun
tions are required to give to the exe
utable the means

to 
ontrol the 
hip. Still, it shouldn't be that mu
h work.

It would be a more important pie
e of work to translate the

kernel into assembly language in order to obtain an even

more 
ompa
t exe
utable.

6.3 Experiments

We made a test o�-
hip to verify if it is possible to �t our

exe
utables on the 68HC11. We used a modi�ed g

 
om-

piler [11℄ that produ
es 
ode for the 68HC11. The 
ode that

it produ
es is poor. The main problem seems to be that g



expe
ts many registers on the target ma
hine. The 68HC11

has only one all-purpose register. So the ba
k-end has to

pretend that there are enough registers and has to simulate

their existen
e using 
ells in memory.

Still, we obtained an exe
utable of 22 KB for the kernel

and the 
omplete library. Even if they are far from ideal,

the results allow us to 
on
lude that integration into the

68HC11 is already possible. The same experiment on an

H8 (a mi
ro
ontroller with more registers used in the Lego

Mindstorms robot) gave a 15KB exe
utable.

We 
ompared the size of our exe
utables on a DEC Alpha

workstation with other \small" implementations. Figure 9

shows the results. The only implementation whose size is


lose to ours is minis
heme. But this implementation is

far from being R

4

RS 
ompliant. These 
omparisons aren't

ne
essarily fair, though, be
ause the other implementations

are intera
tive interpreters. The bit byte-
ompiler �ts in

72 KB with the full library but it doesn't in
lude an eval-

uation fun
tion to perform intera
tion. It is possible that

an adaptation of one of the other interpreters to an o�-line

version might give good results.

Our implementation performs poorly when it 
omes to

time eÆ
ien
y. It's roughly 10 times slower than s
m and 5

times slower than the Gambit interpreter (gsi [15℄). While

we took 
are of the spa
e-eÆ
ien
y aspe
ts, we didn't bother

about the speed as long as it stayed reasonably (asymptot-

i
ally) eÆ
ient.

The main sour
es of ineÆ
ien
y 
ome from the memory

management and the virtual ma
hine. First, even in the best


onditions, our GC is quite ineÆ
ient (see [6℄). Se
ond, we

don't try to redu
e the GC overhead by grouping the 
olle
-

tion phases into 
oarser, less frequent phases. So the GC is


alled during most of the allo
ations. Third, our virtual ma-


hine keeps the arguments of a 
all in a list. It means that a

pair must be allo
ated for ea
h argument. Given that mem-

ory management is slow, this pro
ess be
omes pretty heavy.

Finally, the 
on
ise style in whi
h the library is written adds

to the ineÆ
ien
y. Higher-order fun
tions are intensively

used, even in many apparently basi
 operations.

6.4 Improvements

This work 
ould be extended in many ways:

� Drop the unne
essary ma
hinery that rebuilds the al-

lo
ated 
onstants. If no 
onstants of a 
ertain type

have to be rebuilt, the 
onstru
tion 
ode spe
i�
 to

this type be
omes useless. Also, when it's possible, the

des
ription string of the 
onstants should be dropped

after de
oding.

� Drop the symbol names when possible. Sometimes,

only the identity of the symbols is required, not their

name.

� Add other number representations. From the most

useful to the least: 
onums, bignums, 
omplex, ratio-

nals.

� Provide a better implementation of environments. En-

vironment representations that are tailored to the lo
al

needs of the S
heme expressions would be preferable.

� Improve the time eÆ
ien
y.

� Provide the user with 
ags to give him 
ontrol of the

in
lusion of features and de
lare properties about his

program.

� Use various analyses well known in speed optimization

areas, but that 
an be put to 
ontribution in spa
e

optimization areas too. Su
h analyses in
lude 
ow

analyses (see [7℄), dead 
ode analyses, representation

analyses, useless-variable dete
tion, and storage use

analyses.

7 Con
lusion

Our goal was to determine whether it's possible to program

mi
ro
ontrollers su
h as the 68HC11 in S
heme. The two

major 
onstraints 
on
ern size and real-time-ness of the im-

plementation. In order to obtain a small implementation, we

took advantage of the non-intera
tivity of mi
ro
ontroller

appli
ations and separated the implementation in a byte-


ode 
ompiler and a runtime kernel. The 
ompiler is de-

signed to run on a normal workstation. It produ
es byte-


ode, whi
h added to the runtime kernel, provides a small

exe
utable 
ode to transfer to the mi
ro
ontroller.

We took great 
are in our design to favor spa
e eÆ
ien
y.

Choi
es 
on
ern: run-time representation of S
heme obje
ts

like type information and environments; memory manage-

ment, whi
h has to be real-time; the virtual ma
hine em-

bedded in the runtime kernel and its asso
iated byte-
ode.

In general, we sele
ted the most 
ompa
t approa
hes as long

as they stayed reasonably simple and that they didn't 
om-

promise the asymptoti
 
omplexity of S
heme programs.

Our results 
learly demonstrate that it's feasible to pro-

gram mi
ro
ontrollers in S
heme. S
heme sour
es, on
e


ompiled, be
ome byte-
odes several times smaller. The

two biggest weaknesses are the low speed of the exe
ution,



about 10 times slower than one of the fastest S
heme inter-

preters available, and the poor performan
e of the C 
om-

piler that translates the runtime kernel to mi
ro
ontroller

ma
hine 
ode.
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